Three-Dimensional Si/Ge Quantum Dot Crystals

Modern nanotechnology offers routes to create new artificial materials, widening the functionality of devices in physics, chemistry, and biology. Templated self-organization has been recognized as a possible route to achieve exact positioning of quantum dots to create quantum dot arrays, molecules,...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 7; no. 10; pp. 3150 - 3156
Main Authors Grützmacher, Detlev, Fromherz, Thomas, Dais, Christian, Stangl, Julian, Müller, Elisabeth, Ekinci, Yasin, Solak, Harun H, Sigg, Hans, Lechner, Rainer T, Wintersberger, Eugen, Birner, Stefan, Holý, Václav, Bauer, Günther
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.10.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern nanotechnology offers routes to create new artificial materials, widening the functionality of devices in physics, chemistry, and biology. Templated self-organization has been recognized as a possible route to achieve exact positioning of quantum dots to create quantum dot arrays, molecules, and crystals. Here we employ extreme ultraviolet interference lithography (EUV-IL) at a wavelength of λ = 13.5 nm for fast, large-area exposure of templates with perfect periodicity. Si(001) substrates have been patterned with two-dimensional hole arrays using EUV-IL and reactive ion etching. On these substrates, three-dimensionally ordered SiGe quantum dot crystals with the so far smallest quantum dot sizes and periods both in lateral and vertical directions have been grown by molecular beam epitaxy. X-ray diffractometry from a sample volume corresponding to about 3.6 × 107 dots and atomic force microscopy (AFM) reveal an up to now unmatched structural perfection of the quantum dot crystal and a narrow quantum dot size distribution. Intense interband photoluminescence has been observed up to room temperature, indicating a low defect density in the three-dimensional (3D) SiGe quantum dot crystals. Using the Ge concentration and dot shapes determined by X-ray and AFM measurements as input parameters for 3D band structure calculations, an excellent quantitative agreement between measured and calculated PL energies is obtained. The calculations show that the band structure of the 3D ordered quantum dot crystal is significantly modified by the artificial periodicity. A calculation of the variation of the eigenenergies based on the statistical variation in the dot dimensions as determined experimentally (±10% in linear dimensions) shows that the calculated electronic coupling between neighboring dots is not destroyed due to the quantum dot size variations. Thus, not only from a structural point of view but also with respect to the band structure, the 3D ordered quantum dots can be regarded as artificial crystal.
AbstractList Modern nanotechnology offers routes to create new artificial materials, widening the functionality of devices in physics, chemistry, and biology. Templated self-organization has been recognized as a possible route to achieve exact positioning of quantum dots to create quantum dot arrays, molecules, and crystals. Here we employ extreme ultraviolet interference lithography (EUV-IL) at a wavelength of λ = 13.5 nm for fast, large-area exposure of templates with perfect periodicity. Si(001) substrates have been patterned with two-dimensional hole arrays using EUV-IL and reactive ion etching. On these substrates, three-dimensionally ordered SiGe quantum dot crystals with the so far smallest quantum dot sizes and periods both in lateral and vertical directions have been grown by molecular beam epitaxy. X-ray diffractometry from a sample volume corresponding to about 3.6 × 107 dots and atomic force microscopy (AFM) reveal an up to now unmatched structural perfection of the quantum dot crystal and a narrow quantum dot size distribution. Intense interband photoluminescence has been observed up to room temperature, indicating a low defect density in the three-dimensional (3D) SiGe quantum dot crystals. Using the Ge concentration and dot shapes determined by X-ray and AFM measurements as input parameters for 3D band structure calculations, an excellent quantitative agreement between measured and calculated PL energies is obtained. The calculations show that the band structure of the 3D ordered quantum dot crystal is significantly modified by the artificial periodicity. A calculation of the variation of the eigenenergies based on the statistical variation in the dot dimensions as determined experimentally (±10% in linear dimensions) shows that the calculated electronic coupling between neighboring dots is not destroyed due to the quantum dot size variations. Thus, not only from a structural point of view but also with respect to the band structure, the 3D ordered quantum dots can be regarded as artificial crystal.
Modern nanotechnology offers routes to create new artificial materials, widening the functionality of devices in physics, chemistry, and biology. Templated self-organization has been recognized as a possible route to achieve exact positioning of quantum dots to create quantum dot arrays, molecules, and crystals. Here we employ extreme ultraviolet interference lithography (EUV-IL) at a wavelength of lambda = 13.5 nm for fast, large-area exposure of templates with perfect periodicity. Si(001) substrates have been patterned with two-dimensional hole arrays using EUV-IL and reactive ion etching. On these substrates, three-dimensionally ordered SiGe quantum dot crystals with the so far smallest quantum dot sizes and periods both in lateral and vertical directions have been grown by molecular beam epitaxy. X-ray diffractometry from a sample volume corresponding to about 3.6 x 10(7) dots and atomic force microscopy (AFM) reveal an up to now unmatched structural perfection of the quantum dot crystal and a narrow quantum dot size distribution. Intense interband photoluminescence has been observed up to room temperature, indicating a low defect density in the three-dimensional (3D) SiGe quantum dot crystals. Using the Ge concentration and dot shapes determined by X-ray and AFM measurements as input parameters for 3D band structure calculations, an excellent quantitative agreement between measured and calculated PL energies is obtained. The calculations show that the band structure of the 3D ordered quantum dot crystal is significantly modified by the artificial periodicity. A calculation of the variation of the eigenenergies based on the statistical variation in the dot dimensions as determined experimentally (+/-10% in linear dimensions) shows that the calculated electronic coupling between neighboring dots is not destroyed due to the quantum dot size variations. Thus, not only from a structural point of view but also with respect to the band structure, the 3D ordered quantum dots can be regarded as artificial crystal.
Author Fromherz, Thomas
Dais, Christian
Ekinci, Yasin
Müller, Elisabeth
Stangl, Julian
Lechner, Rainer T
Solak, Harun H
Bauer, Günther
Birner, Stefan
Sigg, Hans
Grützmacher, Detlev
Wintersberger, Eugen
Holý, Václav
Author_xml – sequence: 1
  givenname: Detlev
  surname: Grützmacher
  fullname: Grützmacher, Detlev
– sequence: 2
  givenname: Thomas
  surname: Fromherz
  fullname: Fromherz, Thomas
– sequence: 3
  givenname: Christian
  surname: Dais
  fullname: Dais, Christian
– sequence: 4
  givenname: Julian
  surname: Stangl
  fullname: Stangl, Julian
– sequence: 5
  givenname: Elisabeth
  surname: Müller
  fullname: Müller, Elisabeth
– sequence: 6
  givenname: Yasin
  surname: Ekinci
  fullname: Ekinci, Yasin
– sequence: 7
  givenname: Harun H
  surname: Solak
  fullname: Solak, Harun H
– sequence: 8
  givenname: Hans
  surname: Sigg
  fullname: Sigg, Hans
– sequence: 9
  givenname: Rainer T
  surname: Lechner
  fullname: Lechner, Rainer T
– sequence: 10
  givenname: Eugen
  surname: Wintersberger
  fullname: Wintersberger, Eugen
– sequence: 11
  givenname: Stefan
  surname: Birner
  fullname: Birner, Stefan
– sequence: 12
  givenname: Václav
  surname: Holý
  fullname: Holý, Václav
– sequence: 13
  givenname: Günther
  surname: Bauer
  fullname: Bauer, Günther
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19208351$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17892317$$D View this record in MEDLINE/PubMed
BookMark eNpt0E9LwzAYBvAgE_dHD34B6UVBsO5N0jXJUTadwkDEeS5Z8hY72nQm7WHf3srKdvH0vIcfzwvPmAxc7ZCQawqPFBiduhIEFVSpMzKiMw5xqhQbHG-ZDMk4hC0AKD6DCzKkQirGqRiRh_W3R4wXRYUuFLXTZfRZTJcYfbTaNW0VLeommvt9aHQZLsl53gVe9TkhXy_P6_lrvHpfvs2fVrHmCW9iwQQyuqHGMgXaSINGSqPUJgWBlmqdWuSJsiZFYBaYthqM5ZxLEGmOik_I3aF35-ufFkOTVUUwWJbaYd2GLJVcJAnQDt4foPF1CB7zbOeLSvt9RiH7myY7TtPZm7603VRoT7LfogO3PdDB6DL32pkinJxiIPmMnpw2IdvWre9GC_88_AUuCHc7
CitedBy_id crossref_primary_10_1088_0957_4484_26_16_165301
crossref_primary_10_1063_1_3243287
crossref_primary_10_1186_1556_276X_6_416
crossref_primary_10_1209_0295_5075_84_67017
crossref_primary_10_1088_0957_4484_20_47_475401
crossref_primary_10_1038_s41598_018_27512_z
crossref_primary_10_1063_1_3013461
crossref_primary_10_1016_j_apsusc_2011_06_162
crossref_primary_10_1016_j_nantod_2012_02_006
crossref_primary_10_1063_1_3464561
crossref_primary_10_1103_PhysRevLett_111_265501
crossref_primary_10_1107_S0021889813008182
crossref_primary_10_1063_1_3075899
crossref_primary_10_1063_1_3204007
crossref_primary_10_1063_1_4898579
crossref_primary_10_1016_j_jcrysgro_2022_126763
crossref_primary_10_4028_www_scientific_net_DDF_386_68
crossref_primary_10_1088_0953_8984_20_45_454215
crossref_primary_10_1103_PhysRevB_79_035324
crossref_primary_10_1088_0957_4484_24_1_015304
crossref_primary_10_1063_1_4863115
crossref_primary_10_1209_0295_5075_85_58002
crossref_primary_10_1088_1742_6596_245_1_012026
crossref_primary_10_1364_OE_21_006053
crossref_primary_10_1134_S1027451018020210
crossref_primary_10_1103_PhysRevB_89_205304
crossref_primary_10_1103_PhysRevB_77_245425
crossref_primary_10_35848_1347_4065_ac0940
crossref_primary_10_1063_1_2965484
crossref_primary_10_1088_1367_2630_12_6_063002
crossref_primary_10_3367_UFNe_0185_201505a_0449
crossref_primary_10_1134_S0021364023602105
crossref_primary_10_31857_S1234567823160036
crossref_primary_10_1063_1_4828734
crossref_primary_10_1088_1361_6528_abab31
crossref_primary_10_1007_s00339_014_8901_6
crossref_primary_10_1088_0957_4484_26_25_255302
crossref_primary_10_1186_1556_276X_7_346
crossref_primary_10_1063_1_3702883
crossref_primary_10_3367_UFNr_0185_201505a_0449
crossref_primary_10_1140_epjst_e2009_00929_4
crossref_primary_10_1088_1361_6641_aae62d
crossref_primary_10_3103_S1068337214040045
crossref_primary_10_1016_j_mee_2015_03_050
crossref_primary_10_1039_C3NR04114J
crossref_primary_10_1109_JLT_2016_2571305
crossref_primary_10_1103_PhysRevB_85_155405
crossref_primary_10_1088_1674_4926_39_6_061004
crossref_primary_10_4028_www_scientific_net_AMM_320_168
crossref_primary_10_1021_nn103127v
crossref_primary_10_1088_0022_3727_47_48_485303
crossref_primary_10_1002_masy_201051044
crossref_primary_10_1063_5_0023249
crossref_primary_10_1016_j_physb_2009_08_118
crossref_primary_10_1021_nl304177j
crossref_primary_10_1103_PhysRevB_81_085321
crossref_primary_10_3390_photonics10111248
crossref_primary_10_1039_C4CP03711A
crossref_primary_10_1140_epjst_e2009_00934_7
crossref_primary_10_1002_adma_200803109
crossref_primary_10_1088_1367_2630_15_12_125010
crossref_primary_10_7498_aps_63_098104
crossref_primary_10_1016_j_sse_2011_01_038
crossref_primary_10_1038_srep02099
crossref_primary_10_1142_S0217979209062414
crossref_primary_10_1134_S0021364015140131
crossref_primary_10_1088_1361_6528_aa8143
crossref_primary_10_3367_UFNr_0180_201003e_0289
crossref_primary_10_1063_1_4869396
crossref_primary_10_1186_s11671_016_1312_1
crossref_primary_10_1002_pssc_201700004
crossref_primary_10_1063_1_4802662
crossref_primary_10_1088_1361_6641_aa5697
crossref_primary_10_1088_1367_2630_11_6_063021
crossref_primary_10_1103_PhysRevB_82_235407
crossref_primary_10_1088_1367_2630_abafe7
crossref_primary_10_1117_1_3116559
crossref_primary_10_1088_0022_3727_44_20_205108
crossref_primary_10_1063_1_3575554
crossref_primary_10_1103_PhysRevB_99_115314
crossref_primary_10_1103_RevModPhys_90_025007
crossref_primary_10_1002_ppsc_201800302
crossref_primary_10_1063_1_3371683
crossref_primary_10_1016_j_vacuum_2011_07_032
crossref_primary_10_1109_TED_2017_2755069
crossref_primary_10_1103_PhysRevB_90_035430
crossref_primary_10_1088_0957_4484_25_47_475301
crossref_primary_10_1088_0957_4484_25_34_345301
crossref_primary_10_1021_nl403459m
crossref_primary_10_1088_1361_6528_aa91c1
crossref_primary_10_1103_PhysRevB_80_125329
crossref_primary_10_1016_j_infrared_2009_05_004
crossref_primary_10_1103_PhysRevB_84_155312
crossref_primary_10_1088_1468_6996_15_2_024601
crossref_primary_10_1007_s11664_014_3583_6
crossref_primary_10_1557_jmr_2014_239
crossref_primary_10_1016_j_jcrysgro_2008_12_004
crossref_primary_10_1134_S1063782612070147
crossref_primary_10_1007_s11051_017_3789_7
crossref_primary_10_1063_1_3520676
crossref_primary_10_1143_JJAP_49_045201
crossref_primary_10_3390_nano13162323
crossref_primary_10_35848_1347_4065_ad38f7
crossref_primary_10_3390_photonics10070764
crossref_primary_10_1088_1674_1056_20_6_066103
crossref_primary_10_1016_j_spmi_2013_04_024
crossref_primary_10_1107_S002188981302164X
crossref_primary_10_1002_jrs_6314
crossref_primary_10_1063_1_2993178
crossref_primary_10_1002_adma_202312948
crossref_primary_10_1063_1_5021345
crossref_primary_10_1103_PhysRevB_88_235308
crossref_primary_10_1364_OE_21_028219
crossref_primary_10_1364_OE_23_022250
crossref_primary_10_1103_PhysRevB_82_045315
crossref_primary_10_1103_PhysRevB_82_153306
crossref_primary_10_1103_PhysRevB_82_045318
crossref_primary_10_1088_0957_4484_26_6_065602
crossref_primary_10_1103_PhysRevB_85_235321
crossref_primary_10_1016_j_ssc_2009_04_044
crossref_primary_10_1021_acsnano_7b04810
crossref_primary_10_1103_PhysRevB_81_125312
crossref_primary_10_1063_1_4866356
crossref_primary_10_1039_B905053C
crossref_primary_10_1063_1_4824121
crossref_primary_10_1111_jmi_12196
crossref_primary_10_1134_S1063782615060238
crossref_primary_10_1016_j_apsusc_2015_01_073
crossref_primary_10_7567_1347_4065_ab19ac
crossref_primary_10_1063_1_4835095
crossref_primary_10_1088_0957_4484_23_1_015303
crossref_primary_10_1016_j_mssp_2024_108227
crossref_primary_10_1039_D1TB00729G
crossref_primary_10_1103_PhysRevLett_105_166102
crossref_primary_10_1209_0295_5075_88_66003
crossref_primary_10_1016_j_photonics_2020_100790
crossref_primary_10_1002_pssb_201100779
crossref_primary_10_1063_1_2907196
crossref_primary_10_1088_0957_4484_21_17_175701
crossref_primary_10_1088_0957_4484_24_10_105601
crossref_primary_10_1186_1556_276X_6_522
crossref_primary_10_1063_1_4906522
crossref_primary_10_1063_1_3117230
crossref_primary_10_4028_www_scientific_net_SSP_233_234_415
crossref_primary_10_1016_j_mser_2010_06_011
crossref_primary_10_1002_pssb_201100771
crossref_primary_10_1134_S1063782618090191
crossref_primary_10_1088_0957_4484_23_16_165302
crossref_primary_10_1002_pssc_201700200
crossref_primary_10_1007_s11051_013_1485_9
crossref_primary_10_1088_0034_4885_72_4_046502
crossref_primary_10_1103_PhysRevB_82_125316
crossref_primary_10_1080_00268971003685756
crossref_primary_10_1134_S1063782614060256
crossref_primary_10_1016_j_jcrysgro_2013_01_046
crossref_primary_10_1016_j_physc_2018_02_037
crossref_primary_10_1109_JPHOT_2016_2553847
crossref_primary_10_1002_pssa_202200145
crossref_primary_10_1063_1_4935859
crossref_primary_10_1063_1_4967383
crossref_primary_10_1364_OE_25_025602
Cites_doi 10.1063/1.110199
10.1063/1.119514
10.1063/1.369255
10.1103/PhysRevA.62.012306
10.1063/1.1682677
10.1166/jnn.2002.115
10.1016/S0167-9317(03)00059-5
10.1109/16.925244
10.1016/j.mee.2005.01.012
10.1103/PhysRevB.61.13721
10.1007/s11671-006-9004-x
10.1063/1.1581986
10.1021/nl048443e
10.1116/1.1306281
10.1016/j.susc.2006.12.053
10.1063/1.1828597
10.1016/j.physe.2003.11.084
10.1103/PhysRevB.40.5683
10.1103/RevModPhys.76.725
10.1063/1.1326842
10.1063/1.1896425
10.1063/1.1788881
10.1103/PhysRevA.57.120
10.1063/1.2143125
10.1016/0039-6028(88)90671-1
10.1088/0957-4484/10/2/302
10.1103/PhysRevB.57.14937
10.1103/PhysRevLett.76.1675
10.1063/1.2168494
10.1063/1.1664014
10.1126/science.1093164
10.1103/PhysRevB.65.205306
10.1103/PhysRevB.67.121301
10.1103/PhysRevB.62.16715
10.1103/PhysRevB.66.245319
10.1002/pssc.200404761
ContentType Journal Article
Copyright Copyright © 2007 American Chemical Society
2007 INIST-CNRS
Copyright_xml – notice: Copyright © 2007 American Chemical Society
– notice: 2007 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1021/nl0717199
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 3156
ExternalDocumentID 10_1021_nl0717199
17892317
19208351
c781148439
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
53G
6P2
AAYOK
ABFRP
ABQRX
ACBEA
ADHLV
AHGAQ
GGK
IQODW
AAHBH
ABJNI
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a343t-727e21b1cd290ac8cec88c99b607ed1aa6de349dc6e02d02ada0cd3338076fe93
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Sat Aug 17 04:14:52 EDT 2024
Fri Aug 23 00:52:54 EDT 2024
Sat Sep 28 07:53:12 EDT 2024
Sun Oct 29 17:10:13 EDT 2023
Thu Aug 27 13:43:30 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Atomic force microscopy
Ge-Si alloys
Photoluminescence
Self organization
Three dimensional structure
Ambient temperature
Molecular beam epitaxy
Silicon
Defect density
Band structure
Lithography
Quantum dots
Interference
Theoretical study
Template reaction
Ordered crystals
Reactive ion etching
Electronic structure
Plasma etching
Germanium
X ray diffractometry
Arrays
Nanostructured materials
Quantum crystals
Nanotechnology
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a343t-727e21b1cd290ac8cec88c99b607ed1aa6de349dc6e02d02ada0cd3338076fe93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17892317
PQID 68374401
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_68374401
crossref_primary_10_1021_nl0717199
pubmed_primary_17892317
pascalfrancis_primary_19208351
acs_journals_10_1021_nl0717199
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2007-10-01
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2007
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Vrijen R. (nl0717199b00012/nl0717199b00012_1) 2000; 62
Schmidt O. G. (nl0717199b00034/nl0717199b00034_1) 2000; 62
Schmidt O. G. (nl0717199b00010/nl0717199b00010_1) 2000; 77
Talalaev V. G. (nl0717199b00036/nl0717199b00036_1) 2006; 1
Laux S. E. (nl0717199b00001/nl0717199b00001_1) 1988; 196
Lazarenkova O. L. (nl0717199b00038/nl0717199b00038_1) 2002; 66
Leonhard D. (nl0717199b00002/nl0717199b00002_1) 1993; 63
Kiravittaya S. (nl0717199b00008/nl0717199b00008_1) 2006; 88
Solak H. H. (nl0717199b00023/nl0717199b00023_1) 2005; 78
Schmidt O. G. (nl0717199b00035/nl0717199b00035_1) 2000; 61
Fukatsu S. (nl0717199b00015/nl0717199b00015_1) 1997; 71
Wollschläger J. (nl0717199b00030/nl0717199b00030_1) 1998; 57
Stangl J. (nl0717199b00029/nl0717199b00029_1) 2004; 74
Kiravittaya S. (nl0717199b00003/nl0717199b00003_1) 2005; 87
Karmous A. (nl0717199b00011/nl0717199b00011_1) 2004; 85
Weber J. (nl0717199b00033/nl0717199b00033_1) 1989; 40
Zhong Z. (nl0717199b00021/nl0717199b00021_1) 2004; 21
Loss D. (nl0717199b00037/nl0717199b00037_1) 1998; 57
Lee H. (nl0717199b00006/nl0717199b00006_1) 2000; 18
Dais (nl0717199b00024/nl0717199b00024_1) 2007; 601
Gray J. L. (nl0717199b00005/nl0717199b00005_1) 2004; 4
Baier M. H. (nl0717199b00007/nl0717199b00007_1) 2004; 84
Wang K. L. (nl0717199b00014/nl0717199b00014_1) 2002; 2
van de Walle C. G. (nl0717199b00032/nl0717199b00032_1) 2000; 135
Leroy F. (nl0717199b00018/nl0717199b00018_1) 2002; 80
Malissa H. (nl0717199b00013/nl0717199b00013_1) 2004; 85
Kamins T. I. (nl0717199b00017/nl0717199b00017_1) 1999; 10
Friesen M. (nl0717199b00025/nl0717199b00025_1) 2003; 67
Solak H. H. (nl0717199b00022/nl0717199b00022_1) 2003; 67
Schmidt O. G. (nl0717199b00009/nl0717199b00009_1) 2001; 48
Zhong Z. (nl0717199b00020/nl0717199b00020_1) 2004; 84
Kamins T. I. (nl0717199b00028/nl0717199b00028_1) 1999; 85
For (nl0717199b00031/nl0717199b00031_1) 2004; 1
Biasiol G. (nl0717199b00026/nl0717199b00026_1) 2002; 65
Majumdar A. (nl0717199b00016/nl0717199b00016_1) 2004; 303
Zhong Z. (nl0717199b00004/nl0717199b00004_1) 2003; 82
Lichtenberger H. (nl0717199b00019/nl0717199b00019_1) 2005; 86
Tersoff J. (nl0717199b00027/nl0717199b00027_1) 1996; 76
References_xml – volume: 135
  start-page: 157
  year: 2000
  ident: nl0717199b00032/nl0717199b00032_1
  publication-title: London
  contributor:
    fullname: van de Walle C. G.
– volume: 63
  start-page: 3203
  year: 1993
  ident: nl0717199b00002/nl0717199b00002_1
  publication-title: Appl. Phys. Lett
  doi: 10.1063/1.110199
  contributor:
    fullname: Leonhard D.
– volume: 71
  start-page: 258
  year: 1997
  ident: nl0717199b00015/nl0717199b00015_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119514
  contributor:
    fullname: Fukatsu S.
– volume: 85
  start-page: 1159
  year: 1999
  ident: nl0717199b00028/nl0717199b00028_1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.369255
  contributor:
    fullname: Kamins T. I.
– volume: 62
  start-page: 012306
  year: 2000
  ident: nl0717199b00012/nl0717199b00012_1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.62.012306
  contributor:
    fullname: Vrijen R.
– volume: 84
  start-page: 1943
  year: 2004
  ident: nl0717199b00007/nl0717199b00007_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1682677
  contributor:
    fullname: Baier M. H.
– volume: 2
  start-page: 235
  year: 2002
  ident: nl0717199b00014/nl0717199b00014_1
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2002.115
  contributor:
    fullname: Wang K. L.
– volume: 67
  start-page: 56
  year: 2003
  ident: nl0717199b00022/nl0717199b00022_1
  publication-title: Microelectron. Eng.
  doi: 10.1016/S0167-9317(03)00059-5
  contributor:
    fullname: Solak H. H.
– volume: 48
  start-page: 1175
  year: 2001
  ident: nl0717199b00009/nl0717199b00009_1
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.925244
  contributor:
    fullname: Schmidt O. G.
– volume: 78
  start-page: 410
  year: 2005
  ident: nl0717199b00023/nl0717199b00023_1
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2005.01.012
  contributor:
    fullname: Solak H. H.
– volume: 61
  start-page: 13721
  year: 2000
  ident: nl0717199b00035/nl0717199b00035_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.13721
  contributor:
    fullname: Schmidt O. G.
– volume: 1
  start-page: 137
  year: 2006
  ident: nl0717199b00036/nl0717199b00036_1
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-006-9004-x
  contributor:
    fullname: Talalaev V. G.
– volume: 82
  start-page: 4779
  year: 2003
  ident: nl0717199b00004/nl0717199b00004_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1581986
  contributor:
    fullname: Zhong Z.
– volume: 4
  start-page: 2447
  year: 2004
  ident: nl0717199b00005/nl0717199b00005_1
  publication-title: Nano Lett.
  doi: 10.1021/nl048443e
  contributor:
    fullname: Gray J. L.
– volume: 18
  start-page: 2193
  year: 2000
  ident: nl0717199b00006/nl0717199b00006_1
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.1306281
  contributor:
    fullname: Lee H.
– volume: 80
  start-page: 3080
  year: 2002
  ident: nl0717199b00018/nl0717199b00018_1
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Leroy F.
– volume: 601
  start-page: 2787
  year: 2007
  ident: nl0717199b00024/nl0717199b00024_1
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2006.12.053
  contributor:
    fullname: Dais
– volume: 85
  start-page: 6401
  year: 2004
  ident: nl0717199b00011/nl0717199b00011_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1828597
  contributor:
    fullname: Karmous A.
– volume: 21
  start-page: 588
  year: 2004
  ident: nl0717199b00021/nl0717199b00021_1
  publication-title: Physica E
  doi: 10.1016/j.physe.2003.11.084
  contributor:
    fullname: Zhong Z.
– volume: 40
  start-page: 5683
  year: 1989
  ident: nl0717199b00033/nl0717199b00033_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.5683
  contributor:
    fullname: Weber J.
– volume: 74
  start-page: 725
  year: 2004
  ident: nl0717199b00029/nl0717199b00029_1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.725
  contributor:
    fullname: Stangl J.
– volume: 77
  start-page: 4139
  year: 2000
  ident: nl0717199b00010/nl0717199b00010_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1326842
  contributor:
    fullname: Schmidt O. G.
– volume: 86
  start-page: 131919
  year: 2005
  ident: nl0717199b00019/nl0717199b00019_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1896425
  contributor:
    fullname: Lichtenberger H.
– volume: 85
  start-page: 1739
  year: 2004
  ident: nl0717199b00013/nl0717199b00013_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1788881
  contributor:
    fullname: Malissa H.
– volume: 57
  start-page: 120
  year: 1998
  ident: nl0717199b00037/nl0717199b00037_1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.120
  contributor:
    fullname: Loss D.
– volume: 87
  start-page: 243112
  year: 2005
  ident: nl0717199b00003/nl0717199b00003_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2143125
  contributor:
    fullname: Kiravittaya S.
– volume: 196
  start-page: 101
  year: 1988
  ident: nl0717199b00001/nl0717199b00001_1
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(88)90671-1
  contributor:
    fullname: Laux S. E.
– volume: 10
  start-page: 117
  year: 1999
  ident: nl0717199b00017/nl0717199b00017_1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/10/2/302
  contributor:
    fullname: Kamins T. I.
– volume: 57
  start-page: 14937
  year: 1998
  ident: nl0717199b00030/nl0717199b00030_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.14937
  contributor:
    fullname: Wollschläger J.
– volume: 76
  start-page: 1675
  year: 1996
  ident: nl0717199b00027/nl0717199b00027_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.1675
  contributor:
    fullname: Tersoff J.
– volume: 88
  start-page: 043112
  year: 2006
  ident: nl0717199b00008/nl0717199b00008_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2168494
  contributor:
    fullname: Kiravittaya S.
– volume: 84
  start-page: 1922
  year: 2004
  ident: nl0717199b00020/nl0717199b00020_1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1664014
  contributor:
    fullname: Zhong Z.
– volume: 303
  start-page: 777
  year: 2004
  ident: nl0717199b00016/nl0717199b00016_1
  publication-title: Science
  doi: 10.1126/science.1093164
  contributor:
    fullname: Majumdar A.
– volume: 65
  start-page: 205306
  year: 2002
  ident: nl0717199b00026/nl0717199b00026_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.205306
  contributor:
    fullname: Biasiol G.
– volume: 67
  start-page: 121301
  year: 2003
  ident: nl0717199b00025/nl0717199b00025_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.121301
  contributor:
    fullname: Friesen M.
– volume: 62
  start-page: 16715
  year: 2000
  ident: nl0717199b00034/nl0717199b00034_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.16715
  contributor:
    fullname: Schmidt O. G.
– volume: 66
  start-page: 245319
  year: 2002
  ident: nl0717199b00038/nl0717199b00038_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.245319
  contributor:
    fullname: Lazarenkova O. L.
– volume: 1
  start-page: 2003
  year: 2004
  ident: nl0717199b00031/nl0717199b00031_1
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.200404761
  contributor:
    fullname: For
SSID ssj0009350
Score 2.3831074
Snippet Modern nanotechnology offers routes to create new artificial materials, widening the functionality of devices in physics, chemistry, and biology. Templated...
SourceID proquest
crossref
pubmed
pascalfrancis
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 3150
SubjectTerms Applied sciences
Chemical synthesis methods
Cross-disciplinary physics: materials science; rheology
Crystallization - methods
Electronics
Exact sciences and technology
Germanium - chemistry
Macromolecular Substances - chemistry
Materials science
Materials Testing
Methods of nanofabrication
Molecular Conformation
Molecular electronics, nanoelectronics
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - methods
Particle Size
Physics
Quantum Dots
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon - chemistry
Surface Properties
Title Three-Dimensional Si/Ge Quantum Dot Crystals
URI http://dx.doi.org/10.1021/nl0717199
https://www.ncbi.nlm.nih.gov/pubmed/17892317
https://search.proquest.com/docview/68374401
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEJ4gXjTG9wMf2KhHC93t0naPBERiookBEm5N99HEiIXQ9qC_3mkLAvF13026M7P9vulMvwG4cYgnLcqVqRD9TYYAaXLEfZNQ5M9Sukzk3YSPT053wB6GjWEJrn-p4FNSj0ZZykE4X4N1iniYZVjNVm-hrGvnY1jx5mIexD02lw9a3ppBj4xXoGdrEsRohbAYX_E7v8xxprMD7fnfOkV7yWstTURNfnwXb_zrCLuwPeOZRrMIjD0o6WgfNpfUBw_gto9-1GY70_cvtDmM3kv9XhvPKZo7fTPa48RoTd-RP47iQxh07vqtrjkbnmAGNrMTE3mJpkQQqSi3AulJLT1Pco62d7UiQeAobTOupKMtqiwaqMCSyrYzAXon1Nw-gnI0jvQJGK7C16YUlg4xWVOqIZQXItQzIUJqO4JVoIrW9WfBH_t5XZsS_-vYFbiaG96fFCIaPy2qrrhksZLTjCeSClzOfeTjHcgKG0Gkx2nsO5hlM0wUK3BcuG6x1_UyBuue_veIZ7CRf7XN2_TOoZxMU32BdCMR1TzcPgF1hsq5
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHAAh9qUsJUIcCcSOm8RHVJaySqitxC2Kl0iIklYkOcDXM3ZaCggEdzsaz9h5bzLOG4CDgETSo1y5CtHfZQiQLkfcdwlF_ixlyIS9TXh7F7S67Oqh8TCUyTH_wqAROT4pt0X8sboAOc56JvMgnE_CdCNElDM0qNkeC-z6thsrHmBMh3jERipCn6caBJL5FwSaHyQ5OiOtulj8TjMt3JwvVn2LrKH2lsnTUVmII_n2TcPxfytZgoUh63ROqm2yDBM6W4G5T1qEq3DYwahq99So_VdKHU778fhCO_clOr98dk77hdN8eUU22cvXoHt-1mm23GErBTfxmV-4yFI0JYJIRbmXyEhqGUWSc4xEqBVJkkBpn3ElA-1R5dFEJZ5Uvm_k6INUc38dprJ-pjfBCRW-RKXwdIqpm1INoaIUgZ8JkVI_EKwGdVx1PDwKeWyr3JTEH8uuwf7I__GgktT4aVD9S2TGIzk1rJHUYG8UqhhPhClzJJnul3kcYM7NMG2swUYVwfHcMDJ8Ntz6y8Q9mGl1bm_im8u7622Ytd9z7QW-HZgqXkq9i0SkEHW7A98B3xnTJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT_MwEB2xSAiE2JeylAhxJBA7bhIfUUvZ4fsESNyieImEgLQiyQF-PWMnpYBAcLejcZ4n8yYzfgbYCUgkPcqVqzD6uwwDpMsx7ruEIn-WMmTCdhNeXAbHt-z0rnVXJ4rmLAwakeOTclvEN17dV2mtMED2s0eTfRDOR2G8FRJmHPGgfT0U2fXtjazoxJgS8YgNlIQ-TjVRSOafotB0P8nxhaTVTRY_U00bcrqzcPVurO00edgrC7EnX7_oOP59NXMwU7NP56DaLvMworMFmPqgSbgIuzeIrnY7RvW_Uuxwru_3j7Tzv0QQyien0yuc9vMLssrHfAluu4c37WO3vlLBTXzmFy6yFU2JIFJR7iUyklpGkeQcEQm1IkkSKO0zrmSgPao8mqjEk8r3jSx9kGruL8NY1sv0Kjihwo-pFJ5OMYVTqiVUlCIBYEKk1A8Ea0ATVx7XLpHHttpNSfy-7AZsDzCI-5W0xneDmp_QGY7k1LBH0oCtAVwxeoYpdySZ7pV5HGDuzTB9bMBKheJwbhgZXhuu_WbiFkz863Tj85PLs3WYtL91bR_fBowVz6XeRD5SiKbdhG_frtWe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+Si%2FGe+quantum+dot+crystals&rft.jtitle=Nano+letters&rft.au=GR%C3%9CTMACHER%2C+Detlev&rft.au=FROMHERZ%2C+Thomas&rft.au=BIRNER%2C+Stefan&rft.au=HOLY%2C+Vaclav&rft.date=2007-10-01&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=7&rft.issue=10&rft.spage=3150&rft.epage=3156&rft_id=info:doi/10.1021%2Fnl0717199&rft.externalDBID=n%2Fa&rft.externalDocID=19208351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon