High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm

Semiconductor metal oxide (SMO) gas sensors are attracting great attention as next-generation environmental monitoring sensors. However, there are limitations to the actual application of SMO gas sensors due to their low selectivity. Although the electronic nose (E-nose) systems based on a sensor ar...

Full description

Saved in:
Bibliographic Details
Published inACS sensors Vol. 7; no. 2; pp. 430 - 440
Main Authors Kang, Mingu, Cho, Incheol, Park, Jaeho, Jeong, Jaeseok, Lee, Kichul, Lee, Byeongju, Del Orbe Henriquez, Dionisio, Yoon, Kukjin, Park, Inkyu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Semiconductor metal oxide (SMO) gas sensors are attracting great attention as next-generation environmental monitoring sensors. However, there are limitations to the actual application of SMO gas sensors due to their low selectivity. Although the electronic nose (E-nose) systems based on a sensor array are regarded as a solution for the selectivity issue, poor accuracy caused by the nonuniformity of the fabricated gas sensors and difficulty of real-time gas detection have yet to be resolved. In this study, these problems have been solved by fabricating uniform gas sensor arrays and applying the deep learning algorithm to the data from the sensor arrays. Nanocolumnar films of metal oxides (SnO2, In2O3, WO3, and CuO) with a high batch uniformity deposited through glancing angle deposition were used as the sensing materials. The convolutional neural network (CNN) using the input data as a matrix form was adopted as a learning algorithm, which could conduct pattern recognition of the sensor responses. Finally, real-time selective gas detection for CO, NH3, NO2, CH4, and acetone (C3H6O) gas was achieved (minimum response time of 1, 8, 5, 19, and 2 s, respectively) with an accuracy of 98% by applying preprocessed response data to the CNN.
AbstractList Semiconductor metal oxide (SMO) gas sensors are attracting great attention as next-generation environmental monitoring sensors. However, there are limitations to the actual application of SMO gas sensors due to their low selectivity. Although the electronic nose (E-nose) systems based on a sensor array are regarded as a solution for the selectivity issue, poor accuracy caused by the nonuniformity of the fabricated gas sensors and difficulty of real-time gas detection have yet to be resolved. In this study, these problems have been solved by fabricating uniform gas sensor arrays and applying the deep learning algorithm to the data from the sensor arrays. Nanocolumnar films of metal oxides (SnO2, In2O3, WO3, and CuO) with a high batch uniformity deposited through glancing angle deposition were used as the sensing materials. The convolutional neural network (CNN) using the input data as a matrix form was adopted as a learning algorithm, which could conduct pattern recognition of the sensor responses. Finally, real-time selective gas detection for CO, NH3, NO2, CH4, and acetone (C3H6O) gas was achieved (minimum response time of 1, 8, 5, 19, and 2 s, respectively) with an accuracy of 98% by applying preprocessed response data to the CNN.
Semiconductor metal oxide (SMO) gas sensors are attracting great attention as next-generation environmental monitoring sensors. However, there are limitations to the actual application of SMO gas sensors due to their low selectivity. Although the electronic nose (E-nose) systems based on a sensor array are regarded as a solution for the selectivity issue, poor accuracy caused by the nonuniformity of the fabricated gas sensors and difficulty of real-time gas detection have yet to be resolved. In this study, these problems have been solved by fabricating uniform gas sensor arrays and applying the deep learning algorithm to the data from the sensor arrays. Nanocolumnar films of metal oxides (SnO , In O , WO , and CuO) with a high batch uniformity deposited through glancing angle deposition were used as the sensing materials. The convolutional neural network (CNN) using the input data as a matrix form was adopted as a learning algorithm, which could conduct pattern recognition of the sensor responses. Finally, real-time selective gas detection for CO, NH , NO , CH , and acetone (C H O) gas was achieved (minimum response time of 1, 8, 5, 19, and 2 s, respectively) with an accuracy of 98% by applying preprocessed response data to the CNN.
Author Lee, Kichul
Yoon, Kukjin
Park, Jaeho
Lee, Byeongju
Park, Inkyu
Kang, Mingu
Cho, Incheol
Jeong, Jaeseok
Del Orbe Henriquez, Dionisio
AuthorAffiliation Department of Mechanical Engineering
AuthorAffiliation_xml – name: Department of Mechanical Engineering
Author_xml – sequence: 1
  givenname: Mingu
  surname: Kang
  fullname: Kang, Mingu
– sequence: 2
  givenname: Incheol
  surname: Cho
  fullname: Cho, Incheol
– sequence: 3
  givenname: Jaeho
  orcidid: 0000-0002-0213-8076
  surname: Park
  fullname: Park, Jaeho
– sequence: 4
  givenname: Jaeseok
  surname: Jeong
  fullname: Jeong, Jaeseok
– sequence: 5
  givenname: Kichul
  surname: Lee
  fullname: Lee, Kichul
– sequence: 6
  givenname: Byeongju
  surname: Lee
  fullname: Lee, Byeongju
– sequence: 7
  givenname: Dionisio
  orcidid: 0000-0002-1528-673X
  surname: Del Orbe Henriquez
  fullname: Del Orbe Henriquez, Dionisio
– sequence: 8
  givenname: Kukjin
  surname: Yoon
  fullname: Yoon, Kukjin
  email: kjyoon@kaist.ac.kr
– sequence: 9
  givenname: Inkyu
  orcidid: 0000-0001-5761-7739
  surname: Park
  fullname: Park, Inkyu
  email: inkyu@kaist.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35041384$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtuwjAQRa2KqlDKD3RRedlNqB95LtMXIFFVamEdTRwHjBI7tZMFf99Q6GPV1czi3KuZc4kG2miJ0DUlU0oYvQPhnNTOWDelglBG_DM0YjxKPB4m_uDPPkQT53aEEBqELIjJBRrygPiUx_4INXO12eJUiM6C2OM3CZW3UrXEL13VKm8GDi8KqVtVKgGtMhrnewz4Hlqx9dZalcbW-EC9fx2DU2uhB3SBH6Vs8FKC1UpvcFptjFXttr5C5yVUTk5Oc4zWz0-rh7m3fJ0tHtKlB9xnrZcnsSBFHAJjIglJQCEpgIEAImnAy6KIBNAIiA9lEkckLJnooVByQSDvQT5Gt8fexpqPTro2q5UTsqpAS9O5jIWMsjDmzO9RdkSFNc5ZWWaNVTXYfUZJdpCd_crOTrL70M2pv8trWfxEvtX2wPQI9OFsZzqr-3f_a_wEBOaPEg
CitedBy_id crossref_primary_10_1021_acssensors_3c00541
crossref_primary_10_1021_acssensors_3c02443
crossref_primary_10_3390_chemosensors12060101
crossref_primary_10_1002_advs_202302614
crossref_primary_10_1021_acssensors_4c00471
crossref_primary_10_1089_jmf_2024_k_0004
crossref_primary_10_1039_D3NA00423F
crossref_primary_10_3390_chemosensors10100426
crossref_primary_10_1016_j_cclet_2023_108286
crossref_primary_10_1109_JSEN_2023_3302868
crossref_primary_10_1016_j_snb_2023_133704
crossref_primary_10_1002_smll_202207165
crossref_primary_10_1016_j_snb_2022_132375
crossref_primary_10_1002_adfm_202204102
crossref_primary_10_1021_acssensors_3c01244
crossref_primary_10_3390_chemosensors12030042
crossref_primary_10_3390_electronics11111755
crossref_primary_10_1021_acssensors_3c02654
crossref_primary_10_1016_j_snb_2024_135550
crossref_primary_10_3390_bios12090692
crossref_primary_10_1002_adma_202402287
crossref_primary_10_1002_smll_202400035
crossref_primary_10_1016_j_apsusc_2023_158581
crossref_primary_10_1016_j_cjac_2022_100188
crossref_primary_10_1016_j_sna_2022_114070
crossref_primary_10_3390_chemosensors11070364
crossref_primary_10_1021_acssensors_3c02613
crossref_primary_10_1021_acssensors_3c01839
crossref_primary_10_1016_j_measurement_2024_114383
crossref_primary_10_1039_D4MA00134F
crossref_primary_10_1016_j_jhazmat_2024_133649
crossref_primary_10_1002_ejic_202300009
crossref_primary_10_1021_acssensors_2c02450
crossref_primary_10_2139_ssrn_4120061
crossref_primary_10_1021_acssensors_3c01698
crossref_primary_10_1016_j_measurement_2024_114123
crossref_primary_10_1109_JSEN_2024_3388208
crossref_primary_10_3390_electronics11233884
crossref_primary_10_1016_j_matchemphys_2023_128628
crossref_primary_10_3390_chemosensors10120496
crossref_primary_10_1039_D3TA04953A
crossref_primary_10_1016_j_engappai_2023_106309
crossref_primary_10_1021_acssensors_3c02625
crossref_primary_10_46670_JSST_2023_32_2_75
crossref_primary_10_3390_chemosensors10060227
crossref_primary_10_1039_D3TA05670H
crossref_primary_10_1021_acssensors_2c02615
crossref_primary_10_1109_JSEN_2024_3374358
crossref_primary_10_1016_j_heliyon_2024_e29021
crossref_primary_10_1002_smtd_202201352
crossref_primary_10_1016_j_snb_2023_133767
crossref_primary_10_1088_1361_6439_ace05e
crossref_primary_10_1016_j_measurement_2024_114875
crossref_primary_10_1039_D3RA08852A
crossref_primary_10_1007_s11071_023_08674_6
crossref_primary_10_3390_en16186499
crossref_primary_10_3788_LOP231913
crossref_primary_10_1109_JSEN_2024_3386898
crossref_primary_10_1002_anse_202200050
crossref_primary_10_1016_j_ccr_2024_216049
crossref_primary_10_3390_chemosensors12040060
crossref_primary_10_1021_acsanm_3c01638
crossref_primary_10_1016_j_jhazmat_2023_132153
crossref_primary_10_1016_j_snb_2024_136060
crossref_primary_10_1016_j_snb_2024_136222
crossref_primary_10_1002_smll_202304555
crossref_primary_10_1021_acsnano_2c09314
Cites_doi 10.1002/smll.200500261
10.3390/s18010157
10.1016/j.snb.2017.11.035
10.1016/j.apsusc.2017.03.268
10.3390/s100302088
10.1016/j.apsusc.2019.143718
10.1016/j.mseb.2007.01.044
10.1021/acsami.5b12062
10.1016/j.snb.2011.09.032
10.1002/smtd.201700237
10.1002/adfm.202002486
10.1016/j.mseb.2017.12.036
10.1021/acsami.6b03256
10.1038/35021028
10.1021/acsnano.6b03127
10.1016/j.snb.2015.10.021
10.1021/acsanm.0c02794
10.1016/j.snb.2019.03.074
10.1016/j.snb.2013.01.066
10.1002/inf2.12017
10.1021/acsami.6b01116
10.1023/A:1027402430153
10.1533/9780857098665.2.220
10.1016/j.aca.2020.05.015
10.1002/adma.201404192
10.1038/299352a0
10.1016/j.snb.2015.09.104
10.1039/C6RA20710C
10.1016/j.snb.2018.03.099
10.1021/am402456s
10.3390/s18051446
10.1016/j.snb.2019.02.096
10.1016/j.snb.2020.128484
10.1016/j.snb.2017.04.194
10.3390/chemosensors3010001
10.1002/inf2.12029
10.1109/5.726791
10.1016/j.vacuum.2004.12.019
10.1021/acssensors.9b02487
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1021/acssensors.1c01204
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2379-3694
EndPage 440
ExternalDocumentID 10_1021_acssensors_1c01204
35041384
c111198234
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 53G
ABFRP
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
W1F
ABJNI
ABQRX
ADHLV
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a342t-b98c0d86a22c96051a9da2aca0e153fdd7ca17a04af98706f2c0516e3c0aba2a3
IEDL.DBID ACS
ISSN 2379-3694
IngestDate Fri Aug 16 21:43:11 EDT 2024
Fri Aug 23 02:05:59 EDT 2024
Tue Aug 27 13:48:21 EDT 2024
Mon Feb 28 03:27:14 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords gas sensor array
real-time gas identification
deep learning
electronic nose
glancing angle deposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-b98c0d86a22c96051a9da2aca0e153fdd7ca17a04af98706f2c0516e3c0aba2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0213-8076
0000-0002-1528-673X
0000-0001-5761-7739
PMID 35041384
PQID 2621268324
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2621268324
crossref_primary_10_1021_acssensors_1c01204
pubmed_primary_35041384
acs_journals_10_1021_acssensors_1c01204
PublicationCentury 2000
PublicationDate 20220225
2022-02-25
PublicationDateYYYYMMDD 2022-02-25
PublicationDate_xml – month: 02
  year: 2022
  text: 20220225
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS sensors
PublicationTitleAlternate ACS Sens
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
Briand D. (ref38/cit38) 2013
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
Bochenkov V. E. (ref15/cit15) 2010; 3
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1002/smll.200500261
– ident: ref43/cit43
  doi: 10.3390/s18010157
– ident: ref20/cit20
  doi: 10.1016/j.snb.2017.11.035
– ident: ref31/cit31
  doi: 10.1016/j.apsusc.2017.03.268
– ident: ref16/cit16
  doi: 10.3390/s100302088
– ident: ref28/cit28
  doi: 10.1016/j.apsusc.2019.143718
– ident: ref6/cit6
  doi: 10.1016/j.mseb.2007.01.044
– ident: ref19/cit19
  doi: 10.1021/acsami.5b12062
– ident: ref1/cit1
  doi: 10.1016/j.snb.2011.09.032
– ident: ref3/cit3
  doi: 10.1002/smtd.201700237
– ident: ref23/cit23
  doi: 10.1002/adfm.202002486
– ident: ref14/cit14
  doi: 10.1016/j.mseb.2017.12.036
– ident: ref24/cit24
  doi: 10.1021/acsami.6b03256
– ident: ref5/cit5
  doi: 10.1038/35021028
– ident: ref11/cit11
  doi: 10.1021/acsnano.6b03127
– ident: ref18/cit18
  doi: 10.1016/j.snb.2015.10.021
– ident: ref2/cit2
  doi: 10.1021/acsanm.0c02794
– ident: ref34/cit34
  doi: 10.1016/j.snb.2019.03.074
– ident: ref30/cit30
  doi: 10.1016/j.snb.2013.01.066
– ident: ref4/cit4
  doi: 10.1002/inf2.12017
– ident: ref17/cit17
  doi: 10.1021/acsami.6b01116
– ident: ref37/cit37
  doi: 10.1023/A:1027402430153
– start-page: 220
  volume-title: Semiconductor Gas Sensors
  year: 2013
  ident: ref38/cit38
  doi: 10.1533/9780857098665.2.220
  contributor:
    fullname: Briand D.
– volume: 3
  start-page: 31
  year: 2010
  ident: ref15/cit15
  publication-title: Met. Oxide Nanostruct. Their Appl.
  contributor:
    fullname: Bochenkov V. E.
– ident: ref26/cit26
  doi: 10.1016/j.aca.2020.05.015
– ident: ref40/cit40
– ident: ref7/cit7
  doi: 10.1002/adma.201404192
– ident: ref22/cit22
  doi: 10.1038/299352a0
– ident: ref36/cit36
  doi: 10.1016/j.snb.2015.09.104
– ident: ref39/cit39
– ident: ref12/cit12
  doi: 10.1039/C6RA20710C
– ident: ref32/cit32
  doi: 10.1016/j.snb.2018.03.099
– ident: ref35/cit35
  doi: 10.1021/am402456s
– ident: ref42/cit42
  doi: 10.3390/s18051446
– ident: ref25/cit25
  doi: 10.1016/j.snb.2019.02.096
– ident: ref27/cit27
  doi: 10.1016/j.snb.2020.128484
– ident: ref8/cit8
  doi: 10.1016/j.snb.2017.04.194
– ident: ref10/cit10
  doi: 10.3390/chemosensors3010001
– ident: ref21/cit21
  doi: 10.1002/inf2.12029
– ident: ref33/cit33
  doi: 10.1109/5.726791
– ident: ref41/cit41
– ident: ref29/cit29
  doi: 10.1016/j.vacuum.2004.12.019
– ident: ref9/cit9
  doi: 10.1021/acssensors.9b02487
SSID ssj0001562580
Score 2.5210633
Snippet Semiconductor metal oxide (SMO) gas sensors are attracting great attention as next-generation environmental monitoring sensors. However, there are limitations...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 430
SubjectTerms Deep Learning
Electronic Nose
Environmental Monitoring
Oxides
Semiconductors
Title High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm
URI http://dx.doi.org/10.1021/acssensors.1c01204
https://www.ncbi.nlm.nih.gov/pubmed/35041384
https://search.proquest.com/docview/2621268324
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3HTsQwELUoFzjQe5GRkDiAwWs72fi4dCHBgSJxiya2AwjIrpLsAb6ecZKliCLuIztxmffsmTcmZBP9bpBEVjBrrWHKRo5pBT7tL-Ta8sgkVVGf84vw9Ead3Qa3Q2Tnlwi-aO2BKQo80XVznyTkpZ5qmIwKBEZ_1OocXH3cqHguXz2VJmRbMxlq1ahkfm7G45EpvuLRLySzApvjSXI-kOzUOSaPu_0y2TWv3ys4_us_pshEwzppp14m02TIZTNk_FMtwlnS8xkftGNMPwfzQi-RQDKvD6GVRJedQEFrUW_a3PLR5IUC3UdXfs-QuXryS73VVdU99pUDGmSWHjrXo00d1zvaebrr5g_l_fMcuTk-uj44Zc1zDAykEiVLdGS4jUIQwuC5J2iBtiDAAHfoNlNr2wZabeAKUu2jp6kwaBQ6aTgkaCjnyUjWzdwioRF3WvJUtqVDRhQGEGlvh7gBWoNKl8gWDlfcbKciriLlohV_jGHcjOES2R5MX9yr63P8ab0xmOEYt5GPjUDmuv0iFiFieIjuDW0W6ql_b08GHKE-Usv__qoVMia8TMJL34NVMlLmfbeG5KVM1qs1-wZX6euS
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKPQAH-qBQKAVXqsSh8uK1nYePCy1sW-BQFolbNLEdQNDsKske6K_v2BtYWgGCazSyHXs889kz35iQz2h3ozy1gllrDVM2dUwr8Gl_MdeWpyYPRX0Oj-L-ifpxGp22PG7PhcFB1NhSHYL40-oC3W38VuPBblj5XCHP-FQz5GWUoLvzeGj3eHqx4iF9eDFNyEQzGWvVkmXub8a7JVP_65YewJrB5-y9IoPb0YZUk8vOuMk75s9_hRyf-TuvyWKLQWlvojRvyAtXviULdyoTLpGRz_-gPWPGFZhr-gvhJPNsERoIu2wfajqh-BbtnR_NrynQHTTs5wxxrIfC1Esdh-6xrwpQoLT0q3Mj2lZ1PaO9q7NhddGc_35HTva-DXb7rH2cgYFUomG5Tg23aQxCGDwFRV3QFgQY4A6NaGFtYqCbAFdQaB9LLYRBodhJwyFHQblMZsth6d4TmnKnJS9kIh3ioziCVHs59CKgNahilWzhdGXt5qqzEDcX3Ww6h1k7h6vky80qZqNJtY5HpT_dLHSGm8pHSqB0w3GdiRg9eozGDmVWJhpw256MODr-VK09eVSbZK4_ODzIDr4f_fxA5oUnUHhSfLROZptq7D4irGnyjaDGfwEWYfP9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOvB_laSQkDsjFsZ2Hj0vLUl4VolTaWzSxnbYqZFdJ9lB-PTNetwUECHGNRrZje2Y-e-YbM_YU7W7eVF4J770TxldBWAOU9ldI62XlmljU58NOsb1n3s7yWbq6IC4MDmLAloYYxCetXvg2VRjIXuD3AQ93857yhYj1ac6zC3mZGdLIyebu2eUKwfr4aprSpRW6sCYRZn7fDLkmN_zsmv6AN6PfmV5ls9MRx3STo43l2Gy4b78Uc_yPX7rGriQsyierzXOdnQvdDXb5hwqFN9mC8kD4xLllD-6Yf0JYKYg1wiNxV7yGga-ovm26--PNMQf-Eg38gUA8S5CYk9Ru7B776gEFOs-3QljwVN11n0--7M_7w_Hg6y22N331eXNbpEcaBGijRtHYyklfFaCUw9NQnoH1oMCBDGhMW-9LB1kJ0kBrKabaKodCRdBOQoOC-jZb6-ZduMt4JYPVstWlDoiTihwqS3LoTcBaMO06e4bTVSclG-oYP1dZfTaHdZrDdfb8ZCXrxapqx1-ln5wsdo3KRRET6MJ8OdSqQM9eoNFDmTurXXDans4lAoDK3PvnUT1mFz9uTev3b3be3WeXFPEoiBufP2BrY78MDxHdjM2juJO_A-UQ9nc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Accuracy+Real-Time+Multi-Gas+Identification+by+a+Batch-Uniform+Gas+Sensor+Array+and+Deep+Learning+Algorithm&rft.jtitle=ACS+sensors&rft.au=Kang%2C+Mingu&rft.au=Cho%2C+Incheol&rft.au=Park%2C+Jaeho&rft.au=Jeong%2C+Jaeseok&rft.date=2022-02-25&rft.issn=2379-3694&rft.eissn=2379-3694&rft.volume=7&rft.issue=2&rft.spage=430&rft.epage=440&rft_id=info:doi/10.1021%2Facssensors.1c01204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acssensors_1c01204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3694&client=summon