Modeling soil detachment capacity by rill flow under the effect of freeze–thaw and the root system
Freeze–thaw has a significant impact on soil detachment in areas subject to seasonal freeze–thaw. Plant root system has gradually played a key role in reducing soil detachment, with the implementation of a series of ecological restoration projects. However, few studies were conducted to evaluate soi...
Saved in:
Published in | Natural hazards (Dordrecht) Vol. 112; no. 1; pp. 207 - 230 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Freeze–thaw has a significant impact on soil detachment in areas subject to seasonal freeze–thaw. Plant root system has gradually played a key role in reducing soil detachment, with the implementation of a series of ecological restoration projects. However, few studies were conducted to evaluate soil detachment process under the combined effect of freeze–thaw and root system. This study investigated the potential effects of freeze–thaw and the root system on soil detachment capacity. Soil detachment capacity of two soil types, sandy loam and silt loam, was investigated, under four treatments, control (bare soil without freeze–thaw and root), freeze–thaw, root system and freeze–thaw + root system. A prediction model was developed to calculate soil detachment capacity under the effect of freeze–thaw and the root system. Hydraulic flume experiments were carried out at 4 flow rate (6–24L·min
−1
) and 1 slope (10°). The results illustrated that the detachment capacity of sandy loam was higher than that of silt loam. The soil detachment capacity of two soils was reduced and increased by the root system and freeze–thaw, respectively, although the former effect was significant (
P
< 0.05) whereas the latter was not. The effect of freeze–thaw in combination with the root system showed that the root system contributed the majority of soil detachment capacity variability; therefore, the root system played a leading role in the inhibition of soil detachment capacity. When comparing shear stress, unit energy of the water carrying section and unit stream power, stream power was found to be the hydraulic parameter that best predicted soil detachment capacity (
R
2
> 0.84). The inclusion of root weight density significantly improve the accuracy of the soil detachment capacity prediction model developed by hydraulic parameters. A general model based on stream power and root weight density was developed to quantify soil detachment capacity and was shown to have a high soil detachment capacity prediction accuracy for both soils treated by freeze–thaw and the root system [
NSE
= 0.88,
R
2
= 0.90]. |
---|---|
AbstractList | Freeze–thaw has a significant impact on soil detachment in areas subject to seasonal freeze–thaw. Plant root system has gradually played a key role in reducing soil detachment, with the implementation of a series of ecological restoration projects. However, few studies were conducted to evaluate soil detachment process under the combined effect of freeze–thaw and root system. This study investigated the potential effects of freeze–thaw and the root system on soil detachment capacity. Soil detachment capacity of two soil types, sandy loam and silt loam, was investigated, under four treatments, control (bare soil without freeze–thaw and root), freeze–thaw, root system and freeze–thaw + root system. A prediction model was developed to calculate soil detachment capacity under the effect of freeze–thaw and the root system. Hydraulic flume experiments were carried out at 4 flow rate (6–24L·min−1) and 1 slope (10°). The results illustrated that the detachment capacity of sandy loam was higher than that of silt loam. The soil detachment capacity of two soils was reduced and increased by the root system and freeze–thaw, respectively, although the former effect was significant (P < 0.05) whereas the latter was not. The effect of freeze–thaw in combination with the root system showed that the root system contributed the majority of soil detachment capacity variability; therefore, the root system played a leading role in the inhibition of soil detachment capacity. When comparing shear stress, unit energy of the water carrying section and unit stream power, stream power was found to be the hydraulic parameter that best predicted soil detachment capacity (R2 > 0.84). The inclusion of root weight density significantly improve the accuracy of the soil detachment capacity prediction model developed by hydraulic parameters. A general model based on stream power and root weight density was developed to quantify soil detachment capacity and was shown to have a high soil detachment capacity prediction accuracy for both soils treated by freeze–thaw and the root system [NSE = 0.88, R2 = 0.90]. Freeze–thaw has a significant impact on soil detachment in areas subject to seasonal freeze–thaw. Plant root system has gradually played a key role in reducing soil detachment, with the implementation of a series of ecological restoration projects. However, few studies were conducted to evaluate soil detachment process under the combined effect of freeze–thaw and root system. This study investigated the potential effects of freeze–thaw and the root system on soil detachment capacity. Soil detachment capacity of two soil types, sandy loam and silt loam, was investigated, under four treatments, control (bare soil without freeze–thaw and root), freeze–thaw, root system and freeze–thaw + root system. A prediction model was developed to calculate soil detachment capacity under the effect of freeze–thaw and the root system. Hydraulic flume experiments were carried out at 4 flow rate (6–24L·min −1 ) and 1 slope (10°). The results illustrated that the detachment capacity of sandy loam was higher than that of silt loam. The soil detachment capacity of two soils was reduced and increased by the root system and freeze–thaw, respectively, although the former effect was significant ( P < 0.05) whereas the latter was not. The effect of freeze–thaw in combination with the root system showed that the root system contributed the majority of soil detachment capacity variability; therefore, the root system played a leading role in the inhibition of soil detachment capacity. When comparing shear stress, unit energy of the water carrying section and unit stream power, stream power was found to be the hydraulic parameter that best predicted soil detachment capacity ( R 2 > 0.84). The inclusion of root weight density significantly improve the accuracy of the soil detachment capacity prediction model developed by hydraulic parameters. A general model based on stream power and root weight density was developed to quantify soil detachment capacity and was shown to have a high soil detachment capacity prediction accuracy for both soils treated by freeze–thaw and the root system [ NSE = 0.88, R 2 = 0.90]. |
Author | Sun, Baoyang Li, Zhanbin Zhang, Letao Ma, Jianye Ma, Bo |
Author_xml | – sequence: 1 givenname: Jianye surname: Ma fullname: Ma, Jianye organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University – sequence: 2 givenname: Zhanbin surname: Li fullname: Li, Zhanbin email: zhanbinli@126.com organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University – sequence: 3 givenname: Baoyang surname: Sun fullname: Sun, Baoyang organization: Changjiang River Scientific Research Institute of Changjiang Water Resources Commission – sequence: 4 givenname: Bo surname: Ma fullname: Ma, Bo organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University – sequence: 5 givenname: Letao surname: Zhang fullname: Zhang, Letao organization: College of Environment and Planning, Henan University |
BookMark | eNp9kMtKxDAUhoMoOF5ewFXAdfUkaZN0KeINFDcK7kLansx06CRjkkHGle_gG_okVkcQXLg6i_N_5_LtkW0fPBJyxOCEAajTxBjIugDOCqiY0oXaIhNWKVGALmGbTKD-agl42iV7Kc0BGJO8npDuLnQ49H5KU-gH2mG27WyBPtPWLm3b5zVt1jT2w0DdEF7oyncYaZ4hReewzTQ46iLiK368veeZfaHWd9_9GEKmaZ0yLg7IjrNDwsOfuk8eLy8ezq-L2_urm_Oz28KKkudCMyZKW9a1QK4EslZDA051leCom0pWsuGu5bKphGiktBylViA5dEpj04LYJ8ebucsYnleYspmHVfTjSsOlLDnTXFZjSm9SbQwpRXRmfNPmPvgcbT8YBubLqdk4NaNT8-3UqBHlf9Bl7Bc2rv-HxAZKY9hPMf5e9Q_1CciLjCM |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_160196 crossref_primary_10_3390_f15111926 crossref_primary_10_1002_esp_70009 crossref_primary_10_1007_s11629_022_7775_x crossref_primary_10_1016_j_catena_2024_108406 crossref_primary_10_1002_hyp_15096 crossref_primary_10_1016_j_rhisph_2024_100921 crossref_primary_10_3390_w15101875 crossref_primary_10_1016_j_catena_2023_107180 crossref_primary_10_3390_agronomy12102557 crossref_primary_10_1016_j_catena_2024_107951 |
Cites_doi | 10.13870/j.cnki.stbcxb.2015.06.013 10.1016/j.catena.2017.11.025 10.2136/sssaj2000.6414 10.1111/j.1365-2389.1991.tb00401.x 10.3969/j.issn.1000-0984.2006.11.018 10.13961/j.cnki.stbctb.2019.05.008 10.1029/91WR02380 10.1016/j.earscirev.2015.08.011 10.1016/j.still.2008.03.001 10.1016/j.ecoleng.2017.08.001 10.1111/j.1365-2389.2005.00749.x 10.2136/sssaj2017.07.0249 10.1111/j.1365-2389.2004.00670.x 10.1002/esp.3290110608 10.1016/j.catena.2008.10.005 10.13031/2013.31253 10.11975/j.issn.1002-6819.2016.24.017 10.1016/j.catena.2018.04.007 10.2136/sssaj2016.08.0271 10.1016/S0169-555X(99)00105-1 10.1016/j.catena.2020.104615 10.3390/w13030342 10.1016/S0341-8162(02)00177-7 10.1016/j.catena.2006.03.011 10.13870/j.cnki.stbcxb.2019.03.011 10.13287/j.1001-9332.201901.019 10.1016/j.catena.2014.08.019 10.16843/j.sswc.2020.04.006 10.3321/j.issn:1000-7601.2007.04.038 10.4141/S00-006 10.3969/j.issn.1002-6819.2013.17.014 10.3969/j.issn.1000-7601.2013.01.022 10.1097/SS.0000000000000089 10.1657/AAAR0014-088 10.1111/j.1526-100X.2010.00756.x 10.1016/j.coldregions.2017.10.004 10.2136/sssaj2009.0360 10.2136/sssaj1991.03615995005500050033x 10.1002/esp.1470 10.1002/hyp.11210 10.1002/esp.3248 10.1002/(SICI)1096-9837(199908)24:83.0.CO;2-1 10.11118/actaun201563041211 10.13031/2013.24527 10.1016/S0167-1987(01)00254-9 10.2136/vzj2012.0051 10.1007/s11104-009-9906-3 10.1016/j.catena.2013.12.010 10.1016/j.geomorph.2005.10.002 10.1300/J064v14n02_08 10.1016/j.geomorph.2017.02.003 10.14042/j.cnki.32.1309.2019.02.014 10.11766/trxb201301240053 10.1002/ldr.3243 10.1016/j.catena.2015.01.020 10.1016/j.jhydrol.2016.02.013 10.13031/2013.8527 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
DBID | AAYXX CITATION 3V. 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI |
DOI | 10.1007/s11069-021-05178-7 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database (Proquest) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1573-0840 |
EndPage | 230 |
ExternalDocumentID | 10_1007_s11069_021_05178_7 |
GrantInformation_xml | – fundername: fundamental research funds for central universities of the central south university grantid: No.CKSF2019292//SH+TB; CKSF2019179/TB funderid: http://dx.doi.org/10.13039/501100012476 – fundername: innovative research group project of the national natural science foundation of china grantid: 41771311; 41561144011 funderid: http://dx.doi.org/10.13039/100014718 – fundername: national basic research program of china (973 program) grantid: 2018YFC0407601-03 funderid: http://dx.doi.org/10.13039/501100012166 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6KP 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDH EIOEI EIS EJD EPAXT ESBYG FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V L8X LAK LK5 LLZTM M2P M4Y M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ZY4 ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7TG 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H96 KL. KR7 L.G PKEHL PQEST PQGLB PQUKI Q9U SOI |
ID | FETCH-LOGICAL-a342t-81134a4993e273e1c80b0f7d532e8b5656b2fc26b533b66a2e6870620d78ebc03 |
IEDL.DBID | BENPR |
ISSN | 0921-030X |
IngestDate | Wed Aug 13 08:11:19 EDT 2025 Tue Jul 01 03:42:39 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Fri Feb 21 02:47:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Freeze–thaw Soil detachment capacity Root system Prediction model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a342t-81134a4993e273e1c80b0f7d532e8b5656b2fc26b533b66a2e6870620d78ebc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2664218265 |
PQPubID | 54179 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2664218265 crossref_citationtrail_10_1007_s11069_021_05178_7 crossref_primary_10_1007_s11069_021_05178_7 springer_journals_10_1007_s11069_021_05178_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Natural hazards (Dordrecht) |
PublicationTitleAbbrev | Nat Hazards |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Wang, Zhangb, Yanga, Lia, Liua (CR44) 2018; 166 Van Klaveren, McCool (CR39) 2010; 74 Lehrsch, Sojka, Carter, Jolley (CR20) 1991; 55 Zheng, Huang, Norton (CR59) 2000; 64 Chow, Rees, Monteith (CR9) 2000; 80 Line, Meyer (CR24) 1989; 32 Zhang, Liu, Tang, Zhang (CR56) 2008; 51 Romshoo, Dar, Rashid, Marazi, Ali, Zaz (CR31) 2015; 47 Jiao, Zhang, Bai, Jia, Ning (CR18) 2012; 20 Nearing, Simanton, Norton, Bulygin, Stone (CR28) 1999; 24 Amézketa (CR2) 1999; 14 Chang, Li, Zhang, Lie, GC X, BH Z, Y Z (CR8) 2016; 32 DiAz-Zorita, Perfect, Grove (CR10) 2002; 64 Žabenská, Dumbrovský (CR53) 2015; 63 Baets, Poesen, Knapen, Galindo (CR4) 2010; 32 Lu, Sun, Ren, Li, Jiao (CR27) 2021; 13 Sun, Li, Xiao, Zhang, Ma, Li, Cheng (CR34) 2019; 30 Groenevelt, Grant (CR13) 2013; 12 Xu, Huang, Yang, Yin (CR51) 2019; 39 Sahin, Angin, Kiziloglu (CR32) 2008; 99 Burylo, Rey, Mathys, Dutoit (CR6) 2012; 37 Vannoppen, Vanmaercke, De Baets, Poesen (CR41) 2015; 150 Tang, Cong, Geng, Ling, Gan (CR37) 2018; 145 Liu, Yang, Zhang, Sun (CR25) 2017; 81 Gyssels, Poesen, Liu, Van Dessel, Knapen, De Baets (CR16) 2006; 57 Pohl, Alig, Krner, Rixen (CR30) 2009; 324 Sun (CR35) 2018 Gu, Zhou, Wang, Guan (CR14) 2020; 18 Su, Zhang, Yi, Liu (CR33) 2014; 179 Li, Zhang, Geng, Wang, Zhang (CR23) 2015; 124 Zhang, Liu, Nearing, Huang, Zhang (CR57) 2002; 45 Hairsine, Rose (CR17) 1992; 28 Li, He, Li, Guo, Zeng (CR22) 2019; 033 Edwards (CR11) 1991; 42 Abrahams, Parsons, Luk (CR1) 2010; 11 Liu, Ya-Jun, Jun-Lin, Xue-Yun, Shengxiu (CR26) 2007; 25 Zhang, Gao, Yang, Li, Tian (CR58) 2015; 128 Xiao, Liu, Liu, Zheng, Zhang, Hu (CR50) 2017; 31 Kværnø, Øygarden (CR19) 2006; 67 Li, Liu, Xu, Sun, Zhang, Gao (CR21) 2013; 29 CR54 Whalley, Riseley, Leeds-Harrison, Bird, Adderley (CR49) 2005; 56 Sun, Xiao, Li, Ma, Zhang, Huang, Bai (CR36) 2018; 162 Guo, Zhang, Dong, Dai, Liu (CR15) 2013; 50 Wang, Gao, Lin, Yang, Liang, Tong (CR47) 2013; 31 Baets, Poesen, Gyssels, Knapen (CR3) 2006; 76 Oztas, Fayetorbay (CR29) 2003; 52 Tao (CR38) 2006; 36 Wang, Zhang (CR42) 2017; 81 Zhou (CR60) 2012 Gao, Jia, Fan, Li (CR12) 2015; 29 Wei, Huang, Wei, Zhao, He, Wu (CR48) 2018; 30 Ye, Guo, Li, Cai (CR52) 2017; 285 Wang, Zhang, Shi, Zhang (CR43) 2014; 116 Cao, Zhang, Wei (CR7) 2009; 76 Wang, Zuo, Zheng, Wilson, Fu (CR46) 2020; 193 Vannoppen, De Baets, Keeble, Dong, Poesen (CR40) 2017 Wang, Wang, Shen, Chen (CR45) 2016; 535 Bryan (CR5) 2000; 32 Zhang, Hu (CR55) 2019; 149 Z Xu (5178_CR51) 2019; 39 J Guo (5178_CR15) 2013; 50 W Vannoppen (5178_CR40) 2017 E Chang (5178_CR8) 2016; 32 B Sun (5178_CR34) 2019; 30 H Liu (5178_CR25) 2017; 81 M Pohl (5178_CR30) 2009; 324 ZW Li (5178_CR23) 2015; 124 J Lu (5178_CR27) 2021; 13 E Amézketa (5178_CR2) 1999; 14 D Wang (5178_CR45) 2016; 535 W Vannoppen (5178_CR41) 2015; 150 SJ Wang (5178_CR47) 2013; 31 W Gu (5178_CR14) 2020; 18 SH Kværnø (5178_CR19) 2006; 67 M DiAz-Zorita (5178_CR10) 2002; 64 B Wang (5178_CR44) 2018; 166 L Cao (5178_CR7) 2009; 76 B Wang (5178_CR42) 2017; 81 TL Chow (5178_CR9) 2000; 80 Q Li (5178_CR21) 2013; 29 M Burylo (5178_CR6) 2012; 37 L Edwards (5178_CR11) 1991; 42 Y Zhou (5178_CR60) 2012 SD Baets (5178_CR3) 2006; 76 L Zhang (5178_CR58) 2015; 128 W Liu (5178_CR26) 2007; 25 RW Van Klaveren (5178_CR39) 2010; 74 B Wang (5178_CR43) 2014; 116 S Li (5178_CR22) 2019; 033 X Wei (5178_CR48) 2018; 30 GA Lehrsch (5178_CR20) 1991; 55 S Gao (5178_CR12) 2015; 29 SD Baets (5178_CR4) 2010; 32 RB Bryan (5178_CR5) 2000; 32 BY Sun (5178_CR36) 2018; 162 GH Zhang (5178_CR56) 2008; 51 AD Abrahams (5178_CR1) 2010; 11 S Romshoo (5178_CR31) 2015; 47 GH Zhang (5178_CR57) 2002; 45 C Ye (5178_CR52) 2017; 285 FL Zheng (5178_CR59) 2000; 64 T Oztas (5178_CR29) 2003; 52 J Jiao (5178_CR18) 2012; 20 L Tang (5178_CR37) 2018; 145 JX Tao (5178_CR38) 2006; 36 H Xiao (5178_CR50) 2017; 31 L Wang (5178_CR46) 2020; 193 BY Sun (5178_CR35) 2018 A Žabenská (5178_CR53) 2015; 63 WR Whalley (5178_CR49) 2005; 56 G Gyssels (5178_CR16) 2006; 57 ZL Su (5178_CR33) 2014; 179 5178_CR54 DE Line (5178_CR24) 1989; 32 PH Groenevelt (5178_CR13) 2013; 12 MA Nearing (5178_CR28) 1999; 24 U Sahin (5178_CR32) 2008; 99 G Zhang (5178_CR55) 2019; 149 PB Hairsine (5178_CR17) 1992; 28 |
References_xml | – volume: 29 start-page: 69 issue: 6 year: 2015 end-page: 73 ident: CR12 article-title: Effect of freezing and thawing on soil anti-sxourability under different land use types in the black soil region of Northeast China publication-title: J Soil Water Conserv doi: 10.13870/j.cnki.stbcxb.2015.06.013 – volume: 162 start-page: 100 year: 2018 end-page: 107 ident: CR36 article-title: An analysis of soil detachment capacity under freeze-thaw conditions using the Taguchi method publication-title: CATENA doi: 10.1016/j.catena.2017.11.025 – volume: 64 start-page: 4 issue: 1 year: 2000 end-page: 11 ident: CR59 article-title: Vertical hydraulic gradient and run-on water and sediment effects on erosion processes and sediment regimes publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2000.6414 – volume: 42 start-page: 193 issue: 2 year: 1991 end-page: 204 ident: CR11 article-title: The effect of alternate freezing and thawing on aggregate stability and aggregate size distribution of some Prince Edward Island soils publication-title: J Soil Sci doi: 10.1111/j.1365-2389.1991.tb00401.x – volume: 36 start-page: 105 issue: 01 year: 2006 end-page: 109 ident: CR38 article-title: Analyze and test of factors and contribution rate publication-title: Math Practice Theory doi: 10.3969/j.issn.1000-0984.2006.11.018 – volume: 39 start-page: 54 issue: 5 year: 2019 end-page: 59 ident: CR51 article-title: Influence of different root contents on shear strength of mountain red earth publication-title: Bull Soil Water Conserv doi: 10.13961/j.cnki.stbctb.2019.05.008 – volume: 28 start-page: 237 issue: 1 year: 1992 end-page: 243 ident: CR17 article-title: Modeling water erosion due to overland flow using physical principles: 1 publication-title: Sheet Flow Water Resour Res doi: 10.1029/91WR02380 – volume: 150 start-page: 666 year: 2015 end-page: 678 ident: CR41 article-title: A review of the mechanical effects of plant roots on concentrated flow erosion rates publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2015.08.011 – volume: 99 start-page: 254 issue: 2 year: 2008 end-page: 260 ident: CR32 article-title: Effect of freezing and thawing processes on some physical properties of saline–sodic soils mixed with sewage sludge or fly ash publication-title: Soil Tillage Res. doi: 10.1016/j.still.2008.03.001 – year: 2017 ident: CR40 article-title: How do root and soil characteristics affect the erosion-reducing potential of plant species? publication-title: Ecol Eng doi: 10.1016/j.ecoleng.2017.08.001 – year: 2012 ident: CR60 publication-title: The deterioration law of frozen rock during freeze-thaw cycles in the Tibetan high altitude – volume: 57 start-page: 381 issue: 3 year: 2006 end-page: 391 ident: CR16 article-title: Effects of cereal roots on detachment rates of single- and double-drilled topsoil during concentrated flow publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2005.00749.x – volume: 81 start-page: 1567 issue: 6 year: 2017 ident: CR42 article-title: Quantifying the binding and bonding effects of plant roots on soil detachment by overland flow in 10 typical grasslands on the Loess Plateau publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2017.07.0249 – ident: CR54 – year: 2018 ident: CR35 publication-title: The effect of seasonal freeze-thaw on soil erodibility in wind-water erosion criss-cross region of loss plateau – volume: 56 start-page: 353 issue: 3 year: 2005 end-page: 360 ident: CR49 article-title: Structural differences between bulk and rhizosphere soil publication-title: Blackwell Science Ltd doi: 10.1111/j.1365-2389.2004.00670.x – volume: 11 start-page: 653 issue: 6 year: 2010 end-page: 657 ident: CR1 article-title: Field measurement of the velocity of overland flow using dye tracing publication-title: Earth Surf Proc Land doi: 10.1002/esp.3290110608 – volume: 76 start-page: 155 issue: 2 year: 2009 end-page: 162 ident: CR7 article-title: Detachment of road surface soil by flowing water publication-title: CATENA doi: 10.1016/j.catena.2008.10.005 – volume: 32 start-page: 1995 issue: 6 year: 1989 ident: CR24 article-title: Evaluating interrill and rill erodibilities for soils of different textures publication-title: T ASAE doi: 10.13031/2013.31253 – volume: 32 start-page: 129 issue: 4 year: 2016 end-page: 138 ident: CR8 article-title: Root systems distribution and water use pattern of vegetation from abandoned croplands during dry and wet season in Loess Hilly Region publication-title: Trans Chin Soc Agric Eng doi: 10.11975/j.issn.1002-6819.2016.24.017 – volume: 166 start-page: 192 year: 2018 end-page: 199 ident: CR44 article-title: The effects of varied soil properties induced by natural grassland succession on the process of soil detachment publication-title: CATENA doi: 10.1016/j.catena.2018.04.007 – volume: 81 start-page: 459 issue: 3 year: 2017 ident: CR25 article-title: Soil erosion as affected by freeze-thaw regime and initial soil moisture content publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2016.08.0271 – volume: 32 start-page: 385 issue: 3 year: 2000 end-page: 415 ident: CR5 article-title: Soil erodibility and processes of water erosion on hillslope publication-title: Geomorphology doi: 10.1016/S0169-555X(99)00105-1 – volume: 193 year: 2020 ident: CR46 article-title: The effects of freeze-thaw cycles at different initial soil water contents on soil erodibility in Chinese Mollisol region publication-title: CATENA doi: 10.1016/j.catena.2020.104615 – volume: 13 start-page: 342 issue: 3 year: 2021 ident: CR27 article-title: Effect of Freeze–Thaw cycles on soil detachment capacities of three loamy soils on the Loess Plateau of China publication-title: Water doi: 10.3390/w13030342 – volume: 52 start-page: 1 issue: 1 year: 2003 end-page: 8 ident: CR29 article-title: Effect of freezing and thawing processes on soil aggregate stability publication-title: CATENA doi: 10.1016/S0341-8162(02)00177-7 – volume: 67 start-page: 175 issue: 3 year: 2006 end-page: 182 ident: CR19 article-title: The influence of freeze–thaw cycles and soil moisture on aggregate stability of three soils in Norway publication-title: CATENA doi: 10.1016/j.catena.2006.03.011 – volume: 033 start-page: 70 issue: 003 year: 2019 end-page: 75 ident: CR22 article-title: Hydraulic Characteristics of soil detachment under the terrace banks with different vegetation types in the purple hilly area publication-title: J Soil Water Conserv doi: 10.13870/j.cnki.stbcxb.2019.03.011 – volume: 30 start-page: 337 issue: 1 year: 2019 end-page: 347 ident: CR34 article-title: Research progress on the effects of freeze-thaw on soil physical and chemical properties and wind and water erosion publication-title: J Appl Ecol doi: 10.13287/j.1001-9332.201901.019 – volume: 124 start-page: 9 year: 2015 end-page: 17 ident: CR23 article-title: Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China publication-title: CATENA doi: 10.1016/j.catena.2014.08.019 – volume: 18 start-page: 45 issue: 4 year: 2020 end-page: 52 ident: CR14 article-title: Effects of freeze-thaw cycle on the characteristics of black soil water-stable aggregates publication-title: Sci Soil Water Conserv doi: 10.16843/j.sswc.2020.04.006 – volume: 25 start-page: 197 issue: 4 year: 2007 end-page: 201 ident: CR26 article-title: Effect of straw mulching on soil temperature before the greening stage of winter wheat in dryland publication-title: Agric Res Arid Areas doi: 10.3321/j.issn:1000-7601.2007.04.038 – volume: 80 start-page: 649 issue: 4 year: 2000 end-page: 660 ident: CR9 article-title: Seasonal distribution of runoff and soil loss under four tillage treatments in the upper St. John River valley New Brunswick, Canada publication-title: Can J Soil Sci doi: 10.4141/S00-006 – volume: 29 start-page: 105 issue: 17 year: 2013 end-page: 112 ident: CR21 article-title: Effect of seasonal freeze-thaw on soil anti-scouribility and its related physical property in hilly Loess Plateau publication-title: Trans Chin Soc Agric Eng doi: 10.3969/j.issn.1002-6819.2013.17.014 – volume: 31 start-page: 117 issue: 01 year: 2013 end-page: 121 ident: CR47 article-title: Effect of nitrogen fertilizer and straw returning on CO_2 emission in winter wheat field in irrigated region of central Shaanxi province publication-title: Agric Res Arid Areas doi: 10.3969/j.issn.1000-7601.2013.01.022 – volume: 179 start-page: 446 issue: 9 year: 2014 end-page: 453 ident: CR33 article-title: Soil detachment capacity by overland flow for soils of the Beijing region publication-title: Soil Sci doi: 10.1097/SS.0000000000000089 – volume: 47 start-page: 627 issue: 7 year: 2015 end-page: 644 ident: CR31 article-title: Implications of shrinking cryosphere under changing climate on the streamflows in the lidder catchment in the upper Indus Basin, India publication-title: Arctic Antarctic Alpine Res doi: 10.1657/AAAR0014-088 – volume: 20 start-page: 240 issue: 2 year: 2012 end-page: 249 ident: CR18 article-title: Assessing the ecological success of restoration by afforestation on the Chinese Loess Plateau publication-title: Restor Ecol doi: 10.1111/j.1526-100X.2010.00756.x – volume: 145 start-page: 197 year: 2018 end-page: 207 ident: CR37 article-title: The effect of freeze–thaw cycling on the mechanical properties of expansive soils publication-title: Cold Reg Sci Technol doi: 10.1016/j.coldregions.2017.10.004 – volume: 74 start-page: 1327 issue: 4 year: 2010 end-page: 1338 ident: CR39 article-title: Freeze–thaw and water tension effects on soil detachment publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2009.0360 – volume: 55 start-page: 1401 issue: 5 year: 1991 end-page: 1406 ident: CR20 article-title: Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1991.03615995005500050033x – volume: 32 start-page: 1323 issue: 9 year: 2010 end-page: 1345 ident: CR4 article-title: Impact of root architecture on the erosion-reducing potential of roots during concentrated flow publication-title: Earth Surf Proc Land doi: 10.1002/esp.1470 – volume: 31 start-page: 2613 issue: 14 year: 2017 end-page: 2621 ident: CR50 article-title: Response of soil detachment rate to the hydraulic parameters of concentrated flow on steep loessial slopes on the Loess Plateau of China publication-title: Hydrol Process doi: 10.1002/hyp.11210 – volume: 37 start-page: 1463 issue: aop year: 2012 end-page: 1470 ident: CR6 article-title: Plant root traits affecting the resistance of soils to concentrated flow erosion publication-title: Earth Surf Proc Land doi: 10.1002/esp.3248 – volume: 24 start-page: 677 issue: 8 year: 1999 end-page: 386 ident: CR28 article-title: Soil erosion by surface water flow on a stony, semiarid hillslope publication-title: Earth Surf Proc Land doi: 10.1002/(SICI)1096-9837(199908)24:83.0.CO;2-1 – volume: 63 start-page: 1211 issue: 4 year: 2015 end-page: 1218 ident: CR53 article-title: Changes of soil aggregate stability as a result of the effect of Freeze-thaw cycles publication-title: Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis doi: 10.11118/actaun201563041211 – volume: 51 start-page: 883 issue: 3 year: 2008 end-page: 890 ident: CR56 article-title: Flow detachment of soils under different land uses in the loess plateau of china publication-title: Trans Asabe doi: 10.13031/2013.24527 – volume: 64 start-page: 3 issue: 1–2 year: 2002 end-page: 22 ident: CR10 article-title: Disruptive methods for assessing soil structure publication-title: Soil till Res doi: 10.1016/S0167-1987(01)00254-9 – volume: 12 start-page: 11 issue: 1 year: 2013 ident: CR13 article-title: Heave and heaving pressure in freezing soils: a unifying theory publication-title: Vadose Zone J doi: 10.2136/vzj2012.0051 – volume: 324 start-page: 91 issue: 1–2 year: 2009 end-page: 102 ident: CR30 article-title: Higher plant diversity enhances soil stability in disturbed alpine ecosystems publication-title: Plant Soil doi: 10.1007/s11104-009-9906-3 – volume: 116 start-page: 51 year: 2014 end-page: 59 ident: CR43 article-title: Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China publication-title: CATENA doi: 10.1016/j.catena.2013.12.010 – volume: 76 start-page: 54 issue: 1/2 year: 2006 end-page: 67 ident: CR3 article-title: Effects of grass roots on the erodibility of topsoils during concentrated flow publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.10.002 – volume: 14 start-page: 83 issue: 2–3 year: 1999 end-page: 151 ident: CR2 article-title: Soil aggregate stability: a review publication-title: J Sustain Agr doi: 10.1300/J064v14n02_08 – volume: 285 start-page: 82 year: 2017 end-page: 93 ident: CR52 article-title: The effect of Bahiagrass roots on soil erosion resistance of Aquults in subtropical China publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.02.003 – volume: 149 start-page: 144 issue: 2 year: 2019 end-page: 154 ident: CR55 article-title: Review on the influence factors of soil detachment process by overland flow and its mechanism publication-title: Adv Water Sci doi: 10.14042/j.cnki.32.1309.2019.02.014 – volume: 50 start-page: 1102 issue: 6 year: 2013 end-page: 1108 ident: CR15 article-title: Study on detachment of yellow soil by runoff scouring in southwest of china publication-title: Acta Pedol Sin doi: 10.11766/trxb201301240053 – volume: 30 start-page: 3243 issue: 5 year: 2018 ident: CR48 article-title: The impact of freeze-thaw cycles and soil moisture content at freezing on runoff and soil loss publication-title: Land Degrad Dev doi: 10.1002/ldr.3243 – volume: 128 start-page: 108 year: 2015 end-page: 121 ident: CR58 article-title: Dynamic processes of soil erosion by runoff on engineered landforms derived from expressway construction: a case study of typical steep spoil heap publication-title: CATENA doi: 10.1016/j.catena.2015.01.020 – volume: 535 start-page: 473 year: 2016 end-page: 479 ident: CR45 article-title: Modeling soil detachment capacity by rill flow using hydraulic parameters publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.02.013 – volume: 45 start-page: 351 issue: 2 year: 2002 end-page: 357 ident: CR57 article-title: Soil detachment by shallow flow publication-title: Trans ASAE doi: 10.13031/2013.8527 – volume: 32 start-page: 1323 issue: 9 year: 2010 ident: 5178_CR4 publication-title: Earth Surf Proc Land doi: 10.1002/esp.1470 – volume: 63 start-page: 1211 issue: 4 year: 2015 ident: 5178_CR53 publication-title: Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis doi: 10.11118/actaun201563041211 – volume: 116 start-page: 51 year: 2014 ident: 5178_CR43 publication-title: CATENA doi: 10.1016/j.catena.2013.12.010 – volume: 67 start-page: 175 issue: 3 year: 2006 ident: 5178_CR19 publication-title: CATENA doi: 10.1016/j.catena.2006.03.011 – volume: 150 start-page: 666 year: 2015 ident: 5178_CR41 publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2015.08.011 – volume: 76 start-page: 155 issue: 2 year: 2009 ident: 5178_CR7 publication-title: CATENA doi: 10.1016/j.catena.2008.10.005 – volume: 162 start-page: 100 year: 2018 ident: 5178_CR36 publication-title: CATENA doi: 10.1016/j.catena.2017.11.025 – volume: 13 start-page: 342 issue: 3 year: 2021 ident: 5178_CR27 publication-title: Water doi: 10.3390/w13030342 – volume: 37 start-page: 1463 issue: aop year: 2012 ident: 5178_CR6 publication-title: Earth Surf Proc Land doi: 10.1002/esp.3248 – volume: 80 start-page: 649 issue: 4 year: 2000 ident: 5178_CR9 publication-title: Can J Soil Sci doi: 10.4141/S00-006 – volume: 32 start-page: 129 issue: 4 year: 2016 ident: 5178_CR8 publication-title: Trans Chin Soc Agric Eng doi: 10.11975/j.issn.1002-6819.2016.24.017 – volume: 145 start-page: 197 year: 2018 ident: 5178_CR37 publication-title: Cold Reg Sci Technol doi: 10.1016/j.coldregions.2017.10.004 – volume: 285 start-page: 82 year: 2017 ident: 5178_CR52 publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.02.003 – volume: 55 start-page: 1401 issue: 5 year: 1991 ident: 5178_CR20 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1991.03615995005500050033x – volume: 14 start-page: 83 issue: 2–3 year: 1999 ident: 5178_CR2 publication-title: J Sustain Agr doi: 10.1300/J064v14n02_08 – volume: 24 start-page: 677 issue: 8 year: 1999 ident: 5178_CR28 publication-title: Earth Surf Proc Land doi: 10.1002/(SICI)1096-9837(199908)24:83.0.CO;2-1 – volume: 11 start-page: 653 issue: 6 year: 2010 ident: 5178_CR1 publication-title: Earth Surf Proc Land doi: 10.1002/esp.3290110608 – volume: 128 start-page: 108 year: 2015 ident: 5178_CR58 publication-title: CATENA doi: 10.1016/j.catena.2015.01.020 – volume: 124 start-page: 9 year: 2015 ident: 5178_CR23 publication-title: CATENA doi: 10.1016/j.catena.2014.08.019 – volume: 18 start-page: 45 issue: 4 year: 2020 ident: 5178_CR14 publication-title: Sci Soil Water Conserv doi: 10.16843/j.sswc.2020.04.006 – volume: 42 start-page: 193 issue: 2 year: 1991 ident: 5178_CR11 publication-title: J Soil Sci doi: 10.1111/j.1365-2389.1991.tb00401.x – year: 2017 ident: 5178_CR40 publication-title: Ecol Eng doi: 10.1016/j.ecoleng.2017.08.001 – volume-title: The deterioration law of frozen rock during freeze-thaw cycles in the Tibetan high altitude year: 2012 ident: 5178_CR60 – volume: 28 start-page: 237 issue: 1 year: 1992 ident: 5178_CR17 publication-title: Sheet Flow Water Resour Res doi: 10.1029/91WR02380 – volume: 32 start-page: 385 issue: 3 year: 2000 ident: 5178_CR5 publication-title: Geomorphology doi: 10.1016/S0169-555X(99)00105-1 – volume: 45 start-page: 351 issue: 2 year: 2002 ident: 5178_CR57 publication-title: Trans ASAE doi: 10.13031/2013.8527 – ident: 5178_CR54 – volume: 50 start-page: 1102 issue: 6 year: 2013 ident: 5178_CR15 publication-title: Acta Pedol Sin doi: 10.11766/trxb201301240053 – volume: 52 start-page: 1 issue: 1 year: 2003 ident: 5178_CR29 publication-title: CATENA doi: 10.1016/S0341-8162(02)00177-7 – volume: 99 start-page: 254 issue: 2 year: 2008 ident: 5178_CR32 publication-title: Soil Tillage Res. doi: 10.1016/j.still.2008.03.001 – volume: 20 start-page: 240 issue: 2 year: 2012 ident: 5178_CR18 publication-title: Restor Ecol doi: 10.1111/j.1526-100X.2010.00756.x – volume: 64 start-page: 4 issue: 1 year: 2000 ident: 5178_CR59 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2000.6414 – volume: 033 start-page: 70 issue: 003 year: 2019 ident: 5178_CR22 publication-title: J Soil Water Conserv doi: 10.13870/j.cnki.stbcxb.2019.03.011 – volume: 25 start-page: 197 issue: 4 year: 2007 ident: 5178_CR26 publication-title: Agric Res Arid Areas doi: 10.3321/j.issn:1000-7601.2007.04.038 – volume: 30 start-page: 337 issue: 1 year: 2019 ident: 5178_CR34 publication-title: J Appl Ecol doi: 10.13287/j.1001-9332.201901.019 – volume: 535 start-page: 473 year: 2016 ident: 5178_CR45 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.02.013 – volume: 149 start-page: 144 issue: 2 year: 2019 ident: 5178_CR55 publication-title: Adv Water Sci doi: 10.14042/j.cnki.32.1309.2019.02.014 – volume: 31 start-page: 117 issue: 01 year: 2013 ident: 5178_CR47 publication-title: Agric Res Arid Areas doi: 10.3969/j.issn.1000-7601.2013.01.022 – volume: 12 start-page: 11 issue: 1 year: 2013 ident: 5178_CR13 publication-title: Vadose Zone J doi: 10.2136/vzj2012.0051 – volume: 64 start-page: 3 issue: 1–2 year: 2002 ident: 5178_CR10 publication-title: Soil till Res doi: 10.1016/S0167-1987(01)00254-9 – volume: 39 start-page: 54 issue: 5 year: 2019 ident: 5178_CR51 publication-title: Bull Soil Water Conserv doi: 10.13961/j.cnki.stbctb.2019.05.008 – volume: 36 start-page: 105 issue: 01 year: 2006 ident: 5178_CR38 publication-title: Math Practice Theory doi: 10.3969/j.issn.1000-0984.2006.11.018 – volume: 32 start-page: 1995 issue: 6 year: 1989 ident: 5178_CR24 publication-title: T ASAE doi: 10.13031/2013.31253 – volume: 81 start-page: 459 issue: 3 year: 2017 ident: 5178_CR25 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2016.08.0271 – volume: 193 year: 2020 ident: 5178_CR46 publication-title: CATENA doi: 10.1016/j.catena.2020.104615 – volume: 324 start-page: 91 issue: 1–2 year: 2009 ident: 5178_CR30 publication-title: Plant Soil doi: 10.1007/s11104-009-9906-3 – volume: 29 start-page: 69 issue: 6 year: 2015 ident: 5178_CR12 publication-title: J Soil Water Conserv doi: 10.13870/j.cnki.stbcxb.2015.06.013 – volume: 81 start-page: 1567 issue: 6 year: 2017 ident: 5178_CR42 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2017.07.0249 – volume: 51 start-page: 883 issue: 3 year: 2008 ident: 5178_CR56 publication-title: Trans Asabe doi: 10.13031/2013.24527 – volume: 29 start-page: 105 issue: 17 year: 2013 ident: 5178_CR21 publication-title: Trans Chin Soc Agric Eng doi: 10.3969/j.issn.1002-6819.2013.17.014 – volume: 30 start-page: 3243 issue: 5 year: 2018 ident: 5178_CR48 publication-title: Land Degrad Dev doi: 10.1002/ldr.3243 – volume: 31 start-page: 2613 issue: 14 year: 2017 ident: 5178_CR50 publication-title: Hydrol Process doi: 10.1002/hyp.11210 – volume: 166 start-page: 192 year: 2018 ident: 5178_CR44 publication-title: CATENA doi: 10.1016/j.catena.2018.04.007 – volume: 179 start-page: 446 issue: 9 year: 2014 ident: 5178_CR33 publication-title: Soil Sci doi: 10.1097/SS.0000000000000089 – volume: 57 start-page: 381 issue: 3 year: 2006 ident: 5178_CR16 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2005.00749.x – volume: 74 start-page: 1327 issue: 4 year: 2010 ident: 5178_CR39 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2009.0360 – volume-title: The effect of seasonal freeze-thaw on soil erodibility in wind-water erosion criss-cross region of loss plateau year: 2018 ident: 5178_CR35 – volume: 56 start-page: 353 issue: 3 year: 2005 ident: 5178_CR49 publication-title: Blackwell Science Ltd doi: 10.1111/j.1365-2389.2004.00670.x – volume: 47 start-page: 627 issue: 7 year: 2015 ident: 5178_CR31 publication-title: Arctic Antarctic Alpine Res doi: 10.1657/AAAR0014-088 – volume: 76 start-page: 54 issue: 1/2 year: 2006 ident: 5178_CR3 publication-title: Geomorphology doi: 10.1016/j.geomorph.2005.10.002 |
SSID | ssj0011629 |
Score | 2.4231892 |
Snippet | Freeze–thaw has a significant impact on soil detachment in areas subject to seasonal freeze–thaw. Plant root system has gradually played a key role in reducing... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 207 |
SubjectTerms | Accuracy Capacity Civil Engineering Density Earth and Environmental Science Earth Sciences Environmental Management Environmental restoration Flow rates Flow velocity Flumes Freeze-thawing Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydraulics Hydrogeology Loam Mathematical models Modelling Natural Hazards Original Paper Parameters Plant roots Prediction models Rivers Roots Sandy loam Sandy soils Shear stress Silt Silt loam Soil Soil treatment Soil types Weight |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEA26HvQifuLqKjl400CbtEl6XMRFBD25sLeSpFN2obSyW1nWk__Bf-gvMenHFkUFz5nmMGk6bzrz3iB0KWjicekDARt9SKCVIopGkigAQU1kQSo47vDDI78bB_eTcNKQwhZtt3tbkqy-1B3ZzWYvEXEtBU5XShKxibZCm7u7Rq4xHa5rBz6ntcKes2TepKHK_LzH13DUYcxvZdEq2oz20G4DE_GwPtd9tAH5AdpuJpZPV4cocUPMHJUcL4pZhl0nqJm6P33Y2PBnLLbGeoXnsyzDaVYsseOKzbFFe7ju4MBFitM5wCt8vL2XU7XEKk-qdQulS1wLPB-h8ej26eaONBMTiGIBLYn0fRYom8QwsLAEfCM97aUiCRkFqR120zQ1lGsL8jTnigJ3dU7qJUKCNh47Rr28yOEEYZNIEfCUMpbaoG-kFoxGnmc0pUoqrfrIbx0Xm0ZO3E21yOJOCNk5O7bOjitnx6KPrtbPPNdiGn9aD9rziJuLtYgtngic6DwP--i6PaNu-ffdTv9nfoZ2qCM6VK2NA9Qr5y9wbuFHqS-qt-0T-cPQEg priority: 102 providerName: Springer Nature |
Title | Modeling soil detachment capacity by rill flow under the effect of freeze–thaw and the root system |
URI | https://link.springer.com/article/10.1007/s11069-021-05178-7 https://www.proquest.com/docview/2664218265 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEB6V5ACXiv4g0tJoD721q9pjZ705VQlKQFSNEGqk9GTtrtdKJCuGxBWCE-_QN-RJ2LE3RCDByYex9zC7nvl2fr4B-JpgFggZWm6d9-GxVoor7EuurE3Q9B1ItdQ7_HsiTqfx2aw38wG3tS-r3NjE2lBnpaEY-Q_nSGJiGxe9n5dXnKZGUXbVj9DYgbYzwVK2oD0cTc4vHvMIocCGbQ-pcCiY-baZpnnO3Yb6nEoUiKdK8uSpa9rizWcp0trzjPfhrYeMbNDs8Tt4Y5fvYddPL5_ffICMBppRWzlbl4uCUVWomVPUjxnnCo3D2UzfsNWiKFhelNeM-sZWzCE_1lRzsDJn-craW3t_97-aq2umllktd7C6Yg3Z80eYjkd_jk-5n57AVRRjxWUYRrFyF5rIOohiQyMDHeRJ1ovQSk04TmNuUGgH-LQQCq2gnCcGWSKtNkF0AK1lubSHwEwmk1jkGEW5AwBG6iTCfhAYjaik0qoD4UZxqfHU4jThoki3pMik7NQpO62VnSYd-Pb4zWVDrPHq20eb_Uj9T7ZOt0eiA983e7QVv7zap9dX-wx7SE0OdVnjEbSq1T_7xUGPSndhR45PutAejIfDCT1P_v4adf2pc9IpDh4AIUPZZg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcigXxK_YtoAPcAKLZJx1vAeEELBs6c-plfYWbMfRVoo2ZTfVajnxDrwHD8WTMJOfrkCit56d-DAe-_vsmW8G4EWKeaRNHGQg9JGJs1ZaHBlpQ0jRj4ikBtYOH5_oyVnyZTqcbsGvXgvDaZX9mdgc1Hnl-Y38DQFJwtXG9fDdxTfJXaM4utq30Gjd4jCsV3RlW749-Ejr-xJx_On0w0R2XQWkVQnW0sSxSiwRfRUIukPsTeSiIs2HCoNxzG8cFh61IyLktLYYNMcCMcpTE5yPFM17C24nipCclenjz1dRi1hjW9sPOU0pmnYinVaqR3evkeSECK6KZWT6NxBu2O0_AdkG58b34G5HUMX71qPuw1aYP4Cdrlf6bP0Qcm6fxiJ2sazOS8E5qH7Gb4zCE_B6YvXCrcXivCxFUVYrwSq1hSCeKdrcEVEVoliE8D38_vGzntmVsPO8GScSX4u2tPQjOLsRqz6G7Xk1D09A-NykiS5QqYLohjcuVTiKIu8QrbHODiDuDZf5rpA599Mos00JZjZ2RsbOGmNn6QBeXf1z0ZbxuPbr_X49sm5LL7ONAw7gdb9Gm-H_z7Z7_WzPYWdyenyUHR2cHO7BHWR5RZNQuQ_b9eIyPCXSU7tnjacJ-HrTrv0HdV4OSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcUPlTFwr4ACewmkyysfeAKkq7aimsKkSlvQXbcbSVok3ZDVotJ96Bt-nj8CTM5KcrkOitZyc-jMeez57vmwF4qTALEh166Sn6yNgaIw0OtTTeK3RDAqmetcOfxsnRWfxhMphswGWnhWFaZXcm1gd1Vjp-I9-lQBJztfFksJu3tIjTg9HexTfJHaQ409q102hc5MSvlnR9W7w9PqC1foU4Ovzy_ki2HQakiWKspA7DKDYE-iNPYdyHTgc2yFU2iNBry1jHYu4wsQSKbJIY9AnnBTHIlPbWBRHNews2Fd-KerC5fzg-_XyVwwgTbCr9IZOWgkkr2WmEe3QTG0qmR3CNLC3V32FxjXX_Sc_WUW-0BfdauCreNf51Hzb87AHcaTunT1cPIeNmaixpF4vyvBDMSHVTfnEUjsKwI4wv7ErMz4tC5EW5FKxZmwtCnaJhkogyF_nc-x_-989f1dQshZll9ThB-ko0haYfwdmN2PUx9GblzG-DcJlWcZJjFOUEPpy2KsJhEDiLaLSxpg9hZ7jUtWXNubtGka4LMrOxUzJ2Whs7VX14ffXPRVPU49qvd7r1SNsNvkjX7tiHN90arYf_P9uT62d7AbfJrdOPx-OTp3AXWWtRsyt3oFfNv_tnhIAq-7x1NQFfb9q7_wDHsBPc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+soil+detachment+capacity+by+rill+flow+under+the+effect+of+freeze%E2%80%93thaw+and+the+root+system&rft.jtitle=Natural+hazards+%28Dordrecht%29&rft.au=Ma%2C+Jianye&rft.au=Li+Zhanbin&rft.au=Sun+Baoyang&rft.au=Ma%2C+Bo&rft.date=2022-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0921-030X&rft.eissn=1573-0840&rft.volume=112&rft.issue=1&rft.spage=207&rft.epage=230&rft_id=info:doi/10.1007%2Fs11069-021-05178-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-030X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-030X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-030X&client=summon |