Modeling of Tunnel Boring Machine Performance Employing Random Forest Algorithm
Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel engineering communities. The longest railway tunnel with approximately 10 km, the Bahce-Nurdagi tunnel, was projected as twin tubes and TBM excav...
Saved in:
Published in | Geotechnical and geological engineering Vol. 41; no. 7; pp. 4205 - 4231 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0960-3182 1573-1529 |
DOI | 10.1007/s10706-023-02516-3 |
Cover
Loading…
Abstract | Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel engineering communities. The longest railway tunnel with approximately 10 km, the Bahce-Nurdagi tunnel, was projected as twin tubes and TBM excavation. One of these tubes was successfully completed and the other is under construction. In this study, the geological and geotechnical parameters of the tunnel route and basic TBM parameters were used to predict the TBM performance. For the purpose of the study, a data set including 5334 cases was compiled. The analyses were performed in two phases, the first phase was performed employing only geological and geotechnical parameters while the basic TBM parameters were considered in the second phase analyses. Although the ANN and ANN-fuzzy models yielded acceptable results, the results clearly showed that the random forest algorithm was superior among all other methods for the data used. The results also revealed that the basic TBM parameters should be considered with advanced modeling techniques needed for a successful prediction model for TBM performance. |
---|---|
AbstractList | Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel engineering communities. The longest railway tunnel with approximately 10 km, the Bahce-Nurdagi tunnel, was projected as twin tubes and TBM excavation. One of these tubes was successfully completed and the other is under construction. In this study, the geological and geotechnical parameters of the tunnel route and basic TBM parameters were used to predict the TBM performance. For the purpose of the study, a data set including 5334 cases was compiled. The analyses were performed in two phases, the first phase was performed employing only geological and geotechnical parameters while the basic TBM parameters were considered in the second phase analyses. Although the ANN and ANN-fuzzy models yielded acceptable results, the results clearly showed that the random forest algorithm was superior among all other methods for the data used. The results also revealed that the basic TBM parameters should be considered with advanced modeling techniques needed for a successful prediction model for TBM performance. Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel engineering communities. The longest railway tunnel with approximately 10 km, the Bahce-Nurdagi tunnel, was projected as twin tubes and TBM excavation. One of these tubes was successfully completed and the other is under construction. In this study, the geological and geotechnical parameters of the tunnel route and basic TBM parameters were used to predict the TBM performance. For the purpose of the study, a data set including 5334 cases was compiled. The analyses were performed in two phases, the first phase was performed employing only geological and geotechnical parameters while the basic TBM parameters were considered in the second phase analyses. Although the ANN and ANN-fuzzy models yielded acceptable results, the results clearly showed that the random forest algorithm was superior among all other methods for the data used. The results also revealed that the basic TBM parameters should be considered with advanced modeling techniques needed for a successful prediction model for TBM performance. |
Author | Gokceoglu, C. Bal, C. Aladag, C. H. |
Author_xml | – sequence: 1 givenname: C. orcidid: 0000-0003-4762-9933 surname: Gokceoglu fullname: Gokceoglu, C. email: cgokce@hacettepe.edu.tr organization: Geological Engineering Department, Engineering Faculty, Hacettepe University – sequence: 2 givenname: C. orcidid: 0000-0002-7823-2712 surname: Bal fullname: Bal, C. organization: Department of Statistics, Faculty of Science, Mugla Sitki Kocman University – sequence: 3 givenname: C. H. orcidid: 0000-0002-3953-7601 surname: Aladag fullname: Aladag, C. H. organization: Department of Statistics, Faculty of Science, Hacettepe University |
BookMark | eNp9kF1LwzAUhoMouE3_gFcFr6snH0uTyzk2FTYmsvuQZunW0SY16S72722tIHgxyCGQc56Tl2eMrp13FqEHDE8YIHuOGDLgKRDa1RTzlF6hEZ5mNMVTIq_RCCSHlGJBbtE4xiMAEA54hDZrv7NV6faJL5LtyTlbJS8-9A9rbQ6ls8mHDYUPtXbGJou6qfy5735qt_N1svTBxjaZVfsOag_1HbopdBXt_e89QdvlYjt_S1eb1_f5bJVqykibUg2YMU0twbnJOHDLBeSsIDmmnADLJdvJzHCJhZSaUC6MZJk1BSaWdmeCHoe1TfBfpy6BOvpTcN2PighGiCRS0G6KDFMm-BiDLVQTylqHs8Kgem9q8KY6b-rHm-oh8Q8yZavb0rs26LK6jNIBjU1v0Ia_VBeob_uEgpU |
CitedBy_id | crossref_primary_10_1016_j_autcon_2024_105793 crossref_primary_10_1016_j_tust_2024_105978 crossref_primary_10_3390_su16146152 crossref_primary_10_1007_s00603_024_04210_z crossref_primary_10_1007_s10706_023_02731_y |
Cites_doi | 10.1016/j.eswa.2009.02.057 10.1007/s12665-020-09328-1 10.1016/j.scitotenv.2021.151585 10.1007/s00521-020-04993-6 10.1155/2020/8830661 10.1016/j.ejor.2005.03.039 10.1515/eng-2017-0012 10.1016/j.procs.2017.11.212 10.1080/17499518.2019.1674340 10.1016/j.ijrmms.2014.09.012 10.1007/s10064-016-0969-0 10.1016/j.engappai.2009.03.007 10.1007/s41062-019-0234-z 10.2166/nh.2016.149 10.3390/app9183715 10.1016/s0886-7798(00)00055-9 10.1016/j.tust.2016.12.009 10.1016/j.tust.2007.04.011 10.1002/int.22448 10.1016/j.tust.2018.02.012 10.1007/978-3-642-80328-4_13 10.1016/j.enggeo.2020 10.1109/TPAMI.1986.4767778 10.1109/TGE.1977.6498972 10.1186/s40703-021-00142-7 10.1007/s10064-019-01538-7 10.1007/s10706-018-0706-5 10.1016/j.eswa.2008.04.001 10.1109/TIT.1982.1056489 10.1016/j.gr.2022.06.011 10.3846/jcem.2021.14901 10.1007/s10706-020-01183-y 10.5802/crmeca.3 10.1007/s10064-019-01566-3 10.1016/S0169-2070(97)00044-7 10.1016/j.ijrmms.2015.09.019 10.1016/j.gr.2022.03.015 10.1016/j.enggeo.2017.06.014 10.1016/j.heliyon.2018.e00938 10.1016/j.enggeo.2015.12.020 10.1007/s11709-019-0561-3 10.1016/j.jrmge.2019.12.011 10.22237/JMASM/1608553080 10.1016/j.ijrmms.2011.02.013 10.1007/s10706-019-01084-9 10.1007/s40808-018-0432-2 10.32604/cmes.2021.015683 10.1007/s13369-015-2001-6 10.1080/01621459.1951.10500769 10.1007/s10064-018-1349-8 10.1016/S1003-6326(13)62487-5 10.1016/0098-3004(84)90020-7 10.1080/17486020701377140 10.1016/j.tust.2019.103046 10.1016/j.gsf.2020.09.020 10.1016/j.tust.2016.05.009 10.17794/rgn.2020.2.6 10.1007/s12205-019-1460-9 10.1007/s11709-016-0363-9 10.1007/s10706-020-01213-9 10.1016/j.tust.2020.103493 10.1109/ACCESS.2020.3004995 10.3390/w11010088 10.1243/095440605X8298 10.1016/j.undsp.2021.04.003 10.1016/j.dss.2012.12.006 10.1016/j.tust.2004.02.128 10.1016/j.autcon.2018.12.022 10.1016/j.measurement.2019.107244 10.1007/s42452-021-04903-y 10.1007/s12665-021-09737-w 10.3390/infrastructures7110155 10.1016/j.undsp.2019.12.003 10.1016/j.enggeo.2020.105972 10.1016/j.tust.2019.04.014 10.1109/ACCESS.2020.3041032 10.1007/s10706-022-02086-w 10.33271/mining14.02.075 10.1007/s10064-019-01626-8 10.1016/j.jrmge.2019.01.002 10.1680/jgere.21.00028 10.1016/j.asoc.2017.06.030 10.1016/j.physa.2017.07.017 10.1007/s10706-017-0420-8 10.1109/TIP.2018.2834830 10.3390/su12031166 10.1007/s00366-019-00701-8 10.1061/(ASCE)GM.1943-5622.0000817 10.1007/s10706-016-0111-x 10.1109/ICDAR.1995.59899 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7TN 7UA 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s10706-023-02516-3 |
DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Geology |
EISSN | 1573-1529 |
EndPage | 4231 |
ExternalDocumentID | 10_1007_s10706_023_02516_3 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LK5 LLZTM M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P0- P19 PCBAR PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z85 Z86 ZMTXR ~02 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TN 7UA ABRTQ C1K DWQXO F1W H96 L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-a342t-3a0144a3e21bc7606e680b4f2b136204b94d97c691899a2368c947ecf12e32e3 |
IEDL.DBID | U2A |
ISSN | 0960-3182 |
IngestDate | Sat Aug 23 14:43:51 EDT 2025 Tue Jul 01 01:44:25 EDT 2025 Thu Apr 24 23:07:25 EDT 2025 Fri Feb 21 02:42:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Random forest Tunnel Rate of penetration TBM Geological and geotechnical parameters |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a342t-3a0144a3e21bc7606e680b4f2b136204b94d97c691899a2368c947ecf12e32e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3953-7601 0000-0003-4762-9933 0000-0002-7823-2712 |
PQID | 2842292983 |
PQPubID | 2043601 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2842292983 crossref_primary_10_1007_s10706_023_02516_3 crossref_citationtrail_10_1007_s10706_023_02516_3 springer_journals_10_1007_s10706_023_02516_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230900 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Geotechnical and geological engineering |
PublicationTitleAbbrev | Geotech Geol Eng |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Cannon, Dave, Bezdek (CR19) 1986; 2 Koopialipoor, Tootoonchi, Jahed Armaghani, Mohamad, Hedayat (CR42) 2019; 78 Yolcu, Egrioglu, Aladag (CR88) 2013; 54 Yang, Yagiz, Liu, Laouafa (CR87) 2022; 7 Gokceoglu (CR27) 2021; 4 Tavus, Kocaman, Gokceoglu (CR75) 2021 Aygar, Gokceoglu (CR11) 2020; 12 CR31 Liu, Chen, Zhang, Wang (CR49) 2021; 27 Aygar, Gokceoglu (CR12) 2021; 80 Jahed Armaghani, Koopialipoor, Marto, Yagiz (CR34) 2019; 11 Ohadi, Sun, Esmaieli, Consens (CR61) 2020 Liu, Wang, Guan, Li, Xua, Guo, Wang (CR48) 2019; 91 Mingoti, Lima (CR55) 2006; 174 Massey (CR53) 1951; 46 Wu, Hong, Wang, Zhang, Pijush, Zhang (CR81) 2022 Minh, Katushin, Antonov, Veinthal (CR56) 2017; 7 Zhou, Qiu, Jahed Armaghani, Zhang, Lie, Zhu, Tarinejad (CR100) 2020 Adoko, Yagiz (CR3) 2019; 37 Hartigan, Wong (CR30) 1979; 28 Gokceoglu, Aygar, Nefeslioglu, Karahan, Gullu (CR28) 2022; 7 Salimi, Faradonbeh, Monjezi, Moormann (CR68) 2018; 77 Adoko, Gokceoglu, Yagiz (CR4) 2017; 226 Bezdek, Ehrlich, Full (CR16) 1984; 10 Fattahi, Moradi (CR25) 2017; 35 Zhang, Yuan, Guo, Wang (CR91) 2016; 41 Afradi, Ebrahimabadi, Hallajian (CR5) 2020; 14 Pham, Dimov, Nguyen (CR63) 2005; 219 Zhang, Liu, Tan (CR92) 2019; 100 Alvarez Grima, Bruines, Verhoef (CR7) 2000; 15 Sun, Xu, Wen, Wang (CR73) 2021; 281 Faramarzi, Kheradmandian, Azhari (CR24) 2020; 38 Kodinariya, Makwana (CR40) 2013; 1 Lloyd (CR50) 1982; 28 Niu, Feng, Feng, Min, Cheng, Zhou (CR59) 2019; 11 Chen, Zhang, Wu, Wang, Zhong (CR20) 2019; 13 Yagiz (CR83) 2008; 23 Aladag, Basaran, Egrioglu, Yolcu, Uslu (CR6) 2009; 36 Mishra, Ramteke, Sen, Verma (CR57) 2018; 36 Luo, Yuan, Jin, Lu, Chen (CR51) 2021; 128 Aygar, Gokceoglu (CR13) 2021; 12 Bal, Demir (CR14) 2020; 19 CR66 Zhou, Bejarbaneh, Jahed Armaghani, Tahir (CR101) 2020; 79 Juang, Carranza-Torres, Crosta, Dong, Gokceoglu, Jibson, Shakoor, Tang, van Asch, Wasowski (CR36) 2016; 201 Zhou, Xiuzhi, Du, Qiu, Li, Mitri (CR99) 2017; 17 Komu, Guney, Kilickaya, Gokceoglu (CR41) 2020; 38 Shreyas, Dey (CR72) 2019; 4 Xu, Zhou, Asteris, Jahed Armaghani, Tahir (CR82) 2019; 9 Matin, Farahzadi, Makaremi, Chelgani, Sattari (CR54) 2018; 70 Wang, Wan, Zhao (CR77) 2020; 348 We, Hong, Wang, Zhang, Pijush, Zhang (CR79) 2022 Li, Sha, Wang (CR46) 2017; 48 Yagiz, Karahan (CR84) 2011; 48 Wang, Lu, Wei, Wei, Behbahani, Iseley (CR76) 2020; 8 CR71 Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (CR2) 2018; 4 Arbabsiar, Farsangi, Mansouri (CR8) 2020; 624 Jahed Armaghani, Mohamad, Narayanasamy, Narita, Yagiz (CR33) 2017; 63 Priyam, Abhijeeta, Rathee, Srivastava (CR64) 2013; 3 Li (CR45) 2013; 50 Kocaman, Tavus, Nefeslioglu, Karakas, Gokceoglu (CR39) 2020; 2020 Koopialipoor, Nikouei, Marto, Fahimifar, Jahed Armaghani, Mohamad (CR43) 2019; 78 Noori, Mikaeil, Mokhtarian, Haghshenas, Foroughi (CR60) 2020; 38 Zhang, Eddy-Patuwo, Hu (CR90) 1998; 14 Zhang, Wu, Li, Wang, Samui (CR94) 2021; 15 Dong, Li, Peng (CR21) 2013; 23 Khademi, Akbari, Jamal, Nikoo (CR38) 2017; 11 Brown (CR17) 1998 Zhang, Hu, Liu, Tan (CR93) 2020; 103 Armetti, Migliazza, Ferrari, Berti, Padovese (CR9) 2018; 77 Guyon (CR29) 1997 Hu, Wu, Zhang, Zheng, Liu, He, Liu, Guo, Zhang (CR32) 2021; 283 Salimi, Rostami, Moormann, Delisio (CR67) 2016; 58 Li, Liang, Ai, Tang (CR47) 2021; 36 Can, Baskose, Gokceoglu (CR18) 2022; 9 Swain, Hauska (CR74) 1977; 15 Paul, Mukherjee, Das, Gangopadhyay, Chintha, Kundu (CR62) 2018; 27 Wei, Wang, Wang, Peng, Song (CR80) 2020; 33 Salimi, Rostami, Moormann (CR69) 2019; 92 Zhang, Li, Wu, Li, Liu, Liu (CR95) 2021; 6 Samaei, Ranjbarnia, Nourani, Naghadehi (CR70) 2020; 152 Aygar (CR10) 2020; 12 Jamshidi (CR35) 2018; 4 Yagiz, Gokceoglu, Sezer, Iplikci (CR86) 2009; 22 Myles, Feudale, Liu, Woody, Brown (CR58) 2004; 18 Zhang, Gu, Tang, Yin, Liu, Zhang (CR96) 2022; 109 Wang, Wie, Shahrour (CR78) 2020; 8 Mahdevari, Shahriar, Yagiz, Akbarpour Shirazi (CR52) 2014; 72 Rezaee, Jozmaleki, Valipour (CR65) 2018; 489 Zhao, Gong, Zhang, Zhao (CR97) 2007; 2 Zhao, Ge, Chen (CR98) 2021; 80 Egrioglu, Aladag, Yolcu, Uslu, Basaran (CR23) 2009; 36 CR26 Jung, Chung, Kwon, Lee (CR37) 2019; 23 Abba, Hadi, Abdullahi (CR1) 2017; 120 Yagiz, Karahan (CR85) 2015; 80 Koopialipoor, Fahimifar, Ghaleini, Momenzadeh, Jahed Armaghani (CR44) 2020; 36 Yu, Wilamowski (CR89) 2018 Benardos, Kaliampakos (CR15) 2004; 19 Eftekhari, Eftekhari (CR22) 2022; 40 C Gokceoglu (2516_CR28) 2022; 7 AG Benardos (2516_CR15) 2004; 19 TM Kodinariya (2516_CR40) 2013; 1 AC Adoko (2516_CR3) 2019; 37 SS Matin (2516_CR54) 2018; 70 F Khademi (2516_CR38) 2017; 11 X Li (2516_CR46) 2017; 48 J Yang (2516_CR87) 2022; 7 JA Hartigan (2516_CR30) 1979; 28 K Zhang (2516_CR91) 2016; 41 2516_CR66 S Kocaman (2516_CR39) 2020; 2020 S Yagiz (2516_CR85) 2015; 80 RL Cannon (2516_CR19) 1986; 2 J Zhou (2516_CR99) 2017; 17 C Gokceoglu (2516_CR27) 2021; 4 E Egrioglu (2516_CR23) 2009; 36 MP Komu (2516_CR41) 2020; 38 B Tavus (2516_CR75) 2021 C We (2516_CR79) 2022 Y Liu (2516_CR49) 2021; 27 EB Aygar (2516_CR10) 2020; 12 L Li (2516_CR47) 2021; 36 J Zhou (2516_CR100) 2020 2516_CR71 C Bal (2516_CR14) 2020; 19 S Yagiz (2516_CR84) 2011; 48 M Koopialipoor (2516_CR43) 2019; 78 JC Bezdek (2516_CR16) 1984; 10 S Lloyd (2516_CR50) 1982; 28 L-J Dong (2516_CR21) 2013; 23 H Yu (2516_CR89) 2018 J Zhou (2516_CR101) 2020; 79 J-J Jung (2516_CR37) 2019; 23 W Luo (2516_CR51) 2021; 128 M Samaei (2516_CR70) 2020; 152 A Salimi (2516_CR69) 2019; 92 S Yagiz (2516_CR86) 2009; 22 F Faramarzi (2516_CR24) 2020; 38 H Xu (2516_CR82) 2019; 9 Q Zhang (2516_CR93) 2020; 103 WG Zhang (2516_CR95) 2021; 6 PH Swain (2516_CR74) 1977; 15 M Wang (2516_CR77) 2020; 348 XL Hu (2516_CR32) 2021; 283 W Zhang (2516_CR94) 2021; 15 G Armetti (2516_CR9) 2018; 77 SA Mingoti (2516_CR55) 2006; 174 AC Adoko (2516_CR4) 2017; 226 M Koopialipoor (2516_CR42) 2019; 78 Q Wang (2516_CR78) 2020; 8 D Jahed Armaghani (2516_CR33) 2017; 63 MJ Rezaee (2516_CR65) 2018; 489 M Eftekhari (2516_CR22) 2022; 40 X Li (2516_CR45) 2013; 50 CH Juang (2516_CR36) 2016; 201 SK Shreyas (2516_CR72) 2019; 4 AJ Myles (2516_CR58) 2004; 18 S Mahdevari (2516_CR52) 2014; 72 2516_CR26 AK Mishra (2516_CR57) 2018; 36 B Liu (2516_CR48) 2019; 91 CE Brown (2516_CR17) 1998 W Zhang (2516_CR96) 2022; 109 D Jahed Armaghani (2516_CR34) 2019; 11 M Koopialipoor (2516_CR44) 2020; 36 Q Zhang (2516_CR92) 2019; 100 A Afradi (2516_CR5) 2020; 14 A Jamshidi (2516_CR35) 2018; 4 U Yolcu (2516_CR88) 2013; 54 C Wu (2516_CR81) 2022 2516_CR31 AM Noori (2516_CR60) 2020; 38 M Alvarez Grima (2516_CR7) 2000; 15 EB Aygar (2516_CR13) 2021; 12 A Paul (2516_CR62) 2018; 27 DL Sun (2516_CR73) 2021; 281 BB Zhao (2516_CR98) 2021; 80 EB Aygar (2516_CR12) 2021; 80 DT Pham (2516_CR63) 2005; 219 X Wang (2516_CR76) 2020; 8 M Wei (2516_CR80) 2020; 33 A Salimi (2516_CR68) 2018; 77 A Salimi (2516_CR67) 2016; 58 VT Minh (2516_CR56) 2017; 7 B Ohadi (2516_CR61) 2020 H Fattahi (2516_CR25) 2017; 35 OI Abiodun (2516_CR2) 2018; 4 G Zhang (2516_CR90) 1998; 14 CH Aladag (2516_CR6) 2009; 36 WJ Niu (2516_CR59) 2019; 11 EB Aygar (2516_CR11) 2020; 12 FJ Massey Jr (2516_CR53) 1951; 46 Z Zhao (2516_CR97) 2007; 2 RP Chen (2516_CR20) 2019; 13 I Guyon (2516_CR29) 1997 S Yagiz (2516_CR83) 2008; 23 MB Arbabsiar (2516_CR8) 2020; 624 A Can (2516_CR18) 2022; 9 SI Abba (2516_CR1) 2017; 120 A Priyam (2516_CR64) 2013; 3 |
References_xml | – volume: 36 start-page: 10589 issue: 7 year: 2009 end-page: 10594 ident: CR23 article-title: A new approach based on artificial neural networks for high-order multivariate fuzzy time series publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.02.057 – volume: 28 start-page: 100 issue: 1 year: 1979 end-page: 108 ident: CR30 article-title: Algorithm AS 136: A k-means clustering algorithm publication-title: J R Stat Soc Ser C (appl Stat) – volume: 80 start-page: 37 issue: 1 year: 2021 ident: CR12 article-title: A special support design for a large-span tunnel crossing an active fault (T9 Tunnel, Ankara-Sivas high-speed railway project, Turkey) publication-title: Environ Earth Sci doi: 10.1007/s12665-020-09328-1 – year: 2021 ident: CR75 article-title: Flood damage assessment with Sentinel-1 and Sentinel-2 data after Sardoba dam break with GLCM features and random forest method publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.151585 – volume: 33 start-page: 603 year: 2020 end-page: 611 ident: CR80 article-title: Prediction of TBM penetration rate based on Monte Carlo-BP neural network publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04993-6 – volume: 2020 start-page: 8830661 year: 2020 ident: CR39 article-title: Evaluation of floods and landslides triggered by a meteorological catastrophe (Ordu, Turkey, August 2018) Using optical and radar data publication-title: Geofluids doi: 10.1155/2020/8830661 – volume: 174 start-page: 1742 issue: 3 year: 2006 end-page: 1759 ident: CR55 article-title: Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2005.03.039 – volume: 7 start-page: 60 year: 2017 end-page: 68 ident: CR56 article-title: Regression models and fuzzy logic prediction of TBM penetration rate publication-title: Open Eng doi: 10.1515/eng-2017-0012 – volume: 120 start-page: 75 year: 2017 end-page: 82 ident: CR1 article-title: River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.11.212 – volume: 15 start-page: 27 issue: 1 year: 2021 end-page: 40 ident: CR94 article-title: Assessment of pile drivability using random forest regression and multivariate adaptive regression splines publication-title: GEORISK doi: 10.1080/17499518.2019.1674340 – volume: 72 start-page: 214 year: 2014 end-page: 229 ident: CR52 article-title: A support vector regression model for predicting tunnel boring machine penetration rates publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.09.012 – volume: 77 start-page: 429 issue: 2018 year: 2018 end-page: 440 ident: CR68 article-title: TBM performance estimation using a classification and regression tree (CART) technique publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-016-0969-0 – volume: 22 start-page: 808 year: 2009 end-page: 814 ident: CR86 article-title: Application of two non-linear prediction tools to the estimation of tunnel boring machine performance publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2009.03.007 – volume: 4 start-page: 46 year: 2019 ident: CR72 article-title: Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects publication-title: Innov Infrastruct Solut doi: 10.1007/s41062-019-0234-z – ident: CR71 – volume: 48 start-page: 1214 issue: 5 year: 2017 end-page: 1225 ident: CR46 article-title: A comparative study of multiple linear regression, artificial neural network and support vector machine for the prediction of dissolved oxygen publication-title: Hydrol Res doi: 10.2166/nh.2016.149 – volume: 9 start-page: 3715 year: 2019 ident: CR82 article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate publication-title: Appl Sci doi: 10.3390/app9183715 – volume: 15 start-page: 259 year: 2000 end-page: 269 ident: CR7 article-title: Modeling tunnel boring machine performance by neuro-fuzzy methods publication-title: Tunn Undergr Space Technol doi: 10.1016/s0886-7798(00)00055-9 – volume: 18 start-page: 275 issue: 6 year: 2004 end-page: 285 ident: CR58 article-title: An introduction to decision tree modeling publication-title: J Chemometr A J Chemometr Soc – volume: 63 start-page: 29 year: 2017 end-page: 43 ident: CR33 article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2016.12.009 – volume: 23 start-page: 326 year: 2008 end-page: 339 ident: CR83 article-title: Utilizing rock mass properties for predicting TBM performance in hard rock condition publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2007.04.011 – volume: 36 start-page: 4016 issue: 8 year: 2021 end-page: 4032 ident: CR47 article-title: An improved random forest algorithm and its application to wind pressure prediction publication-title: Int J Intell Syst doi: 10.1002/int.22448 – volume: 77 start-page: 115 year: 2018 end-page: 126 ident: CR9 article-title: Geological and mechanical rock mass conditions for TBM performance prediction. the case of “La Maddalena” exploratory tunnel, Chiomonte (Italy) publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.02.012 – start-page: 155 year: 1998 end-page: 157 ident: CR17 article-title: Coefficient of Variation publication-title: Applied multivariate statistics in geohydrology and related sciences doi: 10.1007/978-3-642-80328-4_13 – volume: 283 start-page: 105975 year: 2021 ident: CR32 article-title: Landslide displacement prediction using kinematics-based random forests method: a case study in Jinping Reservoir Area China publication-title: Eng Geol doi: 10.1016/j.enggeo.2020 – volume: 2 start-page: 248 year: 1986 end-page: 255 ident: CR19 article-title: Efficient implementation of the fuzzy c-means clustering algorithms publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1986.4767778 – volume: 15 start-page: 142 issue: 3 year: 1977 end-page: 147 ident: CR74 article-title: The decision tree classifier: design and potential publication-title: IEEE Trans Geosci Electron doi: 10.1109/TGE.1977.6498972 – volume: 12 start-page: 9 issue: 1 year: 2021 ident: CR13 article-title: Analytical solutions and 3D numerical analyses of a shallow tunnel excavated in weak ground: a case from Turkey publication-title: Int J Geoeng doi: 10.1186/s40703-021-00142-7 – volume: 50 start-page: 1190 issue: 4 year: 2013 end-page: 1197 ident: CR45 article-title: Using random forest for classification and regression publication-title: Chin J Appl Entomol – volume: 78 start-page: 6347 year: 2019 end-page: 6360 ident: CR42 article-title: Application of deep neural networks in predicting the penetration rate of tunnel boring machines publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-019-01538-7 – ident: CR66 – volume: 37 start-page: 1533 year: 2019 end-page: 1553 ident: CR3 article-title: Fuzzy inference system-based for TBM field penetration index estimation in rock mass publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0706-5 – volume: 36 start-page: 4228 issue: 3 year: 2009 end-page: 4231 ident: CR6 article-title: Forecasting in high order fuzzy times series by using neural networks to define fuzzy relations publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.04.001 – volume: 28 start-page: 129 issue: 2 year: 1982 end-page: 137 ident: CR50 article-title: Least squares quantization in PCM publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 – year: 2022 ident: CR79 article-title: Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network publication-title: Gondwana Res doi: 10.1016/j.gr.2022.06.011 – year: 1997 ident: CR29 publication-title: A scaling law for the validation-set training-set size ratio – volume: 27 start-page: 539552 issue: 7 year: 2021 ident: CR49 article-title: Risk prediction and diagnosis of water seepage in operational shield tunnels based on random forest publication-title: J Civ Eng Manag doi: 10.3846/jcem.2021.14901 – volume: 1 start-page: 90 issue: 6 year: 2013 end-page: 95 ident: CR40 article-title: Review on determining number of cluster in K-means clustering publication-title: Int J Adv Res Comput Sci Manage Stud – volume: 38 start-page: 2745 year: 2020 end-page: 2759 ident: CR24 article-title: Evaluation and optimization of the effective parameters on the shield TBM performance: torque and thrust—using discrete element method (DEM) publication-title: Geotech Geol Eng doi: 10.1007/s10706-020-01183-y – volume: 348 start-page: 3 issue: 1 year: 2020 end-page: 32 ident: CR77 article-title: Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model publication-title: Comptes Rendus Mec doi: 10.5802/crmeca.3 – year: 2020 ident: CR61 article-title: Predicting blast-induced outcomes using random forest models of multi-year blasting data from an open pit mine publication-title: Bull Eng Geol Env doi: 10.1007/s10064-019-01566-3 – volume: 14 start-page: 35 issue: 1 year: 1998 end-page: 62 ident: CR90 article-title: Forecasting with artificial neural networks publication-title: Int J Forecast doi: 10.1016/S0169-2070(97)00044-7 – volume: 80 start-page: 308 year: 2015 end-page: 315 ident: CR85 article-title: Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2015.09.019 – volume: 109 start-page: 1 year: 2022 end-page: 17 ident: CR96 article-title: Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: comprehensive review and future challenge publication-title: Gondwana Res doi: 10.1016/j.gr.2022.03.015 – volume: 226 start-page: 245 year: 2017 end-page: 256 ident: CR4 article-title: Bayesian prediction of TBM penetration rate in rock mass publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.06.014 – volume: 4 start-page: 00938 issue: 11 year: 2018 ident: CR2 article-title: State-of-the-art in artificial neural network applications: a survey publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – volume: 201 start-page: 67 year: 2016 end-page: 70 ident: CR36 article-title: Engineering geology—a fifty year perspective publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.12.020 – volume: 13 start-page: 1363 issue: 6 year: 2019 end-page: 1378 ident: CR20 article-title: Prediction of shield tunneling-induced ground settlement using machine learning techniques publication-title: Front Struct Civ Eng doi: 10.1007/s11709-019-0561-3 – volume: 12 start-page: 541 issue: 3 year: 2020 end-page: 556 ident: CR10 article-title: Evaluation of new Austrian tunnelling method applied to Bolu tunnel's weak rocks publication-title: J Rock Mech Geotechn Eng doi: 10.1016/j.jrmge.2019.12.011 – volume: 19 start-page: 1 issue: 1 year: 2020 end-page: 27 ident: CR14 article-title: JMASM 55: MATLAB algorithms and source codes of ‘cbnet’ function for univariate time series modeling with neural networks (MATLAB) publication-title: J Mod Appl Stat Methods doi: 10.22237/JMASM/1608553080 – volume: 48 start-page: 427 year: 2011 end-page: 433 ident: CR84 article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2011.02.013 – volume: 38 start-page: 1237 year: 2020 end-page: 1254 ident: CR41 article-title: Using 3D numerical analysis for the assessment of tunnel–landslide relationship: Bahce-Nurdag tunnel (South of Turkey) publication-title: Geotech Geol Eng doi: 10.1007/s10706-019-01084-9 – volume: 4 start-page: 383 year: 2018 end-page: 394 ident: CR35 article-title: Prediction of TBM penetration rate from brittleness indexes using multiple regression analysis publication-title: Model Earth Syst Environ doi: 10.1007/s40808-018-0432-2 – volume: 128 start-page: 109 issue: 1 year: 2021 end-page: 127 ident: CR51 article-title: Optimal Control of Slurry Pressure during Shield Tunnelling Based on Random Forest and Particle Swarm Optimization publication-title: CMES Comput Model Eng Sci doi: 10.32604/cmes.2021.015683 – volume: 41 start-page: 3451 issue: 9 year: 2016 end-page: 3461 ident: CR91 article-title: A novel neural network approach to transformer fault diagnosis based on momentum-embedded BP neural network optimized by genetic algorithm and fuzzy c-means publication-title: Arab J Sci Eng doi: 10.1007/s13369-015-2001-6 – volume: 46 start-page: 68 issue: 253 year: 1951 end-page: 78 ident: CR53 article-title: The Kolmogorov-Smirnov test for goodness of fit publication-title: J Am Stat Assoc doi: 10.1080/01621459.1951.10500769 – volume: 78 start-page: 3799 year: 2019 end-page: 3813 ident: CR43 article-title: Predicting tunnel boring machine performance through a new model based on the group method of data handling publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1349-8 – volume: 23 start-page: 472 issue: 2 year: 2013 end-page: 477 ident: CR21 article-title: Prediction of rockburst classification using random forest publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(13)62487-5 – volume: 10 start-page: 191 issue: 2 year: 1984 end-page: 203 ident: CR16 article-title: FCM: the fuzzy c-means clustering algorithm publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume: 2 start-page: 123 issue: 2 year: 2007 end-page: 128 ident: CR97 article-title: Prediction model of tunnel boring machine performance by ensemble neural networks publication-title: Geomech Geoeng Int J doi: 10.1080/17486020701377140 – volume: 92 start-page: 103046 year: 2019 ident: CR69 article-title: Application of rock mass classification systems for performance estimation of rock TBMs using regression tree and artificial intelligence algorithms publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.103046 – year: 2020 ident: CR100 article-title: Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques publication-title: Geosci Front doi: 10.1016/j.gsf.2020.09.020 – volume: 58 start-page: 236 year: 2016 end-page: 246 ident: CR67 article-title: Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2016.05.009 – volume: 624 start-page: 1 year: 2020 ident: CR8 article-title: A new model for predicting the advance rate of a tunnel boring machine (TBM) in hard rock conditions publication-title: Min Geol Pet Eng Bull UDC doi: 10.17794/rgn.2020.2.6 – volume: 23 start-page: 3200 issue: 7 year: 2019 end-page: 3206 ident: CR37 article-title: An ANN to predict ground condition ahead of tunnel face using TBM operational data publication-title: KSCE J Civ Eng doi: 10.1007/s12205-019-1460-9 – volume: 11 start-page: 90 issue: 1 year: 2017 end-page: 99 ident: CR38 article-title: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete publication-title: Front Struct Civ Eng doi: 10.1007/s11709-016-0363-9 – volume: 38 start-page: 3125 year: 2020 end-page: 3143 ident: CR60 article-title: Feasibility of Intelligent models for prediction of utilization factor of TBM publication-title: Geotech Geol Eng doi: 10.1007/s10706-020-01213-9 – volume: 103 start-page: 103493 year: 2020 ident: CR93 article-title: TBM performance prediction with Bayesian optimization and automated machine learning publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103493 – year: 2022 ident: CR81 article-title: Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network publication-title: Gondwana Res doi: 10.1016/j.gr.2022.06.011 – volume: 8 start-page: 119527 year: 2020 end-page: 119543 ident: CR76 article-title: Application of artificial neural network in tunnel engineering: a systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004995 – volume: 11 start-page: 88 issue: 1 year: 2019 ident: CR59 article-title: Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir publication-title: Water doi: 10.3390/w11010088 – volume: 219 start-page: 103 issue: 1 year: 2005 end-page: 119 ident: CR63 article-title: Selection of K in K-means clustering publication-title: Proc Inst Mech Eng C J Mech Eng Sci doi: 10.1243/095440605X8298 – volume: 7 start-page: 37 year: 2022 end-page: 49 ident: CR87 article-title: Comprehensive evaluation of machine learning algorithms applied to TBM performance prediction publication-title: Undergr Space doi: 10.1016/j.undsp.2021.04.003 – ident: CR26 – volume: 54 start-page: 1340 issue: 3 year: 2013 end-page: 1347 ident: CR88 article-title: A new linear & nonlinear artificial neural network model for time series forecasting publication-title: Decis Support Syst doi: 10.1016/j.dss.2012.12.006 – start-page: 12 year: 2018 end-page: 21 ident: CR89 article-title: Levenberg–marquardt training publication-title: Intelligent systems – volume: 19 start-page: 597 year: 2004 end-page: 605 ident: CR15 article-title: Modelling TBM performance with artificial neural networks publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2004.02.128 – volume: 100 start-page: 73 year: 2019 end-page: 83 ident: CR92 article-title: Prediction of geological conditions for a tunnel boring machine using big operational data publication-title: Autom Constr doi: 10.1016/j.autcon.2018.12.022 – volume: 152 start-page: 107244 year: 2020 ident: CR70 article-title: Performance prediction of tunnel boring machine through developing high accuracy equations: a case study in adverse geological condition publication-title: Measurement doi: 10.1016/j.measurement.2019.107244 – volume: 4 start-page: 19 year: 2021 ident: CR27 article-title: Assessment of rate of penetration of a tunnel boring machine in the longest railway tunnel of Turkey publication-title: SN Appl Sci doi: 10.1007/s42452-021-04903-y – volume: 80 start-page: 441 issue: 12 year: 2021 ident: CR98 article-title: Landslide susceptibility assessment for a transmission line in Gansu Province, China by using a hybrid approach of fractal theory, information value, and random forest models publication-title: Environ Earth Sci doi: 10.1007/s12665-021-09737-w – volume: 7 start-page: 155 issue: 11 year: 2022 ident: CR28 article-title: A geotechnical perspective on a complex geological environment in a high-speed railway tunnel excavation (a case study from Türkiye) publication-title: Infrastructures doi: 10.3390/infrastructures7110155 – volume: 6 start-page: 353 issue: 4 year: 2021 end-page: 363 ident: CR95 article-title: Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling publication-title: Undergr Space doi: 10.1016/j.undsp.2019.12.003 – volume: 281 start-page: 105972 year: 2021 ident: CR73 article-title: Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest publication-title: Eng Geol doi: 10.1016/j.enggeo.2020.105972 – volume: 91 start-page: 102958 year: 2019 ident: CR48 article-title: Improved support vector regression models for predicting rock mass parameters using tunnel boring machine driving data publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.04.014 – volume: 8 start-page: 215310 year: 2020 end-page: 215326 ident: CR78 article-title: Deep learning model for shield tunneling advance rate prediction in mixed ground condition considering past operations publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041032 – volume: 40 start-page: 3191 year: 2022 end-page: 3209 ident: CR22 article-title: A predictive model for estimating the TBM penetration rate based on hybrid ICA-ANN and DEA-AHP algorithms publication-title: Geotech Geol Eng doi: 10.1007/s10706-022-02086-w – volume: 14 start-page: 75 issue: 2 year: 2020 end-page: 84 ident: CR5 article-title: Prediction of tunnel boring machine penetration rate using ant colony optimization, bee colony optimization and the particle swarm optimization, case study: sabzkooh water conveyance tunnel publication-title: Min Miner Depos doi: 10.33271/mining14.02.075 – volume: 79 start-page: 2069 year: 2020 end-page: 2084 ident: CR101 article-title: Predictioning of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-019-01626-8 – volume: 11 start-page: 779 year: 2019 end-page: 789 ident: CR34 article-title: Application of several optimization techniques for estimating TBM advance rate in granitic rocks publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2019.01.002 – volume: 9 start-page: 116 issue: 2 year: 2022 end-page: 128 ident: CR18 article-title: Stability assessments of a triple-tunnel portal with numerial analysis (South of Turkey) publication-title: Geotech Res doi: 10.1680/jgere.21.00028 – ident: CR31 – volume: 70 start-page: 980 year: 2018 end-page: 987 ident: CR54 article-title: Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.030 – volume: 489 start-page: 78 year: 2018 end-page: 93 ident: CR65 article-title: Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange publication-title: Phys A doi: 10.1016/j.physa.2017.07.017 – volume: 36 start-page: 1647 issue: 3 year: 2018 end-page: 1664 ident: CR57 article-title: Random forest tree based approach for blast design in surface mine publication-title: Geotech Geol Eng doi: 10.1007/s10706-017-0420-8 – volume: 3 start-page: 334 issue: 2 year: 2013 end-page: 337 ident: CR64 article-title: Comparative analysis of decision tree classification algorithms publication-title: Int J Current Eng Technol – volume: 27 start-page: 4012 issue: 8 year: 2018 end-page: 4024 ident: CR62 article-title: Improved random forest for classification publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2834830 – volume: 12 start-page: 1166 issue: 3 year: 2020 ident: CR11 article-title: Problems encountered during a railway tunnel excavation in squeezing and swelling materials and possible engineering measures: a case study from Turkey publication-title: Sustainability doi: 10.3390/su12031166 – volume: 36 start-page: 345 year: 2020 end-page: 357 ident: CR44 article-title: Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance publication-title: Eng Comput doi: 10.1007/s00366-019-00701-8 – volume: 17 start-page: 04016129 issue: 6 year: 2017 ident: CR99 article-title: Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0000817 – volume: 35 start-page: 365 year: 2017 end-page: 376 ident: CR25 article-title: Risk assessment and estimation of TBM penetration rate using RES-based model publication-title: Geotech Geol Eng doi: 10.1007/s10706-016-0111-x – volume: 201 start-page: 67 year: 2016 ident: 2516_CR36 publication-title: Eng Geol doi: 10.1016/j.enggeo.2015.12.020 – volume: 7 start-page: 37 year: 2022 ident: 2516_CR87 publication-title: Undergr Space doi: 10.1016/j.undsp.2021.04.003 – volume: 91 start-page: 102958 year: 2019 ident: 2516_CR48 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.04.014 – volume: 4 start-page: 46 year: 2019 ident: 2516_CR72 publication-title: Innov Infrastruct Solut doi: 10.1007/s41062-019-0234-z – volume: 54 start-page: 1340 issue: 3 year: 2013 ident: 2516_CR88 publication-title: Decis Support Syst doi: 10.1016/j.dss.2012.12.006 – volume: 281 start-page: 105972 year: 2021 ident: 2516_CR73 publication-title: Eng Geol doi: 10.1016/j.enggeo.2020.105972 – volume: 48 start-page: 427 year: 2011 ident: 2516_CR84 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2011.02.013 – volume: 36 start-page: 4016 issue: 8 year: 2021 ident: 2516_CR47 publication-title: Int J Intell Syst doi: 10.1002/int.22448 – year: 2020 ident: 2516_CR100 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.09.020 – volume: 22 start-page: 808 year: 2009 ident: 2516_CR86 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2009.03.007 – volume: 38 start-page: 3125 year: 2020 ident: 2516_CR60 publication-title: Geotech Geol Eng doi: 10.1007/s10706-020-01213-9 – volume: 41 start-page: 3451 issue: 9 year: 2016 ident: 2516_CR91 publication-title: Arab J Sci Eng doi: 10.1007/s13369-015-2001-6 – volume: 36 start-page: 4228 issue: 3 year: 2009 ident: 2516_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.04.001 – volume: 23 start-page: 3200 issue: 7 year: 2019 ident: 2516_CR37 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-019-1460-9 – volume: 100 start-page: 73 year: 2019 ident: 2516_CR92 publication-title: Autom Constr doi: 10.1016/j.autcon.2018.12.022 – year: 2021 ident: 2516_CR75 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.151585 – volume: 10 start-page: 191 issue: 2 year: 1984 ident: 2516_CR16 publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume: 7 start-page: 155 issue: 11 year: 2022 ident: 2516_CR28 publication-title: Infrastructures doi: 10.3390/infrastructures7110155 – volume: 72 start-page: 214 year: 2014 ident: 2516_CR52 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.09.012 – volume: 50 start-page: 1190 issue: 4 year: 2013 ident: 2516_CR45 publication-title: Chin J Appl Entomol – volume: 8 start-page: 215310 year: 2020 ident: 2516_CR78 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041032 – volume: 120 start-page: 75 year: 2017 ident: 2516_CR1 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.11.212 – volume: 78 start-page: 6347 year: 2019 ident: 2516_CR42 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-019-01538-7 – volume: 27 start-page: 4012 issue: 8 year: 2018 ident: 2516_CR62 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2834830 – year: 2022 ident: 2516_CR81 publication-title: Gondwana Res doi: 10.1016/j.gr.2022.06.011 – volume: 80 start-page: 37 issue: 1 year: 2021 ident: 2516_CR12 publication-title: Environ Earth Sci doi: 10.1007/s12665-020-09328-1 – volume: 18 start-page: 275 issue: 6 year: 2004 ident: 2516_CR58 publication-title: J Chemometr A J Chemometr Soc – year: 2020 ident: 2516_CR61 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-019-01566-3 – volume: 226 start-page: 245 year: 2017 ident: 2516_CR4 publication-title: Eng Geol doi: 10.1016/j.enggeo.2017.06.014 – volume: 11 start-page: 779 year: 2019 ident: 2516_CR34 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2019.01.002 – volume: 7 start-page: 60 year: 2017 ident: 2516_CR56 publication-title: Open Eng doi: 10.1515/eng-2017-0012 – ident: 2516_CR71 – volume: 77 start-page: 429 issue: 2018 year: 2018 ident: 2516_CR68 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-016-0969-0 – volume: 11 start-page: 90 issue: 1 year: 2017 ident: 2516_CR38 publication-title: Front Struct Civ Eng doi: 10.1007/s11709-016-0363-9 – volume: 8 start-page: 119527 year: 2020 ident: 2516_CR76 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004995 – volume-title: A scaling law for the validation-set training-set size ratio year: 1997 ident: 2516_CR29 – volume: 23 start-page: 472 issue: 2 year: 2013 ident: 2516_CR21 publication-title: Trans Nonferrous Met Soc China doi: 10.1016/S1003-6326(13)62487-5 – start-page: 12 volume-title: Intelligent systems year: 2018 ident: 2516_CR89 – volume: 2 start-page: 123 issue: 2 year: 2007 ident: 2516_CR97 publication-title: Geomech Geoeng Int J doi: 10.1080/17486020701377140 – volume: 38 start-page: 2745 year: 2020 ident: 2516_CR24 publication-title: Geotech Geol Eng doi: 10.1007/s10706-020-01183-y – volume: 489 start-page: 78 year: 2018 ident: 2516_CR65 publication-title: Phys A doi: 10.1016/j.physa.2017.07.017 – volume: 11 start-page: 88 issue: 1 year: 2019 ident: 2516_CR59 publication-title: Water doi: 10.3390/w11010088 – ident: 2516_CR31 doi: 10.1109/ICDAR.1995.59899 – volume: 19 start-page: 597 year: 2004 ident: 2516_CR15 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2004.02.128 – volume: 14 start-page: 75 issue: 2 year: 2020 ident: 2516_CR5 publication-title: Min Miner Depos doi: 10.33271/mining14.02.075 – volume: 109 start-page: 1 year: 2022 ident: 2516_CR96 publication-title: Gondwana Res doi: 10.1016/j.gr.2022.03.015 – volume: 174 start-page: 1742 issue: 3 year: 2006 ident: 2516_CR55 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2005.03.039 – volume: 80 start-page: 441 issue: 12 year: 2021 ident: 2516_CR98 publication-title: Environ Earth Sci doi: 10.1007/s12665-021-09737-w – volume: 78 start-page: 3799 year: 2019 ident: 2516_CR43 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1349-8 – volume: 13 start-page: 1363 issue: 6 year: 2019 ident: 2516_CR20 publication-title: Front Struct Civ Eng doi: 10.1007/s11709-019-0561-3 – volume: 77 start-page: 115 year: 2018 ident: 2516_CR9 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.02.012 – volume: 12 start-page: 541 issue: 3 year: 2020 ident: 2516_CR10 publication-title: J Rock Mech Geotechn Eng doi: 10.1016/j.jrmge.2019.12.011 – volume: 6 start-page: 353 issue: 4 year: 2021 ident: 2516_CR95 publication-title: Undergr Space doi: 10.1016/j.undsp.2019.12.003 – volume: 38 start-page: 1237 year: 2020 ident: 2516_CR41 publication-title: Geotech Geol Eng doi: 10.1007/s10706-019-01084-9 – volume: 12 start-page: 9 issue: 1 year: 2021 ident: 2516_CR13 publication-title: Int J Geoeng doi: 10.1186/s40703-021-00142-7 – volume: 4 start-page: 383 year: 2018 ident: 2516_CR35 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-018-0432-2 – volume: 27 start-page: 539552 issue: 7 year: 2021 ident: 2516_CR49 publication-title: J Civ Eng Manag doi: 10.3846/jcem.2021.14901 – volume: 23 start-page: 326 year: 2008 ident: 2516_CR83 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2007.04.011 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 2516_CR50 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 – volume: 152 start-page: 107244 year: 2020 ident: 2516_CR70 publication-title: Measurement doi: 10.1016/j.measurement.2019.107244 – volume: 1 start-page: 90 issue: 6 year: 2013 ident: 2516_CR40 publication-title: Int J Adv Res Comput Sci Manage Stud – volume: 19 start-page: 1 issue: 1 year: 2020 ident: 2516_CR14 publication-title: J Mod Appl Stat Methods doi: 10.22237/JMASM/1608553080 – volume: 14 start-page: 35 issue: 1 year: 1998 ident: 2516_CR90 publication-title: Int J Forecast doi: 10.1016/S0169-2070(97)00044-7 – volume: 80 start-page: 308 year: 2015 ident: 2516_CR85 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2015.09.019 – volume: 128 start-page: 109 issue: 1 year: 2021 ident: 2516_CR51 publication-title: CMES Comput Model Eng Sci doi: 10.32604/cmes.2021.015683 – volume: 58 start-page: 236 year: 2016 ident: 2516_CR67 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2016.05.009 – volume: 36 start-page: 1647 issue: 3 year: 2018 ident: 2516_CR57 publication-title: Geotech Geol Eng doi: 10.1007/s10706-017-0420-8 – ident: 2516_CR26 – volume: 40 start-page: 3191 year: 2022 ident: 2516_CR22 publication-title: Geotech Geol Eng doi: 10.1007/s10706-022-02086-w – year: 2022 ident: 2516_CR79 publication-title: Gondwana Res doi: 10.1016/j.gr.2022.06.011 – volume: 9 start-page: 116 issue: 2 year: 2022 ident: 2516_CR18 publication-title: Geotech Res doi: 10.1680/jgere.21.00028 – volume: 92 start-page: 103046 year: 2019 ident: 2516_CR69 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2019.103046 – volume: 33 start-page: 603 year: 2020 ident: 2516_CR80 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04993-6 – volume: 2020 start-page: 8830661 year: 2020 ident: 2516_CR39 publication-title: Geofluids doi: 10.1155/2020/8830661 – volume: 103 start-page: 103493 year: 2020 ident: 2516_CR93 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103493 – volume: 79 start-page: 2069 year: 2020 ident: 2516_CR101 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-019-01626-8 – volume: 283 start-page: 105975 year: 2021 ident: 2516_CR32 publication-title: Eng Geol doi: 10.1016/j.enggeo.2020 – volume: 36 start-page: 345 year: 2020 ident: 2516_CR44 publication-title: Eng Comput doi: 10.1007/s00366-019-00701-8 – volume: 15 start-page: 27 issue: 1 year: 2021 ident: 2516_CR94 publication-title: GEORISK doi: 10.1080/17499518.2019.1674340 – volume: 4 start-page: 00938 issue: 11 year: 2018 ident: 2516_CR2 publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – volume: 15 start-page: 259 year: 2000 ident: 2516_CR7 publication-title: Tunn Undergr Space Technol doi: 10.1016/s0886-7798(00)00055-9 – start-page: 155 volume-title: Applied multivariate statistics in geohydrology and related sciences year: 1998 ident: 2516_CR17 doi: 10.1007/978-3-642-80328-4_13 – volume: 4 start-page: 19 year: 2021 ident: 2516_CR27 publication-title: SN Appl Sci doi: 10.1007/s42452-021-04903-y – volume: 2 start-page: 248 year: 1986 ident: 2516_CR19 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1986.4767778 – ident: 2516_CR66 – volume: 9 start-page: 3715 year: 2019 ident: 2516_CR82 publication-title: Appl Sci doi: 10.3390/app9183715 – volume: 46 start-page: 68 issue: 253 year: 1951 ident: 2516_CR53 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1951.10500769 – volume: 70 start-page: 980 year: 2018 ident: 2516_CR54 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.06.030 – volume: 37 start-page: 1533 year: 2019 ident: 2516_CR3 publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0706-5 – volume: 12 start-page: 1166 issue: 3 year: 2020 ident: 2516_CR11 publication-title: Sustainability doi: 10.3390/su12031166 – volume: 624 start-page: 1 year: 2020 ident: 2516_CR8 publication-title: Min Geol Pet Eng Bull UDC doi: 10.17794/rgn.2020.2.6 – volume: 348 start-page: 3 issue: 1 year: 2020 ident: 2516_CR77 publication-title: Comptes Rendus Mec doi: 10.5802/crmeca.3 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 2516_CR30 publication-title: J R Stat Soc Ser C (appl Stat) – volume: 35 start-page: 365 year: 2017 ident: 2516_CR25 publication-title: Geotech Geol Eng doi: 10.1007/s10706-016-0111-x – volume: 15 start-page: 142 issue: 3 year: 1977 ident: 2516_CR74 publication-title: IEEE Trans Geosci Electron doi: 10.1109/TGE.1977.6498972 – volume: 17 start-page: 04016129 issue: 6 year: 2017 ident: 2516_CR99 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0000817 – volume: 48 start-page: 1214 issue: 5 year: 2017 ident: 2516_CR46 publication-title: Hydrol Res doi: 10.2166/nh.2016.149 – volume: 3 start-page: 334 issue: 2 year: 2013 ident: 2516_CR64 publication-title: Int J Current Eng Technol – volume: 63 start-page: 29 year: 2017 ident: 2516_CR33 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2016.12.009 – volume: 219 start-page: 103 issue: 1 year: 2005 ident: 2516_CR63 publication-title: Proc Inst Mech Eng C J Mech Eng Sci doi: 10.1243/095440605X8298 – volume: 36 start-page: 10589 issue: 7 year: 2009 ident: 2516_CR23 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.02.057 |
SSID | ssj0002601 |
Score | 2.3729582 |
Snippet | Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4205 |
SubjectTerms | Algorithms Boring machines Civil Engineering Dredging Drilling & boring machinery Earth and Environmental Science Earth Sciences Engineering geology Excavation Geology Geotechnical engineering Geotechnical Engineering & Applied Earth Sciences Hydrogeology Mathematical models Modelling Original Paper Parameters Prediction models Railway tunnels Terrestrial Pollution Tubes Tunnel construction Tunnels Waste Management/Waste Technology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwMhECY-YqIHo1VjfYWDNyUW2AJ7Mq2xGhOrMTXxtgGW1UNt1a4H_70MZbtqYpO9sXCYGQaGmfk-hI5loR21RhBV5IYAIBfRrpCEaUNpoaVRDBqcb_vi-jG5eWo_xQe3SSyrrHxicNT52MIb-Zl3o4z5s1zx87d3AqxRkF2NFBqLaNm7YOWDr-XuZf_-YeaLATAroO2J0CfMYttMbJ6TEE0zyGO2qSD899FU3zf_pEjDydPbQOvxyog7Ux1vogU3aqC1H0CCDbRyFQh6v7bQHZCbQYs5Hhd48AlVLLgbiuzwbaibdPi-7hXAU8JfGH3Qo3z8ioGqc1LizvDZTypfXrfRoHc5uLgmkTSBaJ6wknANMZLmjlFjpQ9PnFAtkxTMUA7Y8yZN8lRakVIfaWnGhbJpIp0tKHPcfztoaTQeuV2ElUplylrWFCJPlN-neW69yFIhaaKpbjcRrcSV2QgoDrwWw6yGQgYRZ17EWRBxxpvoZDbnbQqnMffvg0oLWdxak6w2hCY6rTRTD_-_2t781fbRKgvGAPVjB2ip_Ph0h_7CUZqjaFXfZV_PEg priority: 102 providerName: ProQuest |
Title | Modeling of Tunnel Boring Machine Performance Employing Random Forest Algorithm |
URI | https://link.springer.com/article/10.1007/s10706-023-02516-3 https://www.proquest.com/docview/2842292983 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ELnowfkYUSQ_edAnttrY7DsNHNCAhkOBpabtWDzCMjP_ftmygRk1Mluzw2h5eX_veS9_v9wC4oZorJAXxmE6FZwm5PK409TAXCGlOBcMW4DwYkv40eJiFswIUtiqr3csnSXdTfwK7UZv9YvvuGCLi-RVQC23ubqx4iuPt_WtJshzDHnHYYFxAZX5e46s72sWY355FnbfpHoHDIkyE8WZfj8Geyk7AwSfywFPwZNuYWTA5XGo4Wdt6Fdh25XRw4CokFRztUAFw09rXSsc8S5cLaJtyrnIYz1_MpPx1cQYm3c7kvu8V7RE87gc493xusyHuK4yEpCYRUYS1RKCxQL5lmRdRkEZUkgiZnIpjnzAZBVRJjbDyzXcOqtkyUxcAMhbRCLek0CQNmDmRaSqNoiJCUcARD-sAlUpKZEEdbjtYzJMd6bFVbGIUmzjFJn4d3G7nvG2IM_4c3Sh1nxSHaJUYz4mxCd-YEd-V-7ET_77a5f-GX4F97EzCVo41QDV_X6trE2rkogkqrNtrglrce37smH-7MxyNm87ePgD6NMub |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BVQUcqkJBXaCtD-2pWGA7azuHqqIfy_KxgNAicbNsxykH2KXdIMSP6n-sx5uQUqnckHJL7MN4PJ6J570H8F6VNjDvJNVl4SgSclEbSkW5dYyVVjnNEeA8OJL9s2z_vHs-A78bLAy2VTYxMQXqYuzxH_lWDKOcx7Nci8_XPymqRuHtaiOhMXWLg3B3G0u2yae9b3F9P3De-z782qe1qgC1IuMVFRaLCCsCZ86rmL8HqbddVnLHBJKzuzwrcuVlzmIpYrmQ2ueZCr5kPIj4xGln4VkmRI4bSvd27wM_snMlaj-ZQMm8xujUSD2FpTvHS9Muk1Q8PAfb5Paf-9h0zPVewos6PyU7U4dagpkwWobFv1gLl-H5blIDvnsFx6ikhnh2Mi7J8AZbZsiX1NFHBqlJM5CTFphApurC-PbUjorxFUFd0ElFdi5_xEHVxdUKDJ_ClqswNxqPwmsgWucq59velbLIdAwKReGjyXKpWGaZ7XaANeYyvmYvRxGNS9PyLqOJTTSxSSY2ogMf78dcT7k7Hv16o1kFU-_jiWm9rgObzcq0r_8_29rjs72D-f5wcGgO944O1mGBJ8fAxrUNmKt-3YQ3MdOp3NvkXwTME_vzH6X7CA8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDMiBG1Rb0i5pj-MxjcfGhDZptyppEzhs3cS6_0-ctutAgISUm5McHCe2FX-fEbrkWigSSeb4OpYOEHI5QmnuUCEJ0YJLnwLAudtjnaH3OGqOVlD8ttq9-JLMMA3A0pSk9Vms6yvANw6ZMIU_yCZhjruONsxzTMCuh7S1fIuBMMuy7TGLE6Y5bObnPb66pjLe_PZFaj1Pexft5CEjbmVnvIfWVLKPtleIBA_QC7Q0A2A5nmo8WEDtCr6xpXW4a6slFe6XCAGctfkF6atI4ukEQ4POeYpb4zezKH2fHKJB-35w23HyVgmOcD2aOq6AzEi4ihIZcZOUKOY3pKepJC4wzsvAiwMesYCY_EpQl_lR4HEVaUKVa8YRqiTTRB0j7PsBD2gjkprFnm9uZxxHRlEB48QTRDSriBRKCqOcRhy6WYzDkgAZFBsaxYZWsaFbRVfLNbOMROPP2bVC92F-oeah8aKUmlDON-Lr4jxK8e-7nfxv-gXa7N-1w-eH3tMp2qLWOqCgrIYq6cdCnZkIJJXn1sg-AVvYzrY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+Tunnel+Boring+Machine+Performance+Employing+Random+Forest+Algorithm&rft.jtitle=Geotechnical+and+geological+engineering&rft.au=Gokceoglu%2C+C.&rft.au=Bal%2C+C.&rft.au=Aladag%2C+C.+H.&rft.date=2023-09-01&rft.pub=Springer+International+Publishing&rft.issn=0960-3182&rft.eissn=1573-1529&rft.volume=41&rft.issue=7&rft.spage=4205&rft.epage=4231&rft_id=info:doi/10.1007%2Fs10706-023-02516-3&rft.externalDocID=10_1007_s10706_023_02516_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3182&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3182&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3182&client=summon |