Efficient Double- and Triple-Junction Nonfullerene Organic Photovoltaics and Design Guidelines for Optimal Cell Performance

The performance of multijunction devices lags behind single-junction organic photovoltaics (OPVs) mainly because of the lack of suitable subcells. Here, we attempt to address this bottleneck and demonstrate efficient nonfullerene-based multijunction OPVs while at the same time highlighting the remai...

Full description

Saved in:
Bibliographic Details
Published inACS energy letters Vol. 5; no. 12; pp. 3692 - 3701
Main Authors Firdaus, Yuliar, Ho, Carr Hoi Yi, Lin, Yuanbao, Yengel, Emre, Le Corre, Vincent M, Nugraha, Mohamad I, Yarali, Emre, So, Franky, Anthopoulos, Thomas D
Format Journal Article
LanguageEnglish
Published American Chemical Society 11.12.2020
Online AccessGet full text

Cover

Loading…
Abstract The performance of multijunction devices lags behind single-junction organic photovoltaics (OPVs) mainly because of the lack of suitable subcells. Here, we attempt to address this bottleneck and demonstrate efficient nonfullerene-based multijunction OPVs while at the same time highlighting the remaining challenges. We first demonstrate double-junction OPVs with power conversion efficiency (PCE) of 16.5%. Going a step further, we developed triple-junction OPVs with a PCE of 14.9%, the highest value reported to date for this triple-junction cells. Device simulations suggest that improving the front-cell’s carrier mobility to >5 × 10–4 cm2 V–1 s–1 is needed to boost the efficiency of double- and triple-junction OPVs. Analysis of the efficiency limit of triple-junction devices predicts that PCE values of close to 26% are possible. To achieve this, however, the optical absorption and charge transport within the subcells would need to be optimized. The work is an important step toward next-generation multijunction OPVs.
AbstractList The performance of multijunction devices lags behind single-junction organic photovoltaics (OPVs) mainly because of the lack of suitable subcells. Here, we attempt to address this bottleneck and demonstrate efficient nonfullerene-based multijunction OPVs while at the same time highlighting the remaining challenges. We first demonstrate double-junction OPVs with power conversion efficiency (PCE) of 16.5%. Going a step further, we developed triple-junction OPVs with a PCE of 14.9%, the highest value reported to date for this triple-junction cells. Device simulations suggest that improving the front-cell’s carrier mobility to >5 × 10–4 cm2 V–1 s–1 is needed to boost the efficiency of double- and triple-junction OPVs. Analysis of the efficiency limit of triple-junction devices predicts that PCE values of close to 26% are possible. To achieve this, however, the optical absorption and charge transport within the subcells would need to be optimized. The work is an important step toward next-generation multijunction OPVs.
Author Firdaus, Yuliar
Yarali, Emre
So, Franky
Ho, Carr Hoi Yi
Le Corre, Vincent M
Nugraha, Mohamad I
Yengel, Emre
Anthopoulos, Thomas D
Lin, Yuanbao
AuthorAffiliation Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL)
Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
Zernike Institute for Advanced Materials
AuthorAffiliation_xml – name: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– name: Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL)
– name: Zernike Institute for Advanced Materials
Author_xml – sequence: 1
  givenname: Yuliar
  surname: Firdaus
  fullname: Firdaus, Yuliar
  email: yuliar.firdaus@kaust.edu.sa
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 2
  givenname: Carr Hoi Yi
  surname: Ho
  fullname: Ho, Carr Hoi Yi
  organization: Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL)
– sequence: 3
  givenname: Yuanbao
  surname: Lin
  fullname: Lin, Yuanbao
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 4
  givenname: Emre
  orcidid: 0000-0001-7208-4803
  surname: Yengel
  fullname: Yengel, Emre
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 5
  givenname: Vincent M
  orcidid: 0000-0001-6365-179X
  surname: Le Corre
  fullname: Le Corre, Vincent M
  organization: Zernike Institute for Advanced Materials
– sequence: 6
  givenname: Mohamad I
  orcidid: 0000-0001-9352-1902
  surname: Nugraha
  fullname: Nugraha, Mohamad I
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 7
  givenname: Emre
  surname: Yarali
  fullname: Yarali, Emre
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
– sequence: 8
  givenname: Franky
  orcidid: 0000-0002-8310-677X
  surname: So
  fullname: So, Franky
  organization: Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL)
– sequence: 9
  givenname: Thomas D
  orcidid: 0000-0002-0978-8813
  surname: Anthopoulos
  fullname: Anthopoulos, Thomas D
  email: thomas.anthopoulos@kaust.edu.sa
  organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC)
BookMark eNqFkMFOAjEQhhuDiYg8gklfYLG7pQsbTwYQNUQ44HnTdqdYUlrSdk2ML28RDuqFzGEm8-ebyf9fo451FhC6zckgJ0V-x2UAC37zaSDGAZGkIKPRBeoWdEyycV6xzq_5CvVD2BJC8nLMUnXR10wpLTXYiKeuFQYyzG2D117v0_zSWhm1s_jVWdUaAz79wku_4VZLvHp30X04E7mW4QebQtAbi-etbsBoCwEr5_FyH_WOGzwBY_AKfNrtuJVwgy4VNwH6p95Db4-z9eQpWyznz5OHRcbpsIiZGpZCjEeCcADBVElJIYEOkygrVuWlEoxWwGQpqrKhYtRIJShlRDQVlIIw2kP3x7vSuxA8qFrqyA--oufa1DmpD1HWf6KsT1Emmv2j9z7Z8Z9nufzIJbneutbb5PEM8w25XpR7
CitedBy_id crossref_primary_10_1021_acsenergylett_2c01316
crossref_primary_10_1016_j_optmat_2024_115070
crossref_primary_10_1021_acsenergylett_1c01289
crossref_primary_10_1088_1674_4926_42_11_110201
crossref_primary_10_1002_adfm_202202954
crossref_primary_10_1021_acsmaterialsau_2c00070
crossref_primary_10_1021_acsami_2c11265
crossref_primary_10_1088_2043_6262_ac6c23
crossref_primary_10_1002_adfm_202204720
crossref_primary_10_1002_adma_202310933
crossref_primary_10_1049_rpg2_12640
crossref_primary_10_1016_j_orgel_2022_106633
crossref_primary_10_1039_D3TC02037A
crossref_primary_10_1149_2162_8777_ac040d
Cites_doi 10.1021/acs.macromol.6b00248
10.1016/j.orgel.2008.03.009
10.1002/adma.201801801
10.1002/adma.201600373
10.1016/j.scib.2020.01.012
10.1002/adma.201606340
10.1002/aenm.201702165
10.1016/j.scib.2018.02.015
10.1002/aenm.201703180
10.1063/1.2336593
10.1063/1.4943653
10.1002/adma.201402072
10.1002/adma.201902965
10.1002/advs.201903419
10.1002/advs.201802028
10.1038/srep23916
10.1021/acs.jpcc.0c03282
10.1021/jacs.7b02677
10.1002/adma.201800868
10.1038/nphoton.2016.240
10.1039/C6TA04950H
10.1016/j.joule.2019.01.004
10.1021/acsenergylett.8b00460
10.1002/aenm.202000823
10.1039/C9TA11752K
10.1002/adma.201504633
10.1021/jacs.7b07887
10.1063/1.4984023
10.1002/aenm.201702533
10.1038/s41560-018-0134-z
10.1002/aenm.201400568
10.1002/adma.201908205
10.1038/s41467-020-19029-9
10.1039/C8TA04405H
10.1021/acs.macromol.6b01595
10.1002/adma.201300439
10.1039/C4EE03048F
10.1002/aenm.201701664
10.1021/acsami.5b11742
10.1021/ja401434x
10.1002/adma.201404317
10.1016/j.solmat.2018.02.010
10.1002/adma.201506270
10.1021/jacs.7b01493
10.1021/acsenergylett.0c01421
10.1126/science.aat2612
10.1002/adma.201804416
10.1038/srep26459
10.1021/acsenergylett.0c00857
10.1016/j.orgel.2017.05.008
10.1002/aenm.201703291
10.1021/acsenergylett.8b00366
10.1002/aenm.201803657
10.1016/j.joule.2018.11.011
10.1002/adma.201803166
10.1002/adma.201601435
10.1002/adma.201602642
10.1021/acs.nanolett.8b03950
10.1002/aenm.201901443
10.1063/5.0005172
10.1039/C9EE03710A
10.1021/acsenergylett.8b01448
10.1002/adma.201707508
10.1002/adma.201806499
10.1002/aenm.201300251
10.1016/j.scib.2020.01.001
10.1002/adma.201603518
10.1038/s41467-019-10351-5
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsenergylett.0c02077
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2380-8195
EndPage 3701
ExternalDocumentID 10_1021_acsenergylett_0c02077
b926026955
GroupedDBID ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a342t-f46bb87b0aeeb5f6302ce34a34c95916fb539e5c6b96d3b7dcfb3350bd9e6b053
IEDL.DBID ACS
ISSN 2380-8195
IngestDate Tue Jul 01 01:58:22 EDT 2025
Thu Apr 24 23:01:27 EDT 2025
Tue Dec 15 13:18:35 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-f46bb87b0aeeb5f6302ce34a34c95916fb539e5c6b96d3b7dcfb3350bd9e6b053
ORCID 0000-0001-6365-179X
0000-0002-8310-677X
0000-0002-0978-8813
0000-0001-7208-4803
0000-0001-9352-1902
OpenAccessLink https://research.rug.nl/en/publications/f5bb4784-d9a5-478b-8fef-abf5ad0d8475
PageCount 10
ParticipantIDs crossref_citationtrail_10_1021_acsenergylett_0c02077
crossref_primary_10_1021_acsenergylett_0c02077
acs_journals_10_1021_acsenergylett_0c02077
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201211
2020-12-11
PublicationDateYYYYMMDD 2020-12-11
PublicationDate_xml – month: 12
  year: 2020
  text: 20201211
  day: 11
PublicationDecade 2020
PublicationTitle ACS energy letters
PublicationTitleAlternate ACS Energy Lett
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref54/cit54
  doi: 10.1021/acs.macromol.6b00248
– ident: ref26/cit26
  doi: 10.1016/j.orgel.2008.03.009
– ident: ref68/cit68
  doi: 10.1002/adma.201801801
– ident: ref55/cit55
  doi: 10.1002/adma.201600373
– ident: ref5/cit5
  doi: 10.1016/j.scib.2020.01.012
– ident: ref44/cit44
  doi: 10.1002/adma.201606340
– ident: ref37/cit37
  doi: 10.1002/aenm.201702165
– ident: ref24/cit24
  doi: 10.1016/j.scib.2018.02.015
– ident: ref50/cit50
  doi: 10.1002/aenm.201703180
– ident: ref14/cit14
  doi: 10.1063/1.2336593
– ident: ref60/cit60
  doi: 10.1063/1.4943653
– ident: ref57/cit57
  doi: 10.1002/adma.201402072
– ident: ref7/cit7
  doi: 10.1002/adma.201902965
– ident: ref9/cit9
  doi: 10.1002/advs.201903419
– ident: ref11/cit11
  doi: 10.1002/advs.201802028
– ident: ref33/cit33
  doi: 10.1038/srep23916
– ident: ref64/cit64
  doi: 10.1021/acs.jpcc.0c03282
– ident: ref2/cit2
  doi: 10.1021/jacs.7b02677
– ident: ref63/cit63
  doi: 10.1002/adma.201800868
– ident: ref39/cit39
  doi: 10.1038/nphoton.2016.240
– ident: ref34/cit34
  doi: 10.1039/C6TA04950H
– ident: ref3/cit3
  doi: 10.1016/j.joule.2019.01.004
– ident: ref16/cit16
  doi: 10.1021/acsenergylett.8b00460
– ident: ref13/cit13
  doi: 10.1002/aenm.202000823
– ident: ref12/cit12
  doi: 10.1039/C9TA11752K
– ident: ref25/cit25
  doi: 10.1002/adma.201504633
– ident: ref40/cit40
  doi: 10.1021/jacs.7b07887
– ident: ref15/cit15
  doi: 10.1063/1.4984023
– ident: ref27/cit27
  doi: 10.1002/aenm.201702533
– ident: ref28/cit28
  doi: 10.1038/s41560-018-0134-z
– ident: ref56/cit56
  doi: 10.1002/aenm.201400568
– ident: ref21/cit21
  doi: 10.1002/adma.201908205
– ident: ref8/cit8
  doi: 10.1038/s41467-020-19029-9
– ident: ref49/cit49
  doi: 10.1039/C8TA04405H
– ident: ref31/cit31
  doi: 10.1021/acs.macromol.6b01595
– ident: ref62/cit62
  doi: 10.1002/adma.201300439
– ident: ref61/cit61
  doi: 10.1039/C4EE03048F
– ident: ref58/cit58
  doi: 10.1002/aenm.201701664
– ident: ref38/cit38
  doi: 10.1021/acsami.5b11742
– ident: ref59/cit59
  doi: 10.1021/ja401434x
– ident: ref1/cit1
  doi: 10.1002/adma.201404317
– ident: ref45/cit45
  doi: 10.1016/j.solmat.2018.02.010
– ident: ref51/cit51
  doi: 10.1002/adma.201506270
– ident: ref32/cit32
  doi: 10.1021/jacs.7b01493
– ident: ref10/cit10
  doi: 10.1021/acsenergylett.0c01421
– ident: ref17/cit17
  doi: 10.1126/science.aat2612
– ident: ref41/cit41
  doi: 10.1002/adma.201804416
– ident: ref48/cit48
  doi: 10.1038/srep26459
– ident: ref19/cit19
  doi: 10.1021/acsenergylett.0c00857
– ident: ref29/cit29
  doi: 10.1016/j.orgel.2017.05.008
– ident: ref47/cit47
  doi: 10.1002/aenm.201703291
– ident: ref67/cit67
  doi: 10.1021/acsenergylett.8b00366
– ident: ref42/cit42
  doi: 10.1002/aenm.201803657
– ident: ref30/cit30
  doi: 10.1016/j.joule.2018.11.011
– ident: ref52/cit52
  doi: 10.1002/adma.201803166
– ident: ref53/cit53
  doi: 10.1002/adma.201601435
– ident: ref46/cit46
  doi: 10.1002/adma.201602642
– ident: ref18/cit18
  doi: 10.1021/acs.nanolett.8b03950
– ident: ref65/cit65
  doi: 10.1002/aenm.201901443
– ident: ref36/cit36
  doi: 10.1063/5.0005172
– ident: ref6/cit6
  doi: 10.1039/C9EE03710A
– ident: ref35/cit35
  doi: 10.1021/acsenergylett.8b01448
– ident: ref20/cit20
  doi: 10.1002/adma.201707508
– ident: ref23/cit23
  doi: 10.1002/adma.201806499
– ident: ref66/cit66
  doi: 10.1002/aenm.201300251
– ident: ref4/cit4
  doi: 10.1016/j.scib.2020.01.001
– ident: ref43/cit43
  doi: 10.1002/adma.201603518
– ident: ref22/cit22
  doi: 10.1038/s41467-019-10351-5
SSID ssj0001685858
Score 2.227064
Snippet The performance of multijunction devices lags behind single-junction organic photovoltaics (OPVs) mainly because of the lack of suitable subcells. Here, we...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 3692
Title Efficient Double- and Triple-Junction Nonfullerene Organic Photovoltaics and Design Guidelines for Optimal Cell Performance
URI http://dx.doi.org/10.1021/acsenergylett.0c02077
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4GXODAGzFeyoETUro2j3Y9ovGYkIBJgMStStJEIEaH1u4Cfx4n69gQ4nWuHKVOHH9x7M8IHQrNLOB8SqJEhoQnISepFZaknEsZApwTubsoXl7F3Tt-cS_uG6j1zQs-jVpSl8aXwcF_VEGoAd8kyRxaoDEYssNCnZtpUMWzqfsudKwdEvdGNKna-W4k55V0OeOVZtzL2QrqTYp0xlklT8GoUoF-_crZ-NeZr6LlGmri4_HeWEMNU6yjpRkCwg30duoZJMDxYEDSqm8IlkWOb4cu_E4uwOe5dcNXg8KF6X0jFTyu3tS49zCoBnC4VfJRl17sxGeD4PORo85y6fQYEDG-hkPpGebRMf0-7k3rFDbR3dnpbadL6nYMRDJOK2J5rFQ7UaE0Rgkbs5Bqwzh81KkAlGmVYKkROlZpnDOV5NoqxkSo8tTECox9C80Xg8JsI8ziyIhcMgUHDLeRdtWxMHyb6tTSREdNdATKy2pzKjP_Uk6j7JNGs1qjTcQna5fpmtjc9dfo_yYWfIi9jJk9fhbY-c-kdtEidTdzZwXRHpqvhiOzD_ClUgd-y74DqMvweA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2LHB05ILklsJ80RlaVsBYkiuEWxYwtESRFJL_DzjN2UFiRAXBONNV7neTzzBmBXKGYQ5wfUj1KP8sjjNDbC0JjzNPUQzonMXhQvW2Hzlp_di_sxCAe5MKhEgS0V7hF_yC7g7-M37bLhsDtlzVMIc6JoHCYRkAR2ZR80boa-FUeq7orRsbpH7VPRIHnnp5ascVLFiHEasTLHc3D3qZ8LLnmq9UpZU2_fqBv_34F5mK2AJznor5QFGNP5IsyM0BEuwfuR45NAM0QQV8uOpiTNM9J-tc54eoYW0M4iaXVz67R3ZVVIP5dTkeuHbtnFo65MH1XhxA5dbAg56VkiLRtcTxAfkys8op5Rj4budMj1MGthGW6Pj9qNJq2KM9CU8aCkhodS1iPppVpLYULmBUozjj9VLBBzGilYrIUKZRxmTEaZMpIx4cks1qHErb8CE3k316tAWOhrkaVM4nHDja9sriw2Xw9UbIJI-Wuwh4OXVJurSNy7eeAnX0Y0qUZ0DfhgChNV0Zzbahudv8Rqn2IvfZ6P3wXW_6PUDkw125cXycVp63wDpgN7Z7f7w9-EifK1p7cQ2JRy263iD4t7-Nk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-QPTgW1yfOXgSsrZN0m6Psg_XVdcFVxA8lCZNUKxdsd2L_nkn2a6ugopeWyZMXjNfMplvEDrgkmrA-R5xg9ghLHAYCTXXJGQsjh2AczwxB8WLrt--Zp0bflO-qjS5MKBEDi3lNohvdvVTokuGAfcIviubEQddKqqOBKgTBNNo1oTuzOo-rl993K9YYnVbkI7WHGLCReMEnu9aMg5K5hMOasLTtJbQ7buO9oHJQ3VYiKp8-ULf-L9OLKPFEoDi49GKWUFTKltFCxO0hGvotWl5JcAdYcDXIlUEx1mC-8_mUp50wBOa2cTdQWYu7215FTzK6ZS4dzcoBmDyivhe5lasYd-I4JOhIdQyj-wx4GR8CabqEfSoqzTFvY_shXV03Wr2621SFmkgMWVeQTTzhagFwomVElz71PGkogx-ypAD9tSC01Bx6YvQT6gIEqkFpdwRSah8ASZgA81kg0xtIkx9V_EkpgLMDtOuNDmz0HzNk6H2AulW0CEMXlRusjyy8XPPjT6NaFSOaAWx8TRGsqQ7N1U30t_Equ9iTyO-j58Ftv6i1D6a6zVa0flp92wbzXvm6G62ibuDZornodoFfFOIPbuQ3wBvAftc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Double-+and+Triple-Junction+Nonfullerene+Organic+Photovoltaics+and+Design+Guidelines+for+Optimal+Cell+Performance&rft.jtitle=ACS+energy+letters&rft.au=Firdaus%2C+Yuliar&rft.au=Ho%2C+Carr+Hoi+Yi&rft.au=Lin%2C+Yuanbao&rft.au=Yengel%2C+Emre&rft.date=2020-12-11&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=5&rft.issue=12&rft.spage=3692&rft.epage=3701&rft_id=info:doi/10.1021%2Facsenergylett.0c02077&rft.externalDocID=b926026955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon