Modeling of Tunnel Boring Machine Performance Employing Random Forest Algorithm

Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel engineering communities. The longest railway tunnel with approximately 10 km, the Bahce-Nurdagi tunnel, was projected as twin tubes and TBM excav...

Full description

Saved in:
Bibliographic Details
Published inGeotechnical and geological engineering Vol. 41; no. 7; pp. 4205 - 4231
Main Authors Gokceoglu, C., Bal, C., Aladag, C. H.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0960-3182
1573-1529
DOI10.1007/s10706-023-02516-3

Cover

Loading…
Abstract Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel engineering communities. The longest railway tunnel with approximately 10 km, the Bahce-Nurdagi tunnel, was projected as twin tubes and TBM excavation. One of these tubes was successfully completed and the other is under construction. In this study, the geological and geotechnical parameters of the tunnel route and basic TBM parameters were used to predict the TBM performance. For the purpose of the study, a data set including 5334 cases was compiled. The analyses were performed in two phases, the first phase was performed employing only geological and geotechnical parameters while the basic TBM parameters were considered in the second phase analyses. Although the ANN and ANN-fuzzy models yielded acceptable results, the results clearly showed that the random forest algorithm was superior among all other methods for the data used. The results also revealed that the basic TBM parameters should be considered with advanced modeling techniques needed for a successful prediction model for TBM performance.
AbstractList Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel engineering communities. The longest railway tunnel with approximately 10 km, the Bahce-Nurdagi tunnel, was projected as twin tubes and TBM excavation. One of these tubes was successfully completed and the other is under construction. In this study, the geological and geotechnical parameters of the tunnel route and basic TBM parameters were used to predict the TBM performance. For the purpose of the study, a data set including 5334 cases was compiled. The analyses were performed in two phases, the first phase was performed employing only geological and geotechnical parameters while the basic TBM parameters were considered in the second phase analyses. Although the ANN and ANN-fuzzy models yielded acceptable results, the results clearly showed that the random forest algorithm was superior among all other methods for the data used. The results also revealed that the basic TBM parameters should be considered with advanced modeling techniques needed for a successful prediction model for TBM performance.
Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel engineering communities. The longest railway tunnel with approximately 10 km, the Bahce-Nurdagi tunnel, was projected as twin tubes and TBM excavation. One of these tubes was successfully completed and the other is under construction. In this study, the geological and geotechnical parameters of the tunnel route and basic TBM parameters were used to predict the TBM performance. For the purpose of the study, a data set including 5334 cases was compiled. The analyses were performed in two phases, the first phase was performed employing only geological and geotechnical parameters while the basic TBM parameters were considered in the second phase analyses. Although the ANN and ANN-fuzzy models yielded acceptable results, the results clearly showed that the random forest algorithm was superior among all other methods for the data used. The results also revealed that the basic TBM parameters should be considered with advanced modeling techniques needed for a successful prediction model for TBM performance.
Author Gokceoglu, C.
Bal, C.
Aladag, C. H.
Author_xml – sequence: 1
  givenname: C.
  orcidid: 0000-0003-4762-9933
  surname: Gokceoglu
  fullname: Gokceoglu, C.
  email: cgokce@hacettepe.edu.tr
  organization: Geological Engineering Department, Engineering Faculty, Hacettepe University
– sequence: 2
  givenname: C.
  orcidid: 0000-0002-7823-2712
  surname: Bal
  fullname: Bal, C.
  organization: Department of Statistics, Faculty of Science, Mugla Sitki Kocman University
– sequence: 3
  givenname: C. H.
  orcidid: 0000-0002-3953-7601
  surname: Aladag
  fullname: Aladag, C. H.
  organization: Department of Statistics, Faculty of Science, Hacettepe University
BookMark eNp9kF1LwzAUhoMouE3_gFcFr6snH0uTyzk2FTYmsvuQZunW0SY16S72722tIHgxyCGQc56Tl2eMrp13FqEHDE8YIHuOGDLgKRDa1RTzlF6hEZ5mNMVTIq_RCCSHlGJBbtE4xiMAEA54hDZrv7NV6faJL5LtyTlbJS8-9A9rbQ6ls8mHDYUPtXbGJou6qfy5735qt_N1svTBxjaZVfsOag_1HbopdBXt_e89QdvlYjt_S1eb1_f5bJVqykibUg2YMU0twbnJOHDLBeSsIDmmnADLJdvJzHCJhZSaUC6MZJk1BSaWdmeCHoe1TfBfpy6BOvpTcN2PighGiCRS0G6KDFMm-BiDLVQTylqHs8Kgem9q8KY6b-rHm-oh8Q8yZavb0rs26LK6jNIBjU1v0Ia_VBeob_uEgpU
CitedBy_id crossref_primary_10_1016_j_autcon_2024_105793
crossref_primary_10_1016_j_tust_2024_105978
crossref_primary_10_3390_su16146152
crossref_primary_10_1007_s00603_024_04210_z
crossref_primary_10_1007_s10706_023_02731_y
Cites_doi 10.1016/j.eswa.2009.02.057
10.1007/s12665-020-09328-1
10.1016/j.scitotenv.2021.151585
10.1007/s00521-020-04993-6
10.1155/2020/8830661
10.1016/j.ejor.2005.03.039
10.1515/eng-2017-0012
10.1016/j.procs.2017.11.212
10.1080/17499518.2019.1674340
10.1016/j.ijrmms.2014.09.012
10.1007/s10064-016-0969-0
10.1016/j.engappai.2009.03.007
10.1007/s41062-019-0234-z
10.2166/nh.2016.149
10.3390/app9183715
10.1016/s0886-7798(00)00055-9
10.1016/j.tust.2016.12.009
10.1016/j.tust.2007.04.011
10.1002/int.22448
10.1016/j.tust.2018.02.012
10.1007/978-3-642-80328-4_13
10.1016/j.enggeo.2020
10.1109/TPAMI.1986.4767778
10.1109/TGE.1977.6498972
10.1186/s40703-021-00142-7
10.1007/s10064-019-01538-7
10.1007/s10706-018-0706-5
10.1016/j.eswa.2008.04.001
10.1109/TIT.1982.1056489
10.1016/j.gr.2022.06.011
10.3846/jcem.2021.14901
10.1007/s10706-020-01183-y
10.5802/crmeca.3
10.1007/s10064-019-01566-3
10.1016/S0169-2070(97)00044-7
10.1016/j.ijrmms.2015.09.019
10.1016/j.gr.2022.03.015
10.1016/j.enggeo.2017.06.014
10.1016/j.heliyon.2018.e00938
10.1016/j.enggeo.2015.12.020
10.1007/s11709-019-0561-3
10.1016/j.jrmge.2019.12.011
10.22237/JMASM/1608553080
10.1016/j.ijrmms.2011.02.013
10.1007/s10706-019-01084-9
10.1007/s40808-018-0432-2
10.32604/cmes.2021.015683
10.1007/s13369-015-2001-6
10.1080/01621459.1951.10500769
10.1007/s10064-018-1349-8
10.1016/S1003-6326(13)62487-5
10.1016/0098-3004(84)90020-7
10.1080/17486020701377140
10.1016/j.tust.2019.103046
10.1016/j.gsf.2020.09.020
10.1016/j.tust.2016.05.009
10.17794/rgn.2020.2.6
10.1007/s12205-019-1460-9
10.1007/s11709-016-0363-9
10.1007/s10706-020-01213-9
10.1016/j.tust.2020.103493
10.1109/ACCESS.2020.3004995
10.3390/w11010088
10.1243/095440605X8298
10.1016/j.undsp.2021.04.003
10.1016/j.dss.2012.12.006
10.1016/j.tust.2004.02.128
10.1016/j.autcon.2018.12.022
10.1016/j.measurement.2019.107244
10.1007/s42452-021-04903-y
10.1007/s12665-021-09737-w
10.3390/infrastructures7110155
10.1016/j.undsp.2019.12.003
10.1016/j.enggeo.2020.105972
10.1016/j.tust.2019.04.014
10.1109/ACCESS.2020.3041032
10.1007/s10706-022-02086-w
10.33271/mining14.02.075
10.1007/s10064-019-01626-8
10.1016/j.jrmge.2019.01.002
10.1680/jgere.21.00028
10.1016/j.asoc.2017.06.030
10.1016/j.physa.2017.07.017
10.1007/s10706-017-0420-8
10.1109/TIP.2018.2834830
10.3390/su12031166
10.1007/s00366-019-00701-8
10.1061/(ASCE)GM.1943-5622.0000817
10.1007/s10706-016-0111-x
10.1109/ICDAR.1995.59899
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7TN
7UA
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10706-023-02516-3
DatabaseName CrossRef
Oceanic Abstracts
Water Resources Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Geology
EISSN 1573-1529
EndPage 4231
ExternalDocumentID 10_1007_s10706_023_02516_3
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LK5
LLZTM
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P0-
P19
PCBAR
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z85
Z86
ZMTXR
~02
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TN
7UA
ABRTQ
C1K
DWQXO
F1W
H96
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-a342t-3a0144a3e21bc7606e680b4f2b136204b94d97c691899a2368c947ecf12e32e3
IEDL.DBID U2A
ISSN 0960-3182
IngestDate Sat Aug 23 14:43:51 EDT 2025
Tue Jul 01 01:44:25 EDT 2025
Thu Apr 24 23:07:25 EDT 2025
Fri Feb 21 02:42:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Random forest
Tunnel
Rate of penetration
TBM
Geological and geotechnical parameters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-3a0144a3e21bc7606e680b4f2b136204b94d97c691899a2368c947ecf12e32e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3953-7601
0000-0003-4762-9933
0000-0002-7823-2712
PQID 2842292983
PQPubID 2043601
PageCount 27
ParticipantIDs proquest_journals_2842292983
crossref_primary_10_1007_s10706_023_02516_3
crossref_citationtrail_10_1007_s10706_023_02516_3
springer_journals_10_1007_s10706_023_02516_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Geotechnical and geological engineering
PublicationTitleAbbrev Geotech Geol Eng
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Cannon, Dave, Bezdek (CR19) 1986; 2
Koopialipoor, Tootoonchi, Jahed Armaghani, Mohamad, Hedayat (CR42) 2019; 78
Yolcu, Egrioglu, Aladag (CR88) 2013; 54
Yang, Yagiz, Liu, Laouafa (CR87) 2022; 7
Gokceoglu (CR27) 2021; 4
Tavus, Kocaman, Gokceoglu (CR75) 2021
Aygar, Gokceoglu (CR11) 2020; 12
CR31
Liu, Chen, Zhang, Wang (CR49) 2021; 27
Aygar, Gokceoglu (CR12) 2021; 80
Jahed Armaghani, Koopialipoor, Marto, Yagiz (CR34) 2019; 11
Ohadi, Sun, Esmaieli, Consens (CR61) 2020
Liu, Wang, Guan, Li, Xua, Guo, Wang (CR48) 2019; 91
Mingoti, Lima (CR55) 2006; 174
Massey (CR53) 1951; 46
Wu, Hong, Wang, Zhang, Pijush, Zhang (CR81) 2022
Minh, Katushin, Antonov, Veinthal (CR56) 2017; 7
Zhou, Qiu, Jahed Armaghani, Zhang, Lie, Zhu, Tarinejad (CR100) 2020
Adoko, Yagiz (CR3) 2019; 37
Hartigan, Wong (CR30) 1979; 28
Gokceoglu, Aygar, Nefeslioglu, Karahan, Gullu (CR28) 2022; 7
Salimi, Faradonbeh, Monjezi, Moormann (CR68) 2018; 77
Adoko, Gokceoglu, Yagiz (CR4) 2017; 226
Bezdek, Ehrlich, Full (CR16) 1984; 10
Fattahi, Moradi (CR25) 2017; 35
Zhang, Yuan, Guo, Wang (CR91) 2016; 41
Afradi, Ebrahimabadi, Hallajian (CR5) 2020; 14
Pham, Dimov, Nguyen (CR63) 2005; 219
Zhang, Liu, Tan (CR92) 2019; 100
Alvarez Grima, Bruines, Verhoef (CR7) 2000; 15
Sun, Xu, Wen, Wang (CR73) 2021; 281
Faramarzi, Kheradmandian, Azhari (CR24) 2020; 38
Kodinariya, Makwana (CR40) 2013; 1
Lloyd (CR50) 1982; 28
Niu, Feng, Feng, Min, Cheng, Zhou (CR59) 2019; 11
Chen, Zhang, Wu, Wang, Zhong (CR20) 2019; 13
Yagiz (CR83) 2008; 23
Aladag, Basaran, Egrioglu, Yolcu, Uslu (CR6) 2009; 36
Mishra, Ramteke, Sen, Verma (CR57) 2018; 36
Luo, Yuan, Jin, Lu, Chen (CR51) 2021; 128
Aygar, Gokceoglu (CR13) 2021; 12
Bal, Demir (CR14) 2020; 19
CR66
Zhou, Bejarbaneh, Jahed Armaghani, Tahir (CR101) 2020; 79
Juang, Carranza-Torres, Crosta, Dong, Gokceoglu, Jibson, Shakoor, Tang, van Asch, Wasowski (CR36) 2016; 201
Zhou, Xiuzhi, Du, Qiu, Li, Mitri (CR99) 2017; 17
Komu, Guney, Kilickaya, Gokceoglu (CR41) 2020; 38
Shreyas, Dey (CR72) 2019; 4
Xu, Zhou, Asteris, Jahed Armaghani, Tahir (CR82) 2019; 9
Matin, Farahzadi, Makaremi, Chelgani, Sattari (CR54) 2018; 70
Wang, Wan, Zhao (CR77) 2020; 348
We, Hong, Wang, Zhang, Pijush, Zhang (CR79) 2022
Li, Sha, Wang (CR46) 2017; 48
Yagiz, Karahan (CR84) 2011; 48
Wang, Lu, Wei, Wei, Behbahani, Iseley (CR76) 2020; 8
CR71
Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (CR2) 2018; 4
Arbabsiar, Farsangi, Mansouri (CR8) 2020; 624
Jahed Armaghani, Mohamad, Narayanasamy, Narita, Yagiz (CR33) 2017; 63
Priyam, Abhijeeta, Rathee, Srivastava (CR64) 2013; 3
Li (CR45) 2013; 50
Kocaman, Tavus, Nefeslioglu, Karakas, Gokceoglu (CR39) 2020; 2020
Koopialipoor, Nikouei, Marto, Fahimifar, Jahed Armaghani, Mohamad (CR43) 2019; 78
Noori, Mikaeil, Mokhtarian, Haghshenas, Foroughi (CR60) 2020; 38
Zhang, Eddy-Patuwo, Hu (CR90) 1998; 14
Zhang, Wu, Li, Wang, Samui (CR94) 2021; 15
Dong, Li, Peng (CR21) 2013; 23
Khademi, Akbari, Jamal, Nikoo (CR38) 2017; 11
Brown (CR17) 1998
Zhang, Hu, Liu, Tan (CR93) 2020; 103
Armetti, Migliazza, Ferrari, Berti, Padovese (CR9) 2018; 77
Guyon (CR29) 1997
Hu, Wu, Zhang, Zheng, Liu, He, Liu, Guo, Zhang (CR32) 2021; 283
Salimi, Rostami, Moormann, Delisio (CR67) 2016; 58
Li, Liang, Ai, Tang (CR47) 2021; 36
Can, Baskose, Gokceoglu (CR18) 2022; 9
Swain, Hauska (CR74) 1977; 15
Paul, Mukherjee, Das, Gangopadhyay, Chintha, Kundu (CR62) 2018; 27
Wei, Wang, Wang, Peng, Song (CR80) 2020; 33
Salimi, Rostami, Moormann (CR69) 2019; 92
Zhang, Li, Wu, Li, Liu, Liu (CR95) 2021; 6
Samaei, Ranjbarnia, Nourani, Naghadehi (CR70) 2020; 152
Aygar (CR10) 2020; 12
Jamshidi (CR35) 2018; 4
Yagiz, Gokceoglu, Sezer, Iplikci (CR86) 2009; 22
Myles, Feudale, Liu, Woody, Brown (CR58) 2004; 18
Zhang, Gu, Tang, Yin, Liu, Zhang (CR96) 2022; 109
Wang, Wie, Shahrour (CR78) 2020; 8
Mahdevari, Shahriar, Yagiz, Akbarpour Shirazi (CR52) 2014; 72
Rezaee, Jozmaleki, Valipour (CR65) 2018; 489
Zhao, Gong, Zhang, Zhao (CR97) 2007; 2
Zhao, Ge, Chen (CR98) 2021; 80
Egrioglu, Aladag, Yolcu, Uslu, Basaran (CR23) 2009; 36
CR26
Jung, Chung, Kwon, Lee (CR37) 2019; 23
Abba, Hadi, Abdullahi (CR1) 2017; 120
Yagiz, Karahan (CR85) 2015; 80
Koopialipoor, Fahimifar, Ghaleini, Momenzadeh, Jahed Armaghani (CR44) 2020; 36
Yu, Wilamowski (CR89) 2018
Benardos, Kaliampakos (CR15) 2004; 19
Eftekhari, Eftekhari (CR22) 2022; 40
C Gokceoglu (2516_CR28) 2022; 7
AG Benardos (2516_CR15) 2004; 19
TM Kodinariya (2516_CR40) 2013; 1
AC Adoko (2516_CR3) 2019; 37
SS Matin (2516_CR54) 2018; 70
F Khademi (2516_CR38) 2017; 11
X Li (2516_CR46) 2017; 48
J Yang (2516_CR87) 2022; 7
JA Hartigan (2516_CR30) 1979; 28
K Zhang (2516_CR91) 2016; 41
2516_CR66
S Kocaman (2516_CR39) 2020; 2020
S Yagiz (2516_CR85) 2015; 80
RL Cannon (2516_CR19) 1986; 2
J Zhou (2516_CR99) 2017; 17
C Gokceoglu (2516_CR27) 2021; 4
E Egrioglu (2516_CR23) 2009; 36
MP Komu (2516_CR41) 2020; 38
B Tavus (2516_CR75) 2021
C We (2516_CR79) 2022
Y Liu (2516_CR49) 2021; 27
EB Aygar (2516_CR10) 2020; 12
L Li (2516_CR47) 2021; 36
J Zhou (2516_CR100) 2020
2516_CR71
C Bal (2516_CR14) 2020; 19
S Yagiz (2516_CR84) 2011; 48
M Koopialipoor (2516_CR43) 2019; 78
JC Bezdek (2516_CR16) 1984; 10
S Lloyd (2516_CR50) 1982; 28
L-J Dong (2516_CR21) 2013; 23
H Yu (2516_CR89) 2018
J Zhou (2516_CR101) 2020; 79
J-J Jung (2516_CR37) 2019; 23
W Luo (2516_CR51) 2021; 128
M Samaei (2516_CR70) 2020; 152
A Salimi (2516_CR69) 2019; 92
S Yagiz (2516_CR86) 2009; 22
F Faramarzi (2516_CR24) 2020; 38
H Xu (2516_CR82) 2019; 9
Q Zhang (2516_CR93) 2020; 103
WG Zhang (2516_CR95) 2021; 6
PH Swain (2516_CR74) 1977; 15
M Wang (2516_CR77) 2020; 348
XL Hu (2516_CR32) 2021; 283
W Zhang (2516_CR94) 2021; 15
G Armetti (2516_CR9) 2018; 77
SA Mingoti (2516_CR55) 2006; 174
AC Adoko (2516_CR4) 2017; 226
M Koopialipoor (2516_CR42) 2019; 78
Q Wang (2516_CR78) 2020; 8
D Jahed Armaghani (2516_CR33) 2017; 63
MJ Rezaee (2516_CR65) 2018; 489
M Eftekhari (2516_CR22) 2022; 40
X Li (2516_CR45) 2013; 50
CH Juang (2516_CR36) 2016; 201
SK Shreyas (2516_CR72) 2019; 4
AJ Myles (2516_CR58) 2004; 18
S Mahdevari (2516_CR52) 2014; 72
2516_CR26
AK Mishra (2516_CR57) 2018; 36
B Liu (2516_CR48) 2019; 91
CE Brown (2516_CR17) 1998
W Zhang (2516_CR96) 2022; 109
D Jahed Armaghani (2516_CR34) 2019; 11
M Koopialipoor (2516_CR44) 2020; 36
Q Zhang (2516_CR92) 2019; 100
A Afradi (2516_CR5) 2020; 14
A Jamshidi (2516_CR35) 2018; 4
U Yolcu (2516_CR88) 2013; 54
C Wu (2516_CR81) 2022
2516_CR31
AM Noori (2516_CR60) 2020; 38
M Alvarez Grima (2516_CR7) 2000; 15
EB Aygar (2516_CR13) 2021; 12
A Paul (2516_CR62) 2018; 27
DL Sun (2516_CR73) 2021; 281
BB Zhao (2516_CR98) 2021; 80
EB Aygar (2516_CR12) 2021; 80
DT Pham (2516_CR63) 2005; 219
X Wang (2516_CR76) 2020; 8
M Wei (2516_CR80) 2020; 33
A Salimi (2516_CR68) 2018; 77
A Salimi (2516_CR67) 2016; 58
VT Minh (2516_CR56) 2017; 7
B Ohadi (2516_CR61) 2020
H Fattahi (2516_CR25) 2017; 35
OI Abiodun (2516_CR2) 2018; 4
G Zhang (2516_CR90) 1998; 14
CH Aladag (2516_CR6) 2009; 36
WJ Niu (2516_CR59) 2019; 11
EB Aygar (2516_CR11) 2020; 12
FJ Massey Jr (2516_CR53) 1951; 46
Z Zhao (2516_CR97) 2007; 2
RP Chen (2516_CR20) 2019; 13
I Guyon (2516_CR29) 1997
S Yagiz (2516_CR83) 2008; 23
MB Arbabsiar (2516_CR8) 2020; 624
A Can (2516_CR18) 2022; 9
SI Abba (2516_CR1) 2017; 120
A Priyam (2516_CR64) 2013; 3
References_xml – volume: 36
  start-page: 10589
  issue: 7
  year: 2009
  end-page: 10594
  ident: CR23
  article-title: A new approach based on artificial neural networks for high-order multivariate fuzzy time series
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.02.057
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  end-page: 108
  ident: CR30
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: J R Stat Soc Ser C (appl Stat)
– volume: 80
  start-page: 37
  issue: 1
  year: 2021
  ident: CR12
  article-title: A special support design for a large-span tunnel crossing an active fault (T9 Tunnel, Ankara-Sivas high-speed railway project, Turkey)
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-020-09328-1
– year: 2021
  ident: CR75
  article-title: Flood damage assessment with Sentinel-1 and Sentinel-2 data after Sardoba dam break with GLCM features and random forest method
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.151585
– volume: 33
  start-page: 603
  year: 2020
  end-page: 611
  ident: CR80
  article-title: Prediction of TBM penetration rate based on Monte Carlo-BP neural network
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04993-6
– volume: 2020
  start-page: 8830661
  year: 2020
  ident: CR39
  article-title: Evaluation of floods and landslides triggered by a meteorological catastrophe (Ordu, Turkey, August 2018) Using optical and radar data
  publication-title: Geofluids
  doi: 10.1155/2020/8830661
– volume: 174
  start-page: 1742
  issue: 3
  year: 2006
  end-page: 1759
  ident: CR55
  article-title: Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.03.039
– volume: 7
  start-page: 60
  year: 2017
  end-page: 68
  ident: CR56
  article-title: Regression models and fuzzy logic prediction of TBM penetration rate
  publication-title: Open Eng
  doi: 10.1515/eng-2017-0012
– volume: 120
  start-page: 75
  year: 2017
  end-page: 82
  ident: CR1
  article-title: River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.11.212
– volume: 15
  start-page: 27
  issue: 1
  year: 2021
  end-page: 40
  ident: CR94
  article-title: Assessment of pile drivability using random forest regression and multivariate adaptive regression splines
  publication-title: GEORISK
  doi: 10.1080/17499518.2019.1674340
– volume: 72
  start-page: 214
  year: 2014
  end-page: 229
  ident: CR52
  article-title: A support vector regression model for predicting tunnel boring machine penetration rates
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.09.012
– volume: 77
  start-page: 429
  issue: 2018
  year: 2018
  end-page: 440
  ident: CR68
  article-title: TBM performance estimation using a classification and regression tree (CART) technique
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-016-0969-0
– volume: 22
  start-page: 808
  year: 2009
  end-page: 814
  ident: CR86
  article-title: Application of two non-linear prediction tools to the estimation of tunnel boring machine performance
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2009.03.007
– volume: 4
  start-page: 46
  year: 2019
  ident: CR72
  article-title: Application of soft computing techniques in tunnelling and underground excavations: state of the art and future prospects
  publication-title: Innov Infrastruct Solut
  doi: 10.1007/s41062-019-0234-z
– ident: CR71
– volume: 48
  start-page: 1214
  issue: 5
  year: 2017
  end-page: 1225
  ident: CR46
  article-title: A comparative study of multiple linear regression, artificial neural network and support vector machine for the prediction of dissolved oxygen
  publication-title: Hydrol Res
  doi: 10.2166/nh.2016.149
– volume: 9
  start-page: 3715
  year: 2019
  ident: CR82
  article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate
  publication-title: Appl Sci
  doi: 10.3390/app9183715
– volume: 15
  start-page: 259
  year: 2000
  end-page: 269
  ident: CR7
  article-title: Modeling tunnel boring machine performance by neuro-fuzzy methods
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/s0886-7798(00)00055-9
– volume: 18
  start-page: 275
  issue: 6
  year: 2004
  end-page: 285
  ident: CR58
  article-title: An introduction to decision tree modeling
  publication-title: J Chemometr A J Chemometr Soc
– volume: 63
  start-page: 29
  year: 2017
  end-page: 43
  ident: CR33
  article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2016.12.009
– volume: 23
  start-page: 326
  year: 2008
  end-page: 339
  ident: CR83
  article-title: Utilizing rock mass properties for predicting TBM performance in hard rock condition
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2007.04.011
– volume: 36
  start-page: 4016
  issue: 8
  year: 2021
  end-page: 4032
  ident: CR47
  article-title: An improved random forest algorithm and its application to wind pressure prediction
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22448
– volume: 77
  start-page: 115
  year: 2018
  end-page: 126
  ident: CR9
  article-title: Geological and mechanical rock mass conditions for TBM performance prediction. the case of “La Maddalena” exploratory tunnel, Chiomonte (Italy)
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.02.012
– start-page: 155
  year: 1998
  end-page: 157
  ident: CR17
  article-title: Coefficient of Variation
  publication-title: Applied multivariate statistics in geohydrology and related sciences
  doi: 10.1007/978-3-642-80328-4_13
– volume: 283
  start-page: 105975
  year: 2021
  ident: CR32
  article-title: Landslide displacement prediction using kinematics-based random forests method: a case study in Jinping Reservoir Area China
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020
– volume: 2
  start-page: 248
  year: 1986
  end-page: 255
  ident: CR19
  article-title: Efficient implementation of the fuzzy c-means clustering algorithms
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1986.4767778
– volume: 15
  start-page: 142
  issue: 3
  year: 1977
  end-page: 147
  ident: CR74
  article-title: The decision tree classifier: design and potential
  publication-title: IEEE Trans Geosci Electron
  doi: 10.1109/TGE.1977.6498972
– volume: 12
  start-page: 9
  issue: 1
  year: 2021
  ident: CR13
  article-title: Analytical solutions and 3D numerical analyses of a shallow tunnel excavated in weak ground: a case from Turkey
  publication-title: Int J Geoeng
  doi: 10.1186/s40703-021-00142-7
– volume: 50
  start-page: 1190
  issue: 4
  year: 2013
  end-page: 1197
  ident: CR45
  article-title: Using random forest for classification and regression
  publication-title: Chin J Appl Entomol
– volume: 78
  start-page: 6347
  year: 2019
  end-page: 6360
  ident: CR42
  article-title: Application of deep neural networks in predicting the penetration rate of tunnel boring machines
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-019-01538-7
– ident: CR66
– volume: 37
  start-page: 1533
  year: 2019
  end-page: 1553
  ident: CR3
  article-title: Fuzzy inference system-based for TBM field penetration index estimation in rock mass
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0706-5
– volume: 36
  start-page: 4228
  issue: 3
  year: 2009
  end-page: 4231
  ident: CR6
  article-title: Forecasting in high order fuzzy times series by using neural networks to define fuzzy relations
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.04.001
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  end-page: 137
  ident: CR50
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056489
– year: 2022
  ident: CR79
  article-title: Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network
  publication-title: Gondwana Res
  doi: 10.1016/j.gr.2022.06.011
– year: 1997
  ident: CR29
  publication-title: A scaling law for the validation-set training-set size ratio
– volume: 27
  start-page: 539552
  issue: 7
  year: 2021
  ident: CR49
  article-title: Risk prediction and diagnosis of water seepage in operational shield tunnels based on random forest
  publication-title: J Civ Eng Manag
  doi: 10.3846/jcem.2021.14901
– volume: 1
  start-page: 90
  issue: 6
  year: 2013
  end-page: 95
  ident: CR40
  article-title: Review on determining number of cluster in K-means clustering
  publication-title: Int J Adv Res Comput Sci Manage Stud
– volume: 38
  start-page: 2745
  year: 2020
  end-page: 2759
  ident: CR24
  article-title: Evaluation and optimization of the effective parameters on the shield TBM performance: torque and thrust—using discrete element method (DEM)
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-020-01183-y
– volume: 348
  start-page: 3
  issue: 1
  year: 2020
  end-page: 32
  ident: CR77
  article-title: Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model
  publication-title: Comptes Rendus Mec
  doi: 10.5802/crmeca.3
– year: 2020
  ident: CR61
  article-title: Predicting blast-induced outcomes using random forest models of multi-year blasting data from an open pit mine
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-019-01566-3
– volume: 14
  start-page: 35
  issue: 1
  year: 1998
  end-page: 62
  ident: CR90
  article-title: Forecasting with artificial neural networks
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 80
  start-page: 308
  year: 2015
  end-page: 315
  ident: CR85
  article-title: Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2015.09.019
– volume: 109
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR96
  article-title: Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: comprehensive review and future challenge
  publication-title: Gondwana Res
  doi: 10.1016/j.gr.2022.03.015
– volume: 226
  start-page: 245
  year: 2017
  end-page: 256
  ident: CR4
  article-title: Bayesian prediction of TBM penetration rate in rock mass
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.06.014
– volume: 4
  start-page: 00938
  issue: 11
  year: 2018
  ident: CR2
  article-title: State-of-the-art in artificial neural network applications: a survey
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– volume: 201
  start-page: 67
  year: 2016
  end-page: 70
  ident: CR36
  article-title: Engineering geology—a fifty year perspective
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2015.12.020
– volume: 13
  start-page: 1363
  issue: 6
  year: 2019
  end-page: 1378
  ident: CR20
  article-title: Prediction of shield tunneling-induced ground settlement using machine learning techniques
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-019-0561-3
– volume: 12
  start-page: 541
  issue: 3
  year: 2020
  end-page: 556
  ident: CR10
  article-title: Evaluation of new Austrian tunnelling method applied to Bolu tunnel's weak rocks
  publication-title: J Rock Mech Geotechn Eng
  doi: 10.1016/j.jrmge.2019.12.011
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  end-page: 27
  ident: CR14
  article-title: JMASM 55: MATLAB algorithms and source codes of ‘cbnet’ function for univariate time series modeling with neural networks (MATLAB)
  publication-title: J Mod Appl Stat Methods
  doi: 10.22237/JMASM/1608553080
– volume: 48
  start-page: 427
  year: 2011
  end-page: 433
  ident: CR84
  article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2011.02.013
– volume: 38
  start-page: 1237
  year: 2020
  end-page: 1254
  ident: CR41
  article-title: Using 3D numerical analysis for the assessment of tunnel–landslide relationship: Bahce-Nurdag tunnel (South of Turkey)
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-019-01084-9
– volume: 4
  start-page: 383
  year: 2018
  end-page: 394
  ident: CR35
  article-title: Prediction of TBM penetration rate from brittleness indexes using multiple regression analysis
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-018-0432-2
– volume: 128
  start-page: 109
  issue: 1
  year: 2021
  end-page: 127
  ident: CR51
  article-title: Optimal Control of Slurry Pressure during Shield Tunnelling Based on Random Forest and Particle Swarm Optimization
  publication-title: CMES Comput Model Eng Sci
  doi: 10.32604/cmes.2021.015683
– volume: 41
  start-page: 3451
  issue: 9
  year: 2016
  end-page: 3461
  ident: CR91
  article-title: A novel neural network approach to transformer fault diagnosis based on momentum-embedded BP neural network optimized by genetic algorithm and fuzzy c-means
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-015-2001-6
– volume: 46
  start-page: 68
  issue: 253
  year: 1951
  end-page: 78
  ident: CR53
  article-title: The Kolmogorov-Smirnov test for goodness of fit
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1951.10500769
– volume: 78
  start-page: 3799
  year: 2019
  end-page: 3813
  ident: CR43
  article-title: Predicting tunnel boring machine performance through a new model based on the group method of data handling
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1349-8
– volume: 23
  start-page: 472
  issue: 2
  year: 2013
  end-page: 477
  ident: CR21
  article-title: Prediction of rockburst classification using random forest
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(13)62487-5
– volume: 10
  start-page: 191
  issue: 2
  year: 1984
  end-page: 203
  ident: CR16
  article-title: FCM: the fuzzy c-means clustering algorithm
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 2
  start-page: 123
  issue: 2
  year: 2007
  end-page: 128
  ident: CR97
  article-title: Prediction model of tunnel boring machine performance by ensemble neural networks
  publication-title: Geomech Geoeng Int J
  doi: 10.1080/17486020701377140
– volume: 92
  start-page: 103046
  year: 2019
  ident: CR69
  article-title: Application of rock mass classification systems for performance estimation of rock TBMs using regression tree and artificial intelligence algorithms
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.103046
– year: 2020
  ident: CR100
  article-title: Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.09.020
– volume: 58
  start-page: 236
  year: 2016
  end-page: 246
  ident: CR67
  article-title: Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2016.05.009
– volume: 624
  start-page: 1
  year: 2020
  ident: CR8
  article-title: A new model for predicting the advance rate of a tunnel boring machine (TBM) in hard rock conditions
  publication-title: Min Geol Pet Eng Bull UDC
  doi: 10.17794/rgn.2020.2.6
– volume: 23
  start-page: 3200
  issue: 7
  year: 2019
  end-page: 3206
  ident: CR37
  article-title: An ANN to predict ground condition ahead of tunnel face using TBM operational data
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-019-1460-9
– volume: 11
  start-page: 90
  issue: 1
  year: 2017
  end-page: 99
  ident: CR38
  article-title: Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-016-0363-9
– volume: 38
  start-page: 3125
  year: 2020
  end-page: 3143
  ident: CR60
  article-title: Feasibility of Intelligent models for prediction of utilization factor of TBM
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-020-01213-9
– volume: 103
  start-page: 103493
  year: 2020
  ident: CR93
  article-title: TBM performance prediction with Bayesian optimization and automated machine learning
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103493
– year: 2022
  ident: CR81
  article-title: Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network
  publication-title: Gondwana Res
  doi: 10.1016/j.gr.2022.06.011
– volume: 8
  start-page: 119527
  year: 2020
  end-page: 119543
  ident: CR76
  article-title: Application of artificial neural network in tunnel engineering: a systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004995
– volume: 11
  start-page: 88
  issue: 1
  year: 2019
  ident: CR59
  article-title: Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir
  publication-title: Water
  doi: 10.3390/w11010088
– volume: 219
  start-page: 103
  issue: 1
  year: 2005
  end-page: 119
  ident: CR63
  article-title: Selection of K in K-means clustering
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
  doi: 10.1243/095440605X8298
– volume: 7
  start-page: 37
  year: 2022
  end-page: 49
  ident: CR87
  article-title: Comprehensive evaluation of machine learning algorithms applied to TBM performance prediction
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2021.04.003
– ident: CR26
– volume: 54
  start-page: 1340
  issue: 3
  year: 2013
  end-page: 1347
  ident: CR88
  article-title: A new linear & nonlinear artificial neural network model for time series forecasting
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2012.12.006
– start-page: 12
  year: 2018
  end-page: 21
  ident: CR89
  article-title: Levenberg–marquardt training
  publication-title: Intelligent systems
– volume: 19
  start-page: 597
  year: 2004
  end-page: 605
  ident: CR15
  article-title: Modelling TBM performance with artificial neural networks
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2004.02.128
– volume: 100
  start-page: 73
  year: 2019
  end-page: 83
  ident: CR92
  article-title: Prediction of geological conditions for a tunnel boring machine using big operational data
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.12.022
– volume: 152
  start-page: 107244
  year: 2020
  ident: CR70
  article-title: Performance prediction of tunnel boring machine through developing high accuracy equations: a case study in adverse geological condition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107244
– volume: 4
  start-page: 19
  year: 2021
  ident: CR27
  article-title: Assessment of rate of penetration of a tunnel boring machine in the longest railway tunnel of Turkey
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-021-04903-y
– volume: 80
  start-page: 441
  issue: 12
  year: 2021
  ident: CR98
  article-title: Landslide susceptibility assessment for a transmission line in Gansu Province, China by using a hybrid approach of fractal theory, information value, and random forest models
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-021-09737-w
– volume: 7
  start-page: 155
  issue: 11
  year: 2022
  ident: CR28
  article-title: A geotechnical perspective on a complex geological environment in a high-speed railway tunnel excavation (a case study from Türkiye)
  publication-title: Infrastructures
  doi: 10.3390/infrastructures7110155
– volume: 6
  start-page: 353
  issue: 4
  year: 2021
  end-page: 363
  ident: CR95
  article-title: Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2019.12.003
– volume: 281
  start-page: 105972
  year: 2021
  ident: CR73
  article-title: Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020.105972
– volume: 91
  start-page: 102958
  year: 2019
  ident: CR48
  article-title: Improved support vector regression models for predicting rock mass parameters using tunnel boring machine driving data
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.04.014
– volume: 8
  start-page: 215310
  year: 2020
  end-page: 215326
  ident: CR78
  article-title: Deep learning model for shield tunneling advance rate prediction in mixed ground condition considering past operations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041032
– volume: 40
  start-page: 3191
  year: 2022
  end-page: 3209
  ident: CR22
  article-title: A predictive model for estimating the TBM penetration rate based on hybrid ICA-ANN and DEA-AHP algorithms
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-022-02086-w
– volume: 14
  start-page: 75
  issue: 2
  year: 2020
  end-page: 84
  ident: CR5
  article-title: Prediction of tunnel boring machine penetration rate using ant colony optimization, bee colony optimization and the particle swarm optimization, case study: sabzkooh water conveyance tunnel
  publication-title: Min Miner Depos
  doi: 10.33271/mining14.02.075
– volume: 79
  start-page: 2069
  year: 2020
  end-page: 2084
  ident: CR101
  article-title: Predictioning of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-019-01626-8
– volume: 11
  start-page: 779
  year: 2019
  end-page: 789
  ident: CR34
  article-title: Application of several optimization techniques for estimating TBM advance rate in granitic rocks
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2019.01.002
– volume: 9
  start-page: 116
  issue: 2
  year: 2022
  end-page: 128
  ident: CR18
  article-title: Stability assessments of a triple-tunnel portal with numerial analysis (South of Turkey)
  publication-title: Geotech Res
  doi: 10.1680/jgere.21.00028
– ident: CR31
– volume: 70
  start-page: 980
  year: 2018
  end-page: 987
  ident: CR54
  article-title: Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.030
– volume: 489
  start-page: 78
  year: 2018
  end-page: 93
  ident: CR65
  article-title: Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange
  publication-title: Phys A
  doi: 10.1016/j.physa.2017.07.017
– volume: 36
  start-page: 1647
  issue: 3
  year: 2018
  end-page: 1664
  ident: CR57
  article-title: Random forest tree based approach for blast design in surface mine
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-017-0420-8
– volume: 3
  start-page: 334
  issue: 2
  year: 2013
  end-page: 337
  ident: CR64
  article-title: Comparative analysis of decision tree classification algorithms
  publication-title: Int J Current Eng Technol
– volume: 27
  start-page: 4012
  issue: 8
  year: 2018
  end-page: 4024
  ident: CR62
  article-title: Improved random forest for classification
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2834830
– volume: 12
  start-page: 1166
  issue: 3
  year: 2020
  ident: CR11
  article-title: Problems encountered during a railway tunnel excavation in squeezing and swelling materials and possible engineering measures: a case study from Turkey
  publication-title: Sustainability
  doi: 10.3390/su12031166
– volume: 36
  start-page: 345
  year: 2020
  end-page: 357
  ident: CR44
  article-title: Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00701-8
– volume: 17
  start-page: 04016129
  issue: 6
  year: 2017
  ident: CR99
  article-title: Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0000817
– volume: 35
  start-page: 365
  year: 2017
  end-page: 376
  ident: CR25
  article-title: Risk assessment and estimation of TBM penetration rate using RES-based model
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-016-0111-x
– volume: 201
  start-page: 67
  year: 2016
  ident: 2516_CR36
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2015.12.020
– volume: 7
  start-page: 37
  year: 2022
  ident: 2516_CR87
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2021.04.003
– volume: 91
  start-page: 102958
  year: 2019
  ident: 2516_CR48
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.04.014
– volume: 4
  start-page: 46
  year: 2019
  ident: 2516_CR72
  publication-title: Innov Infrastruct Solut
  doi: 10.1007/s41062-019-0234-z
– volume: 54
  start-page: 1340
  issue: 3
  year: 2013
  ident: 2516_CR88
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2012.12.006
– volume: 281
  start-page: 105972
  year: 2021
  ident: 2516_CR73
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020.105972
– volume: 48
  start-page: 427
  year: 2011
  ident: 2516_CR84
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2011.02.013
– volume: 36
  start-page: 4016
  issue: 8
  year: 2021
  ident: 2516_CR47
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22448
– year: 2020
  ident: 2516_CR100
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.09.020
– volume: 22
  start-page: 808
  year: 2009
  ident: 2516_CR86
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2009.03.007
– volume: 38
  start-page: 3125
  year: 2020
  ident: 2516_CR60
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-020-01213-9
– volume: 41
  start-page: 3451
  issue: 9
  year: 2016
  ident: 2516_CR91
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-015-2001-6
– volume: 36
  start-page: 4228
  issue: 3
  year: 2009
  ident: 2516_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.04.001
– volume: 23
  start-page: 3200
  issue: 7
  year: 2019
  ident: 2516_CR37
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-019-1460-9
– volume: 100
  start-page: 73
  year: 2019
  ident: 2516_CR92
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.12.022
– year: 2021
  ident: 2516_CR75
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.151585
– volume: 10
  start-page: 191
  issue: 2
  year: 1984
  ident: 2516_CR16
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 7
  start-page: 155
  issue: 11
  year: 2022
  ident: 2516_CR28
  publication-title: Infrastructures
  doi: 10.3390/infrastructures7110155
– volume: 72
  start-page: 214
  year: 2014
  ident: 2516_CR52
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.09.012
– volume: 50
  start-page: 1190
  issue: 4
  year: 2013
  ident: 2516_CR45
  publication-title: Chin J Appl Entomol
– volume: 8
  start-page: 215310
  year: 2020
  ident: 2516_CR78
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041032
– volume: 120
  start-page: 75
  year: 2017
  ident: 2516_CR1
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.11.212
– volume: 78
  start-page: 6347
  year: 2019
  ident: 2516_CR42
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-019-01538-7
– volume: 27
  start-page: 4012
  issue: 8
  year: 2018
  ident: 2516_CR62
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2834830
– year: 2022
  ident: 2516_CR81
  publication-title: Gondwana Res
  doi: 10.1016/j.gr.2022.06.011
– volume: 80
  start-page: 37
  issue: 1
  year: 2021
  ident: 2516_CR12
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-020-09328-1
– volume: 18
  start-page: 275
  issue: 6
  year: 2004
  ident: 2516_CR58
  publication-title: J Chemometr A J Chemometr Soc
– year: 2020
  ident: 2516_CR61
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-019-01566-3
– volume: 226
  start-page: 245
  year: 2017
  ident: 2516_CR4
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2017.06.014
– volume: 11
  start-page: 779
  year: 2019
  ident: 2516_CR34
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2019.01.002
– volume: 7
  start-page: 60
  year: 2017
  ident: 2516_CR56
  publication-title: Open Eng
  doi: 10.1515/eng-2017-0012
– ident: 2516_CR71
– volume: 77
  start-page: 429
  issue: 2018
  year: 2018
  ident: 2516_CR68
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-016-0969-0
– volume: 11
  start-page: 90
  issue: 1
  year: 2017
  ident: 2516_CR38
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-016-0363-9
– volume: 8
  start-page: 119527
  year: 2020
  ident: 2516_CR76
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004995
– volume-title: A scaling law for the validation-set training-set size ratio
  year: 1997
  ident: 2516_CR29
– volume: 23
  start-page: 472
  issue: 2
  year: 2013
  ident: 2516_CR21
  publication-title: Trans Nonferrous Met Soc China
  doi: 10.1016/S1003-6326(13)62487-5
– start-page: 12
  volume-title: Intelligent systems
  year: 2018
  ident: 2516_CR89
– volume: 2
  start-page: 123
  issue: 2
  year: 2007
  ident: 2516_CR97
  publication-title: Geomech Geoeng Int J
  doi: 10.1080/17486020701377140
– volume: 38
  start-page: 2745
  year: 2020
  ident: 2516_CR24
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-020-01183-y
– volume: 489
  start-page: 78
  year: 2018
  ident: 2516_CR65
  publication-title: Phys A
  doi: 10.1016/j.physa.2017.07.017
– volume: 11
  start-page: 88
  issue: 1
  year: 2019
  ident: 2516_CR59
  publication-title: Water
  doi: 10.3390/w11010088
– ident: 2516_CR31
  doi: 10.1109/ICDAR.1995.59899
– volume: 19
  start-page: 597
  year: 2004
  ident: 2516_CR15
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2004.02.128
– volume: 14
  start-page: 75
  issue: 2
  year: 2020
  ident: 2516_CR5
  publication-title: Min Miner Depos
  doi: 10.33271/mining14.02.075
– volume: 109
  start-page: 1
  year: 2022
  ident: 2516_CR96
  publication-title: Gondwana Res
  doi: 10.1016/j.gr.2022.03.015
– volume: 174
  start-page: 1742
  issue: 3
  year: 2006
  ident: 2516_CR55
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.03.039
– volume: 80
  start-page: 441
  issue: 12
  year: 2021
  ident: 2516_CR98
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-021-09737-w
– volume: 78
  start-page: 3799
  year: 2019
  ident: 2516_CR43
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1349-8
– volume: 13
  start-page: 1363
  issue: 6
  year: 2019
  ident: 2516_CR20
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-019-0561-3
– volume: 77
  start-page: 115
  year: 2018
  ident: 2516_CR9
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.02.012
– volume: 12
  start-page: 541
  issue: 3
  year: 2020
  ident: 2516_CR10
  publication-title: J Rock Mech Geotechn Eng
  doi: 10.1016/j.jrmge.2019.12.011
– volume: 6
  start-page: 353
  issue: 4
  year: 2021
  ident: 2516_CR95
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2019.12.003
– volume: 38
  start-page: 1237
  year: 2020
  ident: 2516_CR41
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-019-01084-9
– volume: 12
  start-page: 9
  issue: 1
  year: 2021
  ident: 2516_CR13
  publication-title: Int J Geoeng
  doi: 10.1186/s40703-021-00142-7
– volume: 4
  start-page: 383
  year: 2018
  ident: 2516_CR35
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-018-0432-2
– volume: 27
  start-page: 539552
  issue: 7
  year: 2021
  ident: 2516_CR49
  publication-title: J Civ Eng Manag
  doi: 10.3846/jcem.2021.14901
– volume: 23
  start-page: 326
  year: 2008
  ident: 2516_CR83
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2007.04.011
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 2516_CR50
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056489
– volume: 152
  start-page: 107244
  year: 2020
  ident: 2516_CR70
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107244
– volume: 1
  start-page: 90
  issue: 6
  year: 2013
  ident: 2516_CR40
  publication-title: Int J Adv Res Comput Sci Manage Stud
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  ident: 2516_CR14
  publication-title: J Mod Appl Stat Methods
  doi: 10.22237/JMASM/1608553080
– volume: 14
  start-page: 35
  issue: 1
  year: 1998
  ident: 2516_CR90
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 80
  start-page: 308
  year: 2015
  ident: 2516_CR85
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2015.09.019
– volume: 128
  start-page: 109
  issue: 1
  year: 2021
  ident: 2516_CR51
  publication-title: CMES Comput Model Eng Sci
  doi: 10.32604/cmes.2021.015683
– volume: 58
  start-page: 236
  year: 2016
  ident: 2516_CR67
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2016.05.009
– volume: 36
  start-page: 1647
  issue: 3
  year: 2018
  ident: 2516_CR57
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-017-0420-8
– ident: 2516_CR26
– volume: 40
  start-page: 3191
  year: 2022
  ident: 2516_CR22
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-022-02086-w
– year: 2022
  ident: 2516_CR79
  publication-title: Gondwana Res
  doi: 10.1016/j.gr.2022.06.011
– volume: 9
  start-page: 116
  issue: 2
  year: 2022
  ident: 2516_CR18
  publication-title: Geotech Res
  doi: 10.1680/jgere.21.00028
– volume: 92
  start-page: 103046
  year: 2019
  ident: 2516_CR69
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2019.103046
– volume: 33
  start-page: 603
  year: 2020
  ident: 2516_CR80
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04993-6
– volume: 2020
  start-page: 8830661
  year: 2020
  ident: 2516_CR39
  publication-title: Geofluids
  doi: 10.1155/2020/8830661
– volume: 103
  start-page: 103493
  year: 2020
  ident: 2516_CR93
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103493
– volume: 79
  start-page: 2069
  year: 2020
  ident: 2516_CR101
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-019-01626-8
– volume: 283
  start-page: 105975
  year: 2021
  ident: 2516_CR32
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020
– volume: 36
  start-page: 345
  year: 2020
  ident: 2516_CR44
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00701-8
– volume: 15
  start-page: 27
  issue: 1
  year: 2021
  ident: 2516_CR94
  publication-title: GEORISK
  doi: 10.1080/17499518.2019.1674340
– volume: 4
  start-page: 00938
  issue: 11
  year: 2018
  ident: 2516_CR2
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– volume: 15
  start-page: 259
  year: 2000
  ident: 2516_CR7
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/s0886-7798(00)00055-9
– start-page: 155
  volume-title: Applied multivariate statistics in geohydrology and related sciences
  year: 1998
  ident: 2516_CR17
  doi: 10.1007/978-3-642-80328-4_13
– volume: 4
  start-page: 19
  year: 2021
  ident: 2516_CR27
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-021-04903-y
– volume: 2
  start-page: 248
  year: 1986
  ident: 2516_CR19
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1986.4767778
– ident: 2516_CR66
– volume: 9
  start-page: 3715
  year: 2019
  ident: 2516_CR82
  publication-title: Appl Sci
  doi: 10.3390/app9183715
– volume: 46
  start-page: 68
  issue: 253
  year: 1951
  ident: 2516_CR53
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1951.10500769
– volume: 70
  start-page: 980
  year: 2018
  ident: 2516_CR54
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.030
– volume: 37
  start-page: 1533
  year: 2019
  ident: 2516_CR3
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0706-5
– volume: 12
  start-page: 1166
  issue: 3
  year: 2020
  ident: 2516_CR11
  publication-title: Sustainability
  doi: 10.3390/su12031166
– volume: 624
  start-page: 1
  year: 2020
  ident: 2516_CR8
  publication-title: Min Geol Pet Eng Bull UDC
  doi: 10.17794/rgn.2020.2.6
– volume: 348
  start-page: 3
  issue: 1
  year: 2020
  ident: 2516_CR77
  publication-title: Comptes Rendus Mec
  doi: 10.5802/crmeca.3
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 2516_CR30
  publication-title: J R Stat Soc Ser C (appl Stat)
– volume: 35
  start-page: 365
  year: 2017
  ident: 2516_CR25
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-016-0111-x
– volume: 15
  start-page: 142
  issue: 3
  year: 1977
  ident: 2516_CR74
  publication-title: IEEE Trans Geosci Electron
  doi: 10.1109/TGE.1977.6498972
– volume: 17
  start-page: 04016129
  issue: 6
  year: 2017
  ident: 2516_CR99
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0000817
– volume: 48
  start-page: 1214
  issue: 5
  year: 2017
  ident: 2516_CR46
  publication-title: Hydrol Res
  doi: 10.2166/nh.2016.149
– volume: 3
  start-page: 334
  issue: 2
  year: 2013
  ident: 2516_CR64
  publication-title: Int J Current Eng Technol
– volume: 63
  start-page: 29
  year: 2017
  ident: 2516_CR33
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2016.12.009
– volume: 219
  start-page: 103
  issue: 1
  year: 2005
  ident: 2516_CR63
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
  doi: 10.1243/095440605X8298
– volume: 36
  start-page: 10589
  issue: 7
  year: 2009
  ident: 2516_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.02.057
SSID ssj0002601
Score 2.3729582
Snippet Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4205
SubjectTerms Algorithms
Boring machines
Civil Engineering
Dredging
Drilling & boring machinery
Earth and Environmental Science
Earth Sciences
Engineering geology
Excavation
Geology
Geotechnical engineering
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Mathematical models
Modelling
Original Paper
Parameters
Prediction models
Railway tunnels
Terrestrial Pollution
Tubes
Tunnel construction
Tunnels
Waste Management/Waste Technology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwMhECY-YqIHo1VjfYWDNyUW2AJ7Mq2xGhOrMTXxtgGW1UNt1a4H_70MZbtqYpO9sXCYGQaGmfk-hI5loR21RhBV5IYAIBfRrpCEaUNpoaVRDBqcb_vi-jG5eWo_xQe3SSyrrHxicNT52MIb-Zl3o4z5s1zx87d3AqxRkF2NFBqLaNm7YOWDr-XuZf_-YeaLATAroO2J0CfMYttMbJ6TEE0zyGO2qSD899FU3zf_pEjDydPbQOvxyog7Ux1vogU3aqC1H0CCDbRyFQh6v7bQHZCbQYs5Hhd48AlVLLgbiuzwbaibdPi-7hXAU8JfGH3Qo3z8ioGqc1LizvDZTypfXrfRoHc5uLgmkTSBaJ6wknANMZLmjlFjpQ9PnFAtkxTMUA7Y8yZN8lRakVIfaWnGhbJpIp0tKHPcfztoaTQeuV2ElUplylrWFCJPlN-neW69yFIhaaKpbjcRrcSV2QgoDrwWw6yGQgYRZ17EWRBxxpvoZDbnbQqnMffvg0oLWdxak6w2hCY6rTRTD_-_2t781fbRKgvGAPVjB2ip_Ph0h_7CUZqjaFXfZV_PEg
  priority: 102
  providerName: ProQuest
Title Modeling of Tunnel Boring Machine Performance Employing Random Forest Algorithm
URI https://link.springer.com/article/10.1007/s10706-023-02516-3
https://www.proquest.com/docview/2842292983
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ELnowfkYUSQ_edAnttrY7DsNHNCAhkOBpabtWDzCMjP_ftmygRk1Mluzw2h5eX_veS9_v9wC4oZorJAXxmE6FZwm5PK409TAXCGlOBcMW4DwYkv40eJiFswIUtiqr3csnSXdTfwK7UZv9YvvuGCLi-RVQC23ubqx4iuPt_WtJshzDHnHYYFxAZX5e46s72sWY355FnbfpHoHDIkyE8WZfj8Geyk7AwSfywFPwZNuYWTA5XGo4Wdt6Fdh25XRw4CokFRztUAFw09rXSsc8S5cLaJtyrnIYz1_MpPx1cQYm3c7kvu8V7RE87gc493xusyHuK4yEpCYRUYS1RKCxQL5lmRdRkEZUkgiZnIpjnzAZBVRJjbDyzXcOqtkyUxcAMhbRCLek0CQNmDmRaSqNoiJCUcARD-sAlUpKZEEdbjtYzJMd6bFVbGIUmzjFJn4d3G7nvG2IM_4c3Sh1nxSHaJUYz4mxCd-YEd-V-7ET_77a5f-GX4F97EzCVo41QDV_X6trE2rkogkqrNtrglrce37smH-7MxyNm87ePgD6NMub
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BVQUcqkJBXaCtD-2pWGA7azuHqqIfy_KxgNAicbNsxykH2KXdIMSP6n-sx5uQUqnckHJL7MN4PJ6J570H8F6VNjDvJNVl4SgSclEbSkW5dYyVVjnNEeA8OJL9s2z_vHs-A78bLAy2VTYxMQXqYuzxH_lWDKOcx7Nci8_XPymqRuHtaiOhMXWLg3B3G0u2yae9b3F9P3De-z782qe1qgC1IuMVFRaLCCsCZ86rmL8HqbddVnLHBJKzuzwrcuVlzmIpYrmQ2ueZCr5kPIj4xGln4VkmRI4bSvd27wM_snMlaj-ZQMm8xujUSD2FpTvHS9Muk1Q8PAfb5Paf-9h0zPVewos6PyU7U4dagpkwWobFv1gLl-H5blIDvnsFx6ikhnh2Mi7J8AZbZsiX1NFHBqlJM5CTFphApurC-PbUjorxFUFd0ElFdi5_xEHVxdUKDJ_ClqswNxqPwmsgWucq59velbLIdAwKReGjyXKpWGaZ7XaANeYyvmYvRxGNS9PyLqOJTTSxSSY2ogMf78dcT7k7Hv16o1kFU-_jiWm9rgObzcq0r_8_29rjs72D-f5wcGgO944O1mGBJ8fAxrUNmKt-3YQ3MdOp3NvkXwTME_vzH6X7CA8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDMiBG1Rb0i5pj-MxjcfGhDZptyppEzhs3cS6_0-ctutAgISUm5McHCe2FX-fEbrkWigSSeb4OpYOEHI5QmnuUCEJ0YJLnwLAudtjnaH3OGqOVlD8ttq9-JLMMA3A0pSk9Vms6yvANw6ZMIU_yCZhjruONsxzTMCuh7S1fIuBMMuy7TGLE6Y5bObnPb66pjLe_PZFaj1Pexft5CEjbmVnvIfWVLKPtleIBA_QC7Q0A2A5nmo8WEDtCr6xpXW4a6slFe6XCAGctfkF6atI4ukEQ4POeYpb4zezKH2fHKJB-35w23HyVgmOcD2aOq6AzEi4ihIZcZOUKOY3pKepJC4wzsvAiwMesYCY_EpQl_lR4HEVaUKVa8YRqiTTRB0j7PsBD2gjkprFnm9uZxxHRlEB48QTRDSriBRKCqOcRhy6WYzDkgAZFBsaxYZWsaFbRVfLNbOMROPP2bVC92F-oeah8aKUmlDON-Lr4jxK8e-7nfxv-gXa7N-1w-eH3tMp2qLWOqCgrIYq6cdCnZkIJJXn1sg-AVvYzrY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+Tunnel+Boring+Machine+Performance+Employing+Random+Forest+Algorithm&rft.jtitle=Geotechnical+and+geological+engineering&rft.au=Gokceoglu%2C+C.&rft.au=Bal%2C+C.&rft.au=Aladag%2C+C.+H.&rft.date=2023-09-01&rft.pub=Springer+International+Publishing&rft.issn=0960-3182&rft.eissn=1573-1529&rft.volume=41&rft.issue=7&rft.spage=4205&rft.epage=4231&rft_id=info:doi/10.1007%2Fs10706-023-02516-3&rft.externalDocID=10_1007_s10706_023_02516_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3182&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3182&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3182&client=summon