Residual separation of magnetic fields using a Cellular Neural Network approach

--In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined...

Full description

Saved in:
Bibliographic Details
Published inPure and applied geophysics Vol. 158; no. 9-10; pp. 1797 - 1818
Main Authors ALBORA, A. M, ÖZMEN, A, UCAN, O. N
Format Journal Article
LanguageEnglish
Published Basel Springer 01.09.2001
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract --In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined by the template matrices A, B and the template vector I. We have optimized weight coefficients of these templates using Recurrent Perceptron Learning Algorithm (RPLA). The advantages of CNN as a real-time stochastic method are that it introduces little distortion to the shape of the original image and that it is not effected significantly by factors such as the overlap of power spectra of residual fields. The proposed method is tested using synthetic examples and the average depth of the buried objects has been estimated by power spectrum analysis. Next the CNN approach is applied to magnetic data over the Golalan chromite mine in Elazig which lies East of Turkey. This area is among the largest and richest chromite masses of the world. We compared the performance of CNN to classical derivative approaches.[PUBLICATION ABSTRACT]
AbstractList -In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined by the template matrices A, B and the template vector I. We have optimized weight coefficients of these templates using Recurrent Perceptron Learning Algorithm (RPLA). The advantages of CNN as a real-time stochastic method are that it introduces little distortion to the shape of the original image and that it is not effected significantly by factors such as the overlap of power spectra of residual fields. The proposed method is tested using synthetic examples and the average depth of the buried objects has been estimated by power spectrum analysis. Next the CNN approach is applied to magnetic data over the Golalan chromite mine in Elazig which lies East of Turkey. This area is among the largest and richest chromite masses of the world. We compared the performance of CNN to classical derivative approaches.
--In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined by the template matrices A, B and the template vector I. We have optimized weight coefficients of these templates using Recurrent Perceptron Learning Algorithm (RPLA). The advantages of CNN as a real-time stochastic method are that it introduces little distortion to the shape of the original image and that it is not effected significantly by factors such as the overlap of power spectra of residual fields. The proposed method is tested using synthetic examples and the average depth of the buried objects has been estimated by power spectrum analysis. Next the CNN approach is applied to magnetic data over the Golalan chromite mine in Elazig which lies East of Turkey. This area is among the largest and richest chromite masses of the world. We compared the performance of CNN to classical derivative approaches.[PUBLICATION ABSTRACT]
Author ALBORA, A. M
UCAN, O. N
ÖZMEN, A
Author_xml – sequence: 1
  givenname: A. M
  surname: ALBORA
  fullname: ALBORA, A. M
  organization: Istanbul University, Engineering Faculty Geophysical Department, 34850, Avcilar, Istanbul, Turkey
– sequence: 2
  givenname: A
  surname: ÖZMEN
  fullname: ÖZMEN, A
  organization: Istanbul University, Engineering Faculty Geophysical Department, 34850, Avcilar, Istanbul, Turkey
– sequence: 3
  givenname: O. N
  surname: UCAN
  fullname: UCAN, O. N
  organization: Istanbul University, Engineering Faculty Electrical-Electronic Department, 34850, Avcilar, Istanbul, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14060397$$DView record in Pascal Francis
BookMark eNpdzk1LAzEQBuAgFWyrF39BEAQvq0kmu-kepfgFpRXR8zLNJjV1m6zJLuK_N6An5zKX5515Z2TigzeEnHN2zRlTN88rlocLKY_IlEvBippDNSFTxgAKWZZwQmYp7bNRqqynZPNikmtH7GgyPUYcXPA0WHrAnTeD09Q607WJjsn5HUW6NF03dhjp2owxp9Zm-Arxg2Lfx4D6_ZQcW-ySOfvbc_J2f_e6fCxWm4en5e2qQJBiKBbMYCUMg0UlLCiwZcu2aC0TrCq15spWaqu0xRp4i1Zq3iqjQGudBYca5uTq925--zmaNDQHl3Quh96EMTWc8boqQcAi04t_dB_G6HO7phbZSFWxjC7_ECaNnY3otUtNH90B43fDJcuoVvADbgNryQ
CODEN PAGYAV
CitedBy_id crossref_primary_10_1080_08123985_2020_1845095
crossref_primary_10_1007_s11004_007_9114_8
crossref_primary_10_1190_1_2187773
crossref_primary_10_3997_1873_0604_2009001
crossref_primary_10_1007_s11001_004_8216_7
crossref_primary_10_2478_s11600_009_0053_2
crossref_primary_10_1007_s00024_018_1889_7
crossref_primary_10_1093_gji_ggab307
ContentType Journal Article
Copyright 2002 INIST-CNRS
Birkhäuser Verlag Basel, 2001
Copyright_xml – notice: 2002 INIST-CNRS
– notice: Birkhäuser Verlag Basel, 2001
DBID IQODW
3V.
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
M2P
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
DOI 10.1007/PL00001244
DatabaseName Pascal-Francis
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1420-9136
EndPage 1818
ExternalDocumentID 2603548851
14060397
Genre Feature
GeographicLocations Middle East
Turkey
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
67M
67Z
6NX
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDUJ
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ATCPS
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HZ~
I-F
IHE
IJ-
IKXTQ
IQODW
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAS
LK5
LLZTM
M2P
M4Y
M7R
MA-
MBV
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8R
Z8T
Z8W
ZMTXR
ZY4
~02
~8M
~EX
7TG
7UA
7XB
8FD
8FK
AAJBT
ABAKF
ABJNI
ACAOD
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
C1K
F1W
H8D
H96
HVGLF
KL.
L.G
L7M
PQEST
PQUKI
Q9U
AAYZH
ID FETCH-LOGICAL-a342t-80ea62e03862f373f5d0baff02065cc17f67b7cfa931daf4c1d7e73ccc0201393
IEDL.DBID BENPR
ISSN 0033-4553
IngestDate Fri Oct 25 12:18:16 EDT 2024
Thu Oct 10 20:50:25 EDT 2024
Sun Oct 22 16:04:51 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 9-10
Keywords spectra
magnetic field
oxides
maps
regional anomalies
neural networks
residual anomalies
spinel
depth
Asia
chromite
magnetic susceptibility
magnetic anomalies
distortion
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-80ea62e03862f373f5d0baff02065cc17f67b7cfa931daf4c1d7e73ccc0201393
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 926534760
PQPubID 54182
PageCount 22
ParticipantIDs proquest_miscellaneous_1019653238
proquest_journals_926534760
pascalfrancis_primary_14060397
PublicationCentury 2000
PublicationDate 2001-09-01
PublicationDateYYYYMMDD 2001-09-01
PublicationDate_xml – month: 09
  year: 2001
  text: 2001-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Pure and applied geophysics
PublicationYear 2001
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
SSID ssj0017759
Score 1.7436781
Snippet --In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel...
-In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel...
SourceID proquest
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 1797
SubjectTerms Algorithms
Cellular
Cellular communication
Chromite
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
Geophysics: general, magnetic, electric and thermic methods and properties
Internal geophysics
Magnetic fields
Mathematical analysis
Metal geology
Metallic and non-metallic deposits
Neural networks
Separation
Title Residual separation of magnetic fields using a Cellular Neural Network approach
URI https://www.proquest.com/docview/926534760
https://search.proquest.com/docview/1019653238
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7chuCL-BPndETwtdg1TbM-ySarQ9wc04Fv45ImvoxW7fz_vbTdUASfm-bhLtx9l3z3HcA1ChX6moeeCRC9UEr00EROG09alRLeVX3XnDyZRuNF-PAqXmtuTlHTKjcxsQzUaa7dHflNHESChzLyb98_PDc0yj2u1hM0GtAKqFAImtAajqaz-fYZQUpR4V_OvVAI_kOfdPZYXmxTdnN0SCzIIrYaZfEnKpepJjmA_RojskHl1EPYMdkR7JZcTV0cw9PcFGULFXs2lXJ3nrHcsgm-Za4lkSWOlVawkg3AkN2Z1cqRTZkT4qC_phXzmw1qOfETWCSjl7uxV89F8JCHwZqSisEoMD6nasRyya1IfYXWEvKLhNZk5UgqqS3GvJeiDXUvlUZyrTWtIMTHT6GZ5Zk5AxZzQjg2VSqlQhFdS7kvUh37GKDipi_a0P1lm-V7pYFBFYMf-YRl2tDZGGtZn_5iufVVG662X-nYurcIzEz-VThmWUyLCDCc_7tDB_Yq1pdjdV1Ac_35ZS4JBqxVFxr95L4LrUEyHE67teu_AZh4tSs
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gCMEF8SnGYASJa0VpkmY9oWmiDNgGgk3arXLShMvUDrr9f5y2m0BInJvmYEf2c_L8TMg1CMV9zbhnAgCPSwkemNBp40mrUsS7quOak4ejsD_hT1Mxrbk5RU2rXMXEMlCnuXZ35DdREArGZejfzT89NzTKPa7WEzQ2yRZnmGdco3j8sH5EkFJU6JcxjwvBfqiTvg7Ka23MbY4MCQXaw1aDLP7E5DLRxPtkr0aItFu59IBsmOyQbJdMTV0ckZc3U5QNVPTdVLrdeUZzS4fwkbmGRBo7TlpBSy4ABdozs5mjmlInw4F_jSreN-3WYuLHZBLfj3t9r56K4AHjwQJTioEwMD7DWsQyyaxIfQXWIu4LhdZo41AqqS1E7DYFy_VtKo1kWmtcgXiPnZBGlmfmlNAIjRbYVKkUy0RwDeW-SHXkQwCKmY5okvYv2yTzSgED6wU_9BHJNElrZaykPvtFsvZUk1ytv-KhdS8RkJl8WTheWYSLEC6c_bvDJdnpj4eDZPA4em6R3Yr_5fhd56Sx-FqaCwQEC9Uu3f4NQSm0VA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCMQF8RTjGSSuFaVJmvWEeGziOaYBErfJSRMuUzvo-P84bZhASJyb9mCn9ufk82eAY5RaxIaLyCaIkVAKI7Sp18ZTTueEd3XHNyc_9NPrF3H7Kl-DpFAVaJXfMbEO1Hlp_Bn5SZakkguVxicusCIGV72zyXvkB0j5i9YwTWMeFpSgTdWChYtufzCcXSkoJRsszHkkpOQ_tEoH9_UhN2U6T43EiqzjmrEWfyJ0nXZ6q7AS8CI7bxy8BnO2WIfFmrdpqg14HNqqbqdiT7ZR8S4LVjr2gG-Fb09kPc9Qq1jNDGDILu147ImnzIty0Fv9hgXOzoO0-Ca89LrPl9dRmJEQIRfJlBKMxTSxMafKxHHFncxjjc4RCkylMWTxVGllHGb8NEcnzGmurOLGGFpB6I9vQasoC7sNLOOEdlyudU5FI_r28ljmJosxQc1tR7bh4JdtRpNGD4OqhziNCde0YffbWKPwJ1Sjmd_acDR7SlvY30tgYcvPyrPMMlpE4GHn3y8cwhL5fHR_07_bheWGDObJXnvQmn582n1CB1N9EPz-BbHHufc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+Separation+of+Magnetic+Fields+Using+a+Cellular+Neural+Network+Approach&rft.jtitle=Pure+and+applied+geophysics&rft.au=Albora%2C+A+M&rft.au=Oezmen%2C+A&rft.au=Ucan%2C+ON&rft.date=2001-09-01&rft.issn=0033-4553&rft.eissn=1420-9136&rft.volume=158&rft.issue=9-10&rft.spage=1797&rft.epage=1818&rft_id=info:doi/10.1007%2FPL00001244&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-4553&client=summon