Residual separation of magnetic fields using a Cellular Neural Network approach
--In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined...
Saved in:
Published in | Pure and applied geophysics Vol. 158; no. 9-10; pp. 1797 - 1818 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
Springer
01.09.2001
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | --In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined by the template matrices A, B and the template vector I. We have optimized weight coefficients of these templates using Recurrent Perceptron Learning Algorithm (RPLA). The advantages of CNN as a real-time stochastic method are that it introduces little distortion to the shape of the original image and that it is not effected significantly by factors such as the overlap of power spectra of residual fields. The proposed method is tested using synthetic examples and the average depth of the buried objects has been estimated by power spectrum analysis. Next the CNN approach is applied to magnetic data over the Golalan chromite mine in Elazig which lies East of Turkey. This area is among the largest and richest chromite masses of the world. We compared the performance of CNN to classical derivative approaches.[PUBLICATION ABSTRACT] |
---|---|
AbstractList | -In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined by the template matrices A, B and the template vector I. We have optimized weight coefficients of these templates using Recurrent Perceptron Learning Algorithm (RPLA). The advantages of CNN as a real-time stochastic method are that it introduces little distortion to the shape of the original image and that it is not effected significantly by factors such as the overlap of power spectra of residual fields. The proposed method is tested using synthetic examples and the average depth of the buried objects has been estimated by power spectrum analysis. Next the CNN approach is applied to magnetic data over the Golalan chromite mine in Elazig which lies East of Turkey. This area is among the largest and richest chromite masses of the world. We compared the performance of CNN to classical derivative approaches. --In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behavior of the CNN is defined by the template matrices A, B and the template vector I. We have optimized weight coefficients of these templates using Recurrent Perceptron Learning Algorithm (RPLA). The advantages of CNN as a real-time stochastic method are that it introduces little distortion to the shape of the original image and that it is not effected significantly by factors such as the overlap of power spectra of residual fields. The proposed method is tested using synthetic examples and the average depth of the buried objects has been estimated by power spectrum analysis. Next the CNN approach is applied to magnetic data over the Golalan chromite mine in Elazig which lies East of Turkey. This area is among the largest and richest chromite masses of the world. We compared the performance of CNN to classical derivative approaches.[PUBLICATION ABSTRACT] |
Author | ALBORA, A. M UCAN, O. N ÖZMEN, A |
Author_xml | – sequence: 1 givenname: A. M surname: ALBORA fullname: ALBORA, A. M organization: Istanbul University, Engineering Faculty Geophysical Department, 34850, Avcilar, Istanbul, Turkey – sequence: 2 givenname: A surname: ÖZMEN fullname: ÖZMEN, A organization: Istanbul University, Engineering Faculty Geophysical Department, 34850, Avcilar, Istanbul, Turkey – sequence: 3 givenname: O. N surname: UCAN fullname: UCAN, O. N organization: Istanbul University, Engineering Faculty Electrical-Electronic Department, 34850, Avcilar, Istanbul, Turkey |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14060397$$DView record in Pascal Francis |
BookMark | eNpdzk1LAzEQBuAgFWyrF39BEAQvq0kmu-kepfgFpRXR8zLNJjV1m6zJLuK_N6An5zKX5515Z2TigzeEnHN2zRlTN88rlocLKY_IlEvBippDNSFTxgAKWZZwQmYp7bNRqqynZPNikmtH7GgyPUYcXPA0WHrAnTeD09Q607WJjsn5HUW6NF03dhjp2owxp9Zm-Arxg2Lfx4D6_ZQcW-ySOfvbc_J2f_e6fCxWm4en5e2qQJBiKBbMYCUMg0UlLCiwZcu2aC0TrCq15spWaqu0xRp4i1Zq3iqjQGudBYca5uTq925--zmaNDQHl3Quh96EMTWc8boqQcAi04t_dB_G6HO7phbZSFWxjC7_ECaNnY3otUtNH90B43fDJcuoVvADbgNryQ |
CODEN | PAGYAV |
CitedBy_id | crossref_primary_10_1080_08123985_2020_1845095 crossref_primary_10_1007_s11004_007_9114_8 crossref_primary_10_1190_1_2187773 crossref_primary_10_3997_1873_0604_2009001 crossref_primary_10_1007_s11001_004_8216_7 crossref_primary_10_2478_s11600_009_0053_2 crossref_primary_10_1007_s00024_018_1889_7 crossref_primary_10_1093_gji_ggab307 |
ContentType | Journal Article |
Copyright | 2002 INIST-CNRS Birkhäuser Verlag Basel, 2001 |
Copyright_xml | – notice: 2002 INIST-CNRS – notice: Birkhäuser Verlag Basel, 2001 |
DBID | IQODW 3V. 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M M2P P5Z P62 PATMY PCBAR PQEST PQQKQ PQUKI PYCSY Q9U |
DOI | 10.1007/PL00001244 |
DatabaseName | Pascal-Francis ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) |
DatabaseTitleList | Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1420-9136 |
EndPage | 1818 |
ExternalDocumentID | 2603548851 14060397 |
Genre | Feature |
GeographicLocations | Middle East Turkey |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 67M 67Z 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDBF ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDUJ AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ATCPS AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HZ~ I-F IHE IJ- IKXTQ IQODW ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAS LK5 LLZTM M2P M4Y M7R MA- MBV N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8R Z8T Z8W ZMTXR ZY4 ~02 ~8M ~EX 7TG 7UA 7XB 8FD 8FK AAJBT ABAKF ABJNI ACAOD ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI C1K F1W H8D H96 HVGLF KL. L.G L7M PQEST PQUKI Q9U AAYZH |
ID | FETCH-LOGICAL-a342t-80ea62e03862f373f5d0baff02065cc17f67b7cfa931daf4c1d7e73ccc0201393 |
IEDL.DBID | BENPR |
ISSN | 0033-4553 |
IngestDate | Fri Oct 25 12:18:16 EDT 2024 Thu Oct 10 20:50:25 EDT 2024 Sun Oct 22 16:04:51 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9-10 |
Keywords | spectra magnetic field oxides maps regional anomalies neural networks residual anomalies spinel depth Asia chromite magnetic susceptibility magnetic anomalies distortion |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a342t-80ea62e03862f373f5d0baff02065cc17f67b7cfa931daf4c1d7e73ccc0201393 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 926534760 |
PQPubID | 54182 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_1019653238 proquest_journals_926534760 pascalfrancis_primary_14060397 |
PublicationCentury | 2000 |
PublicationDate | 2001-09-01 |
PublicationDateYYYYMMDD | 2001-09-01 |
PublicationDate_xml | – month: 09 year: 2001 text: 2001-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Pure and applied geophysics |
PublicationYear | 2001 |
Publisher | Springer Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Nature B.V |
SSID | ssj0017759 |
Score | 1.7436781 |
Snippet | --In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel... -In this paper, a Cellular Neural Network (CNN) has been applied to a magnetic regional/residual anomaly separation problem. CNN is an analog parallel... |
SourceID | proquest pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 1797 |
SubjectTerms | Algorithms Cellular Cellular communication Chromite Earth sciences Earth, ocean, space Exact sciences and technology Geophysics Geophysics: general, magnetic, electric and thermic methods and properties Internal geophysics Magnetic fields Mathematical analysis Metal geology Metallic and non-metallic deposits Neural networks Separation |
Title | Residual separation of magnetic fields using a Cellular Neural Network approach |
URI | https://www.proquest.com/docview/926534760 https://search.proquest.com/docview/1019653238 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7chuCL-BPndETwtdg1TbM-ySarQ9wc04Fv45ImvoxW7fz_vbTdUASfm-bhLtx9l3z3HcA1ChX6moeeCRC9UEr00EROG09alRLeVX3XnDyZRuNF-PAqXmtuTlHTKjcxsQzUaa7dHflNHESChzLyb98_PDc0yj2u1hM0GtAKqFAImtAajqaz-fYZQUpR4V_OvVAI_kOfdPZYXmxTdnN0SCzIIrYaZfEnKpepJjmA_RojskHl1EPYMdkR7JZcTV0cw9PcFGULFXs2lXJ3nrHcsgm-Za4lkSWOlVawkg3AkN2Z1cqRTZkT4qC_phXzmw1qOfETWCSjl7uxV89F8JCHwZqSisEoMD6nasRyya1IfYXWEvKLhNZk5UgqqS3GvJeiDXUvlUZyrTWtIMTHT6GZ5Zk5AxZzQjg2VSqlQhFdS7kvUh37GKDipi_a0P1lm-V7pYFBFYMf-YRl2tDZGGtZn_5iufVVG662X-nYurcIzEz-VThmWUyLCDCc_7tDB_Yq1pdjdV1Ac_35ZS4JBqxVFxr95L4LrUEyHE67teu_AZh4tSs |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gCMEF8SnGYASJa0VpkmY9oWmiDNgGgk3arXLShMvUDrr9f5y2m0BInJvmYEf2c_L8TMg1CMV9zbhnAgCPSwkemNBp40mrUsS7quOak4ejsD_hT1Mxrbk5RU2rXMXEMlCnuXZ35DdREArGZejfzT89NzTKPa7WEzQ2yRZnmGdco3j8sH5EkFJU6JcxjwvBfqiTvg7Ka23MbY4MCQXaw1aDLP7E5DLRxPtkr0aItFu59IBsmOyQbJdMTV0ckZc3U5QNVPTdVLrdeUZzS4fwkbmGRBo7TlpBSy4ABdozs5mjmlInw4F_jSreN-3WYuLHZBLfj3t9r56K4AHjwQJTioEwMD7DWsQyyaxIfQXWIu4LhdZo41AqqS1E7DYFy_VtKo1kWmtcgXiPnZBGlmfmlNAIjRbYVKkUy0RwDeW-SHXkQwCKmY5okvYv2yTzSgED6wU_9BHJNElrZaykPvtFsvZUk1ytv-KhdS8RkJl8WTheWYSLEC6c_bvDJdnpj4eDZPA4em6R3Yr_5fhd56Sx-FqaCwQEC9Uu3f4NQSm0VA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCMQF8RTjGSSuFaVJmvWEeGziOaYBErfJSRMuUzvo-P84bZhASJyb9mCn9ufk82eAY5RaxIaLyCaIkVAKI7Sp18ZTTueEd3XHNyc_9NPrF3H7Kl-DpFAVaJXfMbEO1Hlp_Bn5SZakkguVxicusCIGV72zyXvkB0j5i9YwTWMeFpSgTdWChYtufzCcXSkoJRsszHkkpOQ_tEoH9_UhN2U6T43EiqzjmrEWfyJ0nXZ6q7AS8CI7bxy8BnO2WIfFmrdpqg14HNqqbqdiT7ZR8S4LVjr2gG-Fb09kPc9Qq1jNDGDILu147ImnzIty0Fv9hgXOzoO0-Ca89LrPl9dRmJEQIRfJlBKMxTSxMafKxHHFncxjjc4RCkylMWTxVGllHGb8NEcnzGmurOLGGFpB6I9vQasoC7sNLOOEdlyudU5FI_r28ljmJosxQc1tR7bh4JdtRpNGD4OqhziNCde0YffbWKPwJ1Sjmd_acDR7SlvY30tgYcvPyrPMMlpE4GHn3y8cwhL5fHR_07_bheWGDObJXnvQmn582n1CB1N9EPz-BbHHufc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+Separation+of+Magnetic+Fields+Using+a+Cellular+Neural+Network+Approach&rft.jtitle=Pure+and+applied+geophysics&rft.au=Albora%2C+A+M&rft.au=Oezmen%2C+A&rft.au=Ucan%2C+ON&rft.date=2001-09-01&rft.issn=0033-4553&rft.eissn=1420-9136&rft.volume=158&rft.issue=9-10&rft.spage=1797&rft.epage=1818&rft_id=info:doi/10.1007%2FPL00001244&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-4553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-4553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-4553&client=summon |