Self-Immolative Hydrogels with Stimulus-Mediated On–Off Degradation

Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage even...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 24; no. 8; pp. 3629 - 3637
Main Authors Gong, Jue, Borecki, Aneta, Gillies, Elizabeth R.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.08.2023
Online AccessGet full text

Cover

Loading…
Abstract Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly­(ethyl glyoxylate) (PEtG) and poly­(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications.
AbstractList Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly­(ethyl glyoxylate) (PEtG) and poly­(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications.
Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly(ethyl glyoxylate) (PEtG) and poly(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications.
Author Gong, Jue
Borecki, Aneta
Gillies, Elizabeth R.
AuthorAffiliation Department of Chemistry
Department of Chemical and Biochemical Engineering
AuthorAffiliation_xml – name: Department of Chemical and Biochemical Engineering
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Jue
  surname: Gong
  fullname: Gong, Jue
  organization: Department of Chemistry
– sequence: 2
  givenname: Aneta
  surname: Borecki
  fullname: Borecki, Aneta
  organization: Department of Chemistry
– sequence: 3
  givenname: Elizabeth R.
  orcidid: 0000-0002-3983-2248
  surname: Gillies
  fullname: Gillies, Elizabeth R.
  email: egillie@uwo.ca
  organization: Department of Chemical and Biochemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37418699$$D View this record in MEDLINE/PubMed
BookMark eNp9kL1OwzAUhS1URH_gBRhQRpYEx44TZ0Sl0EpFHQpz5Ng3JVUSFzsBdeMdeEOeBJcURu5yz3DOubrfGA0a3QBClyEOQkzCGyFtkJe6FjKgEmPKyQkahYzEfhRjMvjRzE-SNBmisbVbjHFKI3aGhjSJQh6n6QjN1lAV_qKudSXa8g28-V4ZvYHKeu9l--Kt27Luqs76j6BK0YLyVs3Xx-eqKLw72BihXEo35-i0EJWFi-OeoOf72dN07i9XD4vp7dIXNCKtT4kCqVjO3fkUCyxZyIFzkWOguWJFigue5DRRlDlLRAhxUlKIIyFjQQs6Qdd9787o1w5sm9WllVBVogHd2YxwykgSUTcTRHqrNNpaA0W2M2UtzD4LcXbAlzl8WY8vO-Jzoatjf5fXoP4iv7ycIegNh_BWd6Zx7_7X-A20z3-5
CitedBy_id crossref_primary_10_1002_ange_202317063
crossref_primary_10_1002_macp_202400123
crossref_primary_10_1021_acs_chemmater_4c00583
crossref_primary_10_1002_anie_202317063
crossref_primary_10_1021_jacsau_3c00345
Cites_doi 10.1021/acs.biomac.1c00694
10.1039/C5LC00276A
10.1002/advs.202100216
10.1016/S0032-3861(03)00463-4
10.1039/C7BM00980A
10.1016/j.ejpb.2015.02.025
10.1039/D2BM00617K
10.1039/C7TB01851G
10.1021/ma4001594
10.1021/ja801065d
10.1021/ja905343x
10.1039/C8PY00350E
10.1038/s41578-019-0169-1
10.1021/jacs.1c11410
10.1016/j.polymer.2014.09.048
10.1039/D0TB01119C
10.1016/j.polymer.2020.122638
10.1039/C8TB01632A
10.1002/adma.201905366
10.1016/j.sbi.2020.04.007
10.1126/science.1169494
10.1016/j.actbio.2021.04.009
10.2147/IJN.S245743
10.1039/C9BM00139E
10.1021/acs.macromol.6b02320
10.1021/ja504727u
10.1021/acs.chemrev.1c00815
10.1039/D1CC05108C
10.1039/C8TB01466C
10.1007/s00396-020-04621-8
10.1039/D0NR03785K
10.1002/adhm.202100469
10.1021/ma401169q
10.1126/science.aaf3627
10.1002/ange.201404323
10.1016/j.mtbio.2021.100186
10.1021/mz3002403
10.1039/C4CS00177J
10.1016/j.pmatsci.2020.100702
10.1038/srep33594
10.1016/j.biomaterials.2012.04.016
10.1021/acsabm.9b00410
10.1016/j.jconrel.2022.01.035
10.1039/D0LC00446D
10.1002/pi.6388
10.1039/C4RA13581D
10.1002/adma.200501043
10.1016/j.eurpolymj.2020.109899
10.1039/D0BM00055H
10.1021/acsbiomaterials.0c01784
10.1039/C7CC06410A
10.1021/acsomega.2c03931
10.1021/acsomega.8b00534
10.1002/anie.201907670
10.1021/jacs.5b02799
10.1016/j.addr.2016.07.004
10.1007/978-3-030-19416-1_7
10.1021/ma9023679
10.1007/s10856-020-06390-w
10.1039/C9PY00559E
10.1021/jacs.7b04804
10.1021/acs.molpharmaceut.7b00030
10.1021/acs.chemrev.0c01177
10.1021/acs.macromol.8b01007
10.1038/nchem.1938
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.biomac.3c00382
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1526-4602
EndPage 3637
ExternalDocumentID 10_1021_acs_biomac_3c00382
37418699
c050406262
Genre Journal Article
GroupedDBID ---
-~X
23N
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED~
F5P
FDB
GGK
GNL
IH9
JG~
P2P
RNS
ROL
TN5
UI2
VF5
VG9
W1F
XKZ
ZCA
~02
53G
AAHBH
AALRI
AAXUO
ABJNI
BAANH
CUPRZ
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a342t-32decd5b874190a0c518e88ab0e3bd5f90f87b37d3587442227d3c3e64ac6a3f3
IEDL.DBID ACS
ISSN 1525-7797
IngestDate Fri Oct 25 08:10:35 EDT 2024
Fri Dec 06 06:24:32 EST 2024
Wed Oct 16 00:39:53 EDT 2024
Tue Aug 15 03:11:49 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-32decd5b874190a0c518e88ab0e3bd5f90f87b37d3587442227d3c3e64ac6a3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3983-2248
PMID 37418699
PQID 2835274333
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2835274333
crossref_primary_10_1021_acs_biomac_3c00382
pubmed_primary_37418699
acs_journals_10_1021_acs_biomac_3c00382
PublicationCentury 2000
PublicationDate 2023-08-14
PublicationDateYYYYMMDD 2023-08-14
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref57/cit57
  doi: 10.1021/acs.biomac.1c00694
– ident: ref25/cit25
  doi: 10.1039/C5LC00276A
– ident: ref9/cit9
  doi: 10.1002/advs.202100216
– ident: ref24/cit24
  doi: 10.1016/S0032-3861(03)00463-4
– ident: ref27/cit27
  doi: 10.1039/C7BM00980A
– ident: ref31/cit31
  doi: 10.1016/j.ejpb.2015.02.025
– ident: ref37/cit37
  doi: 10.1039/D2BM00617K
– ident: ref28/cit28
  doi: 10.1039/C7TB01851G
– ident: ref47/cit47
  doi: 10.1021/ma4001594
– ident: ref42/cit42
  doi: 10.1021/ja801065d
– ident: ref43/cit43
  doi: 10.1021/ja905343x
– ident: ref65/cit65
  doi: 10.1039/C8PY00350E
– ident: ref63/cit63
  doi: 10.1038/s41578-019-0169-1
– ident: ref41/cit41
  doi: 10.1021/jacs.1c11410
– ident: ref50/cit50
  doi: 10.1016/j.polymer.2014.09.048
– ident: ref40/cit40
  doi: 10.1039/D0TB01119C
– ident: ref39/cit39
  doi: 10.1016/j.polymer.2020.122638
– ident: ref52/cit52
  doi: 10.1039/C8TB01632A
– ident: ref38/cit38
  doi: 10.1002/adma.201905366
– ident: ref8/cit8
  doi: 10.1016/j.sbi.2020.04.007
– ident: ref35/cit35
  doi: 10.1126/science.1169494
– ident: ref12/cit12
  doi: 10.1016/j.actbio.2021.04.009
– ident: ref26/cit26
  doi: 10.2147/IJN.S245743
– ident: ref29/cit29
  doi: 10.1039/C9BM00139E
– ident: ref55/cit55
  doi: 10.1021/acs.macromol.6b02320
– ident: ref46/cit46
  doi: 10.1021/ja504727u
– ident: ref5/cit5
  doi: 10.1021/acs.chemrev.1c00815
– ident: ref58/cit58
  doi: 10.1039/D1CC05108C
– ident: ref14/cit14
  doi: 10.1039/C8TB01466C
– ident: ref21/cit21
  doi: 10.1007/s00396-020-04621-8
– ident: ref4/cit4
  doi: 10.1039/D0NR03785K
– ident: ref23/cit23
  doi: 10.1002/adhm.202100469
– ident: ref44/cit44
  doi: 10.1021/ma401169q
– ident: ref2/cit2
– ident: ref1/cit1
  doi: 10.1126/science.aaf3627
– ident: ref36/cit36
  doi: 10.1002/ange.201404323
– ident: ref18/cit18
  doi: 10.1016/j.mtbio.2021.100186
– ident: ref48/cit48
  doi: 10.1021/mz3002403
– ident: ref66/cit66
  doi: 10.1039/C4CS00177J
– ident: ref20/cit20
  doi: 10.1016/j.pmatsci.2020.100702
– ident: ref32/cit32
  doi: 10.1038/srep33594
– ident: ref22/cit22
  doi: 10.1016/j.biomaterials.2012.04.016
– ident: ref64/cit64
  doi: 10.1021/acsabm.9b00410
– ident: ref13/cit13
  doi: 10.1016/j.jconrel.2022.01.035
– ident: ref17/cit17
  doi: 10.1039/D0LC00446D
– ident: ref59/cit59
  doi: 10.1002/pi.6388
– ident: ref62/cit62
  doi: 10.1039/C4RA13581D
– ident: ref30/cit30
  doi: 10.1002/adma.200501043
– ident: ref15/cit15
  doi: 10.1016/j.eurpolymj.2020.109899
– ident: ref10/cit10
  doi: 10.1039/D0BM00055H
– ident: ref11/cit11
  doi: 10.1021/acsbiomaterials.0c01784
– ident: ref51/cit51
  doi: 10.1039/C7CC06410A
– ident: ref61/cit61
  doi: 10.1021/acsomega.2c03931
– ident: ref49/cit49
  doi: 10.1021/acsomega.8b00534
– ident: ref19/cit19
  doi: 10.1002/anie.201907670
– ident: ref53/cit53
  doi: 10.1021/jacs.5b02799
– ident: ref16/cit16
  doi: 10.1016/j.addr.2016.07.004
– ident: ref6/cit6
  doi: 10.1007/978-3-030-19416-1_7
– ident: ref34/cit34
  doi: 10.1021/ma9023679
– ident: ref7/cit7
  doi: 10.1007/s10856-020-06390-w
– ident: ref33/cit33
  doi: 10.1039/C9PY00559E
– ident: ref54/cit54
  doi: 10.1021/jacs.7b04804
– ident: ref56/cit56
  doi: 10.1021/acs.molpharmaceut.7b00030
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.0c01177
– ident: ref60/cit60
  doi: 10.1021/acs.macromol.8b01007
– ident: ref45/cit45
  doi: 10.1038/nchem.1938
SSID ssj0009345
Score 2.5062444
Snippet Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 3629
Title Self-Immolative Hydrogels with Stimulus-Mediated On–Off Degradation
URI http://dx.doi.org/10.1021/acs.biomac.3c00382
https://www.ncbi.nlm.nih.gov/pubmed/37418699
https://search.proquest.com/docview/2835274333
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF5F9EAvbYE-0gIyUiUO7aa2d727PqIQFJDSHAISN2v2YYRInSq2D-2p_6H_kF_Cju20QjyUq2WN7Jmx59udne8j5LO2DNs7moJNLeUuTaiCCKgLQcTAUycVDidPvovxBT-7TC575OsTHfw4-gamHOAoujfPDDay_A_3RSz9-huB0HD2n2KXNZLEKOjjMWMquxGZx21gMTLl_WL0BMJsKs3JazJZzeu0B0xuBnWlB-b3Q_rGtV7iDXnVQc7gqM2RLdJzxTbZHK6U3nbIaObmOT31GTlvaMCD8S-7XFz5qhngNm0wq65_1PO6pJNG18PZYFrc_vk7zfPgGLkmWlmmt-TiZHQ-HNNOXoEC43FFWWydsYlWHlSkIYQmiZRTCnTomLZJnoa5kppJyxLkyMehWcsMc4KDEcBy9o5sFIvCfSCByAWA5jIECdxypSNjQwFSWKGjREGfHHoPZN3nUWZN5zuOMrzYuiXr3NInX1YRyX62fBvP3n2wClrmfYa9Dijcoi4zpJHzC27GWJ-8b6P5zx5Dxh6Rph_XfqpP5CXKzONecsR3yUa1rN2eByOV3m9y8A6Vstq-
link.rule.ids 314,780,784,2765,27076,27924,27925,56738,56788
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEG6MHvTi-7E-MTHxYKqwLaUczapZH6uHXRNvZEqLMa6sETjoyf_gP_SX2AFWo1Gj14YMw8zADJ3O9xGypTTD9o6ioENNuQl9KsEDalwQTeChCSQOJ3fORfuSn1z5V_UcN87CWCUyKykrm_gf6ALeHq7hRLq9C4uxn2W_u2M-clZiPdTqfiDtspKZGHl9bOkYBvWkzPcyMCfF2eec9EOhWSacoynSe1e1PGdyu1vkajd--oLi-M9nmSaTdQHq7FcRM0NGTDpLxltD3rc5ctg1_YQe2_jsl6DgTvtRPwyubQ51cNPW6eY3d0W_yGinZPkw2rlIX59fLpLEOUDkiYqkaZ5cHh32Wm1aky1QYLyZU9bUJta-krbECF1wY9-TRkpQrmFK-0noJjJQLNDMR8R8HKHVLGZGcIgFsIQtkNF0kJol4ohEACgeuBAA11wqL9augEBooTxfQoNsWwtE9cuSRWUfvOlFuFiZJarN0iA7Q8dE9xX6xq9Xbw59F1mbYecDUjMosghB5ezvN2OsQRYrp77LY4jfI8Jw-c9abZDxdq9zFp0dn5-ukAkkoMddZo-vktH8oTBrtkzJ1XoZlm-CkuMr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqkFouPFooyzOVkHpAhmTtOM5xtQ_t0sIibZH2Fo1jp0IsWUSSA5z6H_oP-SV4kuxWVIAQVyuaODO2ZzLj-T5CDpRmWN5RFHSoKTehTyV4QI0Logk8NIHE5uTTM9G_4Cdjf1ynLrAXxk4is5KysoiPu_pGJzXCgHeM49iVbt_EYqxp2bN30bfHLd7larVH_9B2WclOjNw-NnwMg7pb5nkZ6Jfi7KlfeiHYLJ1Ob4WM59Mt75pcHRW5Oorv_0NyfMf3rJLlOhB1WtXKWSMfTPqZfGrP-N--kO7ITBI6sOt0UoKDO_07fTv9bX2pg8lbZ5RfXheTIqOnJduH0c4wffjzd5gkTgcRKCqypnVy0ev-avdpTbpAgfFmTllTm1j7StpQI3TBjX1PGilBuYYp7Sehm8hAsUAzH5HzsZVWs5gZwSEWwBK2QRbSaWo2iSMSAaB44EIAXHOpvFi7AgKhhfJ8CQ3y3WogqjdNFpX18KYX4WCllqhWS4MczowT3VQoHK8-_W1mv8jqDCsgkJppkUUILmd_wxljDfK1MuxcHkMcHxGGW2-e1T75eN7pRT8HZz-2yRLy0GOy2eM7ZCG_LcyujVZytVeuzEfuyOWu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Immolative+Hydrogels+with+Stimulus-Mediated+On%E2%80%93Off+Degradation&rft.jtitle=Biomacromolecules&rft.au=Gong%2C+Jue&rft.au=Borecki%2C+Aneta&rft.au=Gillies%2C+Elizabeth+R.&rft.date=2023-08-14&rft.issn=1525-7797&rft.eissn=1526-4602&rft.volume=24&rft.issue=8&rft.spage=3629&rft.epage=3637&rft_id=info:doi/10.1021%2Facs.biomac.3c00382&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_biomac_3c00382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-7797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-7797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-7797&client=summon