Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection

Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast s...

Full description

Saved in:
Bibliographic Details
Published inACS sensors Vol. 2; no. 12; pp. 1860 - 1868
Main Authors Martín, Aida, Kim, Jayoung, Kurniawan, Jonas F, Sempionatto, Juliane R, Moreto, Jose R, Tang, Guangda, Campbell, Alan S, Shin, Andrew, Lee, Min Yul, Liu, Xiaofeng, Wang, Joseph
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast sweat sampling and continuous, real-time electrochemical monitoring of glucose and lactate levels. This soft, skin-mounted device judiciously merges lab-on-a-chip and electrochemical detection technologies, integrated with a miniaturized flexible electronic board for real-time wireless data transmission to a mobile device. Modeling of the device design and sweat flow conditions allowed optimization of the sampling process and the microchannel layout for achieving attractive fluid dynamics and rapid filling of the detection reservoir (within 8 min from starting exercise). The wearable microdevice thus enabled efficient natural sweat pumping to the electrochemical detection chamber containing the enzyme-modified electrode transducers. The fabricated device can be easily mounted on the epidermis without hindrance to the wearer and displays resiliency against continuous mechanical deformation expected from such epidermal wear. Amperometric biosensing of lactate and glucose from the rapidly generated sweat, using the corresponding immobilized oxidase enzymes, was wirelessly monitored during cycling activity of different healthy subjects. This ability to monitor sweat glucose levels introduces new possibilities for effective diabetes management, while similar lactate monitoring paves the way for new wearable fitness applications. The new epidermal microfluidic electrochemical detection strategy represents an attractive alternative to recently reported colorimetric sweat-monitoring methods, and hence holds considerable promise for practical fitness or health monitoring applications.
AbstractList Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast sweat sampling and continuous, real-time electrochemical monitoring of glucose and lactate levels. This soft, skin-mounted device judiciously merges lab-on-a-chip and electrochemical detection technologies, integrated with a miniaturized flexible electronic board for real-time wireless data transmission to a mobile device. Modeling of the device design and sweat flow conditions allowed optimization of the sampling process and the microchannel layout for achieving attractive fluid dynamics and rapid filling of the detection reservoir (within 8 min from starting exercise). The wearable microdevice thus enabled efficient natural sweat pumping to the electrochemical detection chamber containing the enzyme-modified electrode transducers. The fabricated device can be easily mounted on the epidermis without hindrance to the wearer and displays resiliency against continuous mechanical deformation expected from such epidermal wear. Amperometric biosensing of lactate and glucose from the rapidly generated sweat, using the corresponding immobilized oxidase enzymes, was wirelessly monitored during cycling activity of different healthy subjects. This ability to monitor sweat glucose levels introduces new possibilities for effective diabetes management, while similar lactate monitoring paves the way for new wearable fitness applications. The new epidermal microfluidic electrochemical detection strategy represents an attractive alternative to recently reported colorimetric sweat-monitoring methods, and hence holds considerable promise for practical fitness or health monitoring applications.
Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast sweat sampling and continuous, real-time electrochemical monitoring of glucose and lactate levels. This soft, skin-mounted device judiciously merges lab-on-a-chip and electrochemical detection technologies, integrated with a miniaturized flexible electronic board for real-time wireless data transmission to a mobile device. Modeling of the device design and sweat flow conditions allowed optimization of the sampling process and the microchannel layout for achieving attractive fluid dynamics and rapid filling of the detection reservoir (within 8 min from starting exercise). The wearable microdevice thus enabled efficient natural sweat pumping to the electrochemical detection chamber containing the enzyme-modified electrode transducers. The fabricated device can be easily mounted on the epidermis without hindrance to the wearer and displays resiliency against continuous mechanical deformation expected from such epidermal wear. Amperometric biosensing of lactate and glucose from the rapidly generated sweat, using the corresponding immobilized oxidase enzymes, was wirelessly monitored during cycling activity of different healthy subjects. This ability to monitor sweat glucose levels introduces new possibilities for effective diabetes management, while similar lactate monitoring paves the way for new wearable fitness applications. The new epidermal microfluidic electrochemical detection strategy represents an attractive alternative to recently reported colorimetric sweat-monitoring methods, and hence holds considerable promise for practical fitness or health monitoring applications.Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast sweat sampling and continuous, real-time electrochemical monitoring of glucose and lactate levels. This soft, skin-mounted device judiciously merges lab-on-a-chip and electrochemical detection technologies, integrated with a miniaturized flexible electronic board for real-time wireless data transmission to a mobile device. Modeling of the device design and sweat flow conditions allowed optimization of the sampling process and the microchannel layout for achieving attractive fluid dynamics and rapid filling of the detection reservoir (within 8 min from starting exercise). The wearable microdevice thus enabled efficient natural sweat pumping to the electrochemical detection chamber containing the enzyme-modified electrode transducers. The fabricated device can be easily mounted on the epidermis without hindrance to the wearer and displays resiliency against continuous mechanical deformation expected from such epidermal wear. Amperometric biosensing of lactate and glucose from the rapidly generated sweat, using the corresponding immobilized oxidase enzymes, was wirelessly monitored during cycling activity of different healthy subjects. This ability to monitor sweat glucose levels introduces new possibilities for effective diabetes management, while similar lactate monitoring paves the way for new wearable fitness applications. The new epidermal microfluidic electrochemical detection strategy represents an attractive alternative to recently reported colorimetric sweat-monitoring methods, and hence holds considerable promise for practical fitness or health monitoring applications.
Author Shin, Andrew
Lee, Min Yul
Wang, Joseph
Kurniawan, Jonas F
Kim, Jayoung
Martín, Aida
Tang, Guangda
Sempionatto, Juliane R
Campbell, Alan S
Liu, Xiaofeng
Moreto, Jose R
AuthorAffiliation Department of Aerospace Engineering
Department of NanoEngineering
San Diego State University
AuthorAffiliation_xml – name: Department of NanoEngineering
– name: Department of Aerospace Engineering
– name: San Diego State University
Author_xml – sequence: 1
  givenname: Aida
  surname: Martín
  fullname: Martín, Aida
  organization: Department of NanoEngineering
– sequence: 2
  givenname: Jayoung
  surname: Kim
  fullname: Kim, Jayoung
  organization: Department of NanoEngineering
– sequence: 3
  givenname: Jonas F
  surname: Kurniawan
  fullname: Kurniawan, Jonas F
  organization: Department of NanoEngineering
– sequence: 4
  givenname: Juliane R
  surname: Sempionatto
  fullname: Sempionatto, Juliane R
  organization: Department of NanoEngineering
– sequence: 5
  givenname: Jose R
  surname: Moreto
  fullname: Moreto, Jose R
  organization: San Diego State University
– sequence: 6
  givenname: Guangda
  surname: Tang
  fullname: Tang, Guangda
  organization: Department of NanoEngineering
– sequence: 7
  givenname: Alan S
  surname: Campbell
  fullname: Campbell, Alan S
  organization: Department of NanoEngineering
– sequence: 8
  givenname: Andrew
  surname: Shin
  fullname: Shin, Andrew
  organization: Department of NanoEngineering
– sequence: 9
  givenname: Min Yul
  surname: Lee
  fullname: Lee, Min Yul
  organization: Department of NanoEngineering
– sequence: 10
  givenname: Xiaofeng
  surname: Liu
  fullname: Liu, Xiaofeng
  organization: San Diego State University
– sequence: 11
  givenname: Joseph
  orcidid: 0000-0002-4921-9674
  surname: Wang
  fullname: Wang, Joseph
  email: josephwang@ucsd.edu
  organization: Department of NanoEngineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29152973$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMofv8BD9Kjl12Tpmm23kTXD1A8rJ7DNJlqJE3WJEX891Z2RfHgaYaZ9xmY990jmz54JOSI0SmjJTsFnRL6FGKaypZSWTYbZLfkspnwuqk2f_U75DClV0opE3UpZnSb7JQNE2Uj-S6x86U1GHtwxb3VMXRusMbqYu5Q5xj0C_ZWj8tLzOPABl8sPlLG_qyY-xfwGk2xeEfIxQL6pbP-uQBvinvM0AZnM_6AB2SrA5fwcF33ydPV_PHiZnL3cH17cX43AV6VecIEAghgrUBseYUzJpqqowJrKbuZaGsBwFhjGFatlAiGS8M1bznltDKS8X1ysrq7jOFtwJRVb5NG58BjGJJiTV1XFZNCjNLjtXRoezRqGW0P8UN92zMKZivB6ExKETulbYavb3IE6xSj6isM9ROGWocxouUf9Pv6v9B0BY079RqG6Een_gM-AT3Cofs
CitedBy_id crossref_primary_10_3390_bios14060294
crossref_primary_10_1038_s41378_023_00514_2
crossref_primary_10_3390_s19204353
crossref_primary_10_1016_j_snb_2021_131085
crossref_primary_10_1016_j_cis_2021_102380
crossref_primary_10_1016_j_talanta_2019_01_104
crossref_primary_10_1038_s41598_019_46302_9
crossref_primary_10_1126_sciadv_aav3294
crossref_primary_10_1038_s44222_023_00032_w
crossref_primary_10_1088_1361_665X_aca370
crossref_primary_10_1002_elan_12011
crossref_primary_10_1016_j_bios_2021_113249
crossref_primary_10_1002_elps_202200150
crossref_primary_10_1109_JSEN_2020_2974851
crossref_primary_10_3390_chemosensors13030109
crossref_primary_10_3390_nano12224025
crossref_primary_10_3390_bios12040252
crossref_primary_10_1002_adfm_201907184
crossref_primary_10_1007_s42765_020_00046_8
crossref_primary_10_1016_j_snb_2023_135212
crossref_primary_10_1007_s00604_024_06564_1
crossref_primary_10_1016_j_biomaterials_2024_123014
crossref_primary_10_1016_j_talanta_2023_124610
crossref_primary_10_1021_acs_energyfuels_3c00589
crossref_primary_10_1002_adma_202101272
crossref_primary_10_1021_acsmaterialsau_4c00106
crossref_primary_10_1016_j_ijsolstr_2022_111821
crossref_primary_10_1038_s41598_022_26951_z
crossref_primary_10_3390_mi12121513
crossref_primary_10_1021_acs_analchem_9b00787
crossref_primary_10_3390_bios13030313
crossref_primary_10_1146_annurev_anchem_091322_082930
crossref_primary_10_3390_chemosensors11090470
crossref_primary_10_1016_j_crbiot_2023_100143
crossref_primary_10_1016_j_ijsolstr_2019_05_029
crossref_primary_10_3390_s19194333
crossref_primary_10_3390_chemosensors9040083
crossref_primary_10_1016_j_nanoen_2020_105155
crossref_primary_10_3390_bios13040470
crossref_primary_10_1088_1361_6463_ac14ef
crossref_primary_10_3390_s21030879
crossref_primary_10_1016_j_esci_2024_100327
crossref_primary_10_1021_acssensors_7b00961
crossref_primary_10_1063_5_0116648
crossref_primary_10_1039_C9LC01112A
crossref_primary_10_3390_s19204376
crossref_primary_10_1016_j_trac_2023_116938
crossref_primary_10_1002_idm2_12154
crossref_primary_10_1016_j_nantod_2019_100828
crossref_primary_10_1002_smll_201903822
crossref_primary_10_1007_s00170_023_12115_4
crossref_primary_10_1016_j_nanoen_2021_106755
crossref_primary_10_1016_j_nanoms_2024_01_010
crossref_primary_10_3389_fphys_2024_1376801
crossref_primary_10_1016_j_microc_2024_112344
crossref_primary_10_1126_sciadv_abe3929
crossref_primary_10_1038_s41587_019_0045_y
crossref_primary_10_1007_s00784_023_05206_9
crossref_primary_10_1002_adma_202304465
crossref_primary_10_1016_j_talanta_2018_09_086
crossref_primary_10_1021_acsami_4c07717
crossref_primary_10_1021_acsnano_4c10344
crossref_primary_10_3390_bios14120574
crossref_primary_10_3390_bios14070316
crossref_primary_10_1007_s10570_021_04169_y
crossref_primary_10_1021_acs_analchem_1c02887
crossref_primary_10_1002_adma_201806739
crossref_primary_10_1007_s10404_023_02696_7
crossref_primary_10_1002_adfm_202008130
crossref_primary_10_1002_adma_201902062
crossref_primary_10_1039_D3MH00597F
crossref_primary_10_1016_j_trac_2022_116908
crossref_primary_10_1016_j_trac_2024_117889
crossref_primary_10_1108_FS_05_2021_0101
crossref_primary_10_3390_chemosensors11080459
crossref_primary_10_1021_acssensors_0c01697
crossref_primary_10_1007_s40820_020_00441_1
crossref_primary_10_1038_s41467_020_18238_6
crossref_primary_10_1039_C8LC00025E
crossref_primary_10_1002_adfm_202004684
crossref_primary_10_1002_elan_202060025
crossref_primary_10_1016_j_sbsr_2022_100473
crossref_primary_10_1016_j_coelec_2018_05_002
crossref_primary_10_1021_acsami_8b20583
crossref_primary_10_1126_sciadv_aar3921
crossref_primary_10_1002_admt_202000910
crossref_primary_10_1002_smtd_201900688
crossref_primary_10_1021_acssensors_8b00276
crossref_primary_10_1002_admt_202000233
crossref_primary_10_1021_acs_nanolett_8b04775
crossref_primary_10_1126_sciadv_abe4553
crossref_primary_10_1016_j_snb_2020_128948
crossref_primary_10_1021_acsami_4c10817
crossref_primary_10_1039_D4TB00790E
crossref_primary_10_3389_fmed_2024_1390634
crossref_primary_10_1016_j_seta_2024_103975
crossref_primary_10_3390_chemosensors9050099
crossref_primary_10_1002_aisy_201900179
crossref_primary_10_1039_D3LC00874F
crossref_primary_10_1021_acssensors_2c01669
crossref_primary_10_1016_j_bios_2020_112750
crossref_primary_10_3390_molecules26030748
crossref_primary_10_1016_j_coelec_2019_05_014
crossref_primary_10_1021_acs_chemrev_3c00471
crossref_primary_10_1039_C7CS00730B
crossref_primary_10_1002_viw2_21
crossref_primary_10_1016_j_coelec_2018_05_014
crossref_primary_10_1002_elan_201800309
crossref_primary_10_1002_elan_201800677
crossref_primary_10_1088_2058_8585_ac13c4
crossref_primary_10_1002_admt_201800628
crossref_primary_10_1021_acs_chemrev_1c00395
crossref_primary_10_1021_acssensors_9b01109
crossref_primary_10_1016_j_snr_2025_100286
crossref_primary_10_30970_sbi_1701_703
crossref_primary_10_1002_smll_202206064
crossref_primary_10_1021_acsami_0c22730
crossref_primary_10_1021_acs_chemrev_9b00437
crossref_primary_10_1021_acs_analchem_0c02723
crossref_primary_10_1126_sciadv_aax0649
crossref_primary_10_3390_s20216013
crossref_primary_10_1021_acscentsci_8b00625
crossref_primary_10_1021_acs_chemrev_8b00573
crossref_primary_10_1016_j_talanta_2020_120786
crossref_primary_10_1038_s44222_023_00094_w
crossref_primary_10_3390_bios13030372
crossref_primary_10_1002_ange_202310245
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_3390_biomimetics8020167
crossref_primary_10_1021_acssensors_2c02614
crossref_primary_10_3390_bios13060578
crossref_primary_10_1016_j_sna_2019_07_020
crossref_primary_10_1155_2022_1955056
crossref_primary_10_1002_smll_201901190
crossref_primary_10_1016_j_electacta_2020_136048
crossref_primary_10_3390_electronics11050761
crossref_primary_10_2174_0929867331666230807143639
crossref_primary_10_1002_nano_202100137
crossref_primary_10_1002_adma_202406424
crossref_primary_10_1038_s41528_022_00146_y
crossref_primary_10_1002_smll_201803266
crossref_primary_10_3390_nano11051118
crossref_primary_10_3390_s22020638
crossref_primary_10_1186_s40543_022_00320_x
crossref_primary_10_1080_00405000_2023_2288357
crossref_primary_10_1016_j_microc_2025_112847
crossref_primary_10_1021_acsabm_0c01271
crossref_primary_10_1016_j_cej_2022_140248
crossref_primary_10_3390_mi12070805
crossref_primary_10_1016_j_snb_2023_133738
crossref_primary_10_1016_j_trac_2019_115622
crossref_primary_10_1016_j_microc_2024_110250
crossref_primary_10_1021_acsami_1c22383
crossref_primary_10_1109_TII_2021_3124468
crossref_primary_10_3389_fbioe_2021_765987
crossref_primary_10_1016_j_jfluidstructs_2021_103265
crossref_primary_10_1016_j_bios_2024_116188
crossref_primary_10_3390_s21217311
crossref_primary_10_1073_pnas_2115616120
crossref_primary_10_1007_s00604_022_05316_3
crossref_primary_10_37188_lam_2021_004
crossref_primary_10_1002_adma_202106701
crossref_primary_10_1016_j_sbsr_2025_100772
crossref_primary_10_1021_acssensors_1c01403
crossref_primary_10_1038_s41746_019_0150_9
crossref_primary_10_3390_s22207784
crossref_primary_10_1007_s13206_024_00181_z
crossref_primary_10_1021_jacs_8b01302
crossref_primary_10_1002_btm2_10359
crossref_primary_10_1021_acssensors_1c00281
crossref_primary_10_1016_j_xcrp_2024_101985
crossref_primary_10_1080_10803548_2024_2330242
crossref_primary_10_1021_acs_analchem_1c05174
crossref_primary_10_3390_s23239473
crossref_primary_10_1021_acsmeasuresciau_3c00034
crossref_primary_10_1038_s41427_020_00280_x
crossref_primary_10_1016_j_microc_2023_109038
crossref_primary_10_1021_acs_analchem_2c00497
crossref_primary_10_1021_acs_analchem_2c04291
crossref_primary_10_1016_j_ijbiomac_2021_05_201
crossref_primary_10_1021_acs_analchem_8b05875
crossref_primary_10_1039_D0CS00304B
crossref_primary_10_1016_j_bios_2022_114450
crossref_primary_10_1021_acs_jchemed_3c00379
crossref_primary_10_3390_app10124392
crossref_primary_10_1016_j_snb_2023_135055
crossref_primary_10_1039_C9CS00319C
crossref_primary_10_1016_j_bios_2023_115600
crossref_primary_10_1016_j_bios_2025_117226
crossref_primary_10_1063_1_5053422
crossref_primary_10_1146_annurev_chembioeng_122120_023514
crossref_primary_10_1002_anie_202310245
crossref_primary_10_1016_j_bios_2020_112849
crossref_primary_10_1038_s41467_022_34442_y
crossref_primary_10_1039_D1LC00633A
crossref_primary_10_3390_bios12100910
crossref_primary_10_1016_j_jpba_2018_08_060
crossref_primary_10_1038_s41551_018_0287_x
crossref_primary_10_1016_j_trac_2021_116438
crossref_primary_10_1016_S1872_2040_20_60076_7
crossref_primary_10_1039_D3RA03440B
crossref_primary_10_1016_j_pmatsci_2021_100866
crossref_primary_10_1039_D4LC00927D
crossref_primary_10_3390_s22197670
crossref_primary_10_1038_s41928_018_0162_5
crossref_primary_10_1002_advs_202405518
crossref_primary_10_1016_j_aca_2025_343857
crossref_primary_10_3390_bios13020248
crossref_primary_10_3390_bios14040187
crossref_primary_10_1021_acs_analchem_9b04668
crossref_primary_10_1039_D2MH01517J
crossref_primary_10_3390_s22155670
crossref_primary_10_1016_j_bios_2022_114329
crossref_primary_10_3390_chemosensors11050267
crossref_primary_10_1021_acssensors_0c01980
crossref_primary_10_1021_acs_accounts_8b00451
crossref_primary_10_1038_s41378_022_00443_6
crossref_primary_10_1038_s41598_024_81042_5
crossref_primary_10_1016_j_snb_2021_130178
crossref_primary_10_1557_mrc_2018_134
crossref_primary_10_1007_s00604_021_04752_x
crossref_primary_10_1016_j_trac_2020_116024
crossref_primary_10_1039_C9LC00454H
crossref_primary_10_1021_acs_analchem_1c02922
crossref_primary_10_1021_acssensors_9b01727
crossref_primary_10_1016_j_npe_2020_08_003
crossref_primary_10_1002_elps_201900444
crossref_primary_10_1002_adma_201902343
crossref_primary_10_1002_admt_202100293
crossref_primary_10_1002_elan_201800414
crossref_primary_10_1039_D0TC01423K
crossref_primary_10_1002_VIW_20200077
crossref_primary_10_1016_j_microc_2020_105155
crossref_primary_10_4018_IJRQEH_297089
crossref_primary_10_1021_acs_analchem_3c05216
crossref_primary_10_1039_D1LC00328C
crossref_primary_10_1016_j_microc_2024_110457
crossref_primary_10_1007_s42242_021_00171_2
crossref_primary_10_1109_JSEN_2022_3210142
crossref_primary_10_1007_s42242_021_00156_1
crossref_primary_10_1039_C8LC00186C
crossref_primary_10_1016_j_sna_2024_115500
crossref_primary_10_1021_acs_analchem_9b03110
crossref_primary_10_1002_adma_201902051
crossref_primary_10_3390_s20071951
crossref_primary_10_1016_j_snb_2020_128549
crossref_primary_10_1016_j_rechem_2020_100028
crossref_primary_10_1021_acs_chemrev_3c00626
crossref_primary_10_1146_annurev_bioeng_060418_052315
crossref_primary_10_1039_D2NR06342E
crossref_primary_10_1016_j_bios_2021_113685
crossref_primary_10_1016_j_bios_2021_113683
crossref_primary_10_20964_2022_05_36
crossref_primary_10_1016_j_talanta_2023_125341
crossref_primary_10_1038_s41598_021_86931_7
crossref_primary_10_1002_aelm_202500010
crossref_primary_10_1016_j_snb_2024_135920
crossref_primary_10_1039_D2LC00993E
crossref_primary_10_1021_acsami_4c22895
crossref_primary_10_1016_j_trechm_2019_07_001
crossref_primary_10_1039_D3SD00165B
crossref_primary_10_1007_s11814_024_00295_y
crossref_primary_10_1021_acs_chemrev_3c00078
crossref_primary_10_1016_j_snb_2019_04_053
crossref_primary_10_1038_s41598_020_74337_w
crossref_primary_10_1016_j_bios_2018_09_035
crossref_primary_10_2139_ssrn_3982580
crossref_primary_10_1039_C9LC00418A
crossref_primary_10_1146_annurev_anchem_061318_114910
crossref_primary_10_1002_adma_202418705
crossref_primary_10_1021_acsami_2c22634
crossref_primary_10_1016_j_elecom_2021_106973
crossref_primary_10_3390_bios12121164
crossref_primary_10_3390_s19245388
crossref_primary_10_1039_D2RA04947C
crossref_primary_10_1063_5_0022767
crossref_primary_10_1039_C8LC01082J
crossref_primary_10_1002_adfm_202010388
crossref_primary_10_1016_j_cjac_2021_11_004
crossref_primary_10_1016_j_microc_2025_113446
crossref_primary_10_1021_acssensors_0c02446
crossref_primary_10_1016_j_biosx_2022_100153
crossref_primary_10_1021_acsabm_0c00798
crossref_primary_10_1108_SR_02_2024_0080
crossref_primary_10_1002_anbr_202200040
crossref_primary_10_1016_j_bios_2023_115097
crossref_primary_10_3390_bios14050214
crossref_primary_10_1021_acssensors_1c00139
crossref_primary_10_3390_mi12020175
crossref_primary_10_3390_bios15030194
crossref_primary_10_1021_acsnano_0c06688
crossref_primary_10_1007_s00216_024_05429_z
crossref_primary_10_1021_acsabm_3c01051
crossref_primary_10_1002_advs_202204171
crossref_primary_10_1021_acsami_3c04665
crossref_primary_10_1021_acsami_4c22623
crossref_primary_10_1002_elan_202300385
crossref_primary_10_1021_acs_analchem_0c05057
crossref_primary_10_1021_acs_analchem_9b03379
crossref_primary_10_1021_acsanm_9b01795
crossref_primary_10_1039_C9LC00734B
crossref_primary_10_1063_5_0010417
crossref_primary_10_1016_j_mseb_2023_116356
crossref_primary_10_1007_s00216_021_03865_9
crossref_primary_10_1039_C8LC00510A
crossref_primary_10_1002_smll_202201247
crossref_primary_10_1021_acs_analchem_2c02208
crossref_primary_10_1016_j_bioana_2024_02_002
crossref_primary_10_1021_acssensors_2c00830
crossref_primary_10_3390_s20154236
crossref_primary_10_1002_rpm_20240018
crossref_primary_10_1016_j_bios_2020_112133
crossref_primary_10_1016_j_nanoen_2024_109821
crossref_primary_10_1021_acssensors_2c00394
crossref_primary_10_1016_j_snb_2022_132184
crossref_primary_10_1016_j_yofte_2024_103742
crossref_primary_10_1016_j_snb_2023_133451
crossref_primary_10_1016_j_xcrp_2024_102389
crossref_primary_10_1016_j_bios_2020_112946
crossref_primary_10_1016_j_bios_2021_113777
crossref_primary_10_1021_acsnano_3c10324
crossref_primary_10_1021_acssensors_0c00720
crossref_primary_10_1039_D1RA07888G
crossref_primary_10_1149_1945_7111_ab7e24
crossref_primary_10_3390_nano12020221
crossref_primary_10_1002_adma_202102740
crossref_primary_10_1016_j_snb_2024_135934
crossref_primary_10_1021_acssensors_3c00490
crossref_primary_10_1021_acsami_0c07614
crossref_primary_10_1126_sciadv_abb8308
crossref_primary_10_3390_s23167057
crossref_primary_10_3390_mi13122214
Cites_doi 10.1063/1.4921039
10.1021/acs.analchem.6b03391
10.1016/j.talanta.2017.08.077
10.1039/C7LC00192D
10.1016/j.snb.2012.02.010
10.1007/s00421-007-0645-y
10.1038/nnano.2016.38
10.1016/j.jpba.2013.10.048
10.1126/science.1206157
10.1002/elps.201100355
10.1021/ac800112r
10.1126/scitranslmed.aaf2593
10.1002/elan.200403229
10.1002/elan.201200349
10.1089/dia.2011.0262
10.1021/ac504300n
10.1016/j.snb.2009.02.032
10.1021/ac402331v
10.1021/acssensors.6b00356
10.1073/pnas.1701740114
10.1063/1.4705368
10.1016/j.eml.2016.11.012
10.1002/elps.200900008
10.1002/anie.201302922
10.1002/elan.201600106
10.1126/sciadv.1601314
10.1186/2046-7648-2-4
10.1021/acssensors.6b00250
10.1002/elan.201600018
10.1038/nature16521
10.1002/adhm.201601355
10.1039/c2lc40741h
10.1016/j.snb.2012.06.048
10.1002/0471790303.ch2
10.1016/j.tiv.2010.06.016
10.1126/sciadv.1601465
10.1039/c3lc50431j
10.1021/acs.nanolett.5b04549
10.1126/science.1250169
10.1021/ac401573r
10.1113/jphysiol.2012.248823
10.1177/1932296813519994
10.1016/j.bios.2016.09.038
10.1016/j.aca.2006.12.001
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acssensors.7b00729
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2379-3694
EndPage 1868
ExternalDocumentID 29152973
10_1021_acssensors_7b00729
b68177259
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID 53G
ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a342t-15eaa5a1b5eeb34e81594f05e677f85b65aa119d1e4b77ead37d3c3b30304d713
IEDL.DBID ACS
ISSN 2379-3694
IngestDate Fri Jul 11 11:27:20 EDT 2025
Thu Jan 02 23:01:19 EST 2025
Tue Jul 01 04:07:18 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Thu Aug 27 13:42:23 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords glucose
microfluidic device
flexible electronics
electrochemical detection
wearable sensors
metabolite monitoring
lactate
sweat sampling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-15eaa5a1b5eeb34e81594f05e677f85b65aa119d1e4b77ead37d3c3b30304d713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4921-9674
PMID 29152973
PQID 1966441755
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1966441755
pubmed_primary_29152973
crossref_citationtrail_10_1021_acssensors_7b00729
crossref_primary_10_1021_acssensors_7b00729
acs_journals_10_1021_acssensors_7b00729
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
W1F
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-22
PublicationDateYYYYMMDD 2017-12-22
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS sensors
PublicationTitleAlternate ACS Sens
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Wang J. (ref33/cit33) 2006
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref39/cit39
  doi: 10.1063/1.4921039
– ident: ref15/cit15
  doi: 10.1021/acs.analchem.6b03391
– ident: ref16/cit16
  doi: 10.1016/j.talanta.2017.08.077
– ident: ref8/cit8
  doi: 10.1039/C7LC00192D
– ident: ref21/cit21
  doi: 10.1016/j.snb.2012.02.010
– ident: ref36/cit36
  doi: 10.1007/s00421-007-0645-y
– ident: ref17/cit17
  doi: 10.1038/nnano.2016.38
– ident: ref44/cit44
  doi: 10.1016/j.jpba.2013.10.048
– ident: ref1/cit1
  doi: 10.1126/science.1206157
– ident: ref30/cit30
  doi: 10.1002/elps.201100355
– ident: ref31/cit31
  doi: 10.1021/ac800112r
– ident: ref12/cit12
  doi: 10.1126/scitranslmed.aaf2593
– ident: ref27/cit27
  doi: 10.1002/elan.200403229
– ident: ref4/cit4
  doi: 10.1002/elan.201200349
– ident: ref34/cit34
  doi: 10.1089/dia.2011.0262
– ident: ref18/cit18
  doi: 10.1021/ac504300n
– ident: ref24/cit24
  doi: 10.1016/j.snb.2009.02.032
– ident: ref29/cit29
  doi: 10.1021/ac402331v
– ident: ref9/cit9
  doi: 10.1021/acssensors.6b00356
– ident: ref25/cit25
  doi: 10.1073/pnas.1701740114
– ident: ref41/cit41
  doi: 10.1063/1.4705368
– ident: ref37/cit37
  doi: 10.1016/j.eml.2016.11.012
– ident: ref32/cit32
  doi: 10.1002/elps.200900008
– ident: ref42/cit42
  doi: 10.1002/anie.201302922
– ident: ref20/cit20
  doi: 10.1002/elan.201600106
– ident: ref23/cit23
  doi: 10.1126/sciadv.1601314
– ident: ref38/cit38
  doi: 10.1186/2046-7648-2-4
– ident: ref5/cit5
  doi: 10.1021/acssensors.6b00250
– ident: ref14/cit14
  doi: 10.1002/elan.201600018
– ident: ref2/cit2
  doi: 10.1038/nature16521
– ident: ref26/cit26
  doi: 10.1002/adhm.201601355
– ident: ref7/cit7
  doi: 10.1039/c2lc40741h
– ident: ref22/cit22
  doi: 10.1016/j.snb.2012.06.048
– start-page: 29
  volume-title: Analytical Electrochemistry
  year: 2006
  ident: ref33/cit33
  doi: 10.1002/0471790303.ch2
– ident: ref35/cit35
  doi: 10.1016/j.tiv.2010.06.016
– ident: ref11/cit11
  doi: 10.1126/sciadv.1601465
– ident: ref6/cit6
  doi: 10.1039/c3lc50431j
– ident: ref10/cit10
  doi: 10.1021/acs.nanolett.5b04549
– ident: ref3/cit3
  doi: 10.1126/science.1250169
– ident: ref19/cit19
  doi: 10.1021/ac401573r
– ident: ref40/cit40
  doi: 10.1113/jphysiol.2012.248823
– ident: ref43/cit43
  doi: 10.1177/1932296813519994
– ident: ref13/cit13
  doi: 10.1016/j.bios.2016.09.038
– ident: ref28/cit28
  doi: 10.1016/j.aca.2006.12.001
SSID ssj0001562580
Score 2.544264
Snippet Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1860
SubjectTerms Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Dimethylpolysiloxanes - chemistry
Electrochemical Techniques - instrumentation
Electrochemical Techniques - methods
Enzymes, Immobilized - chemistry
Epidermis - metabolism
Glucose - analysis
Glucose Oxidase - chemistry
Humans
Lab-On-A-Chip Devices
Lactic Acid - analysis
Limit of Detection
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Mixed Function Oxygenases - chemistry
Monitoring, Physiologic - instrumentation
Monitoring, Physiologic - methods
Sweat - chemistry
Title Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection
URI http://dx.doi.org/10.1021/acssensors.7b00729
https://www.ncbi.nlm.nih.gov/pubmed/29152973
https://www.proquest.com/docview/1966441755
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ReqGHAqUfCxS5ElIPrbfrrzjhhugiVGl72SJxi2xnTFddZSuSVaX--tpOli1qQdxjK56MPW8y4_cAjpllaAqUFB1yKhl6apzxtPJKmsi_iYlLb_I1u7iUX67U1QZ8vKeCz9kn45omZHSLm2aobSK6fgJPeZbrmGqdnk3Xf1Qilk9SaVzogoqskP0tmf9PE-ORa-7Go3tAZgo259swWV3Z6XpMfgyXrR263_8yOD5qHTvwvEed5LRzk13YwPoFPPuLi3APZuOoFRuO6TmZxCY9P1_Oqpkj404nx_XEAuQztql7qyYd2fkJGdffUxsBmf4KBzuZmtikXl8TU1dkgm3wsnjPeT3wJVyej7-dXdBeh4EaIXlLmUJjlGFWYUi9JeYBAkk_Uphp7XNlM2UMY0XFUFqtg2sKXQknrIhl1ypkwa9gs17U-AbISCNKzj3PvAlTSOs15tUIC5F0gPIBvA92Kvt91JSpRM5ZuTZe2RtvAGz13UrX05lHVY35g2M-3I752ZF5PPj0u5U7lGHPxUKKqXGxDG8VcsQo3abUAF53fnI7Hy8CIiq02H_0Sg5gi0eswDjl_BA225slvg1Ip7VHycH_AIhn_S8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcoAeeD_C00ggDmhD_FpnkThUbaqUNr2klXrbenfHNCLaoO5GFfwd_go_jLF3kwCCikslrit7ZHvGnvnW428AXvKMo01QRZijiBRHF9ncuqhwWlnPv4mBS290EA-P1IdjfbwG3xZvYWgQFUmqwiX-il2Av6VvFQG72VnVNVngu24zKffwyznhtOr97jYp9ZUQO4PDrWHUlhKIrFSijrhGa7XlmUZCjwr75MWV62mMjXF9ncXaWs6TgqPKjKHVlaaQucykvzksCMiR3CtwlaIf4RHe5tZ49SPHQ4hQoU1Ik0QyTlT7OOfPw_ZuMK9-dYN_iW2Dj9u5Cd-XqxNSWz5153XWzb_-Rhz5ny_fLbjRxthss9kUt2ENyzuw8RPz4l2YDHxlXHJKUzbyKYluOp8Uk5wNmqpAeUujwLaxDrlqJWuo3d-xQXkakibY-JzcGBtbn5JffmS2LNgIa9pT_lX3quM9OLqUud6H9XJW4kNgPYOohHAidpZEqMwZ7Bc9TGSoetTvwGvSS9qeGlUaEgIET1fKSltldYAvzCXNW_J2X0NkemGfN8s-nxvqkgtbv1hYYUonjL82siXO5jQqQsS-UJ3WHXjQmOdSnkgo_kuMfPTPM3kO14aHo_10f_dg7zFcFz5K4iIS4gms12dzfEoxXp09C3uMwcllW-UPqYVf1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIiE48H6Ep5FAHJBD7LXXWSQOVZOopaRCCpV623p3xxARbaruRhX8If4KP4uxd5MAgopLD1xX9sj2zHhmdsbfADwTmUCboOKYo-RKoOM2t44XTivr8TcxYOmN9-OdA_X2UB9uwLflWxhaREWUqpDE91p9XLgWYUC8ou8VBXfzk6prsoB53VZT7uGXU4rVqje7A2LscylHww_bO7xtJ8BtpGTNhUZrtRWZRoogFfbJkivX0xgb4_o6i7W1QiSFQJUZQyccmSLKoyzy2cOCgjmiewEu-jyhj_K2tifrnzk-jAhd2mRkEh7FiWof6Px52d4U5tWvpvAv_m2wc6Nr8H11QqG85XN3UWfd_Otv4JH_wRFeh6utr822GuW4ARtY3oQrPyEw3oLp0HfIJeM0Y2Nfmuhmi2kxzdmw6Q6Ut3AKbIB1qFkrWQPx_poNy0-heIJNTsmcsYn1pfnlR2bLgo2xJt3yr7vXE2_Dwbns9Q5slvMS7wHrGUQlpZOxs0RCZc5gv-hhEoXuR_0OvCC-pO3tUaWhMECKdM2stGVWB8RSZNK8BXH3vURmZ855uZpz3ECYnDn66VISU7ppfPrIljhf0KooMvYN67TuwN1GRFf0ZEJ-YGKi-_-8kydw6f1glL7b3d97AJeld5aE5FI-hM36ZIGPyNWrs8dBzRgcnbdQ_gAiGWJX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epidermal+Microfluidic+Electrochemical+Detection+System%3A+Enhanced+Sweat+Sampling+and+Metabolite+Detection&rft.jtitle=ACS+sensors&rft.au=Mart%C3%ADn%2C+Aida&rft.au=Kim%2C+Jayoung&rft.au=Kurniawan%2C+Jonas+F.&rft.au=Sempionatto%2C+Juliane+R.&rft.date=2017-12-22&rft.issn=2379-3694&rft.eissn=2379-3694&rft.volume=2&rft.issue=12&rft.spage=1860&rft.epage=1868&rft_id=info:doi/10.1021%2Facssensors.7b00729&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acssensors_7b00729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3694&client=summon