Self-Immolative Hydrogels with Stimulus-Mediated On–Off Degradation
Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage even...
Saved in:
Published in | Biomacromolecules Vol. 24; no. 8; pp. 3629 - 3637 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.08.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly(ethyl glyoxylate) (PEtG) and poly(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications. |
---|---|
AbstractList | Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly(ethyl glyoxylate) (PEtG) and poly(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications. Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly(ethyl glyoxylate) (PEtG) and poly(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications. |
Author | Gong, Jue Borecki, Aneta Gillies, Elizabeth R. |
AuthorAffiliation | Department of Chemistry Department of Chemical and Biochemical Engineering |
AuthorAffiliation_xml | – name: Department of Chemical and Biochemical Engineering – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Jue surname: Gong fullname: Gong, Jue organization: Department of Chemistry – sequence: 2 givenname: Aneta surname: Borecki fullname: Borecki, Aneta organization: Department of Chemistry – sequence: 3 givenname: Elizabeth R. orcidid: 0000-0002-3983-2248 surname: Gillies fullname: Gillies, Elizabeth R. email: egillie@uwo.ca organization: Department of Chemical and Biochemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37418699$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kL1OwzAUhS1URH_gBRhQRpYEx44TZ0Sl0EpFHQpz5Ng3JVUSFzsBdeMdeEOeBJcURu5yz3DOubrfGA0a3QBClyEOQkzCGyFtkJe6FjKgEmPKyQkahYzEfhRjMvjRzE-SNBmisbVbjHFKI3aGhjSJQh6n6QjN1lAV_qKudSXa8g28-V4ZvYHKeu9l--Kt27Luqs76j6BK0YLyVs3Xx-eqKLw72BihXEo35-i0EJWFi-OeoOf72dN07i9XD4vp7dIXNCKtT4kCqVjO3fkUCyxZyIFzkWOguWJFigue5DRRlDlLRAhxUlKIIyFjQQs6Qdd9787o1w5sm9WllVBVogHd2YxwykgSUTcTRHqrNNpaA0W2M2UtzD4LcXbAlzl8WY8vO-Jzoatjf5fXoP4iv7ycIegNh_BWd6Zx7_7X-A20z3-5 |
CitedBy_id | crossref_primary_10_1002_ange_202317063 crossref_primary_10_1002_macp_202400123 crossref_primary_10_1021_acs_chemmater_4c00583 crossref_primary_10_1002_anie_202317063 crossref_primary_10_1021_jacsau_3c00345 |
Cites_doi | 10.1021/acs.biomac.1c00694 10.1039/C5LC00276A 10.1002/advs.202100216 10.1016/S0032-3861(03)00463-4 10.1039/C7BM00980A 10.1016/j.ejpb.2015.02.025 10.1039/D2BM00617K 10.1039/C7TB01851G 10.1021/ma4001594 10.1021/ja801065d 10.1021/ja905343x 10.1039/C8PY00350E 10.1038/s41578-019-0169-1 10.1021/jacs.1c11410 10.1016/j.polymer.2014.09.048 10.1039/D0TB01119C 10.1016/j.polymer.2020.122638 10.1039/C8TB01632A 10.1002/adma.201905366 10.1016/j.sbi.2020.04.007 10.1126/science.1169494 10.1016/j.actbio.2021.04.009 10.2147/IJN.S245743 10.1039/C9BM00139E 10.1021/acs.macromol.6b02320 10.1021/ja504727u 10.1021/acs.chemrev.1c00815 10.1039/D1CC05108C 10.1039/C8TB01466C 10.1007/s00396-020-04621-8 10.1039/D0NR03785K 10.1002/adhm.202100469 10.1021/ma401169q 10.1126/science.aaf3627 10.1002/ange.201404323 10.1016/j.mtbio.2021.100186 10.1021/mz3002403 10.1039/C4CS00177J 10.1016/j.pmatsci.2020.100702 10.1038/srep33594 10.1016/j.biomaterials.2012.04.016 10.1021/acsabm.9b00410 10.1016/j.jconrel.2022.01.035 10.1039/D0LC00446D 10.1002/pi.6388 10.1039/C4RA13581D 10.1002/adma.200501043 10.1016/j.eurpolymj.2020.109899 10.1039/D0BM00055H 10.1021/acsbiomaterials.0c01784 10.1039/C7CC06410A 10.1021/acsomega.2c03931 10.1021/acsomega.8b00534 10.1002/anie.201907670 10.1021/jacs.5b02799 10.1016/j.addr.2016.07.004 10.1007/978-3-030-19416-1_7 10.1021/ma9023679 10.1007/s10856-020-06390-w 10.1039/C9PY00559E 10.1021/jacs.7b04804 10.1021/acs.molpharmaceut.7b00030 10.1021/acs.chemrev.0c01177 10.1021/acs.macromol.8b01007 10.1038/nchem.1938 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acs.biomac.3c00382 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1526-4602 |
EndPage | 3637 |
ExternalDocumentID | 10_1021_acs_biomac_3c00382 37418699 c050406262 |
Genre | Journal Article |
GroupedDBID | --- -~X 23N 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABPTK ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED~ F5P FDB GGK GNL IH9 JG~ P2P RNS ROL TN5 UI2 VF5 VG9 W1F XKZ ZCA ~02 53G AAHBH AALRI AAXUO ABJNI BAANH CUPRZ NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a342t-32decd5b874190a0c518e88ab0e3bd5f90f87b37d3587442227d3c3e64ac6a3f3 |
IEDL.DBID | ACS |
ISSN | 1525-7797 |
IngestDate | Fri Oct 25 08:10:35 EDT 2024 Fri Dec 06 06:24:32 EST 2024 Wed Oct 16 00:39:53 EDT 2024 Tue Aug 15 03:11:49 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a342t-32decd5b874190a0c518e88ab0e3bd5f90f87b37d3587442227d3c3e64ac6a3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3983-2248 |
PMID | 37418699 |
PQID | 2835274333 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2835274333 crossref_primary_10_1021_acs_biomac_3c00382 pubmed_primary_37418699 acs_journals_10_1021_acs_biomac_3c00382 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-14 |
PublicationDateYYYYMMDD | 2023-08-14 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomacromolecules |
PublicationTitleAlternate | Biomacromolecules |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref57/cit57 doi: 10.1021/acs.biomac.1c00694 – ident: ref25/cit25 doi: 10.1039/C5LC00276A – ident: ref9/cit9 doi: 10.1002/advs.202100216 – ident: ref24/cit24 doi: 10.1016/S0032-3861(03)00463-4 – ident: ref27/cit27 doi: 10.1039/C7BM00980A – ident: ref31/cit31 doi: 10.1016/j.ejpb.2015.02.025 – ident: ref37/cit37 doi: 10.1039/D2BM00617K – ident: ref28/cit28 doi: 10.1039/C7TB01851G – ident: ref47/cit47 doi: 10.1021/ma4001594 – ident: ref42/cit42 doi: 10.1021/ja801065d – ident: ref43/cit43 doi: 10.1021/ja905343x – ident: ref65/cit65 doi: 10.1039/C8PY00350E – ident: ref63/cit63 doi: 10.1038/s41578-019-0169-1 – ident: ref41/cit41 doi: 10.1021/jacs.1c11410 – ident: ref50/cit50 doi: 10.1016/j.polymer.2014.09.048 – ident: ref40/cit40 doi: 10.1039/D0TB01119C – ident: ref39/cit39 doi: 10.1016/j.polymer.2020.122638 – ident: ref52/cit52 doi: 10.1039/C8TB01632A – ident: ref38/cit38 doi: 10.1002/adma.201905366 – ident: ref8/cit8 doi: 10.1016/j.sbi.2020.04.007 – ident: ref35/cit35 doi: 10.1126/science.1169494 – ident: ref12/cit12 doi: 10.1016/j.actbio.2021.04.009 – ident: ref26/cit26 doi: 10.2147/IJN.S245743 – ident: ref29/cit29 doi: 10.1039/C9BM00139E – ident: ref55/cit55 doi: 10.1021/acs.macromol.6b02320 – ident: ref46/cit46 doi: 10.1021/ja504727u – ident: ref5/cit5 doi: 10.1021/acs.chemrev.1c00815 – ident: ref58/cit58 doi: 10.1039/D1CC05108C – ident: ref14/cit14 doi: 10.1039/C8TB01466C – ident: ref21/cit21 doi: 10.1007/s00396-020-04621-8 – ident: ref4/cit4 doi: 10.1039/D0NR03785K – ident: ref23/cit23 doi: 10.1002/adhm.202100469 – ident: ref44/cit44 doi: 10.1021/ma401169q – ident: ref2/cit2 – ident: ref1/cit1 doi: 10.1126/science.aaf3627 – ident: ref36/cit36 doi: 10.1002/ange.201404323 – ident: ref18/cit18 doi: 10.1016/j.mtbio.2021.100186 – ident: ref48/cit48 doi: 10.1021/mz3002403 – ident: ref66/cit66 doi: 10.1039/C4CS00177J – ident: ref20/cit20 doi: 10.1016/j.pmatsci.2020.100702 – ident: ref32/cit32 doi: 10.1038/srep33594 – ident: ref22/cit22 doi: 10.1016/j.biomaterials.2012.04.016 – ident: ref64/cit64 doi: 10.1021/acsabm.9b00410 – ident: ref13/cit13 doi: 10.1016/j.jconrel.2022.01.035 – ident: ref17/cit17 doi: 10.1039/D0LC00446D – ident: ref59/cit59 doi: 10.1002/pi.6388 – ident: ref62/cit62 doi: 10.1039/C4RA13581D – ident: ref30/cit30 doi: 10.1002/adma.200501043 – ident: ref15/cit15 doi: 10.1016/j.eurpolymj.2020.109899 – ident: ref10/cit10 doi: 10.1039/D0BM00055H – ident: ref11/cit11 doi: 10.1021/acsbiomaterials.0c01784 – ident: ref51/cit51 doi: 10.1039/C7CC06410A – ident: ref61/cit61 doi: 10.1021/acsomega.2c03931 – ident: ref49/cit49 doi: 10.1021/acsomega.8b00534 – ident: ref19/cit19 doi: 10.1002/anie.201907670 – ident: ref53/cit53 doi: 10.1021/jacs.5b02799 – ident: ref16/cit16 doi: 10.1016/j.addr.2016.07.004 – ident: ref6/cit6 doi: 10.1007/978-3-030-19416-1_7 – ident: ref34/cit34 doi: 10.1021/ma9023679 – ident: ref7/cit7 doi: 10.1007/s10856-020-06390-w – ident: ref33/cit33 doi: 10.1039/C9PY00559E – ident: ref54/cit54 doi: 10.1021/jacs.7b04804 – ident: ref56/cit56 doi: 10.1021/acs.molpharmaceut.7b00030 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.0c01177 – ident: ref60/cit60 doi: 10.1021/acs.macromol.8b01007 – ident: ref45/cit45 doi: 10.1038/nchem.1938 |
SSID | ssj0009345 |
Score | 2.5062444 |
Snippet | Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3629 |
Title | Self-Immolative Hydrogels with Stimulus-Mediated On–Off Degradation |
URI | http://dx.doi.org/10.1021/acs.biomac.3c00382 https://www.ncbi.nlm.nih.gov/pubmed/37418699 https://search.proquest.com/docview/2835274333 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF5F9EAvbYE-0gIyUiUO7aa2d727PqIQFJDSHAISN2v2YYRInSq2D-2p_6H_kF_Cju20QjyUq2WN7Jmx59udne8j5LO2DNs7moJNLeUuTaiCCKgLQcTAUycVDidPvovxBT-7TC575OsTHfw4-gamHOAoujfPDDay_A_3RSz9-huB0HD2n2KXNZLEKOjjMWMquxGZx21gMTLl_WL0BMJsKs3JazJZzeu0B0xuBnWlB-b3Q_rGtV7iDXnVQc7gqM2RLdJzxTbZHK6U3nbIaObmOT31GTlvaMCD8S-7XFz5qhngNm0wq65_1PO6pJNG18PZYFrc_vk7zfPgGLkmWlmmt-TiZHQ-HNNOXoEC43FFWWydsYlWHlSkIYQmiZRTCnTomLZJnoa5kppJyxLkyMehWcsMc4KDEcBy9o5sFIvCfSCByAWA5jIECdxypSNjQwFSWKGjREGfHHoPZN3nUWZN5zuOMrzYuiXr3NInX1YRyX62fBvP3n2wClrmfYa9Dijcoi4zpJHzC27GWJ-8b6P5zx5Dxh6Rph_XfqpP5CXKzONecsR3yUa1rN2eByOV3m9y8A6Vstq- |
link.rule.ids | 314,780,784,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEG6MHvTi-7E-MTHxYKqwLaUczapZH6uHXRNvZEqLMa6sETjoyf_gP_SX2AFWo1Gj14YMw8zADJ3O9xGypTTD9o6ioENNuQl9KsEDalwQTeChCSQOJ3fORfuSn1z5V_UcN87CWCUyKykrm_gf6ALeHq7hRLq9C4uxn2W_u2M-clZiPdTqfiDtspKZGHl9bOkYBvWkzPcyMCfF2eec9EOhWSacoynSe1e1PGdyu1vkajd--oLi-M9nmSaTdQHq7FcRM0NGTDpLxltD3rc5ctg1_YQe2_jsl6DgTvtRPwyubQ51cNPW6eY3d0W_yGinZPkw2rlIX59fLpLEOUDkiYqkaZ5cHh32Wm1aky1QYLyZU9bUJta-krbECF1wY9-TRkpQrmFK-0noJjJQLNDMR8R8HKHVLGZGcIgFsIQtkNF0kJol4ohEACgeuBAA11wqL9augEBooTxfQoNsWwtE9cuSRWUfvOlFuFiZJarN0iA7Q8dE9xX6xq9Xbw59F1mbYecDUjMosghB5ezvN2OsQRYrp77LY4jfI8Jw-c9abZDxdq9zFp0dn5-ukAkkoMddZo-vktH8oTBrtkzJ1XoZlm-CkuMr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqkFouPFooyzOVkHpAhmTtOM5xtQ_t0sIibZH2Fo1jp0IsWUSSA5z6H_oP-SV4kuxWVIAQVyuaODO2ZzLj-T5CDpRmWN5RFHSoKTehTyV4QI0Logk8NIHE5uTTM9G_4Cdjf1ynLrAXxk4is5KysoiPu_pGJzXCgHeM49iVbt_EYqxp2bN30bfHLd7larVH_9B2WclOjNw-NnwMg7pb5nkZ6Jfi7KlfeiHYLJ1Ob4WM59Mt75pcHRW5Oorv_0NyfMf3rJLlOhB1WtXKWSMfTPqZfGrP-N--kO7ITBI6sOt0UoKDO_07fTv9bX2pg8lbZ5RfXheTIqOnJduH0c4wffjzd5gkTgcRKCqypnVy0ev-avdpTbpAgfFmTllTm1j7StpQI3TBjX1PGilBuYYp7Sehm8hAsUAzH5HzsZVWs5gZwSEWwBK2QRbSaWo2iSMSAaB44EIAXHOpvFi7AgKhhfJ8CQ3y3WogqjdNFpX18KYX4WCllqhWS4MczowT3VQoHK8-_W1mv8jqDCsgkJppkUUILmd_wxljDfK1MuxcHkMcHxGGW2-e1T75eN7pRT8HZz-2yRLy0GOy2eM7ZCG_LcyujVZytVeuzEfuyOWu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Immolative+Hydrogels+with+Stimulus-Mediated+On%E2%80%93Off+Degradation&rft.jtitle=Biomacromolecules&rft.au=Gong%2C+Jue&rft.au=Borecki%2C+Aneta&rft.au=Gillies%2C+Elizabeth+R.&rft.date=2023-08-14&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=24&rft.issue=8&rft.spage=3629&rft.epage=3637&rft_id=info:doi/10.1021%2Facs.biomac.3c00382&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_biomac_3c00382 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon |