Efficient Double- and Triple-Junction Nonfullerene Organic Photovoltaics and Design Guidelines for Optimal Cell Performance
The performance of multijunction devices lags behind single-junction organic photovoltaics (OPVs) mainly because of the lack of suitable subcells. Here, we attempt to address this bottleneck and demonstrate efficient nonfullerene-based multijunction OPVs while at the same time highlighting the remai...
Saved in:
Published in | ACS energy letters Vol. 5; no. 12; pp. 3692 - 3701 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
11.12.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | The performance of multijunction devices lags behind single-junction organic photovoltaics (OPVs) mainly because of the lack of suitable subcells. Here, we attempt to address this bottleneck and demonstrate efficient nonfullerene-based multijunction OPVs while at the same time highlighting the remaining challenges. We first demonstrate double-junction OPVs with power conversion efficiency (PCE) of 16.5%. Going a step further, we developed triple-junction OPVs with a PCE of 14.9%, the highest value reported to date for this triple-junction cells. Device simulations suggest that improving the front-cell’s carrier mobility to >5 × 10–4 cm2 V–1 s–1 is needed to boost the efficiency of double- and triple-junction OPVs. Analysis of the efficiency limit of triple-junction devices predicts that PCE values of close to 26% are possible. To achieve this, however, the optical absorption and charge transport within the subcells would need to be optimized. The work is an important step toward next-generation multijunction OPVs. |
---|---|
AbstractList | The performance of multijunction devices lags behind single-junction organic photovoltaics (OPVs) mainly because of the lack of suitable subcells. Here, we attempt to address this bottleneck and demonstrate efficient nonfullerene-based multijunction OPVs while at the same time highlighting the remaining challenges. We first demonstrate double-junction OPVs with power conversion efficiency (PCE) of 16.5%. Going a step further, we developed triple-junction OPVs with a PCE of 14.9%, the highest value reported to date for this triple-junction cells. Device simulations suggest that improving the front-cell’s carrier mobility to >5 × 10–4 cm2 V–1 s–1 is needed to boost the efficiency of double- and triple-junction OPVs. Analysis of the efficiency limit of triple-junction devices predicts that PCE values of close to 26% are possible. To achieve this, however, the optical absorption and charge transport within the subcells would need to be optimized. The work is an important step toward next-generation multijunction OPVs. |
Author | Firdaus, Yuliar Yarali, Emre So, Franky Ho, Carr Hoi Yi Le Corre, Vincent M Nugraha, Mohamad I Yengel, Emre Anthopoulos, Thomas D Lin, Yuanbao |
AuthorAffiliation | Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL) Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) Zernike Institute for Advanced Materials |
AuthorAffiliation_xml | – name: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – name: Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL) – name: Zernike Institute for Advanced Materials |
Author_xml | – sequence: 1 givenname: Yuliar surname: Firdaus fullname: Firdaus, Yuliar email: yuliar.firdaus@kaust.edu.sa organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 2 givenname: Carr Hoi Yi surname: Ho fullname: Ho, Carr Hoi Yi organization: Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL) – sequence: 3 givenname: Yuanbao surname: Lin fullname: Lin, Yuanbao organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 4 givenname: Emre orcidid: 0000-0001-7208-4803 surname: Yengel fullname: Yengel, Emre organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 5 givenname: Vincent M orcidid: 0000-0001-6365-179X surname: Le Corre fullname: Le Corre, Vincent M organization: Zernike Institute for Advanced Materials – sequence: 6 givenname: Mohamad I orcidid: 0000-0001-9352-1902 surname: Nugraha fullname: Nugraha, Mohamad I organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 7 givenname: Emre surname: Yarali fullname: Yarali, Emre organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 8 givenname: Franky orcidid: 0000-0002-8310-677X surname: So fullname: So, Franky organization: Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL) – sequence: 9 givenname: Thomas D orcidid: 0000-0002-0978-8813 surname: Anthopoulos fullname: Anthopoulos, Thomas D email: thomas.anthopoulos@kaust.edu.sa organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) |
BookMark | eNqFkMFOAjEQhhuDiYg8gklfYLG7pQsbTwYQNUQ44HnTdqdYUlrSdk2ML28RDuqFzGEm8-ebyf9fo451FhC6zckgJ0V-x2UAC37zaSDGAZGkIKPRBeoWdEyycV6xzq_5CvVD2BJC8nLMUnXR10wpLTXYiKeuFQYyzG2D117v0_zSWhm1s_jVWdUaAz79wku_4VZLvHp30X04E7mW4QebQtAbi-etbsBoCwEr5_FyH_WOGzwBY_AKfNrtuJVwgy4VNwH6p95Db4-z9eQpWyznz5OHRcbpsIiZGpZCjEeCcADBVElJIYEOkygrVuWlEoxWwGQpqrKhYtRIJShlRDQVlIIw2kP3x7vSuxA8qFrqyA--oufa1DmpD1HWf6KsT1Emmv2j9z7Z8Z9nufzIJbneutbb5PEM8w25XpR7 |
CitedBy_id | crossref_primary_10_1021_acsenergylett_2c01316 crossref_primary_10_1016_j_optmat_2024_115070 crossref_primary_10_1021_acsenergylett_1c01289 crossref_primary_10_1088_1674_4926_42_11_110201 crossref_primary_10_1002_adfm_202202954 crossref_primary_10_1021_acsmaterialsau_2c00070 crossref_primary_10_1021_acsami_2c11265 crossref_primary_10_1088_2043_6262_ac6c23 crossref_primary_10_1002_adfm_202204720 crossref_primary_10_1002_adma_202310933 crossref_primary_10_1049_rpg2_12640 crossref_primary_10_1016_j_orgel_2022_106633 crossref_primary_10_1039_D3TC02037A crossref_primary_10_1149_2162_8777_ac040d |
Cites_doi | 10.1021/acs.macromol.6b00248 10.1016/j.orgel.2008.03.009 10.1002/adma.201801801 10.1002/adma.201600373 10.1016/j.scib.2020.01.012 10.1002/adma.201606340 10.1002/aenm.201702165 10.1016/j.scib.2018.02.015 10.1002/aenm.201703180 10.1063/1.2336593 10.1063/1.4943653 10.1002/adma.201402072 10.1002/adma.201902965 10.1002/advs.201903419 10.1002/advs.201802028 10.1038/srep23916 10.1021/acs.jpcc.0c03282 10.1021/jacs.7b02677 10.1002/adma.201800868 10.1038/nphoton.2016.240 10.1039/C6TA04950H 10.1016/j.joule.2019.01.004 10.1021/acsenergylett.8b00460 10.1002/aenm.202000823 10.1039/C9TA11752K 10.1002/adma.201504633 10.1021/jacs.7b07887 10.1063/1.4984023 10.1002/aenm.201702533 10.1038/s41560-018-0134-z 10.1002/aenm.201400568 10.1002/adma.201908205 10.1038/s41467-020-19029-9 10.1039/C8TA04405H 10.1021/acs.macromol.6b01595 10.1002/adma.201300439 10.1039/C4EE03048F 10.1002/aenm.201701664 10.1021/acsami.5b11742 10.1021/ja401434x 10.1002/adma.201404317 10.1016/j.solmat.2018.02.010 10.1002/adma.201506270 10.1021/jacs.7b01493 10.1021/acsenergylett.0c01421 10.1126/science.aat2612 10.1002/adma.201804416 10.1038/srep26459 10.1021/acsenergylett.0c00857 10.1016/j.orgel.2017.05.008 10.1002/aenm.201703291 10.1021/acsenergylett.8b00366 10.1002/aenm.201803657 10.1016/j.joule.2018.11.011 10.1002/adma.201803166 10.1002/adma.201601435 10.1002/adma.201602642 10.1021/acs.nanolett.8b03950 10.1002/aenm.201901443 10.1063/5.0005172 10.1039/C9EE03710A 10.1021/acsenergylett.8b01448 10.1002/adma.201707508 10.1002/adma.201806499 10.1002/aenm.201300251 10.1016/j.scib.2020.01.001 10.1002/adma.201603518 10.1038/s41467-019-10351-5 |
ContentType | Journal Article |
Copyright | 2020 American Chemical
Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsenergylett.0c02077 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2380-8195 |
EndPage | 3701 |
ExternalDocumentID | 10_1021_acsenergylett_0c02077 b926026955 |
GroupedDBID | ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS VF5 VG9 AAYXX ABBLG ABJNI ABLBI ABQRX AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a342t-f46bb87b0aeeb5f6302ce34a34c95916fb539e5c6b96d3b7dcfb3350bd9e6b053 |
IEDL.DBID | ACS |
ISSN | 2380-8195 |
IngestDate | Tue Jul 01 01:58:22 EDT 2025 Thu Apr 24 23:01:27 EDT 2025 Tue Dec 15 13:18:35 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a342t-f46bb87b0aeeb5f6302ce34a34c95916fb539e5c6b96d3b7dcfb3350bd9e6b053 |
ORCID | 0000-0001-6365-179X 0000-0002-8310-677X 0000-0002-0978-8813 0000-0001-7208-4803 0000-0001-9352-1902 |
OpenAccessLink | https://research.rug.nl/en/publications/f5bb4784-d9a5-478b-8fef-abf5ad0d8475 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1021_acsenergylett_0c02077 crossref_primary_10_1021_acsenergylett_0c02077 acs_journals_10_1021_acsenergylett_0c02077 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201211 2020-12-11 |
PublicationDateYYYYMMDD | 2020-12-11 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201211 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | ACS energy letters |
PublicationTitleAlternate | ACS Energy Lett |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref54/cit54 doi: 10.1021/acs.macromol.6b00248 – ident: ref26/cit26 doi: 10.1016/j.orgel.2008.03.009 – ident: ref68/cit68 doi: 10.1002/adma.201801801 – ident: ref55/cit55 doi: 10.1002/adma.201600373 – ident: ref5/cit5 doi: 10.1016/j.scib.2020.01.012 – ident: ref44/cit44 doi: 10.1002/adma.201606340 – ident: ref37/cit37 doi: 10.1002/aenm.201702165 – ident: ref24/cit24 doi: 10.1016/j.scib.2018.02.015 – ident: ref50/cit50 doi: 10.1002/aenm.201703180 – ident: ref14/cit14 doi: 10.1063/1.2336593 – ident: ref60/cit60 doi: 10.1063/1.4943653 – ident: ref57/cit57 doi: 10.1002/adma.201402072 – ident: ref7/cit7 doi: 10.1002/adma.201902965 – ident: ref9/cit9 doi: 10.1002/advs.201903419 – ident: ref11/cit11 doi: 10.1002/advs.201802028 – ident: ref33/cit33 doi: 10.1038/srep23916 – ident: ref64/cit64 doi: 10.1021/acs.jpcc.0c03282 – ident: ref2/cit2 doi: 10.1021/jacs.7b02677 – ident: ref63/cit63 doi: 10.1002/adma.201800868 – ident: ref39/cit39 doi: 10.1038/nphoton.2016.240 – ident: ref34/cit34 doi: 10.1039/C6TA04950H – ident: ref3/cit3 doi: 10.1016/j.joule.2019.01.004 – ident: ref16/cit16 doi: 10.1021/acsenergylett.8b00460 – ident: ref13/cit13 doi: 10.1002/aenm.202000823 – ident: ref12/cit12 doi: 10.1039/C9TA11752K – ident: ref25/cit25 doi: 10.1002/adma.201504633 – ident: ref40/cit40 doi: 10.1021/jacs.7b07887 – ident: ref15/cit15 doi: 10.1063/1.4984023 – ident: ref27/cit27 doi: 10.1002/aenm.201702533 – ident: ref28/cit28 doi: 10.1038/s41560-018-0134-z – ident: ref56/cit56 doi: 10.1002/aenm.201400568 – ident: ref21/cit21 doi: 10.1002/adma.201908205 – ident: ref8/cit8 doi: 10.1038/s41467-020-19029-9 – ident: ref49/cit49 doi: 10.1039/C8TA04405H – ident: ref31/cit31 doi: 10.1021/acs.macromol.6b01595 – ident: ref62/cit62 doi: 10.1002/adma.201300439 – ident: ref61/cit61 doi: 10.1039/C4EE03048F – ident: ref58/cit58 doi: 10.1002/aenm.201701664 – ident: ref38/cit38 doi: 10.1021/acsami.5b11742 – ident: ref59/cit59 doi: 10.1021/ja401434x – ident: ref1/cit1 doi: 10.1002/adma.201404317 – ident: ref45/cit45 doi: 10.1016/j.solmat.2018.02.010 – ident: ref51/cit51 doi: 10.1002/adma.201506270 – ident: ref32/cit32 doi: 10.1021/jacs.7b01493 – ident: ref10/cit10 doi: 10.1021/acsenergylett.0c01421 – ident: ref17/cit17 doi: 10.1126/science.aat2612 – ident: ref41/cit41 doi: 10.1002/adma.201804416 – ident: ref48/cit48 doi: 10.1038/srep26459 – ident: ref19/cit19 doi: 10.1021/acsenergylett.0c00857 – ident: ref29/cit29 doi: 10.1016/j.orgel.2017.05.008 – ident: ref47/cit47 doi: 10.1002/aenm.201703291 – ident: ref67/cit67 doi: 10.1021/acsenergylett.8b00366 – ident: ref42/cit42 doi: 10.1002/aenm.201803657 – ident: ref30/cit30 doi: 10.1016/j.joule.2018.11.011 – ident: ref52/cit52 doi: 10.1002/adma.201803166 – ident: ref53/cit53 doi: 10.1002/adma.201601435 – ident: ref46/cit46 doi: 10.1002/adma.201602642 – ident: ref18/cit18 doi: 10.1021/acs.nanolett.8b03950 – ident: ref65/cit65 doi: 10.1002/aenm.201901443 – ident: ref36/cit36 doi: 10.1063/5.0005172 – ident: ref6/cit6 doi: 10.1039/C9EE03710A – ident: ref35/cit35 doi: 10.1021/acsenergylett.8b01448 – ident: ref20/cit20 doi: 10.1002/adma.201707508 – ident: ref23/cit23 doi: 10.1002/adma.201806499 – ident: ref66/cit66 doi: 10.1002/aenm.201300251 – ident: ref4/cit4 doi: 10.1016/j.scib.2020.01.001 – ident: ref43/cit43 doi: 10.1002/adma.201603518 – ident: ref22/cit22 doi: 10.1038/s41467-019-10351-5 |
SSID | ssj0001685858 |
Score | 2.227064 |
Snippet | The performance of multijunction devices lags behind single-junction organic photovoltaics (OPVs) mainly because of the lack of suitable subcells. Here, we... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3692 |
Title | Efficient Double- and Triple-Junction Nonfullerene Organic Photovoltaics and Design Guidelines for Optimal Cell Performance |
URI | http://dx.doi.org/10.1021/acsenergylett.0c02077 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4GXODAGzFeyoETUro2j3Y9ovGYkIBJgMStStJEIEaH1u4Cfx4n69gQ4nWuHKVOHH9x7M8IHQrNLOB8SqJEhoQnISepFZaknEsZApwTubsoXl7F3Tt-cS_uG6j1zQs-jVpSl8aXwcF_VEGoAd8kyRxaoDEYssNCnZtpUMWzqfsudKwdEvdGNKna-W4k55V0OeOVZtzL2QrqTYp0xlklT8GoUoF-_crZ-NeZr6LlGmri4_HeWEMNU6yjpRkCwg30duoZJMDxYEDSqm8IlkWOb4cu_E4uwOe5dcNXg8KF6X0jFTyu3tS49zCoBnC4VfJRl17sxGeD4PORo85y6fQYEDG-hkPpGebRMf0-7k3rFDbR3dnpbadL6nYMRDJOK2J5rFQ7UaE0Rgkbs5Bqwzh81KkAlGmVYKkROlZpnDOV5NoqxkSo8tTECox9C80Xg8JsI8ziyIhcMgUHDLeRdtWxMHyb6tTSREdNdATKy2pzKjP_Uk6j7JNGs1qjTcQna5fpmtjc9dfo_yYWfIi9jJk9fhbY-c-kdtEidTdzZwXRHpqvhiOzD_ClUgd-y74DqMvweA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2LHB05ILklsJ80RlaVsBYkiuEWxYwtESRFJL_DzjN2UFiRAXBONNV7neTzzBmBXKGYQ5wfUj1KP8sjjNDbC0JjzNPUQzonMXhQvW2Hzlp_di_sxCAe5MKhEgS0V7hF_yC7g7-M37bLhsDtlzVMIc6JoHCYRkAR2ZR80boa-FUeq7orRsbpH7VPRIHnnp5ascVLFiHEasTLHc3D3qZ8LLnmq9UpZU2_fqBv_34F5mK2AJznor5QFGNP5IsyM0BEuwfuR45NAM0QQV8uOpiTNM9J-tc54eoYW0M4iaXVz67R3ZVVIP5dTkeuHbtnFo65MH1XhxA5dbAg56VkiLRtcTxAfkys8op5Rj4budMj1MGthGW6Pj9qNJq2KM9CU8aCkhodS1iPppVpLYULmBUozjj9VLBBzGilYrIUKZRxmTEaZMpIx4cks1qHErb8CE3k316tAWOhrkaVM4nHDja9sriw2Xw9UbIJI-Wuwh4OXVJurSNy7eeAnX0Y0qUZ0DfhgChNV0Zzbahudv8Rqn2IvfZ6P3wXW_6PUDkw125cXycVp63wDpgN7Z7f7w9-EifK1p7cQ2JRy263iD4t7-Nk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-QPTgW1yfOXgSsrZN0m6Psg_XVdcFVxA8lCZNUKxdsd2L_nkn2a6ugopeWyZMXjNfMplvEDrgkmrA-R5xg9ghLHAYCTXXJGQsjh2AczwxB8WLrt--Zp0bflO-qjS5MKBEDi3lNohvdvVTokuGAfcIviubEQddKqqOBKgTBNNo1oTuzOo-rl993K9YYnVbkI7WHGLCReMEnu9aMg5K5hMOasLTtJbQ7buO9oHJQ3VYiKp8-ULf-L9OLKPFEoDi49GKWUFTKltFCxO0hGvotWl5JcAdYcDXIlUEx1mC-8_mUp50wBOa2cTdQWYu7215FTzK6ZS4dzcoBmDyivhe5lasYd-I4JOhIdQyj-wx4GR8CabqEfSoqzTFvY_shXV03Wr2621SFmkgMWVeQTTzhagFwomVElz71PGkogx-ypAD9tSC01Bx6YvQT6gIEqkFpdwRSah8ASZgA81kg0xtIkx9V_EkpgLMDtOuNDmz0HzNk6H2AulW0CEMXlRusjyy8XPPjT6NaFSOaAWx8TRGsqQ7N1U30t_Equ9iTyO-j58Ftv6i1D6a6zVa0flp92wbzXvm6G62ibuDZornodoFfFOIPbuQ3wBvAftc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Double-+and+Triple-Junction+Nonfullerene+Organic+Photovoltaics+and+Design+Guidelines+for+Optimal+Cell+Performance&rft.jtitle=ACS+energy+letters&rft.au=Firdaus%2C+Yuliar&rft.au=Ho%2C+Carr+Hoi+Yi&rft.au=Lin%2C+Yuanbao&rft.au=Yengel%2C+Emre&rft.date=2020-12-11&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=5&rft.issue=12&rft.spage=3692&rft.epage=3701&rft_id=info:doi/10.1021%2Facsenergylett.0c02077&rft.externalDocID=b926026955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon |