Ligand-Binding Cooperativity Effects in Polymer–Protein Conjugation
We present an electron paramagnetic resonance (EPR) spectroscopic characterization of structural and dynamic effects that stem from post-translational modifications of bovine serum albumin (BSA), an established model system for polymer–protein conjugation. Beyond the typical drug delivery and biocom...
Saved in:
Published in | Biomacromolecules Vol. 20; no. 2; pp. 1118 - 1131 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present an electron paramagnetic resonance (EPR) spectroscopic characterization of structural and dynamic effects that stem from post-translational modifications of bovine serum albumin (BSA), an established model system for polymer–protein conjugation. Beyond the typical drug delivery and biocompatibility aspect of such systems, we illustrate the causes that alter internal dynamics and therefore functionality in terms of ligand-binding to the BSA protein core. Uptake of the paramagnetic fatty acid derivative 16-doxyl stearic acid by several BSA-based squaric acid macroinitiators and polymer–protein conjugates was studied by EPR spectroscopy, aided by dynamic light scattering (DLS) and zeta potential measurements. The conjugates were grafted from oligo(ethylene glycol) methyl ether methacrylate (OEGMA), forming an overall core–shell-like structure. It is found that ligand-binding and associated parameters such as binding affinity, cooperativity, and the number of binding sites of BSA change drastically with the extent of surface modification. In the course of processing BSA, the ligands also change their preference for individual binding sites, as observed from a comparative view of their spatial alignments in double electron electron resonance (DEER) experiments. The protein-attached polymers constitute a diffusion barrier that significantly hamper ligand uptake. Moreover, zeta potentials (ζ) decrease linearly with the degree of surface modification in protein macroinitiators and an effective dielectric constant can be estimated for the polymer layer in the conjugates. All this suggests that ligand uptake characteristics in BSA can be fine-tuned by the extent and nature of such post-translational modifications (PTMs). We show that EPR spectroscopy is suitable for quantifying these subtle PTM-based functional effects from self-assembly of substrate and ligand. |
---|---|
AbstractList | We present an electron paramagnetic resonance (EPR) spectroscopic characterization of structural and dynamic effects that stem from post-translational modifications of bovine serum albumin (BSA), an established model system for polymer-protein conjugation. Beyond the typical drug delivery and biocompatibility aspect of such systems, we illustrate the causes that alter internal dynamics and therefore functionality in terms of ligand-binding to the BSA protein core. Uptake of the paramagnetic fatty acid derivative 16-doxyl stearic acid by several BSA-based squaric acid macroinitiators and polymer-protein conjugates was studied by EPR spectroscopy, aided by dynamic light scattering (DLS) and zeta potential measurements. The conjugates were grafted from oligo(ethylene glycol) methyl ether methacrylate (OEGMA), forming an overall core-shell-like structure. It is found that ligand-binding and associated parameters such as binding affinity, cooperativity, and the number of binding sites of BSA change drastically with the extent of surface modification. In the course of processing BSA, the ligands also change their preference for individual binding sites, as observed from a comparative view of their spatial alignments in double electron electron resonance (DEER) experiments. The protein-attached polymers constitute a diffusion barrier that significantly hamper ligand uptake. Moreover, zeta potentials (ζ) decrease linearly with the degree of surface modification in protein macroinitiators and an effective dielectric constant can be estimated for the polymer layer in the conjugates. All this suggests that ligand uptake characteristics in BSA can be fine-tuned by the extent and nature of such post-translational modifications (PTMs). We show that EPR spectroscopy is suitable for quantifying these subtle PTM-based functional effects from self-assembly of substrate and ligand. We present an electron paramagnetic resonance (EPR) spectroscopic characterization of structural and dynamic effects that stem from post-translational modifications of bovine serum albumin (BSA), an established model system for polymer–protein conjugation. Beyond the typical drug delivery and biocompatibility aspect of such systems, we illustrate the causes that alter internal dynamics and therefore functionality in terms of ligand-binding to the BSA protein core. Uptake of the paramagnetic fatty acid derivative 16-doxyl stearic acid by several BSA-based squaric acid macroinitiators and polymer–protein conjugates was studied by EPR spectroscopy, aided by dynamic light scattering (DLS) and zeta potential measurements. The conjugates were grafted from oligo(ethylene glycol) methyl ether methacrylate (OEGMA), forming an overall core–shell-like structure. It is found that ligand-binding and associated parameters such as binding affinity, cooperativity, and the number of binding sites of BSA change drastically with the extent of surface modification. In the course of processing BSA, the ligands also change their preference for individual binding sites, as observed from a comparative view of their spatial alignments in double electron electron resonance (DEER) experiments. The protein-attached polymers constitute a diffusion barrier that significantly hamper ligand uptake. Moreover, zeta potentials (ζ) decrease linearly with the degree of surface modification in protein macroinitiators and an effective dielectric constant can be estimated for the polymer layer in the conjugates. All this suggests that ligand uptake characteristics in BSA can be fine-tuned by the extent and nature of such post-translational modifications (PTMs). We show that EPR spectroscopy is suitable for quantifying these subtle PTM-based functional effects from self-assembly of substrate and ligand. |
Author | Thomas, Anja Hinderberger, Dariush Schmelzer, Christian E. H Wurm, Frederik Eisermann, Jana Reichenwallner, Jörg Steinbach, Tobias |
AuthorAffiliation | Institute of Chemistry Institute of Organic Chemistry Fraunhofer Institute for Microstructure of Materials and Systems (IMWS) Institute of Pharmacy |
AuthorAffiliation_xml | – name: Fraunhofer Institute for Microstructure of Materials and Systems (IMWS) – name: Institute of Chemistry – name: Institute of Pharmacy – name: Institute of Organic Chemistry |
Author_xml | – sequence: 1 givenname: Jörg orcidid: 0000-0002-6862-1802 surname: Reichenwallner fullname: Reichenwallner, Jörg organization: Institute of Chemistry – sequence: 2 givenname: Anja surname: Thomas fullname: Thomas, Anja organization: Institute of Organic Chemistry – sequence: 3 givenname: Tobias surname: Steinbach fullname: Steinbach, Tobias organization: Institute of Organic Chemistry – sequence: 4 givenname: Jana orcidid: 0000-0001-7784-5720 surname: Eisermann fullname: Eisermann, Jana organization: Institute of Chemistry – sequence: 5 givenname: Christian E. H surname: Schmelzer fullname: Schmelzer, Christian E. H organization: Institute of Pharmacy – sequence: 6 givenname: Frederik orcidid: 0000-0002-6955-8489 surname: Wurm fullname: Wurm, Frederik – sequence: 7 givenname: Dariush orcidid: 0000-0002-6066-7099 surname: Hinderberger fullname: Hinderberger, Dariush email: dariush.hinderberger@chemie.uni-halle.de organization: Institute of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30630315$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtOwzAQRS1URB_wAyxQl2wS_IiTZglReUiV6ALWke1MKleJXewEqTv-gT_kS3BJYclqRqNzrzRnikbGGkDokuCYYEpuhPKx1LYVKs4lxpikJ2hCOE2jJMV09LPzKMvybIym3m8DkrOEn6ExwynDjPAJWq70RpgqutOm0mYzL6zdgROdftfdfr6sa1Cdn2szX9tm34L7-vhcO9tBuBTWbPtNQK05R6e1aDxcHOcMvd4vX4rHaPX88FTcriLBEtpFgDnNpCSMKpwtSFrXinLFZQpkkQCuAAiDBZaVlDxllQRVJwcmY1xVktRshq6H3p2zbz34rmy1V9A0woDtfUlJljOOOcYBpQOqnPXeQV3unG6F25cElwd9ZdBXDvrKo74Qujr297KF6i_y6ysA8QAcwlvbOxPe_a_xG9-dgRs |
CitedBy_id | crossref_primary_10_1021_acsptsci_0c00116 crossref_primary_10_1002_open_201900113 crossref_primary_10_1021_acs_biomac_0c01033 crossref_primary_10_1002_mabi_202200487 crossref_primary_10_1021_acs_jmedchem_3c00680 crossref_primary_10_1002_ppsc_201900304 crossref_primary_10_1021_acs_jafc_1c07218 crossref_primary_10_1039_C9RA02019E crossref_primary_10_1016_j_sbi_2021_06_003 crossref_primary_10_1002_ijch_201900073 crossref_primary_10_1016_j_actbio_2023_09_001 |
Cites_doi | 10.1007/BF00152843 10.1038/ncomms6526 10.1084/jem.99.2.167 10.1021/ie50273a022 10.1016/j.jmr.2011.03.003 10.1016/B978-0-12-092350-2.50008-4 10.1016/j.jcis.2012.08.026 10.1039/b719689j 10.1039/c0py90001j 10.1002/anie.201003495 10.1006/jmre.1999.1944 10.1002/chem.201601810 10.1007/s00253-006-0574-4 10.1021/mz200020c 10.1016/0006-291X(75)90473-8 10.1016/j.freeradbiomed.2017.04.021 10.1016/S0021-9258(17)40291-2 10.1016/0003-2697(67)90297-7 10.1021/ja01629a002 10.1038/nature07958 10.3390/magnetochemistry4040047 10.1021/la800548p 10.1002/anie.200901583 10.1016/j.ab.2012.09.019 10.1063/1.1701790 10.1021/ja01162a099 10.1038/47412 10.1021/acs.biomac.8b01020 10.1021/j150536a020 10.1002/adfm.201102471 10.1166/jnn.2010.2832 10.1371/journal.pcbi.1003106 10.1063/1.555859 10.1016/j.bbagen.2013.04.031 10.1146/annurev.bb.14.060185.001023 10.1021/ma300887r 10.1021/bi00693a031 10.1073/pnas.61.3.819 10.1039/c2sm26511g 10.1021/bm1014156 10.1039/C6PY01335J 10.1016/0014-5793(79)81345-9 10.1063/1.1726208 10.1373/clinchem.2006.073148 10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7 10.1016/S0021-9258(17)37845-6 10.1016/S0076-6879(10)74011-8 10.1016/0010-4655(82)90173-4 10.1007/978-1-4419-6324-6_26 10.1080/02652040601035143 10.1021/j150530a023 10.1016/S0021-9258(18)60913-5 10.1016/j.biomaterials.2010.02.001 10.1021/ja01650a078 10.1021/bm301531c 10.1039/b9py00363k 10.1016/S0021-9258(18)51414-9 10.1038/378472a0 10.1016/S0022-2275(20)40697-2 10.1016/j.jconrel.2016.06.017 10.1016/j.jconrel.2017.04.035 10.1039/c0cc04062b 10.1039/c3cc44039g 10.1007/978-1-4613-0743-3_1 10.1007/978-3-8274-2989-6 10.1007/978-3-642-29944-5_1 10.1073/pnas.54.4.1010 10.1126/science.160.3829.780 10.1007/s12013-017-0785-6 10.1021/mz200176g 10.1016/j.molimm.2012.05.011 10.1021/jp063981w 10.1002/pola.22706 10.1016/j.saa.2009.05.003 10.1016/S0006-3495(82)84455-X 10.1002/bip.21421 10.1002/pro.2494 10.1126/science.aao0335 10.1021/jp408338q 10.1016/0022-2836(74)90183-1 10.1016/0003-2697(80)90160-8 10.1021/ja01548a024 10.1021/ar50144a004 10.1038/nprot.2006.288 10.1021/la2024605 10.1016/j.bbagen.2013.04.036 10.1016/0022-2364(74)90193-0 10.1021/ar50013a003 10.1016/j.cplett.2006.12.068 10.1021/ja054482w 10.1111/j.1749-6632.1949.tb27297.x 10.1016/S0021-9258(19)41627-X 10.1039/b609935a 10.1021/bi00260a023 10.1021/bi00840a015 10.1038/sj.bjp.0707251 10.1006/jmbi.2000.4158 10.1016/0304-4165(90)90039-Y 10.1039/c4py00168k 10.1007/BF03166213 10.1016/j.jmr.2005.08.013 10.1016/j.addr.2012.09.025 10.1146/annurev-physchem-032511-143716 10.1021/jp0670844 10.1016/0009-3084(69)90016-4 10.1021/ma3001719 10.1016/0167-4838(90)90046-I 10.1016/j.bioelechem.2011.09.004 10.1016/S0022-2275(20)42649-5 10.1073/pnas.55.1.8 10.1371/journal.pone.0045681 10.1002/0471220639 10.1021/jp5068928 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acs.biomac.9b00016 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 1131 |
ExternalDocumentID | 10_1021_acs_biomac_9b00016 30630315 b588682495 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 23N 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL RSW TN5 UI2 VF5 VG9 W1F X XKZ --- -~X 4.4 5VS AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CGR CUPRZ CUY CVF ECM EIF GGK NPM ZCA ~02 AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a342t-e0527bb132c07816ffc25c5b6e184e0dee13e80bdbb563dbecf4ffc2735cdb1f3 |
IEDL.DBID | ACS |
ISSN | 1525-7797 |
IngestDate | Fri Aug 16 08:48:31 EDT 2024 Fri Aug 23 04:02:30 EDT 2024 Sat Sep 28 08:30:18 EDT 2024 Thu Aug 27 13:43:41 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a342t-e0527bb132c07816ffc25c5b6e184e0dee13e80bdbb563dbecf4ffc2735cdb1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7784-5720 0000-0002-6066-7099 0000-0002-6955-8489 0000-0002-6862-1802 |
PMID | 30630315 |
PQID | 2179350500 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2179350500 crossref_primary_10_1021_acs_biomac_9b00016 pubmed_primary_30630315 acs_journals_10_1021_acs_biomac_9b00016 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2019-02-11 |
PublicationDateYYYYMMDD | 2019-02-11 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 Schneider D. J. (ref77/cit77) 1989; 8 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref35/cit35 ref89/cit89 Peters T. (ref3/cit3) 1995 ref19/cit19 Lemmon E. W. (ref88/cit88) 2014; 95 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref11/cit11 ref102/cit102 ref29/cit29 Morrisett J. D. (ref50/cit50) 1975; 250 Atmeh R. F. (ref98/cit98) 2007; 2 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref106/cit106 ref70/cit70 ref9/cit9 ref27/cit27 Berne B. J. (ref86/cit86) 2000 ref63/cit63 ref56/cit56 ref92/cit92 Rehfeld S. J. (ref51/cit51) 1978; 19 ref8/cit8 Cistola D. P. (ref122/cit122) 1987; 262 ref31/cit31 ref59/cit59 ref85/cit85 Kendall F. E. (ref44/cit44) 1941; 138 Day J. F. (ref15/cit15) 1979; 254 ref34/cit34 ref37/cit37 ref60/cit60 ref17/cit17 ref82/cit82 Derjaguin B. (ref99/cit99) 1941; 14 ref53/cit53 ref21/cit21 Freed J. H. (ref76/cit76) 1976; 1 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 Spector A. A. (ref121/cit121) 1969; 10 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 Abuchowski A. (ref10/cit10) 1977; 252 ref72/cit72 ref14/cit14 ref57/cit57 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref62/cit62 ref41/cit41 Larsson M. (ref101/cit101) 2012; 20 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1007/BF00152843 – ident: ref42/cit42 doi: 10.1038/ncomms6526 – ident: ref70/cit70 doi: 10.1084/jem.99.2.167 – ident: ref90/cit90 doi: 10.1021/ie50273a022 – ident: ref57/cit57 doi: 10.1016/j.jmr.2011.03.003 – volume: 14 start-page: 633 year: 1941 ident: ref99/cit99 publication-title: Acta Physicochim. URSS contributor: fullname: Derjaguin B. – volume: 1 start-page: 53 volume-title: Spin Labeling: Theory and Applications year: 1976 ident: ref76/cit76 doi: 10.1016/B978-0-12-092350-2.50008-4 contributor: fullname: Freed J. H. – ident: ref91/cit91 doi: 10.1016/j.jcis.2012.08.026 – ident: ref24/cit24 doi: 10.1039/b719689j – ident: ref41/cit41 doi: 10.1039/c0py90001j – ident: ref56/cit56 doi: 10.1002/anie.201003495 – ident: ref63/cit63 doi: 10.1006/jmre.1999.1944 – ident: ref115/cit115 doi: 10.1002/chem.201601810 – ident: ref23/cit23 doi: 10.1007/s00253-006-0574-4 – ident: ref36/cit36 doi: 10.1021/mz200020c – ident: ref80/cit80 doi: 10.1016/0006-291X(75)90473-8 – ident: ref22/cit22 doi: 10.1016/j.freeradbiomed.2017.04.021 – volume: 252 start-page: 3578 year: 1977 ident: ref10/cit10 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)40291-2 contributor: fullname: Abuchowski A. – ident: ref118/cit118 doi: 10.1016/0003-2697(67)90297-7 – ident: ref103/cit103 doi: 10.1021/ja01629a002 – ident: ref5/cit5 doi: 10.1038/nature07958 – ident: ref60/cit60 doi: 10.3390/magnetochemistry4040047 – ident: ref94/cit94 doi: 10.1021/la800548p – ident: ref12/cit12 doi: 10.1002/anie.200901583 – ident: ref95/cit95 doi: 10.1016/j.ab.2012.09.019 – ident: ref30/cit30 doi: 10.1063/1.1701790 – ident: ref64/cit64 doi: 10.1021/ja01162a099 – ident: ref6/cit6 doi: 10.1038/47412 – ident: ref43/cit43 doi: 10.1021/acs.biomac.8b01020 – ident: ref93/cit93 doi: 10.1021/j150536a020 – ident: ref38/cit38 doi: 10.1002/adfm.201102471 – ident: ref100/cit100 doi: 10.1166/jnn.2010.2832 – ident: ref71/cit71 – ident: ref120/cit120 doi: 10.1371/journal.pcbi.1003106 – ident: ref89/cit89 doi: 10.1063/1.555859 – ident: ref61/cit61 doi: 10.1016/j.bbagen.2013.04.031 – ident: ref112/cit112 doi: 10.1146/annurev.bb.14.060185.001023 – ident: ref37/cit37 doi: 10.1021/ma300887r – ident: ref18/cit18 doi: 10.1021/bi00693a031 – ident: ref46/cit46 doi: 10.1073/pnas.61.3.819 – ident: ref68/cit68 doi: 10.1039/c2sm26511g – ident: ref58/cit58 doi: 10.1021/bm1014156 – ident: ref79/cit79 doi: 10.1039/C6PY01335J – ident: ref16/cit16 doi: 10.1016/0014-5793(79)81345-9 – ident: ref75/cit75 doi: 10.1063/1.1726208 – ident: ref55/cit55 doi: 10.1373/clinchem.2006.073148 – ident: ref62/cit62 doi: 10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7 – volume: 254 start-page: 595 year: 1979 ident: ref15/cit15 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)37845-6 contributor: fullname: Day J. F. – ident: ref20/cit20 doi: 10.1016/S0076-6879(10)74011-8 – ident: ref84/cit84 doi: 10.1016/0010-4655(82)90173-4 – ident: ref108/cit108 doi: 10.1007/978-1-4419-6324-6_26 – ident: ref25/cit25 doi: 10.1080/02652040601035143 – ident: ref110/cit110 doi: 10.1021/j150530a023 – volume: 262 start-page: 10971 year: 1987 ident: ref122/cit122 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)60913-5 contributor: fullname: Cistola D. P. – ident: ref13/cit13 doi: 10.1016/j.biomaterials.2010.02.001 – ident: ref65/cit65 doi: 10.1021/ja01650a078 – ident: ref69/cit69 doi: 10.1021/bm301531c – ident: ref34/cit34 doi: 10.1039/b9py00363k – volume: 138 start-page: 97 year: 1941 ident: ref44/cit44 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)51414-9 contributor: fullname: Kendall F. E. – ident: ref7/cit7 doi: 10.1038/378472a0 – volume: 19 start-page: 841 year: 1978 ident: ref51/cit51 publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)40697-2 contributor: fullname: Rehfeld S. J. – ident: ref85/cit85 doi: 10.1016/j.jconrel.2016.06.017 – ident: ref39/cit39 doi: 10.1016/j.jconrel.2017.04.035 – ident: ref87/cit87 – ident: ref8/cit8 doi: 10.1039/c0cc04062b – ident: ref27/cit27 doi: 10.1039/c3cc44039g – volume: 8 start-page: 1 volume-title: Spin Labeling: Theory and Applications year: 1989 ident: ref77/cit77 doi: 10.1007/978-1-4613-0743-3_1 contributor: fullname: Schneider D. J. – ident: ref2/cit2 doi: 10.1007/978-3-8274-2989-6 – volume-title: All about Albumin: Biochemistry, Genetics and Medical Applications year: 1995 ident: ref3/cit3 contributor: fullname: Peters T. – ident: ref109/cit109 doi: 10.1007/978-3-642-29944-5_1 – ident: ref28/cit28 doi: 10.1073/pnas.54.4.1010 – ident: ref17/cit17 doi: 10.1126/science.160.3829.780 – volume: 95 start-page: 6 volume-title: CRC Handbook of Chemistry and Physics year: 2014 ident: ref88/cit88 contributor: fullname: Lemmon E. W. – ident: ref4/cit4 doi: 10.1007/s12013-017-0785-6 – ident: ref35/cit35 doi: 10.1021/mz200176g – ident: ref92/cit92 doi: 10.1016/j.molimm.2012.05.011 – ident: ref102/cit102 doi: 10.1021/jp063981w – ident: ref11/cit11 doi: 10.1002/pola.22706 – ident: ref78/cit78 doi: 10.1016/j.saa.2009.05.003 – ident: ref111/cit111 doi: 10.1016/S0006-3495(82)84455-X – ident: ref106/cit106 doi: 10.1002/bip.21421 – ident: ref1/cit1 doi: 10.1002/pro.2494 – ident: ref14/cit14 doi: 10.1126/science.aao0335 – ident: ref83/cit83 doi: 10.1021/jp408338q – ident: ref116/cit116 doi: 10.1016/0022-2836(74)90183-1 – ident: ref117/cit117 doi: 10.1016/0003-2697(80)90160-8 – ident: ref45/cit45 doi: 10.1021/ja01548a024 – ident: ref81/cit81 – volume-title: Dynamic Light Scattering – with Applications to Chemistry, Biology, and Physics year: 2000 ident: ref86/cit86 contributor: fullname: Berne B. J. – ident: ref104/cit104 doi: 10.1021/ar50144a004 – ident: ref72/cit72 doi: 10.1038/nprot.2006.288 – ident: ref96/cit96 doi: 10.1021/la2024605 – ident: ref21/cit21 doi: 10.1016/j.bbagen.2013.04.036 – ident: ref49/cit49 doi: 10.1016/0022-2364(74)90193-0 – ident: ref47/cit47 doi: 10.1021/ar50013a003 – ident: ref107/cit107 doi: 10.1016/j.cplett.2006.12.068 – ident: ref32/cit32 doi: 10.1021/ja054482w – ident: ref114/cit114 doi: 10.1111/j.1749-6632.1949.tb27297.x – volume: 250 start-page: 2487 year: 1975 ident: ref50/cit50 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)41627-X contributor: fullname: Morrisett J. D. – ident: ref33/cit33 doi: 10.1039/b609935a – ident: ref52/cit52 doi: 10.1021/bi00260a023 – ident: ref119/cit119 doi: 10.1021/bi00840a015 – ident: ref19/cit19 doi: 10.1038/sj.bjp.0707251 – ident: ref66/cit66 doi: 10.1006/jmbi.2000.4158 – ident: ref54/cit54 doi: 10.1016/0304-4165(90)90039-Y – ident: ref40/cit40 doi: 10.1039/c4py00168k – ident: ref82/cit82 doi: 10.1007/BF03166213 – ident: ref74/cit74 doi: 10.1016/j.jmr.2005.08.013 – ident: ref9/cit9 doi: 10.1016/j.addr.2012.09.025 – ident: ref73/cit73 doi: 10.1146/annurev-physchem-032511-143716 – ident: ref105/cit105 doi: 10.1021/jp0670844 – volume: 20 start-page: 209 year: 2012 ident: ref101/cit101 publication-title: Ann. T. Nord. Rheol. Soc. contributor: fullname: Larsson M. – ident: ref48/cit48 doi: 10.1016/0009-3084(69)90016-4 – ident: ref31/cit31 doi: 10.1021/ma3001719 – ident: ref53/cit53 doi: 10.1016/0167-4838(90)90046-I – ident: ref97/cit97 doi: 10.1016/j.bioelechem.2011.09.004 – volume: 2 start-page: 169 year: 2007 ident: ref98/cit98 publication-title: Jordan J. Chem. contributor: fullname: Atmeh R. F. – volume: 10 start-page: 56 year: 1969 ident: ref121/cit121 publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)42649-5 contributor: fullname: Spector A. A. – ident: ref29/cit29 doi: 10.1073/pnas.55.1.8 – ident: ref67/cit67 doi: 10.1371/journal.pone.0045681 – ident: ref113/cit113 doi: 10.1002/0471220639 – ident: ref59/cit59 doi: 10.1021/jp5068928 |
SSID | ssj0009345 |
Score | 2.3879244 |
Snippet | We present an electron paramagnetic resonance (EPR) spectroscopic characterization of structural and dynamic effects that stem from post-translational... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1118 |
SubjectTerms | Binding Sites Cyclic N-Oxides - chemistry Drug Delivery Systems - methods Dynamic Light Scattering - methods Electron Spin Resonance Spectroscopy - methods Ethylene Glycol - chemistry Ligands Methacrylates - chemistry Polyethylene Glycols - chemistry Polymers - chemistry Serum Albumin, Bovine - chemistry |
Title | Ligand-Binding Cooperativity Effects in Polymer–Protein Conjugation |
URI | http://dx.doi.org/10.1021/acs.biomac.9b00016 https://www.ncbi.nlm.nih.gov/pubmed/30630315 https://search.proquest.com/docview/2179350500 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5WPejF92N9UUHwoF2bpGm3Ry2KiCuCCt5KXl3WRyvb3YOe_A_-Q3-Jk7ariA-8hjAkM0nnm07mG4DtFAGb0J52heD2bxVRbpuGGLgKLg1nUgTM1jt3zoOTa__0ht80YO-XDD4l-0IVLVuKjuKjCqKMwQQN8XZYIBRfflLssrIlsW3og5gxCusSmZ9lWGekiq_O6BeEWXqa4xnojOp1qgcmd63hQLbU83f6xn9tYhama8jpHFRnZA4aJpuHyXjU6W0Bjs56XZFp97BXlrg4cZ4_mn7dV8Kp-I0Lp5c5F_n904Ppv728Xlh6BxyJ8-x22C2tuwjXx0dX8Ylbt1dwBfPpwDUep6GUGI4qy_gTpKmiXHEZGIz6jKeNIcy0Paml5GgxNHbq2zkh40pLkrIlGM_yzKyAQ9tpSFSE0CvyfY4YJ9UpxnWRVl6ACEM3YQc1kNTXo0jKzDcliR2s1JLUamnC7sgiyWPFt_Hn7K2R0RLUmc11iMzkwyKh9sOD6M7zmrBcWfNDHrM8Y4zw1X-vag2mcBuRfa1NyDqMD_pDs4FgZCA3yzP4Dr4L2vI |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5oPdSL70d9YmLiwaAsy0I5KqmpWk0Ta-KNsA9MfYAp7UFP_gf_ob_EWaBtNGr0OtkMuzML8w278w3AboyALZKWNKOI6b9VRJh128PENWJcMcojl-p654tLt3ntnN2wm7KOW9fC4CQy1JTlh_hjdgFyqGW6Ih2f4hdIZRKmmIcRU-Oh4GrMtEvzzsS6rw9CR98rK2W-16Fjksg-x6QfgGYecE5moTOaan7P5P5g0OcH4uULi-M_1zIHMyUANY6KHTMPEypZgGow7Pu2CI1W9zZKpHnczQtejCBNn1Sv7DJhFGzHmdFNjHb68Pyoeu-vb21N9oCSIE3uBre5r5fg-qTRCZpm2WzBjKhj901lMdvjHJNTofl_3DgWNhOMuwpzQGVJpQhVdYtLzhn6D10fO3qMR5mQnMR0GSpJmqhVMOx67BHhIxDzHYch4olljFmeL4XlIt6QNdhDC4Tly5KF-Tm4TUItLMwSlmapwf7QMeFTwb7x6-idoe9CtJk--YgSlQ6y0NafIcR6llWDlcKpI31Us45Rwtb-PKttqDY7F62wdXp5vg7TuCRf3-MmZAMq_d5AbSJM6fOtfFt-AJUn41c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xkIDL8oYuCwQJiQMKxHGcNEc2UPFWJRaptyh-ofJIqqY97J74D_zD_SU7dlIQaEGI68hy7Bk7_sbj-QZgWyNgy6Qn3Sxj5raKCLfpR-i4ZowrRnkWUpPvfHEZHl8Hpx3Wqa8uTC4MDqLEnkobxDe7uid1zTBA9o3cZKXjl-IKrYzDJIuIjc8eJFcvbLvUVic2tX0QPsZRnS3z_z7MuSTK1-fSO2DTHjqtWeg8D9e-NbnbGw74nvjzhsnxC_OZg281EHUOqpUzD2MqX4DpZFT_bRGOzrs3WS7dn12b-OIkRdFT_brahFOxHpdON3faxf3vB9X_-_jUNqQPKEmK_HZ4Y22-BNeto1_JsVsXXXAzGvgDV3nMjzhHJ1UYHqBQa-EzwXio0BdUnlSKUNX0uOScoR1xCejAtIkoE5ITTZdhIi9ytQqO39QRETECsjgIGCIfLTV6e7EUXoi4QzZgBzWQ1pumTG083CepEVZqSWu1NGB3ZJy0V7FwfNh6a2S_FHVmIiBZrophmfrmd4SYz_MasFIZ9rk_atjHKGHfPz2qTZhqH7bS85PLszWYwRnF5jk3IT9gYtAfqnVEKwO-YVfmP-do5dE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ligand-Binding+Cooperativity+Effects+in+Polymer%E2%80%93Protein+Conjugation&rft.jtitle=Biomacromolecules&rft.au=Reichenwallner%2C+J%C3%B6rg&rft.au=Thomas%2C+Anja&rft.au=Steinbach%2C+Tobias&rft.au=Eisermann%2C+Jana&rft.date=2019-02-11&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=20&rft.issue=2&rft.spage=1118&rft.epage=1131&rft_id=info:doi/10.1021%2Facs.biomac.9b00016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_biomac_9b00016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |