Mechanical and microseismic characteristics of sandstones subject to moderate low-frequency differential cyclic loading (DCL) followed by monotonic loading up to failure
This work aims to experimentally investigate the behaviour of sandstone drilled from an underground coal mine exposed to low-frequency cyclic loading with distinct loading/unloading rates, namely differential cyclic loading (DCL). Three loading modes with different loading/unloading rates were appli...
Saved in:
Published in | Acta geotechnica Vol. 18; no. 1; pp. 187 - 215 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work aims to experimentally investigate the behaviour of sandstone drilled from an underground coal mine exposed to low-frequency cyclic loading with distinct loading/unloading rates, namely differential cyclic loading (DCL). Three loading modes with different loading/unloading rates were applied. The test results are presented and analysed in terms of dissipated energy ratio (DER), evolution of secant elastic moduli, stress–strain hysteresis and acoustic emission (AE) behaviours. The correlation between DER and maximum cyclic load level is revealed, and a novel method to predict the strength of the rock sample is proposed based on statistics of DER at failure. The hardening behaviour is observed during cyclic loading, which is characterized by gradual enhancement of the secant elastic moduli. The stress–strain hysteresis is determined, which shows that phase shift between stress–strain is loading/unloading rate-dependent. The evolution of AE counts and energy is documented and discussed with respect to the dissipated energy. The results indicate that patterns of AE evolution and Kaiser effect are both influenced by cyclic loading paths. |
---|---|
AbstractList | This work aims to experimentally investigate the behaviour of sandstone drilled from an underground coal mine exposed to low-frequency cyclic loading with distinct loading/unloading rates, namely differential cyclic loading (DCL). Three loading modes with different loading/unloading rates were applied. The test results are presented and analysed in terms of dissipated energy ratio (DER), evolution of secant elastic moduli, stress–strain hysteresis and acoustic emission (AE) behaviours. The correlation between DER and maximum cyclic load level is revealed, and a novel method to predict the strength of the rock sample is proposed based on statistics of DER at failure. The hardening behaviour is observed during cyclic loading, which is characterized by gradual enhancement of the secant elastic moduli. The stress–strain hysteresis is determined, which shows that phase shift between stress–strain is loading/unloading rate-dependent. The evolution of AE counts and energy is documented and discussed with respect to the dissipated energy. The results indicate that patterns of AE evolution and Kaiser effect are both influenced by cyclic loading paths. |
Author | Song, Zhengyang Wu, Yunfeng Cai, Xin Konietzky, Heinz |
Author_xml | – sequence: 1 givenname: Zhengyang surname: Song fullname: Song, Zhengyang email: zhengyangsong@ustb.edu.cn organization: Department of Civil Engineering, School of Civil and Resource Engineering, University of Science and Technology Beijing, Geotechnical Institute, TU Bergakademie Freiberg – sequence: 2 givenname: Heinz surname: Konietzky fullname: Konietzky, Heinz organization: Geotechnical Institute, TU Bergakademie Freiberg – sequence: 3 givenname: Yunfeng surname: Wu fullname: Wu, Yunfeng organization: Department of Civil Engineering, School of Civil and Resource Engineering, University of Science and Technology Beijing – sequence: 4 givenname: Xin surname: Cai fullname: Cai, Xin organization: School of Resources and Safety Engineering, Central South University |
BookMark | eNp9kc1u1DAUhSNUJNrCC7CyxAYWKf5LnFmioVCkqbpp19aNc108ytiD7QjNI_GW3GEQIBZd-Uo-37k_56I5iyli07wW_Epwbt4XIbTmLZey5aIzVD1rzsXQi1YIpc7-1LJ70VyUsuW8V1L3582PW3RfIQYHM4M4sV1wORUMhQpGPxlcxRxKDa6w5FkhUanUvLCyjFt0ldXEdmnCDBXZnL63PuO3BaM7sCl4jxljDeTuDm4mzznBFOIje_txvXnHfJoJwYmNBzKJiZz_0Sz7o7mHMC8ZXzbPPcwFX_1-L5uHT9f365t2c_f5y_rDpgWlZW1Vpzs3Dj1qMH4AGGGYVAfadY62F2alNaAcV0YZzoe-G9Eb7dQ0Gg9K9pO6bN6cfPc50R6l2m1acqSWVpqezixWUpFqOKmO5yoZvXWhQg0p1kzzWsHtMRh7CsZSMPZXMJYTKv9D9znsIB-ehtQJKiSOj5j_TvUE9RPPSaYu |
CitedBy_id | crossref_primary_10_1016_j_engfailanal_2024_108860 crossref_primary_10_2113_2022_4926735 crossref_primary_10_1007_s10064_024_03631_y crossref_primary_10_1007_s40948_022_00481_4 crossref_primary_10_1016_j_tafmec_2023_103870 crossref_primary_10_1007_s43452_024_01000_w crossref_primary_10_1016_j_ijmst_2023_11_002 crossref_primary_10_1016_j_ijmst_2023_11_003 crossref_primary_10_1007_s00603_024_03960_0 crossref_primary_10_1007_s00603_024_04081_4 crossref_primary_10_1007_s10064_023_03263_8 crossref_primary_10_1002_ese3_1978 crossref_primary_10_1007_s40948_022_00423_0 crossref_primary_10_1016_j_tafmec_2024_104484 crossref_primary_10_1007_s10064_024_03996_0 crossref_primary_10_1007_s40789_023_00589_2 |
Cites_doi | 10.1016/j.soildyn.2007.01.005 10.1016/j.ijfatigue.2019.105349 10.1007/s00603-004-0030-7 10.1016/j.ijrmms.2020.104289 10.1016/j.conbuildmat.2015.03.076 10.1016/j.engstruct.2018.10.053 10.1016/J.IJFATIGUE.2018.06.001 10.1093/gji/ggt301 10.1016/j.ssci.2011.08.043 10.1016/j.ijfatigue.2016.01.008 10.1016/j.jrmge.2020.08.002 10.1016/j.ijfatigue.2019.105429 10.1016/J.TUST.2018.04.038 10.1016/j.ijmecsci.2021.106970 10.1016/j.engstruct.2016.04.048 10.1007/s00603-018-1402-8 10.1016/j.conbuildmat.2017.04.030 10.3390/s21113677 10.1016/j.ijrmms.2004.08.008 10.1016/j.jrmge.2021.12.027 10.1002/nag.2247 10.1016/j.ijfatigue.2007.01.007 10.1007/s00603-005-0045-8 10.1007/s00603-016-1077-y 10.1016/j.jlp.2018.07.006 10.1016/j.soildyn.2018.05.030 10.1007/s10064-020-02035-y 10.1007/s11440-018-0723-9 10.1016/j.jappgeo.2018.12.010 10.1016/j.conbuildmat.2017.02.043 10.1016/j.conbuildmat.2017.07.081 10.1016/j.jrmge.2017.04.004 10.1016/j.ijrmms.2018.01.046 10.1016/j.ijfatigue.2016.12.002 10.1016/j.jrmge.2017.09.005 10.1007/s00603-017-1317-9 10.1007/s11440-017-0616-3 10.1061/(ASCE)EM.1943-7889.0000356 10.1007/BF01041806 10.1061/(ASCE)MT.1943-5533.0002703 10.1016/j.ijrmms.2021.104648 10.1016/S0267-7261(03)00063-0 10.1016/j.conbuildmat.2019.02.074 10.1016/j.conbuildmat.2020.118327 10.1016/j.conbuildmat.2018.02.076 10.1016/j.ijmst.2017.11.006 10.1029/2008JB005588 10.1007/s00603-013-0387-6 10.1007/s11340-010-9457-9 10.1016/j.ijfatigue.2019.105383 10.1016/j.ijrmms.2016.03.003 10.1016/j.compositesb.2012.07.028 10.1016/j.tafmec.2020.102679 10.1016/j.ijrmms.2020.104411 10.1039/C6SM02785G 10.1007/s00603-017-1337-5 10.1016/j.ijrmms.2007.07.018 10.1007/s00603-017-1327-7 10.1007/s00603-017-1190-6 10.1016/j.annemergmed.2016.09.005 10.1520/STP43764S 10.1002/eqe.4290020407 10.1016/j.ijfatigue.2020.105927 10.1016/j.ijmst.2016.05.054 10.1016/j.conbuildmat.2020.118043 10.1016/S0148-9062(99)00008-X 10.1093/gji/ggv023 10.1007/s00603-011-0209-7 10.1016/j.engfracmech.2019.02.007 10.1016/j.jrmge.2021.03.012 10.1016/S0008-8846(99)00095-2 10.1016/j.jrmge.2014.07.008 10.1007/s00603-021-02449-4 10.1007/s00603-013-0394-7 10.1016/j.engfracmech.2020.107109 10.1016/j.ijrmms.2017.03.003 10.1016/j.ijfatigue.2016.04.021 10.1016/S0148-9062(99)00016-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s11440-022-01570-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1861-1133 |
EndPage | 215 |
ExternalDocumentID | 10_1007_s11440_022_01570_0 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L6V LK5 LLZTM M2P M4Y M7R M7S MA- MM- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PCBAR PF0 PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TN 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-a342t-3545cb86e4a7f8aaba8d35a4c5c12517944ae2b973700865bef74c3db7fa326d3 |
IEDL.DBID | BENPR |
ISSN | 1861-1125 |
IngestDate | Sat Aug 23 14:42:28 EDT 2025 Tue Jul 01 02:16:04 EDT 2025 Thu Apr 24 22:49:14 EDT 2025 Fri Feb 21 02:46:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Acoustic emission Loading/unloading rate Energy dissipation Phase shift Differential cyclic loading (DCL) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a342t-3545cb86e4a7f8aaba8d35a4c5c12517944ae2b973700865bef74c3db7fa326d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2761441923 |
PQPubID | 54451 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2761441923 crossref_citationtrail_10_1007_s11440_022_01570_0 crossref_primary_10_1007_s11440_022_01570_0 springer_journals_10_1007_s11440_022_01570_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Acta geotechnica |
PublicationTitleAbbrev | Acta Geotech |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Geranmayeh VaneghiRFerdosiBOkothADKuekBStrength degradation of sandstone and granodiorite under uniaxial cyclic loadingJ Rock Mech Geotech Eng20181011712610.1016/j.jrmge.2017.09.005 ZhangQDaiFLiuYExperimental assessment on the dynamic mechanical response of rocks under cyclic coupled compression-shear loadingInt J Mech Sci202221610697010.1016/j.ijmecsci.2021.106970 BagdeMNPetrošVFatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loadingInt J Rock Mech Min Sci20054223725010.1016/j.ijrmms.2004.08.008 LiuYDaiFA review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loadingJ Rock Mech Geotech Eng202110.1016/j.jrmge.2021.03.012 Shirani FaradonbehRTaheriAKarakusMPost-peak behaviour of rocks under cyclic loading using a double-criteria damage-controlled test methodBull Eng Geol Environ2021801713172710.1007/s10064-020-02035-y RaySSarkarMSinghTEffect of cyclic loading and strain rate on the mechanical behaviour of sandstoneInt J Rock Mech Min Sci19993654354910.1016/S0148-9062(99)00016-9 YangSQRanjithPGHuangYHYinPFJingHWGuiYLExperimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loadingGeophys J Int201520166268210.1093/gji/ggv023 LiuXSNingJGTanYLGuQHDamage constitutive model based on energy dissipation for intact rock subjected to cyclic loadingInt J Rock Mech Min Sci201685273210.1016/j.ijrmms.2016.03.003 Song Z, Konietzky H, Herbst Martin (2019) Bonded-particle model-based simulation of artificial rock subjected to cyclic loading. Acta Geotechnica 14(4):955-971. https://doi.org/10.1007/s11440-018-0723-9 LeiDZhangPHeJBaiPZhuFFatigue life prediction method of concrete based on energy dissipationConstr Build Mater201714541942510.1016/j.conbuildmat.2017.04.030 NingJWangJJiangJHuSJiangLLiuXEstimation of crack initiation and propagation thresholds of confined brittle coal specimens based on energy dissipation theoryRock Mech Rock Eng20185111913410.1007/s00603-017-1317-9 DouLChenTGongSHeHZhangSRockburst hazard determination by using computed tomography technology in deep workfaceSaf Sci20125073674010.1016/j.ssci.2011.08.043 MengQZhangMHanLPuHNieTEffects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compressionRock Mech Rock Eng201610.1007/s00603-016-1077-y SongZFrühwirtTKonietzkyHCharacteristics of dissipated energy of concrete subjected to cyclic loadingConstr Build Mater2018168476010.1016/j.conbuildmat.2018.02.076 ShadmanMZiariHLaboratory evaluation of fatigue life characteristics of polymer modified porous asphalt: a dissipated energy approachConstr Build Mater201713843444010.1016/j.conbuildmat.2017.02.043 WangCHouXLiaoZChenZLuZExperimental investigation of predicting coal failure using acoustic emission energy and load-unload response ratio theoryJ Appl Geophys2019161768310.1016/j.jappgeo.2018.12.010 DuKLiXTaoMWangSExperimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab testsInt J Rock Mech Min Sci202013310441110.1016/j.ijrmms.2020.104411 WangYMaLFanPChenYA fatigue damage model for rock salt considering the effects of loading frequency and amplitudeInt J Min Sci Technol20162695595810.1016/j.ijmst.2016.05.054 BrownETHudsonJAFatigue failure characteristics of some models of jointed rockEarthq Eng Struct Dyn1974237938610.1002/eqe.4290020407 KorsunskyAMDiniDDunneFPEWalshMJComparative assessment of dissipated energy and other fatigue criteriaInt J Fatigue200710.1016/j.ijfatigue.2007.01.0071140.74333 SongZKonietzkyHFrühwirtTHysteresis and dynamic response features of concrete exposed to repeated multilevel compressive loadingJ Mater Civ Eng2019310401906610.1061/(ASCE)MT.1943-5533.0002703 ZhangMDouLKonietzkyHSongZHuangSCyclic fatigue characteristics of strong burst-prone coal: Experimental insights from energy dissipation, hysteresis and micro-seismicityInt J Fatigue202013310542910.1016/j.ijfatigue.2019.105429 ZhangMLinMZhuHZhouDWangLAn experimental study of the damage characteristics of gas-containing coal under the conditions of different loading and unloading ratesJ Loss Prev Process Ind20185533834610.1016/j.jlp.2018.07.006 BagdeMNPetrošVWaveform effect on fatigue properties of intact sandstone in uniaxial cyclical loadingRock Mech Rock Eng20053816919610.1007/s00603-005-0045-8 LiDWangEKongXJiaHWangDAliMDamage precursor of construction rocks under uniaxial cyclic loading tests analyzed by acoustic emissionConstr Build Mater201920616917810.1016/j.conbuildmat.2019.02.074 MitchellTMFaulknerDRExperimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zonesJ Geophys Res Solid Earth2008113B1141210.1029/2008JB005588 CaiXZhouZTanLZangHSongZFracture behavior and damage mechanisms of sandstone subjected to wetting-drying cyclesEng Fract Mech202023410710910.1016/j.engfracmech.2020.107109 Scott-EmuakporOEGeorgeTJCrossCJShenM-HHAnalysis of strain energy behavior throughout a fatigue processExp Mech2011511317132310.1007/s11340-010-9457-9 HeMHuangBZhuCChenYLiNEnergy dissipation-based method for fatigue life prediction of rock saltRock Mech Rock Eng2018511447145510.1007/s00603-018-1402-8 JinLDuXLiDSuXSeismic behavior of RC cantilever beams under low cyclic loading and size effect on shear strength: an experimental characterizationEng Struct20161229310710.1016/j.engstruct.2016.04.048 WangYGaoSHLiCHHanJQEnergy dissipation and damage evolution for dynamic fracture of marble subjected to freeze-thaw and multiple level compressive fatigue loadingInt J Fatigue202114210592710.1016/j.ijfatigue.2020.105927 CerfontaineBCollinFCyclic and fatigue behaviour of rock materials: review, interpretation and research perspectivesRock Mech Rock Eng20185139141410.1007/s00603-017-1337-5 HalfordGRThe energy required for fatigueJnl Mat19661318 LiuYDaiFFengPXuNMechanical behavior of intermittent jointed rocks under random cyclic compression with different loading parametersSoil Dyn Earthq Eng2018113122410.1016/j.soildyn.2018.05.030 PengKZhouJZouQSongXEffect of loading frequency on the deformation behaviours of sandstones subjected to cyclic loads and its underlying mechanismInt J Fatigue201910.1016/j.ijfatigue.2019.105349 JafariMKHosseiniKAPelletFBoulonMBuzziOEvaluation of shear strength of rock joints subjected to cyclic loadingSoil Dyn Earthq Eng20032361963010.1016/S0267-7261(03)00063-0 WangZLiSQiaoLZhaoJFatigue behavior of granite subjected to cyclic loading under triaxial compression conditionRock Mech Rock Eng2013461603161510.1007/s00603-013-0387-6 Geology.com. China Map and Satellite Image 2008. https://geology.com/world/china-satellite-image.shtml. SongZFrühwirtTKonietzkyHInhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loadingInt J Fatigue202013210538310.1016/j.ijfatigue.2019.105383 DangWKonietzkyHChangLFrühwirtTVelocity-frequency-amplitude-dependent frictional resistance of planar joints under dynamic normal load (DNL) conditionsTunn Undergr Sp Technol201879273410.1016/J.TUST.2018.04.038 LiXGongFTaoMDongLDuKMaCFailure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A reviewJ Rock Mech Geotech Eng2017976778210.1016/j.jrmge.2017.04.004 WestrolMSDonovanCMKapitanyanRBlast physics and pathophysiology of explosive injuriesAnn Emerg Med201769S4910.1016/j.annemergmed.2016.09.005 ZhangGKonietzkyHSongZZhangMStudy of Cerchar abrasive parameters and their relations to intrinsic properties of rocks for constructionConstr Build Mater2020244C11832710.1016/j.conbuildmat.2020.118327 Ameen P, Szymanski M (2006) Fatigue in plain concrete: phenomenon and methods of analysis. ACI J Proc CaiYChenYCaoZRenCA combined method to predict the long-term settlements of roads on soft soil under cyclic traffic loadingsActa Geotech2018131215122610.1007/s11440-017-0616-3 WhiteJAAnisotropic damage of rock joints during cyclic loading: Constitutive framework and numerical integrationInt J Numer Anal Methods Geomech201410.1002/nag.2247 FengJWangEChenXDingHEnergy dissipation rate: an indicator of coal deformation and failure under static and dynamic compressive loadsInt J Min Sci Technol20182839740610.1016/j.ijmst.2017.11.006 RaoMVMSRamanaYVA study of progressive failure of rock under cyclic loading by ultrasonic and AE monitoring techniquesRock Mech Rock Eng19922523725110.1007/BF01041806 SinaieSHeidarpourAZhaoXLSanjayanJGEffect of size on the response of cylindrical concrete samples under cyclic loadingConstr Build Mater20158439940810.1016/j.conbuildmat.2015.03.076 SunCJahangiriVFatigue damage mitigation of offshore wind turbines under real wind and wave conditionsEng Struct201917847248310.1016/j.engstruct.2018.10.053 ChenXHuangYChenCLuJFanXExperimental study and analytical modeling on hysteresis behavior of plain concrete in uniaxial cyclic tensionInt J Fatigue20179626126910.1016/j.ijfatigue.2016.12.002 ElzièrePDalle-FerrierCCretonCBarthelÉCiccottiMLarge strain viscoelastic dissipation during interfacial rupture in laminated glassSoft Matter2017131624163310.1039/C6SM02785G OneschkowNFatigue behaviour of high-strength concrete with respect to strain and stiffnessInt J Fatigue201687384910.1016/j.ijfatigue.2016.01.008 ErarslanNWilliamsDJInvestigating the effect of cyclic loading on the indirect tensile strength of rocksRock Mech Rock Eng20124532734010.1007/s00603-011-0209-7 NaderiMKhonsariMMOn the role of damage energy in the fatigue degradation characterization of a composite laminateCompos Part B Eng20134552853710.1016/j.compositesb.2012.07.028 LiuYDaiFDongLXuNFengPExperimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parametersRock Mech Rock Eng201851476810.1007/s00603-017-1327-7 ChandrappaAKBiligiriKPFlexural-fatigue characteristics of pervious concrete: Statistical distributions and model developmentConstr Build M B Cerfontaine (1570_CR7) 2018; 51 TM Mitchell (1570_CR40) 2008; 113 1570_CR67 MVMS Rao (1570_CR49) 1992; 25 Y Liu (1570_CR31) 2018; 103 GR Halford (1570_CR21) 1966; 1 R Geranmayeh Vaneghi (1570_CR19) 2018; 10 1570_CR1 M Zhang (1570_CR81) 2018; 55 P Elzière (1570_CR13) 2017; 13 B Sun (1570_CR66) 2017; 94 X Chen (1570_CR9) 2017; 96 L Jin (1570_CR25) 2016; 122 D Xi (1570_CR76) 2006; 25 K Du (1570_CR12) 2020; 133 Y Cai (1570_CR5) 2018; 13 MÁ Pindado (1570_CR47) 1999; 29 1570_CR60 MS Westrol (1570_CR74) 2017; 69 C Sun (1570_CR65) 2019; 178 D Scaccabarozzi (1570_CR51) 2021 1570_CR20 Z Song (1570_CR62) 2021; 78 1570_CR64 Z Song (1570_CR56) 2018; 114 K Xia (1570_CR77) 2015 G Zhang (1570_CR82) 2020; 244C W Dang (1570_CR10) 2018; 79 M Zhang (1570_CR83) 2020; 133 MK Jafari (1570_CR24) 2003; 23 J Fan (1570_CR15) 2016; 90 Y Liu (1570_CR35) 2017; 50 Z Song (1570_CR63) 2021; 138 X Cai (1570_CR6) 2020; 234 S Ray (1570_CR50) 1999; 36 MJ Heap (1570_CR23) 2008; 45 OE Scott-Emuakpor (1570_CR52) 2011; 51 Q Zhang (1570_CR84) 2022; 216 DV Okur (1570_CR44) 2007; 27 Z Song (1570_CR59) 2019; 31 A Zang (1570_CR80) 2013; 195 JH Ye (1570_CR79) 2012 AM Korsunsky (1570_CR26) 2007 D Li (1570_CR30) 2019; 206 Y Liu (1570_CR32) 2021 Y Liu (1570_CR37) 2018; 113 SQ Yang (1570_CR78) 2015; 201 X Li (1570_CR29) 2017; 9 Z Song (1570_CR61) 2020; 132 Y Wang (1570_CR73) 2021; 142 C Wang (1570_CR70) 2019; 161 Z Song (1570_CR57) 2018; 168 ET Brown (1570_CR4) 1974; 2 D Lei (1570_CR27) 2017; 145 X Li (1570_CR28) 2005; 38 K Peng (1570_CR46) 2019 J Morrow (1570_CR41) 1965 N Erarslan (1570_CR14) 2012; 45 JA White (1570_CR75) 2014 AK Chandrappa (1570_CR8) 2017; 153 M Shadman (1570_CR53) 2017; 138 C Martin-Clave (1570_CR38) 2021 L Dou (1570_CR11) 2012; 50 J Feng (1570_CR17) 2018; 28 XS Liu (1570_CR34) 2016; 85 Y Wang (1570_CR69) 2016; 26 S Qiu (1570_CR48) 2014; 47 M He (1570_CR22) 2018; 51 B Fu (1570_CR18) 2020; 130 J Ning (1570_CR43) 2018; 51 Z Song (1570_CR58) 2019 Z Wang (1570_CR68) 2013; 46 MN Bagde (1570_CR3) 2005; 38 Q Meng (1570_CR39) 2016 Y Wang (1570_CR71) 2020; 109 Y Wang (1570_CR72) 2020 Y Liu (1570_CR36) 2018; 51 S Sinaie (1570_CR55) 2015; 84 Q Liu (1570_CR33) 2019; 211 Z Fan (1570_CR16) 2020; 242 M Naderi (1570_CR42) 2013; 45 N Oneschkow (1570_CR45) 2016; 87 R Shirani Faradonbeh (1570_CR54) 2021; 80 MN Bagde (1570_CR2) 2005; 42 J Zhao (1570_CR85) 1999; 36 |
References_xml | – reference: PengKZhouJZouQSongXEffect of loading frequency on the deformation behaviours of sandstones subjected to cyclic loads and its underlying mechanismInt J Fatigue201910.1016/j.ijfatigue.2019.105349 – reference: Song Z, Konietzky H, Herbst Martin (2019) Bonded-particle model-based simulation of artificial rock subjected to cyclic loading. Acta Geotechnica 14(4):955-971. https://doi.org/10.1007/s11440-018-0723-9 – reference: LiuQDengPA numerical investigation of element size and loading/unloading rate for intact rock in laboratory-scale and field-scale based on the combined finite-discrete element methodEng Fract Mech201921144246210.1016/j.engfracmech.2019.02.007 – reference: Song Z, Konietzky H, Wu Y, Du K, Cai X (2022) Mechanical behaviour of medium-grained sandstones exposed to differential cyclic loading with distinct loading and unloading rates. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2021.12.027 – reference: Geology.com. China Map and Satellite Image 2008. https://geology.com/world/china-satellite-image.shtml. – reference: SongZKonietzkyHCaiXModulus degradation of concrete exposed to compressive fatigue loading: insights from lab testingStruct Eng Mech202178281296 – reference: ZhangMLinMZhuHZhouDWangLAn experimental study of the damage characteristics of gas-containing coal under the conditions of different loading and unloading ratesJ Loss Prev Process Ind20185533834610.1016/j.jlp.2018.07.006 – reference: LiXGongFTaoMDongLDuKMaCFailure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A reviewJ Rock Mech Geotech Eng2017976778210.1016/j.jrmge.2017.04.004 – reference: YangSQRanjithPGHuangYHYinPFJingHWGuiYLExperimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loadingGeophys J Int201520166268210.1093/gji/ggv023 – reference: LiDWangEKongXJiaHWangDAliMDamage precursor of construction rocks under uniaxial cyclic loading tests analyzed by acoustic emissionConstr Build Mater201920616917810.1016/j.conbuildmat.2019.02.074 – reference: SunCJahangiriVFatigue damage mitigation of offshore wind turbines under real wind and wave conditionsEng Struct201917847248310.1016/j.engstruct.2018.10.053 – reference: CaiYChenYCaoZRenCA combined method to predict the long-term settlements of roads on soft soil under cyclic traffic loadingsActa Geotech2018131215122610.1007/s11440-017-0616-3 – reference: BagdeMNPetrošVFatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loadingInt J Rock Mech Min Sci20054223725010.1016/j.ijrmms.2004.08.008 – reference: CaiXZhouZTanLZangHSongZFracture behavior and damage mechanisms of sandstone subjected to wetting-drying cyclesEng Fract Mech202023410710910.1016/j.engfracmech.2020.107109 – reference: ElzièrePDalle-FerrierCCretonCBarthelÉCiccottiMLarge strain viscoelastic dissipation during interfacial rupture in laminated glassSoft Matter2017131624163310.1039/C6SM02785G – reference: FanJChenJJiangDRenSWuJFatigue properties of rock salt subjected to interval cyclic pressureInt J Fatigue20169010911510.1016/j.ijfatigue.2016.04.021 – reference: QiuSFengXXiaoJZhangCAn experimental study on the pre-peak unloading damage evolution of marbleRock Mech Rock Eng20144740141910.1007/s00603-013-0394-7 – reference: SongZKonietzkyHFrühwirtTHysteresis and dynamic response features of concrete exposed to repeated multilevel compressive loadingJ Mater Civ Eng2019310401906610.1061/(ASCE)MT.1943-5533.0002703 – reference: ErarslanNWilliamsDJInvestigating the effect of cyclic loading on the indirect tensile strength of rocksRock Mech Rock Eng20124532734010.1007/s00603-011-0209-7 – reference: DouLChenTGongSHeHZhangSRockburst hazard determination by using computed tomography technology in deep workfaceSaf Sci20125073674010.1016/j.ssci.2011.08.043 – reference: BrownETHudsonJAFatigue failure characteristics of some models of jointed rockEarthq Eng Struct Dyn1974237938610.1002/eqe.4290020407 – reference: DangWKonietzkyHChangLFrühwirtTVelocity-frequency-amplitude-dependent frictional resistance of planar joints under dynamic normal load (DNL) conditionsTunn Undergr Sp Technol201879273410.1016/J.TUST.2018.04.038 – reference: CerfontaineBCollinFCyclic and fatigue behaviour of rock materials: review, interpretation and research perspectivesRock Mech Rock Eng20185139141410.1007/s00603-017-1337-5 – reference: WangYLiuDHanJLiCLiuHEffect of fatigue loading-confining stress unloading rate on marble mechanical behaviors: an insight into fracture evolution analysesJ Rock Mech Geotech Eng202010.1016/j.jrmge.2020.08.002 – reference: WangYGaoSHLiCHHanJQInvestigation on fracture behaviors and damage evolution modeling of freeze-thawed marble subjected to increasing- amplitude cyclic loadsTheor Appl Fract Mech202010910267910.1016/j.tafmec.2020.102679 – reference: FuBHuLTangCExperimental and numerical investigations on crack development and mechanical behavior of marble under uniaxial cyclic loading compressionInt J Rock Mech Min Sci202013010428910.1016/j.ijrmms.2020.104289 – reference: YeJHJengD-SResponse of porous seabed to nature loadings: waves and currentsJ Eng Mech201210.1061/(ASCE)EM.1943-7889.0000356 – reference: LiuYDaiFA review of experimental and theoretical research on the deformation and failure behavior of rocks subjected to cyclic loadingJ Rock Mech Geotech Eng202110.1016/j.jrmge.2021.03.012 – reference: MorrowJCyclic plastic strain energy and fatigue of metals1965West ConshohockenASTM International10.1520/STP43764S – reference: FengJWangEChenXDingHEnergy dissipation rate: an indicator of coal deformation and failure under static and dynamic compressive loadsInt J Min Sci Technol20182839740610.1016/j.ijmst.2017.11.006 – reference: LiXLokTZhaoJDynamic characteristics of granite subjected to intermediate loading rateRock Mech Rock Eng200538213910.1007/s00603-004-0030-7 – reference: ZangAYoonJSStephanssonOHeidbachOFatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicityGeophys J Int20131951282128710.1093/gji/ggt301 – reference: LiuYDaiFDongLXuNFengPExperimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parametersRock Mech Rock Eng201851476810.1007/s00603-017-1327-7 – reference: NingJWangJJiangJHuSJiangLLiuXEstimation of crack initiation and propagation thresholds of confined brittle coal specimens based on energy dissipation theoryRock Mech Rock Eng20185111913410.1007/s00603-017-1317-9 – reference: FanZXuHXiaoJTanYEffects of freeze-thaw cycles on fatigue performance of asphalt mixture and development of fatigue-freeze-thaw (FFT) uniform equationConstr Build Mater202024211804310.1016/j.conbuildmat.2020.118043 – reference: DuKLiXTaoMWangSExperimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab testsInt J Rock Mech Min Sci202013310441110.1016/j.ijrmms.2020.104411 – reference: Tutuncu AN, Podio AL, Sharma MM (2012) Nonlinear viscoelastic behavior of sedimentary rocks, Part II: hysteresis effects and influence of type of fluid on elastic moduli – reference: HeMHuangBZhuCChenYLiNEnergy dissipation-based method for fatigue life prediction of rock saltRock Mech Rock Eng2018511447145510.1007/s00603-018-1402-8 – reference: WangYMaLFanPChenYA fatigue damage model for rock salt considering the effects of loading frequency and amplitudeInt J Min Sci Technol20162695595810.1016/j.ijmst.2016.05.054 – reference: KorsunskyAMDiniDDunneFPEWalshMJComparative assessment of dissipated energy and other fatigue criteriaInt J Fatigue200710.1016/j.ijfatigue.2007.01.0071140.74333 – reference: LiuYDaiFA damage constitutive model for intermittent jointed rocks under cyclic uniaxial compressionInt J Rock Mech Min Sci201810328930110.1016/j.ijrmms.2018.01.046 – reference: XiDChenYTaoYLiuYNonlinear elastic hysteric characteristics of rocksChinese J Rock Mech Eng20062510861093 – reference: LiuXSNingJGTanYLGuQHDamage constitutive model based on energy dissipation for intact rock subjected to cyclic loadingInt J Rock Mech Min Sci201685273210.1016/j.ijrmms.2016.03.003 – reference: SongZFrühwirtTKonietzkyHCharacteristics of dissipated energy of concrete subjected to cyclic loadingConstr Build Mater2018168476010.1016/j.conbuildmat.2018.02.076 – reference: XiaKYaoWDynamic rock tests using split Hopkinson (Kolsky) bar system—a reviewJ Rock Mech Geotech Eng201510.1016/j.jrmge.2014.07.008 – reference: RaySSarkarMSinghTEffect of cyclic loading and strain rate on the mechanical behaviour of sandstoneInt J Rock Mech Min Sci19993654354910.1016/S0148-9062(99)00016-9 – reference: MengQZhangMHanLPuHNieTEffects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compressionRock Mech Rock Eng201610.1007/s00603-016-1077-y – reference: PindadoMÁAguadoAJosaAFatigue behavior of polymer-modified porous concretesCem Concr Res1999291077108310.1016/S0008-8846(99)00095-2 – reference: SinaieSHeidarpourAZhaoXLSanjayanJGEffect of size on the response of cylindrical concrete samples under cyclic loadingConstr Build Mater20158439940810.1016/j.conbuildmat.2015.03.076 – reference: WangYGaoSHLiCHHanJQEnergy dissipation and damage evolution for dynamic fracture of marble subjected to freeze-thaw and multiple level compressive fatigue loadingInt J Fatigue202114210592710.1016/j.ijfatigue.2020.105927 – reference: Martin-ClaveCOugier-SimoninAVandeginsteVImpact of second phase content on rock salt rheological behavior under cyclic mechanical conditionsRock Mech Rock Eng202110.1007/s00603-021-02449-4 – reference: RaoMVMSRamanaYVA study of progressive failure of rock under cyclic loading by ultrasonic and AE monitoring techniquesRock Mech Rock Eng19922523725110.1007/BF01041806 – reference: SongZWangYKonietzkyHCaiXMechanical behavior of marble exposed to freeze-thaw-fatigue loadingInt J Rock Mech Min Sci202113810464810.1016/j.ijrmms.2021.104648 – reference: MitchellTMFaulknerDRExperimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zonesJ Geophys Res Solid Earth2008113B1141210.1029/2008JB005588 – reference: WhiteJAAnisotropic damage of rock joints during cyclic loading: Constitutive framework and numerical integrationInt J Numer Anal Methods Geomech201410.1002/nag.2247 – reference: LiuYDaiFFanPXuNDongLExperimental investigation of the influence of joint geometric configurations on the mechanical properties of intermittent jointed rock models under cyclic uniaxial compressionRock Mech Rock Eng2017501453147110.1007/s00603-017-1190-6 – reference: HeapMJFaulknerDRQuantifying the evolution of static elastic properties as crystalline rock approaches failureInt J Rock Mech Min Sci20084556457310.1016/j.ijrmms.2007.07.018 – reference: BagdeMNPetrošVWaveform effect on fatigue properties of intact sandstone in uniaxial cyclical loadingRock Mech Rock Eng20053816919610.1007/s00603-005-0045-8 – reference: OkurDVAnsalAStiffness degradation of natural fine grained soils during cyclic loadingSoil Dyn Earthq Eng20072784385410.1016/j.soildyn.2007.01.005 – reference: OneschkowNFatigue behaviour of high-strength concrete with respect to strain and stiffnessInt J Fatigue201687384910.1016/j.ijfatigue.2016.01.008 – reference: JinLDuXLiDSuXSeismic behavior of RC cantilever beams under low cyclic loading and size effect on shear strength: an experimental characterizationEng Struct20161229310710.1016/j.engstruct.2016.04.048 – reference: WangCHouXLiaoZChenZLuZExperimental investigation of predicting coal failure using acoustic emission energy and load-unload response ratio theoryJ Appl Geophys2019161768310.1016/j.jappgeo.2018.12.010 – reference: ZhaoJLiHWuMLiTDynamic uniaxial compression tests on a graniteInt J Rock Mech Min Sci19993627327710.1016/S0148-9062(99)00008-X – reference: ChandrappaAKBiligiriKPFlexural-fatigue characteristics of pervious concrete: Statistical distributions and model developmentConstr Build Mater201715311510.1016/j.conbuildmat.2017.07.081 – reference: ShadmanMZiariHLaboratory evaluation of fatigue life characteristics of polymer modified porous asphalt: a dissipated energy approachConstr Build Mater201713843444010.1016/j.conbuildmat.2017.02.043 – reference: Shirani FaradonbehRTaheriAKarakusMPost-peak behaviour of rocks under cyclic loading using a double-criteria damage-controlled test methodBull Eng Geol Environ2021801713172710.1007/s10064-020-02035-y – reference: SunBZhuZShiCLuoZDynamic mechanical behavior and fatigue damage evolution of sandstone under cyclic loadingInt J Rock Mech Min Sci201794828910.1016/j.ijrmms.2017.03.003 – reference: ZhangGKonietzkyHSongZZhangMStudy of Cerchar abrasive parameters and their relations to intrinsic properties of rocks for constructionConstr Build Mater2020244C11832710.1016/j.conbuildmat.2020.118327 – reference: SongZKonietzkyHFrühwirtTHysteresis energy-based failure indicators for concrete and brittle rocks under the condition of fatigue loadingInt J Fatigue201811429831010.1016/J.IJFATIGUE.2018.06.001 – reference: JafariMKHosseiniKAPelletFBoulonMBuzziOEvaluation of shear strength of rock joints subjected to cyclic loadingSoil Dyn Earthq Eng20032361963010.1016/S0267-7261(03)00063-0 – reference: SongZFrühwirtTKonietzkyHInhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loadingInt J Fatigue202013210538310.1016/j.ijfatigue.2019.105383 – reference: Scott-EmuakporOEGeorgeTJCrossCJShenM-HHAnalysis of strain energy behavior throughout a fatigue processExp Mech2011511317132310.1007/s11340-010-9457-9 – reference: ChenXHuangYChenCLuJFanXExperimental study and analytical modeling on hysteresis behavior of plain concrete in uniaxial cyclic tensionInt J Fatigue20179626126910.1016/j.ijfatigue.2016.12.002 – reference: SongZFrühwirtTKonietzkyHInhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loadingInt J Fatigue201910.1016/j.ijfatigue.2019.105383 – reference: ZhangMDouLKonietzkyHSongZHuangSCyclic fatigue characteristics of strong burst-prone coal: Experimental insights from energy dissipation, hysteresis and micro-seismicityInt J Fatigue202013310542910.1016/j.ijfatigue.2019.105429 – reference: ZhangQDaiFLiuYExperimental assessment on the dynamic mechanical response of rocks under cyclic coupled compression-shear loadingInt J Mech Sci202221610697010.1016/j.ijmecsci.2021.106970 – reference: Ameen P, Szymanski M (2006) Fatigue in plain concrete: phenomenon and methods of analysis. ACI J Proc – reference: HalfordGRThe energy required for fatigueJnl Mat19661318 – reference: Geranmayeh VaneghiRFerdosiBOkothADKuekBStrength degradation of sandstone and granodiorite under uniaxial cyclic loadingJ Rock Mech Geotech Eng20181011712610.1016/j.jrmge.2017.09.005 – reference: LiuYDaiFFengPXuNMechanical behavior of intermittent jointed rocks under random cyclic compression with different loading parametersSoil Dyn Earthq Eng2018113122410.1016/j.soildyn.2018.05.030 – reference: LeiDZhangPHeJBaiPZhuFFatigue life prediction method of concrete based on energy dissipationConstr Build Mater201714541942510.1016/j.conbuildmat.2017.04.030 – reference: NaderiMKhonsariMMOn the role of damage energy in the fatigue degradation characterization of a composite laminateCompos Part B Eng20134552853710.1016/j.compositesb.2012.07.028 – reference: WestrolMSDonovanCMKapitanyanRBlast physics and pathophysiology of explosive injuriesAnn Emerg Med201769S4910.1016/j.annemergmed.2016.09.005 – reference: ScaccabarozziDSagginBMeasurement of stress waves propagation in percussive drillingSensors202110.3390/s21113677 – reference: WangZLiSQiaoLZhaoJFatigue behavior of granite subjected to cyclic loading under triaxial compression conditionRock Mech Rock Eng2013461603161510.1007/s00603-013-0387-6 – volume: 27 start-page: 843 year: 2007 ident: 1570_CR44 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2007.01.005 – year: 2019 ident: 1570_CR46 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.105349 – ident: 1570_CR67 – volume: 38 start-page: 21 year: 2005 ident: 1570_CR28 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-004-0030-7 – volume: 130 start-page: 104289 year: 2020 ident: 1570_CR18 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2020.104289 – volume: 84 start-page: 399 year: 2015 ident: 1570_CR55 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2015.03.076 – volume: 178 start-page: 472 year: 2019 ident: 1570_CR65 publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.10.053 – volume: 114 start-page: 298 year: 2018 ident: 1570_CR56 publication-title: Int J Fatigue doi: 10.1016/J.IJFATIGUE.2018.06.001 – volume: 195 start-page: 1282 year: 2013 ident: 1570_CR80 publication-title: Geophys J Int doi: 10.1093/gji/ggt301 – volume: 50 start-page: 736 year: 2012 ident: 1570_CR11 publication-title: Saf Sci doi: 10.1016/j.ssci.2011.08.043 – volume: 87 start-page: 38 year: 2016 ident: 1570_CR45 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.01.008 – year: 2020 ident: 1570_CR72 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2020.08.002 – volume: 133 start-page: 105429 year: 2020 ident: 1570_CR83 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.105429 – volume: 79 start-page: 27 year: 2018 ident: 1570_CR10 publication-title: Tunn Undergr Sp Technol doi: 10.1016/J.TUST.2018.04.038 – volume: 216 start-page: 106970 year: 2022 ident: 1570_CR84 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2021.106970 – volume: 122 start-page: 93 year: 2016 ident: 1570_CR25 publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.04.048 – volume: 51 start-page: 1447 year: 2018 ident: 1570_CR22 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1402-8 – volume: 145 start-page: 419 year: 2017 ident: 1570_CR27 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.04.030 – year: 2021 ident: 1570_CR51 publication-title: Sensors doi: 10.3390/s21113677 – volume: 1 start-page: 3 year: 1966 ident: 1570_CR21 publication-title: Jnl Mat – volume: 42 start-page: 237 year: 2005 ident: 1570_CR2 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2004.08.008 – ident: 1570_CR64 doi: 10.1016/j.jrmge.2021.12.027 – year: 2014 ident: 1570_CR75 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2247 – year: 2007 ident: 1570_CR26 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2007.01.007 – volume: 38 start-page: 169 year: 2005 ident: 1570_CR3 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-005-0045-8 – year: 2016 ident: 1570_CR39 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1077-y – volume: 55 start-page: 338 year: 2018 ident: 1570_CR81 publication-title: J Loss Prev Process Ind doi: 10.1016/j.jlp.2018.07.006 – volume: 113 start-page: 12 year: 2018 ident: 1570_CR37 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2018.05.030 – volume: 80 start-page: 1713 year: 2021 ident: 1570_CR54 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-020-02035-y – ident: 1570_CR20 – ident: 1570_CR60 doi: 10.1007/s11440-018-0723-9 – volume: 25 start-page: 1086 year: 2006 ident: 1570_CR76 publication-title: Chinese J Rock Mech Eng – volume: 161 start-page: 76 year: 2019 ident: 1570_CR70 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2018.12.010 – volume: 138 start-page: 434 year: 2017 ident: 1570_CR53 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.02.043 – volume: 153 start-page: 1 year: 2017 ident: 1570_CR8 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.07.081 – volume: 78 start-page: 281 year: 2021 ident: 1570_CR62 publication-title: Struct Eng Mech – volume: 9 start-page: 767 year: 2017 ident: 1570_CR29 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2017.04.004 – volume: 103 start-page: 289 year: 2018 ident: 1570_CR31 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.01.046 – volume: 96 start-page: 261 year: 2017 ident: 1570_CR9 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.12.002 – volume: 10 start-page: 117 year: 2018 ident: 1570_CR19 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2017.09.005 – volume: 51 start-page: 119 year: 2018 ident: 1570_CR43 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1317-9 – volume: 13 start-page: 1215 year: 2018 ident: 1570_CR5 publication-title: Acta Geotech doi: 10.1007/s11440-017-0616-3 – year: 2012 ident: 1570_CR79 publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0000356 – volume: 25 start-page: 237 year: 1992 ident: 1570_CR49 publication-title: Rock Mech Rock Eng doi: 10.1007/BF01041806 – volume: 31 start-page: 04019066 year: 2019 ident: 1570_CR59 publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)MT.1943-5533.0002703 – volume: 138 start-page: 104648 year: 2021 ident: 1570_CR63 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2021.104648 – volume: 23 start-page: 619 year: 2003 ident: 1570_CR24 publication-title: Soil Dyn Earthq Eng doi: 10.1016/S0267-7261(03)00063-0 – volume: 206 start-page: 169 year: 2019 ident: 1570_CR30 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.02.074 – volume: 244C start-page: 118327 year: 2020 ident: 1570_CR82 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.118327 – volume: 168 start-page: 47 year: 2018 ident: 1570_CR57 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.02.076 – volume: 28 start-page: 397 year: 2018 ident: 1570_CR17 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2017.11.006 – volume: 113 start-page: B11412 year: 2008 ident: 1570_CR40 publication-title: J Geophys Res Solid Earth doi: 10.1029/2008JB005588 – volume: 46 start-page: 1603 year: 2013 ident: 1570_CR68 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0387-6 – volume: 51 start-page: 1317 year: 2011 ident: 1570_CR52 publication-title: Exp Mech doi: 10.1007/s11340-010-9457-9 – year: 2019 ident: 1570_CR58 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.105383 – volume: 85 start-page: 27 year: 2016 ident: 1570_CR34 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2016.03.003 – volume: 45 start-page: 528 year: 2013 ident: 1570_CR42 publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2012.07.028 – volume: 132 start-page: 105383 year: 2020 ident: 1570_CR61 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.105383 – volume: 109 start-page: 102679 year: 2020 ident: 1570_CR71 publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2020.102679 – volume: 133 start-page: 104411 year: 2020 ident: 1570_CR12 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2020.104411 – ident: 1570_CR1 – volume: 13 start-page: 1624 year: 2017 ident: 1570_CR13 publication-title: Soft Matter doi: 10.1039/C6SM02785G – volume: 51 start-page: 391 year: 2018 ident: 1570_CR7 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1337-5 – volume: 45 start-page: 564 year: 2008 ident: 1570_CR23 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2007.07.018 – volume: 51 start-page: 47 year: 2018 ident: 1570_CR36 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1327-7 – volume: 50 start-page: 1453 year: 2017 ident: 1570_CR35 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1190-6 – volume: 69 start-page: S4 year: 2017 ident: 1570_CR74 publication-title: Ann Emerg Med doi: 10.1016/j.annemergmed.2016.09.005 – volume-title: Cyclic plastic strain energy and fatigue of metals year: 1965 ident: 1570_CR41 doi: 10.1520/STP43764S – volume: 2 start-page: 379 year: 1974 ident: 1570_CR4 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.4290020407 – volume: 142 start-page: 105927 year: 2021 ident: 1570_CR73 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105927 – volume: 26 start-page: 955 year: 2016 ident: 1570_CR69 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2016.05.054 – volume: 242 start-page: 118043 year: 2020 ident: 1570_CR16 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.118043 – volume: 36 start-page: 273 year: 1999 ident: 1570_CR85 publication-title: Int J Rock Mech Min Sci doi: 10.1016/S0148-9062(99)00008-X – volume: 201 start-page: 662 year: 2015 ident: 1570_CR78 publication-title: Geophys J Int doi: 10.1093/gji/ggv023 – volume: 45 start-page: 327 year: 2012 ident: 1570_CR14 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-011-0209-7 – volume: 211 start-page: 442 year: 2019 ident: 1570_CR33 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2019.02.007 – year: 2021 ident: 1570_CR32 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.03.012 – volume: 29 start-page: 1077 year: 1999 ident: 1570_CR47 publication-title: Cem Concr Res doi: 10.1016/S0008-8846(99)00095-2 – year: 2015 ident: 1570_CR77 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2014.07.008 – year: 2021 ident: 1570_CR38 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-021-02449-4 – volume: 47 start-page: 401 year: 2014 ident: 1570_CR48 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0394-7 – volume: 234 start-page: 107109 year: 2020 ident: 1570_CR6 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2020.107109 – volume: 94 start-page: 82 year: 2017 ident: 1570_CR66 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2017.03.003 – volume: 90 start-page: 109 year: 2016 ident: 1570_CR15 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.04.021 – volume: 36 start-page: 543 year: 1999 ident: 1570_CR50 publication-title: Int J Rock Mech Min Sci doi: 10.1016/S0148-9062(99)00016-9 |
SSID | ssj0063246 |
Score | 2.3894575 |
Snippet | This work aims to experimentally investigate the behaviour of sandstone drilled from an underground coal mine exposed to low-frequency cyclic loading with... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 187 |
SubjectTerms | Acoustic emission Acoustics Behavior Civil engineering Coal Coal mines Coal mining Complex Fluids and Microfluidics Cyclic loading Cyclic loads Dissipation Drilling Earthquakes Energy Energy dissipation Engineering Evolution Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Hydraulics Hysteresis Investigations Kaiser effect Laboratories Load Microseisms Mining engineering Modulus of elasticity Research Paper Sandstone Sediment samples Sedimentary rocks Soft and Granular Matter Soil Science & Conservation Solid Mechanics Statistical methods Strain Underground mines Unloading |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrFaZQ8eFA3ksXkdS7UUsZ4s9BZ2N7tQiElpUkp_kv_SmW1irajgJQQyO5CdfXyzO_MNIdcx0wHg5MiSIRcWU7GwuAMP8AT8yFZBZJuoyuFLMBixp7E_rpPCyibavbmSNCv1OtnN3ENi9DlsYVguZZvs-Oi7wygeud1m_UX-cZNTFAWOBWjCr1NlftaxuR2tMea3a1Gz2_QPyH4NE2l3ZddDsqXyI7L3hTzwmLwPFWbtYidTnqf0DUPrSjUp4YXKTR5mWmhaYlIvUm-XtJwLPH6hVUGxEg6yRdCsWFh6tgqsXtKmbgrM_4zKpcxAZ1aYeHt689B7vqUaBlCxUCkVS1CSFxVy7H7KzKeoXPMJRr2fkFH_8bU3sOrCCxb3mFtZHsAqKaJAMR7qiHPBo9TzOZO-dAzFGWNcuSIOvRBdIl8oHTKJTM2aAxxMvVPSyuF_zgiNPJvHNueu1tBeunGgUnC5uAKkAZ6n3SZO0_-JrFnJsThGlqz5lNFmCdgsMTZLoM3dZ5vpipPjT-lOY9aknp9l4oboCCO6bZP7xtTrz79rO_-f-AXZxfr0qzObDmlVs7m6BBRTiSszaD8A2v7qEw priority: 102 providerName: Springer Nature |
Title | Mechanical and microseismic characteristics of sandstones subject to moderate low-frequency differential cyclic loading (DCL) followed by monotonic loading up to failure |
URI | https://link.springer.com/article/10.1007/s11440-022-01570-0 https://www.proquest.com/docview/2761441923 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELaAvrCHiV_TGFD5YQ9DYC1NnMR5Qi20oAEVQlSCp8h2bAkpazqSCvVP2n-5u8ShgDRekkiOT4rPOX9n331HyPeE2whwsmA6lopxkygme3ABTyAUnomEV0dVXo-jiwn_dR_euw230oVVtjaxNtRZoXGP_Kcfo-uCeORk9odh1Sg8XXUlNFZJB0ywAOerMxiOb25bW4xc5HV-kYh6DJBF6NJmmuS5-lwTo9lhScTyK2-XpiXefHdEWq88ow3y2UFG2m90vElWzHSLfHpFJLhN_l4bzODFAadymtHfGGZXmscSHqh-y8lMC0tLTPBFGu6SlnOFWzG0KihWxUHmCJoXz8w-NUHWC9rWUAFbkFO90DnIzIs69p7-ODu9OqQWJlPxbDKqFiBkWlTIt_vyznyGwq18xAj4HTIZDe9OL5grwsBkwP2KBQCxtBKR4TK2QkolRRaEkutQ92q6M86l8VUSBzG6R6EyNuYaWZutBGiYBV_I2hS-5yuhIvBk4knpWwv9tZ9EJgP3SxpAHeCFeruk145_qh1DORbKyNMltzLqLAWdpbXOUuhz9NJn1vBzfPj2fqvW1P2rZbqcWbvkuFX1svn_0r59LG2PrGNt-ma_Zp-sVU9zcwAIplJdsipG513S6Y8GgzHezx8uh103eaF14vf_AdMc84s |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKewAOiPIhCoXOASQQWGQTJ3EOqKraLlu621Mr9RZsx5Yqhc3SZLXan8SF38iMk3RppfbWSxQp9kjJTMZv7Jk3jL3PhEsQJ0tuUqW5sJnmaoAXjARiGdhEBj6rcnKSjM7Ej_P4fI397WthKK2y94neUReVoT3yr2FKoQvhkd3Zb05do-h0tW-h0ZrFsV0uMGSrvx0doH4_hOHw8HR_xLuuAlxFImx4hJjBaJlYoVInldJKFlGshInNwPN3CaFsqLM0Sgnvx9q6VBiiIXYKsU4RodwHbENEUUZ_lBx-7z0_MZ_7aiaZDDjimLgr0mlL9fwpKuXO4wJMzV6uL4QrdHvjQNavc8On7EkHUGGvtahNtmanz9jj_2gLn7M_E0v1wqReUNMCflFSX20varwBc50BGioHNZUTE-l3DfVc08YPNBVQDx7iqYCyWnB32aZ0L6Hv2IKepwSzNCXKLCuf6Q8fD_bHn8Ch6VYLW4BeopBp1RC779WY-YyEO3VB-fYv2Nm9KOclW5_i-7xiIKNAZYFSoXM434RZYgsM9pRFjIMxb7DFBv33z03Hh05tOcp8xeRMOstRZ7nXWY5zPl_NmbVsIHeO3u7Vmneeoc5XdrzFvvSqXj2-Xdrru6XtsIej08k4Hx-dHL9hj0LEYu1O0TZbby7n9i1ip0a_8wYL7Od9_yH_APFsKlc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxE-srToPCoouzSWbrwcR7fVobXsUsdC3dHezC4V4uTY5jvuT_Bf865zJR88K9q0vIZDdgWQms7_ZnfkNwJtUuohwciJMrLSQNtVCDelCkUCYeDZKvCar8mgS7Z3Ib6fh6Rr87mthOK2y94mNo85Lw3vk237MoQvjkW3XpUUcj8afZxeCO0jxSWvfTqM1kQO7XFD4Vn3aH5Gu3_r-ePfHzp7oOgwIFUi_FgHhB6OTyEoVu0QprZI8CJU0oRk2XF5SKuvrNA5ixv6hti6WhimJnSLckwck9w6sxxQVeQNY_7o7Of7erwPMg97UNiXRUBCqCbuSnbZwrzlT5Ux6Wo659cv1ZXGFdf85nm1WvfFDeNDBVfzS2tcjWLPTx3D_LxLDJ_DryHL1MCsb1TTHn5ziV9nzim7QXOeDxtJhxcXFTAFeYTXXvA2EdYnckYdZK7AoF8JdtgneS-z7t5AfKtAsTUEyi7LJ-8d3o53D9-jIkMuFzVEvSci0rJnr92rMfMbCnTrn7PuncHIr6nkGgym9z3PAJPBU6inlO0fzjZ9GNqfQT1lCPBQBexsw7L9_Zjp2dG7SUWQrXmfWWUY6yxqdZTTnw9WcWcsNcuPorV6tWecnqmxl1RvwsVf16vH_pb24WdpruEt_R3a4PznYhHs-AbN222gLBvXl3L4kIFXrV53FIpzd9k_yB8r2L-k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+and+microseismic+characteristics+of+sandstones+subject+to+moderate+low-frequency+differential+cyclic+loading+%28DCL%29+followed+by+monotonic+loading+up+to+failure&rft.jtitle=Acta+geotechnica&rft.au=Song%2C+Zhengyang&rft.au=Konietzky%2C+Heinz&rft.au=Wu%2C+Yunfeng&rft.au=Cai%2C+Xin&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=18&rft.issue=1&rft.spage=187&rft.epage=215&rft_id=info:doi/10.1007%2Fs11440-022-01570-0&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon |