Computational Exploration of Multistable Elastic Knots

We present an algorithmic approach to discover, study, and design multistable elastic knots. Elastic knots are physical realizations of closed curves embedded in 3-space. When endowed with the material thickness and bending resistance of a physical wire, these knots settle into equilibrium states th...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on graphics Vol. 42; no. 4; pp. 1 - 16
Main Authors Vidulis, Michele, Ren, Yingying, Panetta, Julian, Grinspun, Eitan, Pauly, Mark
Format Journal Article
LanguageEnglish
Published New York, NY, USA ACM 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an algorithmic approach to discover, study, and design multistable elastic knots. Elastic knots are physical realizations of closed curves embedded in 3-space. When endowed with the material thickness and bending resistance of a physical wire, these knots settle into equilibrium states that balance the forces induced by elastic deformation and self-contacts of the wire. In general, elastic knots can have many distinct equilibrium states, i.e. they are multistable mechanical systems. We propose a computational pipeline that combines randomized spatial sampling and physics simulation to efficiently find stable equilibrium states of elastic knots. Leveraging results from knot theory, we run our pipeline on thousands of different topological knot types to create an extensive data set of multistable knots. By applying a series of filters to this data, we discover new transformable knots with interesting geometric and physical properties. A further analysis across knot types reveals geometric and topological patterns, yielding constructive principles that generalize beyond the currently tabulated knot types. We show how multistable elastic knots can be used to design novel deployable structures and engaging recreational puzzles. Several physical prototypes at different scales highlight these applications and validate our simulation.
AbstractList We present an algorithmic approach to discover, study, and design multistable elastic knots. Elastic knots are physical realizations of closed curves embedded in 3-space. When endowed with the material thickness and bending resistance of a physical wire, these knots settle into equilibrium states that balance the forces induced by elastic deformation and self-contacts of the wire. In general, elastic knots can have many distinct equilibrium states, i.e. they are multistable mechanical systems. We propose a computational pipeline that combines randomized spatial sampling and physics simulation to efficiently find stable equilibrium states of elastic knots. Leveraging results from knot theory, we run our pipeline on thousands of different topological knot types to create an extensive data set of multistable knots. By applying a series of filters to this data, we discover new transformable knots with interesting geometric and physical properties. A further analysis across knot types reveals geometric and topological patterns, yielding constructive principles that generalize beyond the currently tabulated knot types. We show how multistable elastic knots can be used to design novel deployable structures and engaging recreational puzzles. Several physical prototypes at different scales highlight these applications and validate our simulation.
ArticleNumber 73
Author Ren, Yingying
Grinspun, Eitan
Pauly, Mark
Panetta, Julian
Vidulis, Michele
Author_xml – sequence: 1
  givenname: Michele
  orcidid: 0009-0009-2373-9581
  surname: Vidulis
  fullname: Vidulis, Michele
  email: michele.vidulis@epfl.ch
  organization: EPFL, Lausanne, Switzerland
– sequence: 2
  givenname: Yingying
  orcidid: 0000-0001-6229-3724
  surname: Ren
  fullname: Ren, Yingying
  email: yingying.ren@epfl.ch
  organization: EPFL, Lausanne, Switzerland
– sequence: 3
  givenname: Julian
  orcidid: 0000-0002-8331-2354
  surname: Panetta
  fullname: Panetta, Julian
  email: jpanetta@ucdavis.edu
  organization: UC Davis, Davis, United States of America
– sequence: 4
  givenname: Eitan
  orcidid: 0000-0003-4460-7747
  surname: Grinspun
  fullname: Grinspun, Eitan
  email: eitan@cs.toronto.edu
  organization: University of Toronto, Toronto, Canada
– sequence: 5
  givenname: Mark
  orcidid: 0000-0003-4957-4825
  surname: Pauly
  fullname: Pauly, Mark
  email: mark.pauly@epfl.ch
  organization: EPFL, Lausanne, Switzerland
BookMark eNptj01LxDAURYOMYGcU9666cxV9aZo0WUqpHzjiRtfltU2hkjYlyYD-e0c7uhBXl8c978JZk9XkJkPIOYMrxnJxzYXOuNZHJGFCFLTgUq1IAgUHChzYCVmH8AYAMs9lQmTpxnkXMQ5uQptW77N1_vtKXZ8-7WwcQsTGmrSyGOLQpo-Ti-GUHPdogzk75Ia83lYv5T3dPt89lDdbijznkTIuTCNFhxJaLnKtpM5Mpw0UxggsesaZ7pSQGltouGqwyNT-EaRSmcoR-IZcLrutdyF409ezH0b0HzWD-ku3PujuSfqHbIdFK3oc7D_8xcJjO_6O_pSfvKNe7g
CitedBy_id crossref_primary_10_1073_pnas_2405744121
crossref_primary_10_1145_3687967
Cites_doi 10.1007/s00211-020-01156-6
10.1142/s0218216521500759
10.1145/1141911.1142012
10.1007/s00205-017-1100-9
10.1145/3460775
10.1142/S0218195995000064
10.1002/9780470977811
10.1103/PhysRevE.52.1176
10.1103/PhysRevLett.99.164301
10.1007/s00283-014-9472-2
10.1002/1097-0282(20001015)54:5<307::AID-BIP20>3.0.CO;2-Y
10.1103/PhysRevE.70.011803
10.1109/IM.2001.924423
10.1007/s10955-011-0164-4
10.4310/CAG.2020.v28.n2.a2
10.1016/0166-8641(93)90079-S
10.1515/9783110875911.323
10.1112/jlms/s2-30.3.512
10.1007/BF01277546
10.1111/1467-8659.00594
10.1088/0305-4470/24/23/021
10.21136/CMJ.1961.100486
10.1111/cgf.13519
10.4230/LIPIcs.SoCG.2020.25
10.48550/arXiv.math/0401051
10.1016/0370-2693(81)90545-1
10.1073/pnas.96.9.4769
10.1016/0040-9383(85)90046-1
10.1145/3450626.3459767
10.1016/B978-0-12-480440-1.50025-3
10.1145/1360612.1360662
10.1111/j.1467-8659.2008.01147.x
10.1016/S0960-0779(97)00109-4
10.1007/s00208-021-02346-9
10.1016/j.jmps.2018.03.019
10.1016/j.eml.2021.101172
10.1126/science.286.5437.11a
10.1007/978-1-4757-5362-2_15
10.1214/15-AAP1100
10.1134/S1061920814040013
10.1016/j.cma.2014.05.017
10.1023/A:1010911113919
10.1007/s41468-017-0007-8
10.1038/scientificamerican0983-18
10.1073/pnas.9.3.93
10.1073/pnas.96.10.5482
10.1016/S0006-3495(00)76277-1
10.1088/0964-1726/22/1/014005
10.1142/5229
10.1016/j.jmps.2009.05.004
10.1515/9783110571493-002
10.1007/978-1-4612-4132-4
10.1039/b509983h
10.1142/S0218216506004543
10.1080/00029890.1972.11993052
10.1088/1751-8113/42/47/475006
10.1103/PhysRevLett.82.3003
10.1007/s00222-002-0234-y
10.1007/978-3-319-76965-3
10.1007/s00004-013-0154-8
10.1090/mcom/3633
10.2307/1969467
10.1016/S0006-3495(98)77960-3
10.1007/978-1-4615-2025-2_11
10.1145/3306346.3323040
10.1115/DETC2009-86990
10.1145/1778765.1778853
10.1007/s00466-012-0683-0
10.2312/SCA/SCA07/063-072
10.1145/3453477
10.1007/978-3-662-03315-9
10.1098/rsta.2004.1393
10.1007/978-3-319-50598-5
10.1145/3439429
10.1103/PhysRevE.75.031801
10.1115/1.4050238
10.1145/3386569.3392425
10.1038/s41586-020-03123-5
10.1021/acs.jctc.8b00169
ContentType Journal Article
Copyright ACM
Copyright_xml – notice: ACM
DBID AAYXX
CITATION
DOI 10.1145/3592399
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-7368
EndPage 16
ExternalDocumentID 10_1145_3592399
3592399
GrantInformation_xml – fundername: Swiss National Science Foundation
  grantid: FNS 514543 / CF 1156
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2021-03733
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
F5P
FEDTE
GUFHI
HGAVV
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TWZ
UHB
UPT
W7O
WH7
XSW
ZCA
~02
9M8
AAFWJ
AAYOK
AAYXX
ABFSI
AEFXT
AEJOY
AETEA
AI.
AKRVB
CITATION
E.L
EBS
EJD
HF~
MVM
NHB
OHT
UKR
VH1
XJT
XOL
ZY4
ID FETCH-LOGICAL-a343t-135eb65da60c35498692ed9e07ee5a7f1319d8569ac0b38ba7283430688284a03
ISSN 0730-0301
IngestDate Thu Jul 03 08:19:43 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
Fri Feb 21 01:26:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords physics-based simulation
elastic knots
multistability
numerical optimization
fabrication
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a343t-135eb65da60c35498692ed9e07ee5a7f1319d8569ac0b38ba7283430688284a03
ORCID 0009-0009-2373-9581
0000-0002-8331-2354
0000-0001-6229-3724
0000-0003-4460-7747
0000-0003-4957-4825
OpenAccessLink https://infoscience.epfl.ch/record/302408/files/paper.pdf
PageCount 16
ParticipantIDs crossref_primary_10_1145_3592399
crossref_citationtrail_10_1145_3592399
acm_primary_3592399
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle ACM transactions on graphics
PublicationTitleAbbrev ACM TOG
PublicationYear 2023
Publisher ACM
Publisher_xml – name: ACM
References Sergey Avvakumov and Alexey Sossinsky. 2014. On the Normal Form of Knots. Russian Journal of Mathematical Physics 21 (2014), 421--429. 10.1134/S1061920814040013
Neal Madras and Gordon Slade. 1996. The Self-Avoiding Walk. Birkhäuser Boston, Boston, MA. 10.1007/978-1-4612-4132-4
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental potential contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4 (2020), 1--20. 10.1145/3386569.3392425
Sotero Alvarado, Jorge Alberto Calvo, and Kenneth C. Millett. 2011. The Generation of Random Equilateral Polygons. Journal of Statistical Physics 143, 1 (2011), 102--138. 10.1007/s10955-011-0164-4
Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental potential contact. ACM Trans. Graph. 40, 4 (2021), 1--24. 10.1145/3450626.3459767
Tian Chen, Mark Pauly, and Pedro M. Reis. 2021. A reprogrammable mechanical metamaterial with stable memory. Nature 589, 7842 (2021), 386--390. 10.1038/s41586-020-03123-5
Dmitri Kozlov. 2013. Structures of Periodical Knots and Links as Geometric Models of Complex Surfaces for Designing. Nexus Network Journal 15, 2 (2013), 241--255. 10.1007/s00004-013-0154-8
Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy, and Jean-Luc Lévëque. 2006. Super-Helices for Predicting the Dynamics of Natural Hair. ACM Trans. Graph. 25, 3 (2006), 1180--1187. 10.1145/1141911.1142012
James W. Alexander. 1923. A Lemma on Systems of Knotted Curves. Proceedings of the National Academy of Sciences of the United States of America 9, 3 (1923), 93--95.
Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete Elastic Rods. ACM Trans. Graph. 27, 3 (2008), 1--12. 10.1145/1360612.1360662
Ryan Blair, Alexandra Kjuchukova, Roman Velazquez, and Paul Villanueva. 2020. Wirtinger systems of generators of knot groups. Communications in Analysis and Geometry 28, 2 (2020), 243--262. 10.4310/CAG.2020.v28.n2.a2
Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele Panozzo. 2021. A Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision Detection. ACM Trans. Graph. 40, 5 (2021), 1--16. 10.1145/3460775
E. J. Janse van Rensburg and S. G. Whittington. 1991. The BFACF algorithm and knotted polygons. Journal of Physics A: Mathematical and General 24, 23 (1991), 5553--5567. 10.1088/0305-4470/24/23/021
Peter Guthrie Tait. 1884. On Knots, Part II. Transactions of the Royal Society of Edinburgh 32 (1884), 318--334.
G. M. Guisewite. 1995. Network Problems. Springer US, Boston, MA, 609--648. 10.1007/978-1-4615-2025-2_11
Jonas Spillmann and Matthias Teschner. 2008. An Adaptive Contact Model for the Robust Simulation of Knots. Computer Graphics Forum 27, 2 (2008), 497--506. 10.1111/j.1467-8659.2008.01147.x
Thomas A. Gittings. 2004. Minimum Braids: A Complete Invariant of Knots and Links. (2004). 10.48550/arXiv.math/0401051
Henryk Gerlach, Philipp Reiter, and Heiko von der Mosel. 2017. The elastic trefoil is the twice covered circle. Archive for Rational Mechanics and Analysis 225, 1 (2017), 89--139. 10.1007/s00205-017-1100-9
Benjamin A. Burton. 2020. The Next 350 Million Knots. In 36th International Symposium on Computational Geometry (SoCG 2020), Vol. 164. 25:1--25:17. 10.4230/LIPIcs.SoCG.2020.25
Alexandra Gilsbach, Philipp Reiter, and Heiko von der Mosel. 2021. Symmetric elastic knots. Math. Ann. 385 (2021), 811--844. 10.1007/s00208-021-02346-9
Gregory Buck and Eric J. Rawdon. 2004. Role of flexibility in entanglement. Physical Review E 70, 1 (2004), 011803. 10.1103/PhysRevE.70.011803
Konstantin Klenin and Jörg Langowski. 2000. Computation of writhe in modeling of supercoiled DNA. Biopolymers 54, 5 (2000), 307--317.
Adam Liwo, Jooyoung Lee, Daniel R Ripoll, Jaroslaw Pillardy, and Harold A Scheraga. 1999. Protein structure prediction by global optimization of a potential energy function. Proceedings of the National Academy of Sciences 96, 10 (1999), 5482--5485.
Michalewicz Zbigniew. 1996. Genetic algorithms + data structures = evolution programs. In Computational Statistics. Springer-Verlag, 372--373. 10.1007/978-3-662-03315-9
Jun O'Hara. 2003. Energy of knots and conformal geometry. Series on knots and everything, Vol. 33. World Scientific Pub. 10.1142/5229
Alain C. Vaucher and Markus Reiher. 2018. Minimum Energy Paths and Transition States by Curve Optimization. Journal of Chemical Theory and Computation 14, 6 (2018), 3091--3099. 10.1021/acs.jctc.8b00169
Zachary Ferguson et al. 2020. IPC Toolkit. https://ipc-sim.github.io/ipc-toolkit
Dinesh K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21, 3 (2002), 347--352. 10.1111/1467-8659.00594
Robert G. Scharein. 1998. Interactive Topological Drawing. Ph. D. Dissertation. Department of Computer Science, The University of British Columbia.
Paweł Strzelecki and Heiko von der Mosel. 2017. Geometric curvature energies: facts, trends, and open problems. In New Directions in Geometric and Applied Knot Theory. 8--35. 10.1515/9783110571493-002
Christoph Meier, Alexander Popp, and Wolfgang A. Wall. 2014. An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering 278 (2014), 445--478. 10.1016/j.cma.2014.05.017
Richard A. Hord. 1972. Torsion at an inflection point of a space curve. The American Mathematical Monthly 79, 4 (1972), 371--374.
Joel Hass. 1998. Algorithms for recognizing knots and 3-manifolds. Chaos, Solitons & Fractals 9, 4--5 (1998), 569--581. 10.1016/S0960-0779(97)00109-4
C. Livingston and A. H. Moore. 2022. KnotInfo: Table of Knot Invariants. https://knotinfo.math.indiana.edu/index.php
Chengzi Liang and Kurt Mislow. 1994. On amphicheiral knots. Journal of Mathematical Chemistry 15, 1 (1994), 1--34. 10.1007/BF01277546
Andrew Choi, Dezhong Tong, Mohammad K. Jawed, and Jungseock Joo. 2021. Implicit Contact Model for Discrete Elastic Rods in Knot Tying. Journal of Applied Mechanics 88, 5 (2021), 051010. 10.1115/1.4050238
Yuanan Diao, Claus Ernst, and Philipp Reiter. 2021. Knots with Equal Bridge Index and Braid Index. Journal of Knot Theory and Its Ramifications (2021). 10.1142/s0218216521500759
Paul Johanns, Paul Grandgeorge, Changyeob Baek, Tomohiko G. Sano, John H. Maddocks, and Pedro M. Reis. 2021. The shapes of physical trefoil knots. Extreme Mechanics Letters 43 (2021), 101172. 10.1016/j.eml.2021.101172
Wolfgang Wenzel and Kay Hamacher. 1999. Stochastic tunneling approach for global minimization of complex potential energy landscapes. Physical Review Letters 82, 15 (1999), 3003.
Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4 (2010), 1--10. 10.1145/1778765.1778853
Sören Bartels and Philipp Reiter. 2021. Stability of a simple scheme for the approximation of elastic knots and self-avoiding inextensible curves. Math. Comp. 90, 330 (2021), 1499--1526. 10.1090/mcom/3633
Patrick B. Furrer, Robert S. Manning, and John H. Maddocks. 2000. DNA Rings with Multiple Energy Minima. Biophysical Journal 79, 1 (2000), 116--136. 10.1016/S0006-3495(00)76277-1
K. Kodama and M. Sakuma. 1992. Symmetry groups of prime knots up to 10 crossings. In Knot 90, Proceedings of the International Conference on Knot Theory and Related Topics. 10.1515/9783110875911.323
Joel Langer and David A. Singer. 1984. Knotted Elastic Curves in R3. Journal of the London Mathematical Society s2-30, 3 (1984), 512--520. 10.1112/jlms/s2-30.3.512
Nicolas Clauvelin, Basile Audoly, and Sébastien Neukirch. 2009. Matched asymptotic expansions for twisted elastic knots: a self-contact problem with non- trivial contact topology. Journal of the Mechanics and Physics of Solids 57, 9 (2009), 1623--1656. 10.1016/j.jmps.2009.05.004
Basile Audoly, Nicolas Clauvelin, and Sébastien Neukirch. 2007. Elastic Knots. Physical review letters 99 (2007), 164301. 10.1103/PhysRevLett.99.164301
Bernard Coleman and David Swigon. 2000. Theory of Supercoiled Elastic Rings with Self-Contact and Its Application to DNA Plasmids. Journal of Elasticity 60 (2000), 173--221. 10.1023/A:1010911113919
Shinji Fukuhara. 1988. Energy of a Knot. In A Fëte of Topology. Elsevier, 443--451. 10.1016/B978-0-12-480440-1.50025-3
Eric J. Rawdon and Jonathan K. Simon. 2006. Polygonal Approximation and Energy of Smooth Knots. Journal of Knot Theory and Its Ramifications 15, 04 (2006), 429--451. 10.1142/S0218216506004543
Oscar Gonzalez and John H. Maddocks. 1999. Global curvature, thickness, and the ideal shapes of knots. Proceedings of the National Academy of Sciences 96, 9 (1999), 4769--4773. 10.1073/pnas.96.9.4769
Andrzej Stasiak, Akos Dobay, Jacques Dubochet, and Giovanni Dietler. 1999. Knotted Fishing Line, Covalent Bonds, and Breaking Points. Science 286, 5437 (1999). 10.1126/science.286.5437.11a
Chris Yu, Henrik Schumacher, and Keenan Crane. 2021. Repulsive Curves. ACM Trans. Graph. 40, 2 (2021), 1--21. 10.1145/3439429
Martin Gardner. 1983. Mathematical Games. Scientific American 249, 3 (1983), 18--E8.
Jason Cantarella, Robert B. Kusner, and John M. Sullivan. 2002. On the minimum ropelength of knots and links. Inventiones mathematicae 150, 2 (2002), 257--286. 10.1007/s00222-002-0234-y
Colin C. Adams. 2004. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. American Mathematical Soc.
Sören Bartels and Philipp Reiter. 2020. Numerical solution of a bending-torsion model for elastic rods. Numer. Math. 146, 4 (2020), 661--697. 10.1007/s00211-020-01156-6
Szymon Rusinkiewicz and Marc Levoy. 2001. Efficient Variants of the ICP Algorithm. In Proceedings of the Third Intl. Conf. on 3D Digital Imaging and Modeling. 145--152. 10.1109/IM.2001.924423
Jason Cantarella and Clayton Shonkwiler. 2016. The symplectic geometry of closed equilateral random walks in 3-space.
e_1_2_2_4_1
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_62_1
e_1_2_2_43_1
e_1_2_2_64_1
e_1_2_2_85_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_66_1
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_68_1
e_1_2_2_83_1
e_1_2_2_60_1
e_1_2_2_81_1
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_59_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_76_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_53_1
e_1_2_2_74_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_55_1
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_57_1
e_1_2_2_78_1
e_1_2_2_70_1
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
Scharein Robert G. (e_1_2_2_72_1)
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_63_1
e_1_2_2_42_1
e_1_2_2_84_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_67_1
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_69_1
e_1_2_2_82_1
e_1_2_2_61_1
e_1_2_2_80_1
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
John (e_1_2_2_65_1) 2006
e_1_2_2_52_1
e_1_2_2_75_1
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_73_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_56_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_77_1
Tait Peter Guthrie (e_1_2_2_79_1) 1884; 32
e_1_2_2_50_1
e_1_2_2_71_1
References_xml – reference: Chaim Even-Zohar. 2017. Models of random knots. Journal of Applied and Computational Topology 1, 2 (2017), 263--296. 10.1007/s41468-017-0007-8
– reference: Robert G. Scharein. 1998. Interactive Topological Drawing. Ph. D. Dissertation. Department of Computer Science, The University of British Columbia.
– reference: J. W. Milnor. 1950. On the Total Curvature of Knots. The Annals of Mathematics 52, 2 (1950), 248. 10.2307/1969467
– reference: Paul Johanns, Paul Grandgeorge, Changyeob Baek, Tomohiko G. Sano, John H. Maddocks, and Pedro M. Reis. 2021. The shapes of physical trefoil knots. Extreme Mechanics Letters 43 (2021), 101172. 10.1016/j.eml.2021.101172
– reference: Adam Liwo, Jooyoung Lee, Daniel R Ripoll, Jaroslaw Pillardy, and Harold A Scheraga. 1999. Protein structure prediction by global optimization of a potential energy function. Proceedings of the National Academy of Sciences 96, 10 (1999), 5482--5485.
– reference: B. Berg and D. Foerster. 1981. Random paths and random surfaces on a digital computer. Phys. Lett. B 106, 4 (1981), 323--326. 10.1016/0370-2693(81)90545-1
– reference: Sören Bartels and Philipp Reiter. 2020. Numerical solution of a bending-torsion model for elastic rods. Numer. Math. 146, 4 (2020), 661--697. 10.1007/s00211-020-01156-6
– reference: Stephen R. Quake. 1995. Fast Monte Carlo algorithms for knotted polymers. Physical Review E 52, 1 (1995), 1176--1180. 10.1103/PhysRevE.52.1176
– reference: Carlota Soler, Tobias Martin, and Olga Sorkine-Hornung. 2018. Cosserat Rods with Projective Dynamics. Computer Graphics Forum 37, 8 (2018), 137--147. 10.1111/cgf.13519
– reference: David Swigon, Bernard D. Coleman, and Irwin Tobias. 1998. The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes. Biophysical Journal 74, 5 (1998), 2515--2530. 10.1016/S0006-3495(98)77960-3
– reference: Chris Yu, Henrik Schumacher, and Keenan Crane. 2021. Repulsive Curves. ACM Trans. Graph. 40, 2 (2021), 1--21. 10.1145/3439429
– reference: Michalewicz Zbigniew. 1996. Genetic algorithms + data structures = evolution programs. In Computational Statistics. Springer-Verlag, 372--373. 10.1007/978-3-662-03315-9
– reference: Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental potential contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39, 4 (2020), 1--20. 10.1145/3386569.3392425
– reference: R. Gallotti and O. Pierre-Louis. 2007. Stiff knots. Physical Review E 75, 3 (2007), 031801. 10.1103/PhysRevE.75.031801
– reference: Zachary Ferguson et al. 2020. IPC Toolkit. https://ipc-sim.github.io/ipc-toolkit/
– reference: Helmut Alt and Michael Godau. 1995. Computing the Fréchet Distance between Two Polygonal Curves. Int. J. Comput. Geometry Appl. 5 (1995), 75--91. 10.1142/S0218195995000064
– reference: Sören Bartels and Philipp Reiter. 2021. Stability of a simple scheme for the approximation of elastic knots and self-avoiding inextensible curves. Math. Comp. 90, 330 (2021), 1499--1526. 10.1090/mcom/3633
– reference: Jason Cantarella, Robert B. Kusner, and John M. Sullivan. 2002. On the minimum ropelength of knots and links. Inventiones mathematicae 150, 2 (2002), 257--286. 10.1007/s00222-002-0234-y
– reference: Neal Madras and Gordon Slade. 1996. The Self-Avoiding Walk. Birkhäuser Boston, Boston, MA. 10.1007/978-1-4612-4132-4
– reference: M. Khalid Jawed, Alyssa Novelia, and Oliver M. O'Reilly. 2018. A Primer on the Kinematics of Discrete Elastic Rods. Springer International Publishing, Cham. 10.1007/978-3-319-76965-3
– reference: Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy, and Jean-Luc Lévëque. 2006. Super-Helices for Predicting the Dynamics of Natural Hair. ACM Trans. Graph. 25, 3 (2006), 1180--1187. 10.1145/1141911.1142012
– reference: Henryk Gerlach, Philipp Reiter, and Heiko von der Mosel. 2017. The elastic trefoil is the twice covered circle. Archive for Rational Mechanics and Analysis 225, 1 (2017), 89--139. 10.1007/s00205-017-1100-9
– reference: Shinji Fukuhara. 1988. Energy of a Knot. In A Fëte of Topology. Elsevier, 443--451. 10.1016/B978-0-12-480440-1.50025-3
– reference: Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete Elastic Rods. ACM Trans. Graph. 27, 3 (2008), 1--12. 10.1145/1360612.1360662
– reference: C. Livingston and A. H. Moore. 2022. KnotInfo: Table of Knot Invariants. https://knotinfo.math.indiana.edu/index.php
– reference: Peter Guthrie Tait. 1884. On Knots, Part II. Transactions of the Royal Society of Edinburgh 32 (1884), 318--334.
– reference: Martin Gardner. 1983. Mathematical Games. Scientific American 249, 3 (1983), 18--E8.
– reference: Oscar Gonzalez and John H. Maddocks. 1999. Global curvature, thickness, and the ideal shapes of knots. Proceedings of the National Academy of Sciences 96, 9 (1999), 4769--4773. 10.1073/pnas.96.9.4769
– reference: Tian Chen, Mark Pauly, and Pedro M. Reis. 2021. A reprogrammable mechanical metamaterial with stable memory. Nature 589, 7842 (2021), 386--390. 10.1038/s41586-020-03123-5
– reference: Nicolas Clauvelin, Basile Audoly, and Sébastien Neukirch. 2009. Matched asymptotic expansions for twisted elastic knots: a self-contact problem with non- trivial contact topology. Journal of the Mechanics and Physics of Solids 57, 9 (2009), 1623--1656. 10.1016/j.jmps.2009.05.004
– reference: Szymon Rusinkiewicz and Marc Levoy. 2001. Efficient Variants of the ICP Algorithm. In Proceedings of the Third Intl. Conf. on 3D Digital Imaging and Modeling. 145--152. 10.1109/IM.2001.924423
– reference: Oliver M. O'Reilly. 2017. Modeling Nonlinear Problems in the Mechanics of Strings and Rods. Springer International Publishing. 10.1007/978-3-319-50598-5
– reference: Patrick B. Furrer, Robert S. Manning, and John H. Maddocks. 2000. DNA Rings with Multiple Energy Minima. Biophysical Journal 79, 1 (2000), 116--136. 10.1016/S0006-3495(00)76277-1
– reference: Wolfgang Wenzel and Kay Hamacher. 1999. Stochastic tunneling approach for global minimization of complex potential energy landscapes. Physical Review Letters 82, 15 (1999), 3003.
– reference: Bernard Coleman and David Swigon. 2000. Theory of Supercoiled Elastic Rings with Self-Contact and Its Application to DNA Plasmids. Journal of Elasticity 60 (2000), 173--221. 10.1023/A:1010911113919
– reference: Gregory Buck and Jeremey Orloff. 1993. Computing canonical conformations for knots. Topology and its Applications 51, 3 (1993), 247--253. 10.1016/0166-8641(93)90079-S
– reference: John G. Proakis and Dimitris K Manolakis. 2006. Digital Signal Processing (4 ed.). Prentice Hall.
– reference: Ryan Blair, Alexandra Kjuchukova, Roman Velazquez, and Paul Villanueva. 2020. Wirtinger systems of generators of knot groups. Communications in Analysis and Geometry 28, 2 (2020), 243--262. 10.4310/CAG.2020.v28.n2.a2
– reference: Yuanan Diao, Claus Ernst, and Philipp Reiter. 2021. Knots with Equal Bridge Index and Braid Index. Journal of Knot Theory and Its Ramifications (2021). 10.1142/s0218216521500759
– reference: Dinesh K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21, 3 (2002), 347--352. 10.1111/1467-8659.00594
– reference: Eric J. Rawdon and Jonathan K. Simon. 2006. Polygonal Approximation and Energy of Smooth Knots. Journal of Knot Theory and Its Ramifications 15, 04 (2006), 429--451. 10.1142/S0218216506004543
– reference: Damien Durville. 2012. Contact-friction modeling within elastic beam assemblies: an application to knot tightening. Computational Mechanics 49, 6 (2012), 687--707. 10.1007/s00466-012-0683-0
– reference: K. Kodama and M. Sakuma. 1992. Symmetry groups of prime knots up to 10 crossings. In Knot 90, Proceedings of the International Conference on Knot Theory and Related Topics. 10.1515/9783110875911.323
– reference: Joel Hass. 1998. Algorithms for recognizing knots and 3-manifolds. Chaos, Solitons & Fractals 9, 4--5 (1998), 569--581. 10.1016/S0960-0779(97)00109-4
– reference: G. M. Guisewite. 1995. Network Problems. Springer US, Boston, MA, 609--648. 10.1007/978-1-4615-2025-2_11
– reference: Jonas Spillmann and Matthias Teschner. 2007. CORDE: Cosserat Rod Elements for the Dynamic Simulation of One-Dimensional Elastic Objects. In Eurographics/SIGGRAPH Symposium on Computer Animation. 10.2312/SCA/SCA07/063-072
– reference: Ran Zhang, Thomas Auzinger, and Bernd Bickel. 2021. Computational Design of Planar Multistable Compliant Structures. ACM Trans. Graph. 40, 5 (2021), 1--16. 10.1145/3453477
– reference: R Scharein, K Ishihara, J Arsuaga, Y Diao, K Shimokawa, and M Vazquez. 2009. Bounds for the minimum step number of knots in the simple cubic lattice. Journal of Physics A: Mathematical and Theoretical 42, 47 (2009). 10.1088/1751-8113/42/47/475006
– reference: Jun O'Hara. 2003. Energy of knots and conformal geometry. Series on knots and everything, Vol. 33. World Scientific Pub. 10.1142/5229
– reference: Gregory Buck and Eric J. Rawdon. 2004. Role of flexibility in entanglement. Physical Review E 70, 1 (2004), 011803. 10.1103/PhysRevE.70.011803
– reference: Daniel Carroll, Eleanor Hankins, Emek Kose, and Ivan Sterling. 2014. A Survey of the Differential Geometry of Discrete Curves. The Mathematical Intelligencer 36, 4 (2014), 28--35. 10.1007/s00283-014-9472-2
– reference: Brian S. Everitt, Sabine Landau, Morven Leese, and Daniel Stahl. 2011. Cluster Analysis (1 ed.). Wiley. 10.1002/9780470977811
– reference: Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele Panozzo. 2021. A Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision Detection. ACM Trans. Graph. 40, 5 (2021), 1--16. 10.1145/3460775
– reference: Chengzi Liang and Kurt Mislow. 1994. On amphicheiral knots. Journal of Mathematical Chemistry 15, 1 (1994), 1--34. 10.1007/BF01277546
– reference: Alain C. Vaucher and Markus Reiher. 2018. Minimum Energy Paths and Transition States by Curve Optimization. Journal of Chemical Theory and Computation 14, 6 (2018), 3091--3099. 10.1021/acs.jctc.8b00169
– reference: Thomas A. Gittings. 2004. Minimum Braids: A Complete Invariant of Knots and Links. (2004). 10.48550/arXiv.math/0401051
– reference: Julian Panetta, Mina Konaković-Luković, Florin Isvoranu, Etienne Bouleau, and Mark Pauly. 2019. X-Shells: a new class of deployable beam structures. ACM Trans. Graph. 38, 4 (2019), 1--15. 10.1145/3306346.3323040
– reference: Bernard Coleman and David Swigon. 2004. Theory of self-contact in Kirchhoff rods with applications to supercoiling of knotted and unknotted DNA plasmids. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 362 (2004), 1281--99. 10.1098/rsta.2004.1393
– reference: Benjamin A. Burton. 2020. The Next 350 Million Knots. In 36th International Symposium on Computational Geometry (SoCG 2020), Vol. 164. 25:1--25:17. 10.4230/LIPIcs.SoCG.2020.25
– reference: Sotero Alvarado, Jorge Alberto Calvo, and Kenneth C. Millett. 2011. The Generation of Random Equilateral Polygons. Journal of Statistical Physics 143, 1 (2011), 102--138. 10.1007/s10955-011-0164-4
– reference: Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4 (2010), 1--10. 10.1145/1778765.1778853
– reference: János D. Pintér. 2002. Global Optimization: Software, Test Problems, and Applications. Springer US, Boston, MA, 515--569. 10.1007/978-1-4757-5362-2_15
– reference: Christoph Meier, Alexander Popp, and Wolfgang A. Wall. 2014. An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering 278 (2014), 445--478. 10.1016/j.cma.2014.05.017
– reference: Basile Audoly, Nicolas Clauvelin, and Sébastien Neukirch. 2007. Elastic Knots. Physical review letters 99 (2007), 164301. 10.1103/PhysRevLett.99.164301
– reference: Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental potential contact. ACM Trans. Graph. 40, 4 (2021), 1--24. 10.1145/3450626.3459767
– reference: Jason Cantarella and Clayton Shonkwiler. 2016. The symplectic geometry of closed equilateral random walks in 3-space. The Annals of Applied Probability 26, 1 (2016), 549 -- 596. 10.1214/15-AAP1100
– reference: Gi-Woo Kim and Jaehwan Kim. 2012. Compliant bistable mechanism for low frequency vibration energy harvester inspired by auditory hair bundle structures. Smart Materials and Structures 22, 1 (2012). 10.1088/0964-1726/22/1/014005
– reference: Andrew Choi, Dezhong Tong, Mohammad K. Jawed, and Jungseock Joo. 2021. Implicit Contact Model for Discrete Elastic Rods in Knot Tying. Journal of Applied Mechanics 88, 5 (2021), 051010. 10.1115/1.4050238
– reference: Richard A. Hord. 1972. Torsion at an inflection point of a space curve. The American Mathematical Monthly 79, 4 (1972), 371--374.
– reference: Colin C. Adams. 2004. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. American Mathematical Soc.
– reference: Alexandra Gilsbach, Philipp Reiter, and Heiko von der Mosel. 2021. Symmetric elastic knots. Math. Ann. 385 (2021), 811--844. 10.1007/s00208-021-02346-9
– reference: Sergey Avvakumov and Alexey Sossinsky. 2014. On the Normal Form of Knots. Russian Journal of Mathematical Physics 21 (2014), 421--429. 10.1134/S1061920814040013
– reference: Joel Langer and David A. Singer. 1984. Knotted Elastic Curves in R3. Journal of the London Mathematical Society s2-30, 3 (1984), 512--520. 10.1112/jlms/s2-30.3.512
– reference: Dmitri Kozlov. 2013. Structures of Periodical Knots and Links as Geometric Models of Complex Surfaces for Designing. Nexus Network Journal 15, 2 (2013), 241--255. 10.1007/s00004-013-0154-8
– reference: Adam Roetter, Craig Lusk, and Rajiv Dubey. 2009. Bistable Compliant Extension Aid for a Polycentric Prosthetic Knee (International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 7: 33rd Mechanisms and Robotics Conference). 241--248. 10.1115/DETC2009-86990
– reference: Paweł Strzelecki and Heiko von der Mosel. 2017. Geometric curvature energies: facts, trends, and open problems. In New Directions in Geometric and Applied Knot Theory. 8--35. 10.1515/9783110571493-002
– reference: G. Călugăreanu. 1961. Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants. Czechoslovak Mathematical Journal 11 (1961), 588--625. 10.21136/CMJ.1961.100486
– reference: David J. Earl and Michael W. Deem. 2005. Parallel tempering: Theory, applications, and new perspectives. Physical Chemistry Chemical Physics 7, 23 (2005), 3910--3916.
– reference: Konstantin Klenin and Jörg Langowski. 2000. Computation of writhe in modeling of supercoiled DNA. Biopolymers 54, 5 (2000), 307--317.
– reference: James W. Alexander. 1923. A Lemma on Systems of Knotted Curves. Proceedings of the National Academy of Sciences of the United States of America 9, 3 (1923), 93--95.
– reference: E. J. Janse van Rensburg and S. G. Whittington. 1991. The BFACF algorithm and knotted polygons. Journal of Physics A: Mathematical and General 24, 23 (1991), 5553--5567. 10.1088/0305-4470/24/23/021
– reference: Andrzej Stasiak, Akos Dobay, Jacques Dubochet, and Giovanni Dietler. 1999. Knotted Fishing Line, Covalent Bonds, and Breaking Points. Science 286, 5437 (1999). 10.1126/science.286.5437.11a
– reference: Joel Langer and David A. Singer. 1985. Curve straightening and a minimax argument for closed elastic curves. Topology 24, 1 (1985), 75--88. 10.1016/0040-9383(85)90046-1
– reference: Jonas Spillmann and Matthias Teschner. 2008. An Adaptive Contact Model for the Robust Simulation of Knots. Computer Graphics Forum 27, 2 (2008), 497--506. 10.1111/j.1467-8659.2008.01147.x
– reference: Derek E. Moulton, Paul Grandgeorge, and Sébastien Neukirch. 2018. Stable elastic knots with no self-contact. Journal of the Mechanics and Physics of Solids 116 (2018), 33--53. 10.1016/j.jmps.2018.03.019
– ident: e_1_2_2_7_1
  doi: 10.1007/s00211-020-01156-6
– ident: e_1_2_2_26_1
  doi: 10.1142/s0218216521500759
– ident: e_1_2_2_12_1
  doi: 10.1145/1141911.1142012
– ident: e_1_2_2_36_1
  doi: 10.1007/s00205-017-1100-9
– ident: e_1_2_2_81_1
  doi: 10.1145/3460775
– ident: e_1_2_2_3_1
  doi: 10.1142/S0218195995000064
– ident: e_1_2_2_54_1
– ident: e_1_2_2_30_1
  doi: 10.1002/9780470977811
– ident: e_1_2_2_66_1
  doi: 10.1103/PhysRevE.52.1176
– ident: e_1_2_2_5_1
  doi: 10.1103/PhysRevLett.99.164301
– ident: e_1_2_2_19_1
  doi: 10.1007/s00283-014-9472-2
– ident: e_1_2_2_46_1
  doi: 10.1002/1097-0282(20001015)54:5<307::AID-BIP20>3.0.CO;2-Y
– ident: e_1_2_2_15_1
  doi: 10.1103/PhysRevE.70.011803
– ident: e_1_2_2_70_1
  doi: 10.1109/IM.2001.924423
– ident: e_1_2_2_4_1
  doi: 10.1007/s10955-011-0164-4
– ident: e_1_2_2_13_1
  doi: 10.4310/CAG.2020.v28.n2.a2
– ident: e_1_2_2_14_1
  doi: 10.1016/0166-8641(93)90079-S
– ident: e_1_2_2_47_1
  doi: 10.1515/9783110875911.323
– ident: e_1_2_2_31_1
– ident: e_1_2_2_49_1
  doi: 10.1112/jlms/s2-30.3.512
– ident: e_1_2_2_53_1
  doi: 10.1007/BF01277546
– ident: e_1_2_2_62_1
  doi: 10.1111/1467-8659.00594
– ident: e_1_2_2_68_1
  doi: 10.1088/0305-4470/24/23/021
– ident: e_1_2_2_25_1
  doi: 10.21136/CMJ.1961.100486
– ident: e_1_2_2_73_1
  doi: 10.1111/cgf.13519
– ident: e_1_2_2_16_1
  doi: 10.4230/LIPIcs.SoCG.2020.25
– ident: e_1_2_2_38_1
  doi: 10.48550/arXiv.math/0401051
– ident: e_1_2_2_9_1
  doi: 10.1016/0370-2693(81)90545-1
– ident: e_1_2_2_39_1
  doi: 10.1073/pnas.96.9.4769
– volume-title: Proakis and Dimitris K Manolakis
  year: 2006
  ident: e_1_2_2_65_1
– ident: e_1_2_2_50_1
  doi: 10.1016/0040-9383(85)90046-1
– ident: e_1_2_2_52_1
  doi: 10.1145/3450626.3459767
– ident: e_1_2_2_32_1
  doi: 10.1016/B978-0-12-480440-1.50025-3
– ident: e_1_2_2_11_1
  doi: 10.1145/1360612.1360662
– ident: e_1_2_2_75_1
  doi: 10.1111/j.1467-8659.2008.01147.x
– ident: e_1_2_2_41_1
  doi: 10.1016/S0960-0779(97)00109-4
– ident: e_1_2_2_37_1
  doi: 10.1007/s00208-021-02346-9
– ident: e_1_2_2_59_1
  doi: 10.1016/j.jmps.2018.03.019
– volume: 32
  start-page: 318
  year: 1884
  ident: e_1_2_2_79_1
  article-title: On Knots
  publication-title: Part II. Transactions of the Royal Society of Edinburgh
– ident: e_1_2_2_44_1
  doi: 10.1016/j.eml.2021.101172
– ident: e_1_2_2_76_1
  doi: 10.1126/science.286.5437.11a
– ident: e_1_2_2_64_1
  doi: 10.1007/978-1-4757-5362-2_15
– ident: e_1_2_2_18_1
  doi: 10.1214/15-AAP1100
– ident: e_1_2_2_6_1
  doi: 10.1134/S1061920814040013
– ident: e_1_2_2_57_1
  doi: 10.1016/j.cma.2014.05.017
– ident: e_1_2_2_23_1
  doi: 10.1023/A:1010911113919
– ident: e_1_2_2_29_1
  doi: 10.1007/s41468-017-0007-8
– ident: e_1_2_2_35_1
  doi: 10.1038/scientificamerican0983-18
– ident: e_1_2_2_2_1
  doi: 10.1073/pnas.9.3.93
– ident: e_1_2_2_55_1
  doi: 10.1073/pnas.96.10.5482
– ident: e_1_2_2_33_1
  doi: 10.1016/S0006-3495(00)76277-1
– ident: e_1_2_2_45_1
  doi: 10.1088/0964-1726/22/1/014005
– ident: e_1_2_2_60_1
  doi: 10.1142/5229
– ident: e_1_2_2_22_1
  doi: 10.1016/j.jmps.2009.05.004
– ident: e_1_2_2_1_1
– ident: e_1_2_2_77_1
  doi: 10.1515/9783110571493-002
– ident: e_1_2_2_56_1
  doi: 10.1007/978-1-4612-4132-4
– ident: e_1_2_2_28_1
  doi: 10.1039/b509983h
– ident: e_1_2_2_67_1
  doi: 10.1142/S0218216506004543
– ident: e_1_2_2_42_1
  doi: 10.1080/00029890.1972.11993052
– ident: e_1_2_2_71_1
  doi: 10.1088/1751-8113/42/47/475006
– ident: e_1_2_2_82_1
  doi: 10.1103/PhysRevLett.82.3003
– ident: e_1_2_2_17_1
  doi: 10.1007/s00222-002-0234-y
– ident: e_1_2_2_43_1
  doi: 10.1007/978-3-319-76965-3
– ident: e_1_2_2_48_1
  doi: 10.1007/s00004-013-0154-8
– ident: e_1_2_2_8_1
  doi: 10.1090/mcom/3633
– ident: e_1_2_2_58_1
  doi: 10.2307/1969467
– ident: e_1_2_2_78_1
  doi: 10.1016/S0006-3495(98)77960-3
– ident: e_1_2_2_40_1
  doi: 10.1007/978-1-4615-2025-2_11
– ident: e_1_2_2_63_1
  doi: 10.1145/3306346.3323040
– ident: e_1_2_2_69_1
  doi: 10.1115/DETC2009-86990
– ident: e_1_2_2_10_1
  doi: 10.1145/1778765.1778853
– ident: e_1_2_2_27_1
  doi: 10.1007/s00466-012-0683-0
– ident: e_1_2_2_74_1
  doi: 10.2312/SCA/SCA07/063-072
– ident: e_1_2_2_85_1
  doi: 10.1145/3453477
– ident: e_1_2_2_84_1
  doi: 10.1007/978-3-662-03315-9
– ident: e_1_2_2_24_1
  doi: 10.1098/rsta.2004.1393
– volume-title: Interactive Topological Drawing. Ph. D. Dissertation. Department of Computer Science
  ident: e_1_2_2_72_1
– ident: e_1_2_2_61_1
  doi: 10.1007/978-3-319-50598-5
– ident: e_1_2_2_83_1
  doi: 10.1145/3439429
– ident: e_1_2_2_34_1
  doi: 10.1103/PhysRevE.75.031801
– ident: e_1_2_2_21_1
  doi: 10.1115/1.4050238
– ident: e_1_2_2_51_1
  doi: 10.1145/3386569.3392425
– ident: e_1_2_2_20_1
  doi: 10.1038/s41586-020-03123-5
– ident: e_1_2_2_80_1
  doi: 10.1021/acs.jctc.8b00169
SSID ssj0006446
Score 2.4435933
Snippet We present an algorithmic approach to discover, study, and design multistable elastic knots. Elastic knots are physical realizations of closed curves embedded...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Computer graphics
Computing methodologies
Modeling and simulation
Shape modeling
SubjectTermsDisplay Computing methodologies -- Computer graphics -- Shape modeling
Computing methodologies -- Modeling and simulation
Title Computational Exploration of Multistable Elastic Knots
URI https://dl.acm.org/doi/10.1145/3592399
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLagLDAgTnErA2ILNPGRZKw4BZSBSzBVju1IlSBFJR3g1_Mc24k5BmCJosR1m3yv733PfgdCu3EikgJoalgU4JsQoWSY4kiEgkqeEZ4mXNZRvlfs7I6cP9CHtn9nnV1S5fvi_ce8kv-gCtcAV50l-wdkm0nhApwDvnAEhOH4K4xNSwa3nGfC6RoKWKfWAvfTqVHHwJF1ZdaLcmQqNzWFZw_7ukuEaxle7x3UNay9IPj7oXRd003gaCML10ZnPYL5e3MmsN6OKlVlWKlOv27l73Q8LF9fJmbJZ1jZG3bNIcZNxJuTkr6npkBHhNqxMhbFqlGahAk2DXOcniWxJ0_EU5qRZ31N4uV3vU50CQxMM52K25quJqDQ3plGMzG4C6DvZnpH_cubxiYD66t3rd1vNenTetoD-1HNTsSzx048mnG7gOatfxD0DNiLaEqVS2jOqxq5jNgn2AMP9mBUBB7sgYU9qGFfQXcnx7eHZ6FtfxFyTHAVRpiqnMF_hnUFBjc-ZVmsZKa6iVKUJ0UE2lOmlGVcdHOc5jwBqkiw7iIEnIN38SrqlKNSraEglaCYGTB9xiXJucgimROgipkSkhYxW0dL8PCDF1PgZGBfyTracy9jIGzFeN245GlgstlpOzBoBro5vgzZ-PEbNtFsK15bqFONJ2obSF6V71gEPwBG2VHC
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Exploration+of+Multistable+Elastic+Knots&rft.jtitle=ACM+transactions+on+graphics&rft.au=Vidulis%2C+Michele&rft.au=Ren%2C+Yingying&rft.au=Panetta%2C+Julian&rft.au=Grinspun%2C+Eitan&rft.date=2023-08-01&rft.pub=ACM&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=42&rft.issue=4&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1145%2F3592399&rft.externalDocID=3592399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon