A Rationally Optimized Nanoparticle System for the Delivery of RNA Interference Therapeutics into Pancreatic Tumors in Vivo
Pancreatic cancer is a devastating disease with a dismal prognosis. Short-interfering RNA (siRNA)-based therapeutics hold promise for the treatment of cancer. However, development of efficient and safe delivery vehicles for siRNA remains a challenge. Here, we describe the synthesis and physicochemic...
Saved in:
Published in | Biomacromolecules Vol. 17; no. 7; pp. 2337 - 2351 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pancreatic cancer is a devastating disease with a dismal prognosis. Short-interfering RNA (siRNA)-based therapeutics hold promise for the treatment of cancer. However, development of efficient and safe delivery vehicles for siRNA remains a challenge. Here, we describe the synthesis and physicochemical characterization of star polymers (star 1, star 2, star 3) using reversible addition–fragmentation chain transfer polymerization (RAFT) for the delivery of siRNA to pancreatic cancer cells. These star polymers were designed to contain different lengths of cationic poly(dimethylaminoethyl methacrylate) (PDMAEMA) side-arms and varied amounts of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA). We showed that star-POEGMA polymers could readily self-assemble with siRNA to form nanoparticles. The star-POEGMA polymers were nontoxic to normal cells and delivered siRNA with high efficiency to pancreatic cancer cells to silence a gene (TUBB3/βIII-tubulin) which is currently undruggable using chemical agents, and is involved in regulating tumor growth and metastases. Notably, systemic administration of star-POEGMA-siRNA resulted in high accumulation of siRNA to orthotopic pancreatic tumors in mice and silenced βIII-tubulin expression by 80% at the gene and protein levels in pancreatic tumors. Together, these novel findings provide strong rationale for the use of star-POEGMA polymers as delivery vehicles for siRNA to pancreatic tumors. |
---|---|
AbstractList | Pancreatic cancer is a devastating disease with a dismal prognosis. Short-interfering RNA (siRNA)-based therapeutics hold promise for the treatment of cancer. However, development of efficient and safe delivery vehicles for siRNA remains a challenge. Here, we describe the synthesis and physicochemical characterization of star polymers (star 1, star 2, star 3) using reversible addition-fragmentation chain transfer polymerization (RAFT) for the delivery of siRNA to pancreatic cancer cells. These star polymers were designed to contain different lengths of cationic poly(dimethylaminoethyl methacrylate) (PDMAEMA) side-arms and varied amounts of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA). We showed that star-POEGMA polymers could readily self-assemble with siRNA to form nanoparticles. The star-POEGMA polymers were nontoxic to normal cells and delivered siRNA with high efficiency to pancreatic cancer cells to silence a gene (TUBB3/βIII-tubulin) which is currently undruggable using chemical agents, and is involved in regulating tumor growth and metastases. Notably, systemic administration of star-POEGMA-siRNA resulted in high accumulation of siRNA to orthotopic pancreatic tumors in mice and silenced βIII-tubulin expression by 80% at the gene and protein levels in pancreatic tumors. Together, these novel findings provide strong rationale for the use of star-POEGMA polymers as delivery vehicles for siRNA to pancreatic tumors. Pancreatic cancer is a devastating disease with a dismal prognosis. Short-interfering RNA (siRNA)-based therapeutics hold promise for the treatment of cancer. However, development of efficient and safe delivery vehicles for siRNA remains a challenge. Here, we describe the synthesis and physicochemical characterization of star polymers (star 1, star 2, star 3) using reversible addition–fragmentation chain transfer polymerization (RAFT) for the delivery of siRNA to pancreatic cancer cells. These star polymers were designed to contain different lengths of cationic poly(dimethylaminoethyl methacrylate) (PDMAEMA) side-arms and varied amounts of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA). We showed that star-POEGMA polymers could readily self-assemble with siRNA to form nanoparticles. The star-POEGMA polymers were nontoxic to normal cells and delivered siRNA with high efficiency to pancreatic cancer cells to silence a gene (TUBB3/βIII-tubulin) which is currently undruggable using chemical agents, and is involved in regulating tumor growth and metastases. Notably, systemic administration of star-POEGMA-siRNA resulted in high accumulation of siRNA to orthotopic pancreatic tumors in mice and silenced βIII-tubulin expression by 80% at the gene and protein levels in pancreatic tumors. Together, these novel findings provide strong rationale for the use of star-POEGMA polymers as delivery vehicles for siRNA to pancreatic tumors. |
Author | Liu, Jie Sharbeen, George Youkhana, Janet Davis, Thomas P Teo, Joann McCarroll, Joshua A Duong, Hien T. T Phillips, Phoebe A Boyer, Cyrille Goldstein, David Kavallaris, Maria Sagnella, Sharon M |
AuthorAffiliation | Centre for Advanced Macromolecular Design, School of Chemical Engineering Department of Chemistry UNSW Australia ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Monash Institute of Pharmaceutical Sciences Monash University Australian Centre for NanoMedicine Prince of Wales Clinical School ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Tumour Biology and Targeting Program, Children’s Cancer Institute, Lowy Cancer Research Centre Prince of Wales Hospital University of Warwick Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School |
AuthorAffiliation_xml | – name: UNSW Australia – name: Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School – name: Department of Chemistry – name: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology – name: University of Warwick – name: ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Monash Institute of Pharmaceutical Sciences – name: Monash University – name: Prince of Wales Hospital – name: Australian Centre for NanoMedicine – name: Tumour Biology and Targeting Program, Children’s Cancer Institute, Lowy Cancer Research Centre – name: Prince of Wales Clinical School – name: Centre for Advanced Macromolecular Design, School of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Joann surname: Teo fullname: Teo, Joann – sequence: 2 givenname: Joshua A surname: McCarroll fullname: McCarroll, Joshua A – sequence: 3 givenname: Cyrille surname: Boyer fullname: Boyer, Cyrille – sequence: 4 givenname: Janet surname: Youkhana fullname: Youkhana, Janet – sequence: 5 givenname: Sharon M surname: Sagnella fullname: Sagnella, Sharon M – sequence: 6 givenname: Hien T. T surname: Duong fullname: Duong, Hien T. T – sequence: 7 givenname: Jie surname: Liu fullname: Liu, Jie – sequence: 8 givenname: George surname: Sharbeen fullname: Sharbeen, George – sequence: 9 givenname: David surname: Goldstein fullname: Goldstein, David – sequence: 10 givenname: Thomas P surname: Davis fullname: Davis, Thomas P – sequence: 11 givenname: Maria surname: Kavallaris fullname: Kavallaris, Maria email: mkavallaris@ccia.unsw.edu.au – sequence: 12 givenname: Phoebe A surname: Phillips fullname: Phillips, Phoebe A email: p.phillips@unsw.edu.au |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27305597$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtuwjAQRa2KqjzaH-ii8g-Ejp04IUtEX0gIKkq7jRwzFkZJHNkBifbnGwrtsovRjEb3zEinTzqVrZCQWwZDBpzdS-WHubGlVMM4B2AjcUF6TPA4iGLgnZ9ZBEmSJl3S934LAGkYiSvS5UkIQqRJj3yN6VI2xlayKA50UTemNJ-4pnNZ2Vq6xqgC6dvBN1hSbR1tNkgfsDB7dAdqNV3Ox3RaNeg0OqwU0tUGnaxx15Kemqqx9FVWymH7RNHVrrTuuKYfZm-vyaWWhcebcx-Q96fH1eQlmC2ep5PxLJBhxJsgHK21QIEScyG0AIyAaxlryGXE0zAGiBIm2gKmWKp162GUMqUB83DE8zAcEH66q5z13qHOamdK6Q4Zg-xoMmtNZieT2dlkC92doHqXl7j-Q37VtYHhKXCEt3bnWoX-v4vf2fyEhA |
CitedBy_id | crossref_primary_10_1021_acs_biomac_6b01029 crossref_primary_10_1016_j_bbcan_2021_188607 crossref_primary_10_1177_1758835920915978 crossref_primary_10_18632_oncotarget_27901 crossref_primary_10_1007_s00289_018_2430_y crossref_primary_10_1002_wnan_1820 crossref_primary_10_1002_pol_20200375 crossref_primary_10_1002_pola_29447 crossref_primary_10_1038_s41598_021_81299_0 crossref_primary_10_1021_acs_chemrev_3c00705 crossref_primary_10_1039_C6PY01849A crossref_primary_10_1016_j_ymthe_2022_01_004 crossref_primary_10_1021_acsapm_2c01291 crossref_primary_10_3390_polym13111698 crossref_primary_10_18632_oncotarget_13985 crossref_primary_10_3390_ncrna8040058 crossref_primary_10_1016_j_biomaterials_2019_119742 crossref_primary_10_1016_j_semcancer_2021_08_003 crossref_primary_10_1002_marc_201700410 crossref_primary_10_1039_C8PY01355A crossref_primary_10_1021_acs_biomac_6b01756 crossref_primary_10_1158_0008_5472_CAN_19_1112 crossref_primary_10_1002_bit_27869 crossref_primary_10_1002_mren_201600066 crossref_primary_10_3390_pharmaceutics14010137 crossref_primary_10_3390_pharmaceutics14081630 crossref_primary_10_1038_s41388_018_0666_5 crossref_primary_10_1039_C6TB01739H crossref_primary_10_1039_D2SC00192F crossref_primary_10_1002_macp_202200008 crossref_primary_10_3390_ijms23052408 crossref_primary_10_1021_acs_bioconjchem_7b00279 crossref_primary_10_1071_CH17391 crossref_primary_10_2174_1574885517666220421125043 crossref_primary_10_1016_j_eurpolymj_2023_112443 crossref_primary_10_1016_j_progpolymsci_2016_09_008 crossref_primary_10_1016_j_jddst_2017_04_013 crossref_primary_10_1080_00914037_2020_1716227 crossref_primary_10_1002_macp_202200115 crossref_primary_10_1007_s41061_017_0127_6 crossref_primary_10_1039_D4PY00124A crossref_primary_10_1016_j_progpolymsci_2020_101311 crossref_primary_10_3389_fcell_2022_851542 crossref_primary_10_1039_D1PY00663K crossref_primary_10_1016_j_biomaterials_2022_121539 crossref_primary_10_1158_0008_5472_CAN_20_2496 crossref_primary_10_1016_j_biomaterials_2016_12_010 crossref_primary_10_1016_j_neo_2016_10_011 crossref_primary_10_1002_advs_202002545 crossref_primary_10_1002_cam4_5128 crossref_primary_10_1016_j_eurpolymj_2021_110777 crossref_primary_10_3390_pharmaceutics13101638 crossref_primary_10_1039_D1SM01692J crossref_primary_10_1039_C9PY00573K |
Cites_doi | 10.1038/nnano.2011.166 10.1002/asia.201300262 10.1142/S179398441241005X 10.1517/17425247.5.4.371 10.1073/pnas.1309566110 10.1021/nl803487r 10.1038/nrc3180 10.1248/bpb.b13-00059 10.3389/fonc.2014.00153 10.1158/2159-8290.CD-12-0429 10.1016/j.progpolymsci.2015.02.002 10.1038/nrm2085 10.1038/mt.2013.32 10.18632/oncotarget.2664 10.1038/nbt.2614 10.1021/ar800075n 10.3389/fphys.2014.00002 10.1016/S0002-9440(10)64800-6 10.1038/nbt.2612 10.1021/bm1014014 10.1016/j.ymthe.2005.02.010 10.1073/pnas.1411393111 10.1016/j.jconrel.2011.09.093 10.1016/j.canlet.2011.05.002 10.1021/ma0018087 10.3390/molecules200713313 10.1038/nrd2614 10.1021/bm4003199 10.1056/NEJMra0901557 10.1021/ma300410v 10.1016/j.ejpb.2007.09.002 10.1016/j.jconrel.2012.03.015 10.1056/NEJMoa1208760 10.1016/j.nano.2012.05.002 10.18632/oncotarget.2946 10.1158/0008-5472.CAN-07-2477 10.1021/mp400049e 10.1021/bm2006455 10.1042/BJ20080474 10.1038/mt.2011.263 10.1021/ml400082b 10.1158/0008-5472.CAN-07-1077 10.1111/j.1365-2559.2007.02792.x 10.1021/bm800797j 10.1021/bm401526d 10.1021/bm500422v 10.1517/17425247.2014.877442 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1021/acs.biomac.6b00185 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 2351 |
ExternalDocumentID | 10_1021_acs_biomac_6b00185 27305597 b465587134 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 23N 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL RSW TN5 UI2 VF5 VG9 W1F X XKZ --- -~X 4.4 5VS AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CGR CUPRZ CUY CVF ECM EIF GGK NPM ZCA ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-a342t-38df5e5eaeb55f50e402fa6f0ba4293600471547101c19ff185891cf0eb382b33 |
IEDL.DBID | ACS |
ISSN | 1525-7797 |
IngestDate | Fri Aug 23 03:57:39 EDT 2024 Sat Sep 28 08:49:35 EDT 2024 Thu Aug 27 13:43:00 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a342t-38df5e5eaeb55f50e402fa6f0ba4293600471547101c19ff185891cf0eb382b33 |
PMID | 27305597 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1021_acs_biomac_6b00185 pubmed_primary_27305597 acs_journals_10_1021_acs_biomac_6b00185 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2016-07-11 |
PublicationDateYYYYMMDD | 2016-07-11 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref33/cit33 doi: 10.1038/nnano.2011.166 – ident: ref32/cit32 doi: 10.1002/asia.201300262 – ident: ref41/cit41 doi: 10.1142/S179398441241005X – ident: ref21/cit21 doi: 10.1517/17425247.5.4.371 – ident: ref34/cit34 doi: 10.1073/pnas.1309566110 – ident: ref47/cit47 doi: 10.1021/nl803487r – ident: ref19/cit19 doi: 10.1038/nrc3180 – ident: ref22/cit22 doi: 10.1248/bpb.b13-00059 – ident: ref6/cit6 doi: 10.3389/fonc.2014.00153 – ident: ref10/cit10 doi: 10.1158/2159-8290.CD-12-0429 – ident: ref16/cit16 doi: 10.1016/j.progpolymsci.2015.02.002 – ident: ref2/cit2 doi: 10.1038/nrm2085 – ident: ref9/cit9 doi: 10.1038/mt.2013.32 – ident: ref24/cit24 doi: 10.18632/oncotarget.2664 – ident: ref44/cit44 doi: 10.1038/nbt.2614 – ident: ref31/cit31 doi: 10.1021/ar800075n – ident: ref3/cit3 doi: 10.3389/fphys.2014.00002 – ident: ref27/cit27 doi: 10.1016/S0002-9440(10)64800-6 – ident: ref43/cit43 doi: 10.1038/nbt.2612 – ident: ref15/cit15 doi: 10.1021/bm1014014 – ident: ref36/cit36 doi: 10.1016/j.ymthe.2005.02.010 – ident: ref35/cit35 doi: 10.1073/pnas.1411393111 – ident: ref5/cit5 doi: 10.1016/j.jconrel.2011.09.093 – ident: ref26/cit26 doi: 10.1016/j.canlet.2011.05.002 – ident: ref23/cit23 doi: 10.1021/ma0018087 – ident: ref39/cit39 doi: 10.3390/molecules200713313 – ident: ref4/cit4 doi: 10.1038/nrd2614 – ident: ref11/cit11 doi: 10.1021/bm4003199 – ident: ref1/cit1 doi: 10.1056/NEJMra0901557 – ident: ref30/cit30 doi: 10.1021/ma300410v – ident: ref42/cit42 doi: 10.1016/j.ejpb.2007.09.002 – ident: ref38/cit38 doi: 10.1016/j.jconrel.2012.03.015 – ident: ref8/cit8 doi: 10.1056/NEJMoa1208760 – ident: ref37/cit37 doi: 10.1016/j.nano.2012.05.002 – ident: ref7/cit7 doi: 10.18632/oncotarget.2946 – ident: ref46/cit46 doi: 10.1158/0008-5472.CAN-07-2477 – ident: ref18/cit18 doi: 10.1021/mp400049e – ident: ref12/cit12 doi: 10.1021/bm2006455 – ident: ref40/cit40 doi: 10.1042/BJ20080474 – ident: ref20/cit20 doi: 10.1038/mt.2011.263 – ident: ref14/cit14 doi: 10.1021/ml400082b – ident: ref25/cit25 doi: 10.1158/0008-5472.CAN-07-1077 – ident: ref28/cit28 doi: 10.1111/j.1365-2559.2007.02792.x – ident: ref17/cit17 doi: 10.1021/bm800797j – ident: ref29/cit29 doi: 10.1021/bm401526d – ident: ref13/cit13 doi: 10.1021/bm500422v – ident: ref45/cit45 doi: 10.1517/17425247.2014.877442 |
SSID | ssj0009345 |
Score | 2.4841158 |
Snippet | Pancreatic cancer is a devastating disease with a dismal prognosis. Short-interfering RNA (siRNA)-based therapeutics hold promise for the treatment of cancer.... |
SourceID | crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2337 |
SubjectTerms | Animals Cell Survival - drug effects Drug Delivery Systems Humans Methacrylates - chemistry Mice Mice, Inbred BALB C Mice, Nude Nanoparticles - administration & dosage Nanoparticles - chemistry Nylons - chemistry Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - genetics Pancreatic Neoplasms - pathology Polymers - chemistry RNA, Small Interfering - administration & dosage RNA, Small Interfering - genetics Tubulin - chemistry Tubulin - genetics Tubulin - metabolism Tumor Cells, Cultured Xenograft Model Antitumor Assays |
Title | A Rationally Optimized Nanoparticle System for the Delivery of RNA Interference Therapeutics into Pancreatic Tumors in Vivo |
URI | http://dx.doi.org/10.1021/acs.biomac.6b00185 https://www.ncbi.nlm.nih.gov/pubmed/27305597 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1bS8MwFMeDzgd98X6ZN86D4IN2ts2Sto9jOobgBd1kbyVNExhuq6ydoH55T9pOGV7Ya0nTktv_d5Kccwg58VjkxxwnoKsds3UjuSV8HVtGnlDfpJFwc9vilre79ese6y2Q8z9O8F3nQsi0ZlzRsXpuJN5ni2TJ9XB2GBBqPn6H2KV5SmKT0AeZMfBKF5nf6zBiJNMZMZrBylxeWmvkZuqkU9wqea5Nsqgm33_GbJzrz9fJasmZ0CgGxgZZUKNNstycpnfbIh8NeCg3AgdvcIcrx7D_rmLA5Rbt6OI1KOKZA4ItICjCpRqYaxxvkGh4uG1Avp1YOgxC59uTK4X-KEvgHkdUzqQSOpNhMjaP4an_mmyTbuuq02xbZSYGS9C6m1nUjzVTTAkVMaaZrdDq1IJrOxKoZ5SbmJPIYkgrjnQCjd1ukhVKbaOp7rsRpTukMkpGao8A82LKPSEDO_brSCMBpREynOf5StRjLqrkFNstLGdSGuaH5K4TmodFY4ZlY1bJ2bTzwpciNMe_pXeL_v0qi-BmG3tqf-4vHpAV5CVutnYd55BUsvFEHSGTZNFxPhQ_AVfq29M |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57070,57120 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHODC-_3yAYkD6miXJe2O0wANGANBQbtVfSTSxFjR2iFt_HnstjANIQTXKE3SxMn32Yltxo5sETiRxA1Y0RaZbkJp-I6ODIInxLeQIJxeW7Rl87F61RGdwo-bfGFwEAm2lGSX-JPoAtYplZFHOvYiCekdMcvmhI0SS3yo8TCJtMuzzMSU1wepY80uPGV-boMwKUymMGmKXWYoc7HE3K_xZY9LnsvDNCiH42-hG__5A8tssWCdUM_FZIXNqP4qm298JntbY-91uC_Mgr0R3OI58tIdqwjw8EWtOv8M8ujmgDQXkDbCmerRo44RxBru23XIjIuF-yC4E7-uBLr9NIY7lK-MoYbgDl_iARXDU_ctXmePF-duo2kUeRkMn1crqcGdSAsllK8CIbQwFeqg2pfaDHxENy4pAiUyM-QuVmjVNAoBpS4MtYmKu1MJON9gpX7cV1sMhB1xafthzYycKnKTGucBMjrbdpRfjaS_zY5x3rxiXyVedmVesTwqzCfTKyZzm518rqH3mgfq-LX2Zr7MX3WRxpmkXe38ucdDNt90b1pe67J9vcsWkElJMvpa1h4rpYOh2ke2kgYHmXR-AEu15DM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYJODCvm9zQOKAAklcO-mxKlRsKqgU1FuUxZYq2qYiKRLw88wkhgqEEOJqObZjj_3ejD0zjB14IvITiRvQ1Q6ZbmJphb5OLIInxLeYIJxeWzTl-X3lsiM6xnRBvjA4iAxbyopLfNrVw0SbCAPOCZWTVzr2JAntfTHJpoXnuJSzoVa_G0fb5UV2Ysrtg_Sx6hlvmZ_bIFyKsy-49IVhFkjTWGCdzzEWD0wej0d5dBy_fgvf-I-fWGTzhn1CrRSXJTahBststv6R9G2FvdWgZcyDvRe4wfOk331VCeAhjNp1-RmUUc4B6S4gfYRT1aPHHS-Qamg1a1AYGY0bIbTH_l0ZdAd5CrcoZwVTjaE96qdPVAwP3ed0ld03ztr1c8vkZ7BCXnFzi_uJFkqoUEVCaGEr1EV1KLUdhYhyXFIkSmRoyGGc2KlqFAZKYRhrGxV43404X2NTg3SgNhgIL-HSC-OqnfgV5ChVziNkdp7nq7CSyHCTHeK8BWZ_ZUFxde46ARWWkxmYydxkRx_rGAzLgB2_1l4vl_qzLtI5m7SsrT_3uM9mbk8bwfVF82qbzSGhkmT7dZwdNpU_jdQukpY82isE9B2rYeat |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rationally+Optimized+Nanoparticle+System+for+the+Delivery+of+RNA+Interference+Therapeutics+into+Pancreatic+Tumors+in+Vivo&rft.jtitle=Biomacromolecules&rft.au=Teo%2C+Joann&rft.au=McCarroll%2C+Joshua+A&rft.au=Boyer%2C+Cyrille&rft.au=Youkhana%2C+Janet&rft.date=2016-07-11&rft.pub=American+Chemical+Society&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=17&rft.issue=7&rft.spage=2337&rft.epage=2351&rft_id=info:doi/10.1021%2Facs.biomac.6b00185&rft.externalDocID=b465587134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |