Ligand-Binding Cooperativity Effects in Polymer–Protein Conjugation

We present an electron paramagnetic resonance (EPR) spectroscopic characterization of structural and dynamic effects that stem from post-translational modifications of bovine serum albumin (BSA), an established model system for polymer–protein conjugation. Beyond the typical drug delivery and biocom...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 20; no. 2; pp. 1118 - 1131
Main Authors Reichenwallner, Jörg, Thomas, Anja, Steinbach, Tobias, Eisermann, Jana, Schmelzer, Christian E. H, Wurm, Frederik, Hinderberger, Dariush
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an electron paramagnetic resonance (EPR) spectroscopic characterization of structural and dynamic effects that stem from post-translational modifications of bovine serum albumin (BSA), an established model system for polymer–protein conjugation. Beyond the typical drug delivery and biocompatibility aspect of such systems, we illustrate the causes that alter internal dynamics and therefore functionality in terms of ligand-binding to the BSA protein core. Uptake of the paramagnetic fatty acid derivative 16-doxyl stearic acid by several BSA-based squaric acid macroinitiators and polymer–protein conjugates was studied by EPR spectroscopy, aided by dynamic light scattering (DLS) and zeta potential measurements. The conjugates were grafted from oligo­(ethylene glycol) methyl ether methacrylate (OEGMA), forming an overall core–shell-like structure. It is found that ligand-binding and associated parameters such as binding affinity, cooperativity, and the number of binding sites of BSA change drastically with the extent of surface modification. In the course of processing BSA, the ligands also change their preference for individual binding sites, as observed from a comparative view of their spatial alignments in double electron electron resonance (DEER) experiments. The protein-attached polymers constitute a diffusion barrier that significantly hamper ligand uptake. Moreover, zeta potentials (ζ) decrease linearly with the degree of surface modification in protein macroinitiators and an effective dielectric constant can be estimated for the polymer layer in the conjugates. All this suggests that ligand uptake characteristics in BSA can be fine-tuned by the extent and nature of such post-translational modifications (PTMs). We show that EPR spectroscopy is suitable for quantifying these subtle PTM-based functional effects from self-assembly of substrate and ligand.
AbstractList We present an electron paramagnetic resonance (EPR) spectroscopic characterization of structural and dynamic effects that stem from post-translational modifications of bovine serum albumin (BSA), an established model system for polymer-protein conjugation. Beyond the typical drug delivery and biocompatibility aspect of such systems, we illustrate the causes that alter internal dynamics and therefore functionality in terms of ligand-binding to the BSA protein core. Uptake of the paramagnetic fatty acid derivative 16-doxyl stearic acid by several BSA-based squaric acid macroinitiators and polymer-protein conjugates was studied by EPR spectroscopy, aided by dynamic light scattering (DLS) and zeta potential measurements. The conjugates were grafted from oligo(ethylene glycol) methyl ether methacrylate (OEGMA), forming an overall core-shell-like structure. It is found that ligand-binding and associated parameters such as binding affinity, cooperativity, and the number of binding sites of BSA change drastically with the extent of surface modification. In the course of processing BSA, the ligands also change their preference for individual binding sites, as observed from a comparative view of their spatial alignments in double electron electron resonance (DEER) experiments. The protein-attached polymers constitute a diffusion barrier that significantly hamper ligand uptake. Moreover, zeta potentials (ζ) decrease linearly with the degree of surface modification in protein macroinitiators and an effective dielectric constant can be estimated for the polymer layer in the conjugates. All this suggests that ligand uptake characteristics in BSA can be fine-tuned by the extent and nature of such post-translational modifications (PTMs). We show that EPR spectroscopy is suitable for quantifying these subtle PTM-based functional effects from self-assembly of substrate and ligand.
We present an electron paramagnetic resonance (EPR) spectroscopic characterization of structural and dynamic effects that stem from post-translational modifications of bovine serum albumin (BSA), an established model system for polymer–protein conjugation. Beyond the typical drug delivery and biocompatibility aspect of such systems, we illustrate the causes that alter internal dynamics and therefore functionality in terms of ligand-binding to the BSA protein core. Uptake of the paramagnetic fatty acid derivative 16-doxyl stearic acid by several BSA-based squaric acid macroinitiators and polymer–protein conjugates was studied by EPR spectroscopy, aided by dynamic light scattering (DLS) and zeta potential measurements. The conjugates were grafted from oligo­(ethylene glycol) methyl ether methacrylate (OEGMA), forming an overall core–shell-like structure. It is found that ligand-binding and associated parameters such as binding affinity, cooperativity, and the number of binding sites of BSA change drastically with the extent of surface modification. In the course of processing BSA, the ligands also change their preference for individual binding sites, as observed from a comparative view of their spatial alignments in double electron electron resonance (DEER) experiments. The protein-attached polymers constitute a diffusion barrier that significantly hamper ligand uptake. Moreover, zeta potentials (ζ) decrease linearly with the degree of surface modification in protein macroinitiators and an effective dielectric constant can be estimated for the polymer layer in the conjugates. All this suggests that ligand uptake characteristics in BSA can be fine-tuned by the extent and nature of such post-translational modifications (PTMs). We show that EPR spectroscopy is suitable for quantifying these subtle PTM-based functional effects from self-assembly of substrate and ligand.
Author Thomas, Anja
Hinderberger, Dariush
Schmelzer, Christian E. H
Wurm, Frederik
Eisermann, Jana
Reichenwallner, Jörg
Steinbach, Tobias
AuthorAffiliation Institute of Chemistry
Institute of Organic Chemistry
Fraunhofer Institute for Microstructure of Materials and Systems (IMWS)
Institute of Pharmacy
AuthorAffiliation_xml – name: Fraunhofer Institute for Microstructure of Materials and Systems (IMWS)
– name: Institute of Chemistry
– name: Institute of Pharmacy
– name: Institute of Organic Chemistry
Author_xml – sequence: 1
  givenname: Jörg
  orcidid: 0000-0002-6862-1802
  surname: Reichenwallner
  fullname: Reichenwallner, Jörg
  organization: Institute of Chemistry
– sequence: 2
  givenname: Anja
  surname: Thomas
  fullname: Thomas, Anja
  organization: Institute of Organic Chemistry
– sequence: 3
  givenname: Tobias
  surname: Steinbach
  fullname: Steinbach, Tobias
  organization: Institute of Organic Chemistry
– sequence: 4
  givenname: Jana
  orcidid: 0000-0001-7784-5720
  surname: Eisermann
  fullname: Eisermann, Jana
  organization: Institute of Chemistry
– sequence: 5
  givenname: Christian E. H
  surname: Schmelzer
  fullname: Schmelzer, Christian E. H
  organization: Institute of Pharmacy
– sequence: 6
  givenname: Frederik
  orcidid: 0000-0002-6955-8489
  surname: Wurm
  fullname: Wurm, Frederik
– sequence: 7
  givenname: Dariush
  orcidid: 0000-0002-6066-7099
  surname: Hinderberger
  fullname: Hinderberger, Dariush
  email: dariush.hinderberger@chemie.uni-halle.de
  organization: Institute of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30630315$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtOwzAQRS1URB_wAyxQl2wS_IiTZglReUiV6ALWke1MKleJXewEqTv-gT_kS3BJYclqRqNzrzRnikbGGkDokuCYYEpuhPKx1LYVKs4lxpikJ2hCOE2jJMV09LPzKMvybIym3m8DkrOEn6ExwynDjPAJWq70RpgqutOm0mYzL6zdgROdftfdfr6sa1Cdn2szX9tm34L7-vhcO9tBuBTWbPtNQK05R6e1aDxcHOcMvd4vX4rHaPX88FTcriLBEtpFgDnNpCSMKpwtSFrXinLFZQpkkQCuAAiDBZaVlDxllQRVJwcmY1xVktRshq6H3p2zbz34rmy1V9A0woDtfUlJljOOOcYBpQOqnPXeQV3unG6F25cElwd9ZdBXDvrKo74Qujr297KF6i_y6ysA8QAcwlvbOxPe_a_xG9-dgRs
CitedBy_id crossref_primary_10_1021_acsptsci_0c00116
crossref_primary_10_1002_open_201900113
crossref_primary_10_1021_acs_biomac_0c01033
crossref_primary_10_1002_mabi_202200487
crossref_primary_10_1021_acs_jmedchem_3c00680
crossref_primary_10_1002_ppsc_201900304
crossref_primary_10_1021_acs_jafc_1c07218
crossref_primary_10_1039_C9RA02019E
crossref_primary_10_1016_j_sbi_2021_06_003
crossref_primary_10_1002_ijch_201900073
crossref_primary_10_1016_j_actbio_2023_09_001
Cites_doi 10.1007/BF00152843
10.1038/ncomms6526
10.1084/jem.99.2.167
10.1021/ie50273a022
10.1016/j.jmr.2011.03.003
10.1016/B978-0-12-092350-2.50008-4
10.1016/j.jcis.2012.08.026
10.1039/b719689j
10.1039/c0py90001j
10.1002/anie.201003495
10.1006/jmre.1999.1944
10.1002/chem.201601810
10.1007/s00253-006-0574-4
10.1021/mz200020c
10.1016/0006-291X(75)90473-8
10.1016/j.freeradbiomed.2017.04.021
10.1016/S0021-9258(17)40291-2
10.1016/0003-2697(67)90297-7
10.1021/ja01629a002
10.1038/nature07958
10.3390/magnetochemistry4040047
10.1021/la800548p
10.1002/anie.200901583
10.1016/j.ab.2012.09.019
10.1063/1.1701790
10.1021/ja01162a099
10.1038/47412
10.1021/acs.biomac.8b01020
10.1021/j150536a020
10.1002/adfm.201102471
10.1166/jnn.2010.2832
10.1371/journal.pcbi.1003106
10.1063/1.555859
10.1016/j.bbagen.2013.04.031
10.1146/annurev.bb.14.060185.001023
10.1021/ma300887r
10.1021/bi00693a031
10.1073/pnas.61.3.819
10.1039/c2sm26511g
10.1021/bm1014156
10.1039/C6PY01335J
10.1016/0014-5793(79)81345-9
10.1063/1.1726208
10.1373/clinchem.2006.073148
10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7
10.1016/S0021-9258(17)37845-6
10.1016/S0076-6879(10)74011-8
10.1016/0010-4655(82)90173-4
10.1007/978-1-4419-6324-6_26
10.1080/02652040601035143
10.1021/j150530a023
10.1016/S0021-9258(18)60913-5
10.1016/j.biomaterials.2010.02.001
10.1021/ja01650a078
10.1021/bm301531c
10.1039/b9py00363k
10.1016/S0021-9258(18)51414-9
10.1038/378472a0
10.1016/S0022-2275(20)40697-2
10.1016/j.jconrel.2016.06.017
10.1016/j.jconrel.2017.04.035
10.1039/c0cc04062b
10.1039/c3cc44039g
10.1007/978-1-4613-0743-3_1
10.1007/978-3-8274-2989-6
10.1007/978-3-642-29944-5_1
10.1073/pnas.54.4.1010
10.1126/science.160.3829.780
10.1007/s12013-017-0785-6
10.1021/mz200176g
10.1016/j.molimm.2012.05.011
10.1021/jp063981w
10.1002/pola.22706
10.1016/j.saa.2009.05.003
10.1016/S0006-3495(82)84455-X
10.1002/bip.21421
10.1002/pro.2494
10.1126/science.aao0335
10.1021/jp408338q
10.1016/0022-2836(74)90183-1
10.1016/0003-2697(80)90160-8
10.1021/ja01548a024
10.1021/ar50144a004
10.1038/nprot.2006.288
10.1021/la2024605
10.1016/j.bbagen.2013.04.036
10.1016/0022-2364(74)90193-0
10.1021/ar50013a003
10.1016/j.cplett.2006.12.068
10.1021/ja054482w
10.1111/j.1749-6632.1949.tb27297.x
10.1016/S0021-9258(19)41627-X
10.1039/b609935a
10.1021/bi00260a023
10.1021/bi00840a015
10.1038/sj.bjp.0707251
10.1006/jmbi.2000.4158
10.1016/0304-4165(90)90039-Y
10.1039/c4py00168k
10.1007/BF03166213
10.1016/j.jmr.2005.08.013
10.1016/j.addr.2012.09.025
10.1146/annurev-physchem-032511-143716
10.1021/jp0670844
10.1016/0009-3084(69)90016-4
10.1021/ma3001719
10.1016/0167-4838(90)90046-I
10.1016/j.bioelechem.2011.09.004
10.1016/S0022-2275(20)42649-5
10.1073/pnas.55.1.8
10.1371/journal.pone.0045681
10.1002/0471220639
10.1021/jp5068928
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.biomac.9b00016
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1526-4602
EndPage 1131
ExternalDocumentID 10_1021_acs_biomac_9b00016
30630315
b588682495
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
23N
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
RSW
TN5
UI2
VF5
VG9
W1F
X
XKZ
---
-~X
4.4
5VS
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
ZCA
~02
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a342t-e0527bb132c07816ffc25c5b6e184e0dee13e80bdbb563dbecf4ffc2735cdb1f3
IEDL.DBID ACS
ISSN 1525-7797
IngestDate Fri Aug 16 08:48:31 EDT 2024
Fri Aug 23 04:02:30 EDT 2024
Sat Sep 28 08:30:18 EDT 2024
Thu Aug 27 13:43:41 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-e0527bb132c07816ffc25c5b6e184e0dee13e80bdbb563dbecf4ffc2735cdb1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7784-5720
0000-0002-6066-7099
0000-0002-6955-8489
0000-0002-6862-1802
PMID 30630315
PQID 2179350500
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2179350500
crossref_primary_10_1021_acs_biomac_9b00016
pubmed_primary_30630315
acs_journals_10_1021_acs_biomac_9b00016
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-02-11
PublicationDateYYYYMMDD 2019-02-11
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
Schneider D. J. (ref77/cit77) 1989; 8
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref35/cit35
ref89/cit89
Peters T. (ref3/cit3) 1995
ref19/cit19
Lemmon E. W. (ref88/cit88) 2014; 95
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref11/cit11
ref102/cit102
ref29/cit29
Morrisett J. D. (ref50/cit50) 1975; 250
Atmeh R. F. (ref98/cit98) 2007; 2
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref70/cit70
ref9/cit9
ref27/cit27
Berne B. J. (ref86/cit86) 2000
ref63/cit63
ref56/cit56
ref92/cit92
Rehfeld S. J. (ref51/cit51) 1978; 19
ref8/cit8
Cistola D. P. (ref122/cit122) 1987; 262
ref31/cit31
ref59/cit59
ref85/cit85
Kendall F. E. (ref44/cit44) 1941; 138
Day J. F. (ref15/cit15) 1979; 254
ref34/cit34
ref37/cit37
ref60/cit60
ref17/cit17
ref82/cit82
Derjaguin B. (ref99/cit99) 1941; 14
ref53/cit53
ref21/cit21
Freed J. H. (ref76/cit76) 1976; 1
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
Spector A. A. (ref121/cit121) 1969; 10
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
Abuchowski A. (ref10/cit10) 1977; 252
ref72/cit72
ref14/cit14
ref57/cit57
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref62/cit62
ref41/cit41
Larsson M. (ref101/cit101) 2012; 20
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1007/BF00152843
– ident: ref42/cit42
  doi: 10.1038/ncomms6526
– ident: ref70/cit70
  doi: 10.1084/jem.99.2.167
– ident: ref90/cit90
  doi: 10.1021/ie50273a022
– ident: ref57/cit57
  doi: 10.1016/j.jmr.2011.03.003
– volume: 14
  start-page: 633
  year: 1941
  ident: ref99/cit99
  publication-title: Acta Physicochim. URSS
  contributor:
    fullname: Derjaguin B.
– volume: 1
  start-page: 53
  volume-title: Spin Labeling: Theory and Applications
  year: 1976
  ident: ref76/cit76
  doi: 10.1016/B978-0-12-092350-2.50008-4
  contributor:
    fullname: Freed J. H.
– ident: ref91/cit91
  doi: 10.1016/j.jcis.2012.08.026
– ident: ref24/cit24
  doi: 10.1039/b719689j
– ident: ref41/cit41
  doi: 10.1039/c0py90001j
– ident: ref56/cit56
  doi: 10.1002/anie.201003495
– ident: ref63/cit63
  doi: 10.1006/jmre.1999.1944
– ident: ref115/cit115
  doi: 10.1002/chem.201601810
– ident: ref23/cit23
  doi: 10.1007/s00253-006-0574-4
– ident: ref36/cit36
  doi: 10.1021/mz200020c
– ident: ref80/cit80
  doi: 10.1016/0006-291X(75)90473-8
– ident: ref22/cit22
  doi: 10.1016/j.freeradbiomed.2017.04.021
– volume: 252
  start-page: 3578
  year: 1977
  ident: ref10/cit10
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)40291-2
  contributor:
    fullname: Abuchowski A.
– ident: ref118/cit118
  doi: 10.1016/0003-2697(67)90297-7
– ident: ref103/cit103
  doi: 10.1021/ja01629a002
– ident: ref5/cit5
  doi: 10.1038/nature07958
– ident: ref60/cit60
  doi: 10.3390/magnetochemistry4040047
– ident: ref94/cit94
  doi: 10.1021/la800548p
– ident: ref12/cit12
  doi: 10.1002/anie.200901583
– ident: ref95/cit95
  doi: 10.1016/j.ab.2012.09.019
– ident: ref30/cit30
  doi: 10.1063/1.1701790
– ident: ref64/cit64
  doi: 10.1021/ja01162a099
– ident: ref6/cit6
  doi: 10.1038/47412
– ident: ref43/cit43
  doi: 10.1021/acs.biomac.8b01020
– ident: ref93/cit93
  doi: 10.1021/j150536a020
– ident: ref38/cit38
  doi: 10.1002/adfm.201102471
– ident: ref100/cit100
  doi: 10.1166/jnn.2010.2832
– ident: ref71/cit71
– ident: ref120/cit120
  doi: 10.1371/journal.pcbi.1003106
– ident: ref89/cit89
  doi: 10.1063/1.555859
– ident: ref61/cit61
  doi: 10.1016/j.bbagen.2013.04.031
– ident: ref112/cit112
  doi: 10.1146/annurev.bb.14.060185.001023
– ident: ref37/cit37
  doi: 10.1021/ma300887r
– ident: ref18/cit18
  doi: 10.1021/bi00693a031
– ident: ref46/cit46
  doi: 10.1073/pnas.61.3.819
– ident: ref68/cit68
  doi: 10.1039/c2sm26511g
– ident: ref58/cit58
  doi: 10.1021/bm1014156
– ident: ref79/cit79
  doi: 10.1039/C6PY01335J
– ident: ref16/cit16
  doi: 10.1016/0014-5793(79)81345-9
– ident: ref75/cit75
  doi: 10.1063/1.1726208
– ident: ref55/cit55
  doi: 10.1373/clinchem.2006.073148
– ident: ref62/cit62
  doi: 10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7
– volume: 254
  start-page: 595
  year: 1979
  ident: ref15/cit15
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)37845-6
  contributor:
    fullname: Day J. F.
– ident: ref20/cit20
  doi: 10.1016/S0076-6879(10)74011-8
– ident: ref84/cit84
  doi: 10.1016/0010-4655(82)90173-4
– ident: ref108/cit108
  doi: 10.1007/978-1-4419-6324-6_26
– ident: ref25/cit25
  doi: 10.1080/02652040601035143
– ident: ref110/cit110
  doi: 10.1021/j150530a023
– volume: 262
  start-page: 10971
  year: 1987
  ident: ref122/cit122
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)60913-5
  contributor:
    fullname: Cistola D. P.
– ident: ref13/cit13
  doi: 10.1016/j.biomaterials.2010.02.001
– ident: ref65/cit65
  doi: 10.1021/ja01650a078
– ident: ref69/cit69
  doi: 10.1021/bm301531c
– ident: ref34/cit34
  doi: 10.1039/b9py00363k
– volume: 138
  start-page: 97
  year: 1941
  ident: ref44/cit44
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)51414-9
  contributor:
    fullname: Kendall F. E.
– ident: ref7/cit7
  doi: 10.1038/378472a0
– volume: 19
  start-page: 841
  year: 1978
  ident: ref51/cit51
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)40697-2
  contributor:
    fullname: Rehfeld S. J.
– ident: ref85/cit85
  doi: 10.1016/j.jconrel.2016.06.017
– ident: ref39/cit39
  doi: 10.1016/j.jconrel.2017.04.035
– ident: ref87/cit87
– ident: ref8/cit8
  doi: 10.1039/c0cc04062b
– ident: ref27/cit27
  doi: 10.1039/c3cc44039g
– volume: 8
  start-page: 1
  volume-title: Spin Labeling: Theory and Applications
  year: 1989
  ident: ref77/cit77
  doi: 10.1007/978-1-4613-0743-3_1
  contributor:
    fullname: Schneider D. J.
– ident: ref2/cit2
  doi: 10.1007/978-3-8274-2989-6
– volume-title: All about Albumin: Biochemistry, Genetics and Medical Applications
  year: 1995
  ident: ref3/cit3
  contributor:
    fullname: Peters T.
– ident: ref109/cit109
  doi: 10.1007/978-3-642-29944-5_1
– ident: ref28/cit28
  doi: 10.1073/pnas.54.4.1010
– ident: ref17/cit17
  doi: 10.1126/science.160.3829.780
– volume: 95
  start-page: 6
  volume-title: CRC Handbook of Chemistry and Physics
  year: 2014
  ident: ref88/cit88
  contributor:
    fullname: Lemmon E. W.
– ident: ref4/cit4
  doi: 10.1007/s12013-017-0785-6
– ident: ref35/cit35
  doi: 10.1021/mz200176g
– ident: ref92/cit92
  doi: 10.1016/j.molimm.2012.05.011
– ident: ref102/cit102
  doi: 10.1021/jp063981w
– ident: ref11/cit11
  doi: 10.1002/pola.22706
– ident: ref78/cit78
  doi: 10.1016/j.saa.2009.05.003
– ident: ref111/cit111
  doi: 10.1016/S0006-3495(82)84455-X
– ident: ref106/cit106
  doi: 10.1002/bip.21421
– ident: ref1/cit1
  doi: 10.1002/pro.2494
– ident: ref14/cit14
  doi: 10.1126/science.aao0335
– ident: ref83/cit83
  doi: 10.1021/jp408338q
– ident: ref116/cit116
  doi: 10.1016/0022-2836(74)90183-1
– ident: ref117/cit117
  doi: 10.1016/0003-2697(80)90160-8
– ident: ref45/cit45
  doi: 10.1021/ja01548a024
– ident: ref81/cit81
– volume-title: Dynamic Light Scattering – with Applications to Chemistry, Biology, and Physics
  year: 2000
  ident: ref86/cit86
  contributor:
    fullname: Berne B. J.
– ident: ref104/cit104
  doi: 10.1021/ar50144a004
– ident: ref72/cit72
  doi: 10.1038/nprot.2006.288
– ident: ref96/cit96
  doi: 10.1021/la2024605
– ident: ref21/cit21
  doi: 10.1016/j.bbagen.2013.04.036
– ident: ref49/cit49
  doi: 10.1016/0022-2364(74)90193-0
– ident: ref47/cit47
  doi: 10.1021/ar50013a003
– ident: ref107/cit107
  doi: 10.1016/j.cplett.2006.12.068
– ident: ref32/cit32
  doi: 10.1021/ja054482w
– ident: ref114/cit114
  doi: 10.1111/j.1749-6632.1949.tb27297.x
– volume: 250
  start-page: 2487
  year: 1975
  ident: ref50/cit50
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)41627-X
  contributor:
    fullname: Morrisett J. D.
– ident: ref33/cit33
  doi: 10.1039/b609935a
– ident: ref52/cit52
  doi: 10.1021/bi00260a023
– ident: ref119/cit119
  doi: 10.1021/bi00840a015
– ident: ref19/cit19
  doi: 10.1038/sj.bjp.0707251
– ident: ref66/cit66
  doi: 10.1006/jmbi.2000.4158
– ident: ref54/cit54
  doi: 10.1016/0304-4165(90)90039-Y
– ident: ref40/cit40
  doi: 10.1039/c4py00168k
– ident: ref82/cit82
  doi: 10.1007/BF03166213
– ident: ref74/cit74
  doi: 10.1016/j.jmr.2005.08.013
– ident: ref9/cit9
  doi: 10.1016/j.addr.2012.09.025
– ident: ref73/cit73
  doi: 10.1146/annurev-physchem-032511-143716
– ident: ref105/cit105
  doi: 10.1021/jp0670844
– volume: 20
  start-page: 209
  year: 2012
  ident: ref101/cit101
  publication-title: Ann. T. Nord. Rheol. Soc.
  contributor:
    fullname: Larsson M.
– ident: ref48/cit48
  doi: 10.1016/0009-3084(69)90016-4
– ident: ref31/cit31
  doi: 10.1021/ma3001719
– ident: ref53/cit53
  doi: 10.1016/0167-4838(90)90046-I
– ident: ref97/cit97
  doi: 10.1016/j.bioelechem.2011.09.004
– volume: 2
  start-page: 169
  year: 2007
  ident: ref98/cit98
  publication-title: Jordan J. Chem.
  contributor:
    fullname: Atmeh R. F.
– volume: 10
  start-page: 56
  year: 1969
  ident: ref121/cit121
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)42649-5
  contributor:
    fullname: Spector A. A.
– ident: ref29/cit29
  doi: 10.1073/pnas.55.1.8
– ident: ref67/cit67
  doi: 10.1371/journal.pone.0045681
– ident: ref113/cit113
  doi: 10.1002/0471220639
– ident: ref59/cit59
  doi: 10.1021/jp5068928
SSID ssj0009345
Score 2.3879244
Snippet We present an electron paramagnetic resonance (EPR) spectroscopic characterization of structural and dynamic effects that stem from post-translational...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1118
SubjectTerms Binding Sites
Cyclic N-Oxides - chemistry
Drug Delivery Systems - methods
Dynamic Light Scattering - methods
Electron Spin Resonance Spectroscopy - methods
Ethylene Glycol - chemistry
Ligands
Methacrylates - chemistry
Polyethylene Glycols - chemistry
Polymers - chemistry
Serum Albumin, Bovine - chemistry
Title Ligand-Binding Cooperativity Effects in Polymer–Protein Conjugation
URI http://dx.doi.org/10.1021/acs.biomac.9b00016
https://www.ncbi.nlm.nih.gov/pubmed/30630315
https://search.proquest.com/docview/2179350500
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5WPejF92N9UUHwoF2bpGm3Ry2KiCuCCt5KXl3WRyvb3YOe_A_-Q3-Jk7ariA-8hjAkM0nnm07mG4DtFAGb0J52heD2bxVRbpuGGLgKLg1nUgTM1jt3zoOTa__0ht80YO-XDD4l-0IVLVuKjuKjCqKMwQQN8XZYIBRfflLssrIlsW3og5gxCusSmZ9lWGekiq_O6BeEWXqa4xnojOp1qgcmd63hQLbU83f6xn9tYhama8jpHFRnZA4aJpuHyXjU6W0Bjs56XZFp97BXlrg4cZ4_mn7dV8Kp-I0Lp5c5F_n904Ppv728Xlh6BxyJ8-x22C2tuwjXx0dX8Ylbt1dwBfPpwDUep6GUGI4qy_gTpKmiXHEZGIz6jKeNIcy0Paml5GgxNHbq2zkh40pLkrIlGM_yzKyAQ9tpSFSE0CvyfY4YJ9UpxnWRVl6ACEM3YQc1kNTXo0jKzDcliR2s1JLUamnC7sgiyWPFt_Hn7K2R0RLUmc11iMzkwyKh9sOD6M7zmrBcWfNDHrM8Y4zw1X-vag2mcBuRfa1NyDqMD_pDs4FgZCA3yzP4Dr4L2vI
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5oPdSL70d9YmLiwaAsy0I5KqmpWk0Ta-KNsA9MfYAp7UFP_gf_ob_EWaBtNGr0OtkMuzML8w278w3AboyALZKWNKOI6b9VRJh128PENWJcMcojl-p654tLt3ntnN2wm7KOW9fC4CQy1JTlh_hjdgFyqGW6Ih2f4hdIZRKmmIcRU-Oh4GrMtEvzzsS6rw9CR98rK2W-16Fjksg-x6QfgGYecE5moTOaan7P5P5g0OcH4uULi-M_1zIHMyUANY6KHTMPEypZgGow7Pu2CI1W9zZKpHnczQtejCBNn1Sv7DJhFGzHmdFNjHb68Pyoeu-vb21N9oCSIE3uBre5r5fg-qTRCZpm2WzBjKhj901lMdvjHJNTofl_3DgWNhOMuwpzQGVJpQhVdYtLzhn6D10fO3qMR5mQnMR0GSpJmqhVMOx67BHhIxDzHYch4olljFmeL4XlIt6QNdhDC4Tly5KF-Tm4TUItLMwSlmapwf7QMeFTwb7x6-idoe9CtJk--YgSlQ6y0NafIcR6llWDlcKpI31Us45Rwtb-PKttqDY7F62wdXp5vg7TuCRf3-MmZAMq_d5AbSJM6fOtfFt-AJUn41c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xkIDL8oYuCwQJiQMKxHGcNEc2UPFWJRaptyh-ofJIqqY97J74D_zD_SU7dlIQaEGI68hy7Bk7_sbj-QZgWyNgy6Qn3Sxj5raKCLfpR-i4ZowrRnkWUpPvfHEZHl8Hpx3Wqa8uTC4MDqLEnkobxDe7uid1zTBA9o3cZKXjl-IKrYzDJIuIjc8eJFcvbLvUVic2tX0QPsZRnS3z_z7MuSTK1-fSO2DTHjqtWeg8D9e-NbnbGw74nvjzhsnxC_OZg281EHUOqpUzD2MqX4DpZFT_bRGOzrs3WS7dn12b-OIkRdFT_brahFOxHpdON3faxf3vB9X_-_jUNqQPKEmK_HZ4Y22-BNeto1_JsVsXXXAzGvgDV3nMjzhHJ1UYHqBQa-EzwXio0BdUnlSKUNX0uOScoR1xCejAtIkoE5ITTZdhIi9ytQqO39QRETECsjgIGCIfLTV6e7EUXoi4QzZgBzWQ1pumTG083CepEVZqSWu1NGB3ZJy0V7FwfNh6a2S_FHVmIiBZrophmfrmd4SYz_MasFIZ9rk_atjHKGHfPz2qTZhqH7bS85PLszWYwRnF5jk3IT9gYtAfqnVEKwO-YVfmP-do5dE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ligand-Binding+Cooperativity+Effects+in+Polymer%E2%80%93Protein+Conjugation&rft.jtitle=Biomacromolecules&rft.au=Reichenwallner%2C+J%C3%B6rg&rft.au=Thomas%2C+Anja&rft.au=Steinbach%2C+Tobias&rft.au=Eisermann%2C+Jana&rft.date=2019-02-11&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=20&rft.issue=2&rft.spage=1118&rft.epage=1131&rft_id=info:doi/10.1021%2Facs.biomac.9b00016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_biomac_9b00016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon