Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection
Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast s...
Saved in:
Published in | ACS sensors Vol. 2; no. 12; pp. 1860 - 1868 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast sweat sampling and continuous, real-time electrochemical monitoring of glucose and lactate levels. This soft, skin-mounted device judiciously merges lab-on-a-chip and electrochemical detection technologies, integrated with a miniaturized flexible electronic board for real-time wireless data transmission to a mobile device. Modeling of the device design and sweat flow conditions allowed optimization of the sampling process and the microchannel layout for achieving attractive fluid dynamics and rapid filling of the detection reservoir (within 8 min from starting exercise). The wearable microdevice thus enabled efficient natural sweat pumping to the electrochemical detection chamber containing the enzyme-modified electrode transducers. The fabricated device can be easily mounted on the epidermis without hindrance to the wearer and displays resiliency against continuous mechanical deformation expected from such epidermal wear. Amperometric biosensing of lactate and glucose from the rapidly generated sweat, using the corresponding immobilized oxidase enzymes, was wirelessly monitored during cycling activity of different healthy subjects. This ability to monitor sweat glucose levels introduces new possibilities for effective diabetes management, while similar lactate monitoring paves the way for new wearable fitness applications. The new epidermal microfluidic electrochemical detection strategy represents an attractive alternative to recently reported colorimetric sweat-monitoring methods, and hence holds considerable promise for practical fitness or health monitoring applications. |
---|---|
AbstractList | Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast sweat sampling and continuous, real-time electrochemical monitoring of glucose and lactate levels. This soft, skin-mounted device judiciously merges lab-on-a-chip and electrochemical detection technologies, integrated with a miniaturized flexible electronic board for real-time wireless data transmission to a mobile device. Modeling of the device design and sweat flow conditions allowed optimization of the sampling process and the microchannel layout for achieving attractive fluid dynamics and rapid filling of the detection reservoir (within 8 min from starting exercise). The wearable microdevice thus enabled efficient natural sweat pumping to the electrochemical detection chamber containing the enzyme-modified electrode transducers. The fabricated device can be easily mounted on the epidermis without hindrance to the wearer and displays resiliency against continuous mechanical deformation expected from such epidermal wear. Amperometric biosensing of lactate and glucose from the rapidly generated sweat, using the corresponding immobilized oxidase enzymes, was wirelessly monitored during cycling activity of different healthy subjects. This ability to monitor sweat glucose levels introduces new possibilities for effective diabetes management, while similar lactate monitoring paves the way for new wearable fitness applications. The new epidermal microfluidic electrochemical detection strategy represents an attractive alternative to recently reported colorimetric sweat-monitoring methods, and hence holds considerable promise for practical fitness or health monitoring applications. Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast sweat sampling and continuous, real-time electrochemical monitoring of glucose and lactate levels. This soft, skin-mounted device judiciously merges lab-on-a-chip and electrochemical detection technologies, integrated with a miniaturized flexible electronic board for real-time wireless data transmission to a mobile device. Modeling of the device design and sweat flow conditions allowed optimization of the sampling process and the microchannel layout for achieving attractive fluid dynamics and rapid filling of the detection reservoir (within 8 min from starting exercise). The wearable microdevice thus enabled efficient natural sweat pumping to the electrochemical detection chamber containing the enzyme-modified electrode transducers. The fabricated device can be easily mounted on the epidermis without hindrance to the wearer and displays resiliency against continuous mechanical deformation expected from such epidermal wear. Amperometric biosensing of lactate and glucose from the rapidly generated sweat, using the corresponding immobilized oxidase enzymes, was wirelessly monitored during cycling activity of different healthy subjects. This ability to monitor sweat glucose levels introduces new possibilities for effective diabetes management, while similar lactate monitoring paves the way for new wearable fitness applications. The new epidermal microfluidic electrochemical detection strategy represents an attractive alternative to recently reported colorimetric sweat-monitoring methods, and hence holds considerable promise for practical fitness or health monitoring applications.Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible epidermal microfluidic detection platform fabricated through hybridization of lithographic and screen-printed technologies, for efficient and fast sweat sampling and continuous, real-time electrochemical monitoring of glucose and lactate levels. This soft, skin-mounted device judiciously merges lab-on-a-chip and electrochemical detection technologies, integrated with a miniaturized flexible electronic board for real-time wireless data transmission to a mobile device. Modeling of the device design and sweat flow conditions allowed optimization of the sampling process and the microchannel layout for achieving attractive fluid dynamics and rapid filling of the detection reservoir (within 8 min from starting exercise). The wearable microdevice thus enabled efficient natural sweat pumping to the electrochemical detection chamber containing the enzyme-modified electrode transducers. The fabricated device can be easily mounted on the epidermis without hindrance to the wearer and displays resiliency against continuous mechanical deformation expected from such epidermal wear. Amperometric biosensing of lactate and glucose from the rapidly generated sweat, using the corresponding immobilized oxidase enzymes, was wirelessly monitored during cycling activity of different healthy subjects. This ability to monitor sweat glucose levels introduces new possibilities for effective diabetes management, while similar lactate monitoring paves the way for new wearable fitness applications. The new epidermal microfluidic electrochemical detection strategy represents an attractive alternative to recently reported colorimetric sweat-monitoring methods, and hence holds considerable promise for practical fitness or health monitoring applications. |
Author | Shin, Andrew Lee, Min Yul Wang, Joseph Kurniawan, Jonas F Kim, Jayoung Martín, Aida Tang, Guangda Sempionatto, Juliane R Campbell, Alan S Liu, Xiaofeng Moreto, Jose R |
AuthorAffiliation | Department of Aerospace Engineering Department of NanoEngineering San Diego State University |
AuthorAffiliation_xml | – name: Department of NanoEngineering – name: Department of Aerospace Engineering – name: San Diego State University |
Author_xml | – sequence: 1 givenname: Aida surname: Martín fullname: Martín, Aida organization: Department of NanoEngineering – sequence: 2 givenname: Jayoung surname: Kim fullname: Kim, Jayoung organization: Department of NanoEngineering – sequence: 3 givenname: Jonas F surname: Kurniawan fullname: Kurniawan, Jonas F organization: Department of NanoEngineering – sequence: 4 givenname: Juliane R surname: Sempionatto fullname: Sempionatto, Juliane R organization: Department of NanoEngineering – sequence: 5 givenname: Jose R surname: Moreto fullname: Moreto, Jose R organization: San Diego State University – sequence: 6 givenname: Guangda surname: Tang fullname: Tang, Guangda organization: Department of NanoEngineering – sequence: 7 givenname: Alan S surname: Campbell fullname: Campbell, Alan S organization: Department of NanoEngineering – sequence: 8 givenname: Andrew surname: Shin fullname: Shin, Andrew organization: Department of NanoEngineering – sequence: 9 givenname: Min Yul surname: Lee fullname: Lee, Min Yul organization: Department of NanoEngineering – sequence: 10 givenname: Xiaofeng surname: Liu fullname: Liu, Xiaofeng organization: San Diego State University – sequence: 11 givenname: Joseph orcidid: 0000-0002-4921-9674 surname: Wang fullname: Wang, Joseph email: josephwang@ucsd.edu organization: Department of NanoEngineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29152973$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LxDAQhoMofv8BD9Kjl12Tpmm23kTXD1A8rJ7DNJlqJE3WJEX891Z2RfHgaYaZ9xmY990jmz54JOSI0SmjJTsFnRL6FGKaypZSWTYbZLfkspnwuqk2f_U75DClV0opE3UpZnSb7JQNE2Uj-S6x86U1GHtwxb3VMXRusMbqYu5Q5xj0C_ZWj8tLzOPABl8sPlLG_qyY-xfwGk2xeEfIxQL6pbP-uQBvinvM0AZnM_6AB2SrA5fwcF33ydPV_PHiZnL3cH17cX43AV6VecIEAghgrUBseYUzJpqqowJrKbuZaGsBwFhjGFatlAiGS8M1bznltDKS8X1ysrq7jOFtwJRVb5NG58BjGJJiTV1XFZNCjNLjtXRoezRqGW0P8UN92zMKZivB6ExKETulbYavb3IE6xSj6isM9ROGWocxouUf9Pv6v9B0BY079RqG6Een_gM-AT3Cofs |
CitedBy_id | crossref_primary_10_3390_bios14060294 crossref_primary_10_1038_s41378_023_00514_2 crossref_primary_10_3390_s19204353 crossref_primary_10_1016_j_snb_2021_131085 crossref_primary_10_1016_j_cis_2021_102380 crossref_primary_10_1016_j_talanta_2019_01_104 crossref_primary_10_1038_s41598_019_46302_9 crossref_primary_10_1126_sciadv_aav3294 crossref_primary_10_1038_s44222_023_00032_w crossref_primary_10_1088_1361_665X_aca370 crossref_primary_10_1002_elan_12011 crossref_primary_10_1016_j_bios_2021_113249 crossref_primary_10_1002_elps_202200150 crossref_primary_10_1109_JSEN_2020_2974851 crossref_primary_10_3390_chemosensors13030109 crossref_primary_10_3390_nano12224025 crossref_primary_10_3390_bios12040252 crossref_primary_10_1002_adfm_201907184 crossref_primary_10_1007_s42765_020_00046_8 crossref_primary_10_1016_j_snb_2023_135212 crossref_primary_10_1007_s00604_024_06564_1 crossref_primary_10_1016_j_biomaterials_2024_123014 crossref_primary_10_1016_j_talanta_2023_124610 crossref_primary_10_1021_acs_energyfuels_3c00589 crossref_primary_10_1002_adma_202101272 crossref_primary_10_1021_acsmaterialsau_4c00106 crossref_primary_10_1016_j_ijsolstr_2022_111821 crossref_primary_10_1038_s41598_022_26951_z crossref_primary_10_3390_mi12121513 crossref_primary_10_1021_acs_analchem_9b00787 crossref_primary_10_3390_bios13030313 crossref_primary_10_1146_annurev_anchem_091322_082930 crossref_primary_10_3390_chemosensors11090470 crossref_primary_10_1016_j_crbiot_2023_100143 crossref_primary_10_1016_j_ijsolstr_2019_05_029 crossref_primary_10_3390_s19194333 crossref_primary_10_3390_chemosensors9040083 crossref_primary_10_1016_j_nanoen_2020_105155 crossref_primary_10_3390_bios13040470 crossref_primary_10_1088_1361_6463_ac14ef crossref_primary_10_3390_s21030879 crossref_primary_10_1016_j_esci_2024_100327 crossref_primary_10_1021_acssensors_7b00961 crossref_primary_10_1063_5_0116648 crossref_primary_10_1039_C9LC01112A crossref_primary_10_3390_s19204376 crossref_primary_10_1016_j_trac_2023_116938 crossref_primary_10_1002_idm2_12154 crossref_primary_10_1016_j_nantod_2019_100828 crossref_primary_10_1002_smll_201903822 crossref_primary_10_1007_s00170_023_12115_4 crossref_primary_10_1016_j_nanoen_2021_106755 crossref_primary_10_1016_j_nanoms_2024_01_010 crossref_primary_10_3389_fphys_2024_1376801 crossref_primary_10_1016_j_microc_2024_112344 crossref_primary_10_1126_sciadv_abe3929 crossref_primary_10_1038_s41587_019_0045_y crossref_primary_10_1007_s00784_023_05206_9 crossref_primary_10_1002_adma_202304465 crossref_primary_10_1016_j_talanta_2018_09_086 crossref_primary_10_1021_acsami_4c07717 crossref_primary_10_1021_acsnano_4c10344 crossref_primary_10_3390_bios14120574 crossref_primary_10_3390_bios14070316 crossref_primary_10_1007_s10570_021_04169_y crossref_primary_10_1021_acs_analchem_1c02887 crossref_primary_10_1002_adma_201806739 crossref_primary_10_1007_s10404_023_02696_7 crossref_primary_10_1002_adfm_202008130 crossref_primary_10_1002_adma_201902062 crossref_primary_10_1039_D3MH00597F crossref_primary_10_1016_j_trac_2022_116908 crossref_primary_10_1016_j_trac_2024_117889 crossref_primary_10_1108_FS_05_2021_0101 crossref_primary_10_3390_chemosensors11080459 crossref_primary_10_1021_acssensors_0c01697 crossref_primary_10_1007_s40820_020_00441_1 crossref_primary_10_1038_s41467_020_18238_6 crossref_primary_10_1039_C8LC00025E crossref_primary_10_1002_adfm_202004684 crossref_primary_10_1002_elan_202060025 crossref_primary_10_1016_j_sbsr_2022_100473 crossref_primary_10_1016_j_coelec_2018_05_002 crossref_primary_10_1021_acsami_8b20583 crossref_primary_10_1126_sciadv_aar3921 crossref_primary_10_1002_admt_202000910 crossref_primary_10_1002_smtd_201900688 crossref_primary_10_1021_acssensors_8b00276 crossref_primary_10_1002_admt_202000233 crossref_primary_10_1021_acs_nanolett_8b04775 crossref_primary_10_1126_sciadv_abe4553 crossref_primary_10_1016_j_snb_2020_128948 crossref_primary_10_1021_acsami_4c10817 crossref_primary_10_1039_D4TB00790E crossref_primary_10_3389_fmed_2024_1390634 crossref_primary_10_1016_j_seta_2024_103975 crossref_primary_10_3390_chemosensors9050099 crossref_primary_10_1002_aisy_201900179 crossref_primary_10_1039_D3LC00874F crossref_primary_10_1021_acssensors_2c01669 crossref_primary_10_1016_j_bios_2020_112750 crossref_primary_10_3390_molecules26030748 crossref_primary_10_1016_j_coelec_2019_05_014 crossref_primary_10_1021_acs_chemrev_3c00471 crossref_primary_10_1039_C7CS00730B crossref_primary_10_1002_viw2_21 crossref_primary_10_1016_j_coelec_2018_05_014 crossref_primary_10_1002_elan_201800309 crossref_primary_10_1002_elan_201800677 crossref_primary_10_1088_2058_8585_ac13c4 crossref_primary_10_1002_admt_201800628 crossref_primary_10_1021_acs_chemrev_1c00395 crossref_primary_10_1021_acssensors_9b01109 crossref_primary_10_1016_j_snr_2025_100286 crossref_primary_10_30970_sbi_1701_703 crossref_primary_10_1002_smll_202206064 crossref_primary_10_1021_acsami_0c22730 crossref_primary_10_1021_acs_chemrev_9b00437 crossref_primary_10_1021_acs_analchem_0c02723 crossref_primary_10_1126_sciadv_aax0649 crossref_primary_10_3390_s20216013 crossref_primary_10_1021_acscentsci_8b00625 crossref_primary_10_1021_acs_chemrev_8b00573 crossref_primary_10_1016_j_talanta_2020_120786 crossref_primary_10_1038_s44222_023_00094_w crossref_primary_10_3390_bios13030372 crossref_primary_10_1002_ange_202310245 crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_3390_biomimetics8020167 crossref_primary_10_1021_acssensors_2c02614 crossref_primary_10_3390_bios13060578 crossref_primary_10_1016_j_sna_2019_07_020 crossref_primary_10_1155_2022_1955056 crossref_primary_10_1002_smll_201901190 crossref_primary_10_1016_j_electacta_2020_136048 crossref_primary_10_3390_electronics11050761 crossref_primary_10_2174_0929867331666230807143639 crossref_primary_10_1002_nano_202100137 crossref_primary_10_1002_adma_202406424 crossref_primary_10_1038_s41528_022_00146_y crossref_primary_10_1002_smll_201803266 crossref_primary_10_3390_nano11051118 crossref_primary_10_3390_s22020638 crossref_primary_10_1186_s40543_022_00320_x crossref_primary_10_1080_00405000_2023_2288357 crossref_primary_10_1016_j_microc_2025_112847 crossref_primary_10_1021_acsabm_0c01271 crossref_primary_10_1016_j_cej_2022_140248 crossref_primary_10_3390_mi12070805 crossref_primary_10_1016_j_snb_2023_133738 crossref_primary_10_1016_j_trac_2019_115622 crossref_primary_10_1016_j_microc_2024_110250 crossref_primary_10_1021_acsami_1c22383 crossref_primary_10_1109_TII_2021_3124468 crossref_primary_10_3389_fbioe_2021_765987 crossref_primary_10_1016_j_jfluidstructs_2021_103265 crossref_primary_10_1016_j_bios_2024_116188 crossref_primary_10_3390_s21217311 crossref_primary_10_1073_pnas_2115616120 crossref_primary_10_1007_s00604_022_05316_3 crossref_primary_10_37188_lam_2021_004 crossref_primary_10_1002_adma_202106701 crossref_primary_10_1016_j_sbsr_2025_100772 crossref_primary_10_1021_acssensors_1c01403 crossref_primary_10_1038_s41746_019_0150_9 crossref_primary_10_3390_s22207784 crossref_primary_10_1007_s13206_024_00181_z crossref_primary_10_1021_jacs_8b01302 crossref_primary_10_1002_btm2_10359 crossref_primary_10_1021_acssensors_1c00281 crossref_primary_10_1016_j_xcrp_2024_101985 crossref_primary_10_1080_10803548_2024_2330242 crossref_primary_10_1021_acs_analchem_1c05174 crossref_primary_10_3390_s23239473 crossref_primary_10_1021_acsmeasuresciau_3c00034 crossref_primary_10_1038_s41427_020_00280_x crossref_primary_10_1016_j_microc_2023_109038 crossref_primary_10_1021_acs_analchem_2c00497 crossref_primary_10_1021_acs_analchem_2c04291 crossref_primary_10_1016_j_ijbiomac_2021_05_201 crossref_primary_10_1021_acs_analchem_8b05875 crossref_primary_10_1039_D0CS00304B crossref_primary_10_1016_j_bios_2022_114450 crossref_primary_10_1021_acs_jchemed_3c00379 crossref_primary_10_3390_app10124392 crossref_primary_10_1016_j_snb_2023_135055 crossref_primary_10_1039_C9CS00319C crossref_primary_10_1016_j_bios_2023_115600 crossref_primary_10_1016_j_bios_2025_117226 crossref_primary_10_1063_1_5053422 crossref_primary_10_1146_annurev_chembioeng_122120_023514 crossref_primary_10_1002_anie_202310245 crossref_primary_10_1016_j_bios_2020_112849 crossref_primary_10_1038_s41467_022_34442_y crossref_primary_10_1039_D1LC00633A crossref_primary_10_3390_bios12100910 crossref_primary_10_1016_j_jpba_2018_08_060 crossref_primary_10_1038_s41551_018_0287_x crossref_primary_10_1016_j_trac_2021_116438 crossref_primary_10_1016_S1872_2040_20_60076_7 crossref_primary_10_1039_D3RA03440B crossref_primary_10_1016_j_pmatsci_2021_100866 crossref_primary_10_1039_D4LC00927D crossref_primary_10_3390_s22197670 crossref_primary_10_1038_s41928_018_0162_5 crossref_primary_10_1002_advs_202405518 crossref_primary_10_1016_j_aca_2025_343857 crossref_primary_10_3390_bios13020248 crossref_primary_10_3390_bios14040187 crossref_primary_10_1021_acs_analchem_9b04668 crossref_primary_10_1039_D2MH01517J crossref_primary_10_3390_s22155670 crossref_primary_10_1016_j_bios_2022_114329 crossref_primary_10_3390_chemosensors11050267 crossref_primary_10_1021_acssensors_0c01980 crossref_primary_10_1021_acs_accounts_8b00451 crossref_primary_10_1038_s41378_022_00443_6 crossref_primary_10_1038_s41598_024_81042_5 crossref_primary_10_1016_j_snb_2021_130178 crossref_primary_10_1557_mrc_2018_134 crossref_primary_10_1007_s00604_021_04752_x crossref_primary_10_1016_j_trac_2020_116024 crossref_primary_10_1039_C9LC00454H crossref_primary_10_1021_acs_analchem_1c02922 crossref_primary_10_1021_acssensors_9b01727 crossref_primary_10_1016_j_npe_2020_08_003 crossref_primary_10_1002_elps_201900444 crossref_primary_10_1002_adma_201902343 crossref_primary_10_1002_admt_202100293 crossref_primary_10_1002_elan_201800414 crossref_primary_10_1039_D0TC01423K crossref_primary_10_1002_VIW_20200077 crossref_primary_10_1016_j_microc_2020_105155 crossref_primary_10_4018_IJRQEH_297089 crossref_primary_10_1021_acs_analchem_3c05216 crossref_primary_10_1039_D1LC00328C crossref_primary_10_1016_j_microc_2024_110457 crossref_primary_10_1007_s42242_021_00171_2 crossref_primary_10_1109_JSEN_2022_3210142 crossref_primary_10_1007_s42242_021_00156_1 crossref_primary_10_1039_C8LC00186C crossref_primary_10_1016_j_sna_2024_115500 crossref_primary_10_1021_acs_analchem_9b03110 crossref_primary_10_1002_adma_201902051 crossref_primary_10_3390_s20071951 crossref_primary_10_1016_j_snb_2020_128549 crossref_primary_10_1016_j_rechem_2020_100028 crossref_primary_10_1021_acs_chemrev_3c00626 crossref_primary_10_1146_annurev_bioeng_060418_052315 crossref_primary_10_1039_D2NR06342E crossref_primary_10_1016_j_bios_2021_113685 crossref_primary_10_1016_j_bios_2021_113683 crossref_primary_10_20964_2022_05_36 crossref_primary_10_1016_j_talanta_2023_125341 crossref_primary_10_1038_s41598_021_86931_7 crossref_primary_10_1002_aelm_202500010 crossref_primary_10_1016_j_snb_2024_135920 crossref_primary_10_1039_D2LC00993E crossref_primary_10_1021_acsami_4c22895 crossref_primary_10_1016_j_trechm_2019_07_001 crossref_primary_10_1039_D3SD00165B crossref_primary_10_1007_s11814_024_00295_y crossref_primary_10_1021_acs_chemrev_3c00078 crossref_primary_10_1016_j_snb_2019_04_053 crossref_primary_10_1038_s41598_020_74337_w crossref_primary_10_1016_j_bios_2018_09_035 crossref_primary_10_2139_ssrn_3982580 crossref_primary_10_1039_C9LC00418A crossref_primary_10_1146_annurev_anchem_061318_114910 crossref_primary_10_1002_adma_202418705 crossref_primary_10_1021_acsami_2c22634 crossref_primary_10_1016_j_elecom_2021_106973 crossref_primary_10_3390_bios12121164 crossref_primary_10_3390_s19245388 crossref_primary_10_1039_D2RA04947C crossref_primary_10_1063_5_0022767 crossref_primary_10_1039_C8LC01082J crossref_primary_10_1002_adfm_202010388 crossref_primary_10_1016_j_cjac_2021_11_004 crossref_primary_10_1016_j_microc_2025_113446 crossref_primary_10_1021_acssensors_0c02446 crossref_primary_10_1016_j_biosx_2022_100153 crossref_primary_10_1021_acsabm_0c00798 crossref_primary_10_1108_SR_02_2024_0080 crossref_primary_10_1002_anbr_202200040 crossref_primary_10_1016_j_bios_2023_115097 crossref_primary_10_3390_bios14050214 crossref_primary_10_1021_acssensors_1c00139 crossref_primary_10_3390_mi12020175 crossref_primary_10_3390_bios15030194 crossref_primary_10_1021_acsnano_0c06688 crossref_primary_10_1007_s00216_024_05429_z crossref_primary_10_1021_acsabm_3c01051 crossref_primary_10_1002_advs_202204171 crossref_primary_10_1021_acsami_3c04665 crossref_primary_10_1021_acsami_4c22623 crossref_primary_10_1002_elan_202300385 crossref_primary_10_1021_acs_analchem_0c05057 crossref_primary_10_1021_acs_analchem_9b03379 crossref_primary_10_1021_acsanm_9b01795 crossref_primary_10_1039_C9LC00734B crossref_primary_10_1063_5_0010417 crossref_primary_10_1016_j_mseb_2023_116356 crossref_primary_10_1007_s00216_021_03865_9 crossref_primary_10_1039_C8LC00510A crossref_primary_10_1002_smll_202201247 crossref_primary_10_1021_acs_analchem_2c02208 crossref_primary_10_1016_j_bioana_2024_02_002 crossref_primary_10_1021_acssensors_2c00830 crossref_primary_10_3390_s20154236 crossref_primary_10_1002_rpm_20240018 crossref_primary_10_1016_j_bios_2020_112133 crossref_primary_10_1016_j_nanoen_2024_109821 crossref_primary_10_1021_acssensors_2c00394 crossref_primary_10_1016_j_snb_2022_132184 crossref_primary_10_1016_j_yofte_2024_103742 crossref_primary_10_1016_j_snb_2023_133451 crossref_primary_10_1016_j_xcrp_2024_102389 crossref_primary_10_1016_j_bios_2020_112946 crossref_primary_10_1016_j_bios_2021_113777 crossref_primary_10_1021_acsnano_3c10324 crossref_primary_10_1021_acssensors_0c00720 crossref_primary_10_1039_D1RA07888G crossref_primary_10_1149_1945_7111_ab7e24 crossref_primary_10_3390_nano12020221 crossref_primary_10_1002_adma_202102740 crossref_primary_10_1016_j_snb_2024_135934 crossref_primary_10_1021_acssensors_3c00490 crossref_primary_10_1021_acsami_0c07614 crossref_primary_10_1126_sciadv_abb8308 crossref_primary_10_3390_s23167057 crossref_primary_10_3390_mi13122214 |
Cites_doi | 10.1063/1.4921039 10.1021/acs.analchem.6b03391 10.1016/j.talanta.2017.08.077 10.1039/C7LC00192D 10.1016/j.snb.2012.02.010 10.1007/s00421-007-0645-y 10.1038/nnano.2016.38 10.1016/j.jpba.2013.10.048 10.1126/science.1206157 10.1002/elps.201100355 10.1021/ac800112r 10.1126/scitranslmed.aaf2593 10.1002/elan.200403229 10.1002/elan.201200349 10.1089/dia.2011.0262 10.1021/ac504300n 10.1016/j.snb.2009.02.032 10.1021/ac402331v 10.1021/acssensors.6b00356 10.1073/pnas.1701740114 10.1063/1.4705368 10.1016/j.eml.2016.11.012 10.1002/elps.200900008 10.1002/anie.201302922 10.1002/elan.201600106 10.1126/sciadv.1601314 10.1186/2046-7648-2-4 10.1021/acssensors.6b00250 10.1002/elan.201600018 10.1038/nature16521 10.1002/adhm.201601355 10.1039/c2lc40741h 10.1016/j.snb.2012.06.048 10.1002/0471790303.ch2 10.1016/j.tiv.2010.06.016 10.1126/sciadv.1601465 10.1039/c3lc50431j 10.1021/acs.nanolett.5b04549 10.1126/science.1250169 10.1021/ac401573r 10.1113/jphysiol.2012.248823 10.1177/1932296813519994 10.1016/j.bios.2016.09.038 10.1016/j.aca.2006.12.001 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acssensors.7b00729 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2379-3694 |
EndPage | 1868 |
ExternalDocumentID | 29152973 10_1021_acssensors_7b00729 b68177259 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | 53G ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS EJD VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a342t-15eaa5a1b5eeb34e81594f05e677f85b65aa119d1e4b77ead37d3c3b30304d713 |
IEDL.DBID | ACS |
ISSN | 2379-3694 |
IngestDate | Fri Jul 11 11:27:20 EDT 2025 Thu Jan 02 23:01:19 EST 2025 Tue Jul 01 04:07:18 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Thu Aug 27 13:42:23 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | glucose microfluidic device flexible electronics electrochemical detection wearable sensors metabolite monitoring lactate sweat sampling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a342t-15eaa5a1b5eeb34e81594f05e677f85b65aa119d1e4b77ead37d3c3b30304d713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4921-9674 |
PMID | 29152973 |
PQID | 1966441755 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1966441755 pubmed_primary_29152973 crossref_citationtrail_10_1021_acssensors_7b00729 crossref_primary_10_1021_acssensors_7b00729 acs_journals_10_1021_acssensors_7b00729 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 W1F CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-22 |
PublicationDateYYYYMMDD | 2017-12-22 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS sensors |
PublicationTitleAlternate | ACS Sens |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Wang J. (ref33/cit33) 2006 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref39/cit39 doi: 10.1063/1.4921039 – ident: ref15/cit15 doi: 10.1021/acs.analchem.6b03391 – ident: ref16/cit16 doi: 10.1016/j.talanta.2017.08.077 – ident: ref8/cit8 doi: 10.1039/C7LC00192D – ident: ref21/cit21 doi: 10.1016/j.snb.2012.02.010 – ident: ref36/cit36 doi: 10.1007/s00421-007-0645-y – ident: ref17/cit17 doi: 10.1038/nnano.2016.38 – ident: ref44/cit44 doi: 10.1016/j.jpba.2013.10.048 – ident: ref1/cit1 doi: 10.1126/science.1206157 – ident: ref30/cit30 doi: 10.1002/elps.201100355 – ident: ref31/cit31 doi: 10.1021/ac800112r – ident: ref12/cit12 doi: 10.1126/scitranslmed.aaf2593 – ident: ref27/cit27 doi: 10.1002/elan.200403229 – ident: ref4/cit4 doi: 10.1002/elan.201200349 – ident: ref34/cit34 doi: 10.1089/dia.2011.0262 – ident: ref18/cit18 doi: 10.1021/ac504300n – ident: ref24/cit24 doi: 10.1016/j.snb.2009.02.032 – ident: ref29/cit29 doi: 10.1021/ac402331v – ident: ref9/cit9 doi: 10.1021/acssensors.6b00356 – ident: ref25/cit25 doi: 10.1073/pnas.1701740114 – ident: ref41/cit41 doi: 10.1063/1.4705368 – ident: ref37/cit37 doi: 10.1016/j.eml.2016.11.012 – ident: ref32/cit32 doi: 10.1002/elps.200900008 – ident: ref42/cit42 doi: 10.1002/anie.201302922 – ident: ref20/cit20 doi: 10.1002/elan.201600106 – ident: ref23/cit23 doi: 10.1126/sciadv.1601314 – ident: ref38/cit38 doi: 10.1186/2046-7648-2-4 – ident: ref5/cit5 doi: 10.1021/acssensors.6b00250 – ident: ref14/cit14 doi: 10.1002/elan.201600018 – ident: ref2/cit2 doi: 10.1038/nature16521 – ident: ref26/cit26 doi: 10.1002/adhm.201601355 – ident: ref7/cit7 doi: 10.1039/c2lc40741h – ident: ref22/cit22 doi: 10.1016/j.snb.2012.06.048 – start-page: 29 volume-title: Analytical Electrochemistry year: 2006 ident: ref33/cit33 doi: 10.1002/0471790303.ch2 – ident: ref35/cit35 doi: 10.1016/j.tiv.2010.06.016 – ident: ref11/cit11 doi: 10.1126/sciadv.1601465 – ident: ref6/cit6 doi: 10.1039/c3lc50431j – ident: ref10/cit10 doi: 10.1021/acs.nanolett.5b04549 – ident: ref3/cit3 doi: 10.1126/science.1250169 – ident: ref19/cit19 doi: 10.1021/ac401573r – ident: ref40/cit40 doi: 10.1113/jphysiol.2012.248823 – ident: ref43/cit43 doi: 10.1177/1932296813519994 – ident: ref13/cit13 doi: 10.1016/j.bios.2016.09.038 – ident: ref28/cit28 doi: 10.1016/j.aca.2006.12.001 |
SSID | ssj0001562580 |
Score | 2.544264 |
Snippet | Despite tremendous recent efforts, noninvasive sweat monitoring is still far from delivering its early analytical promise. Here, we describe a flexible... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1860 |
SubjectTerms | Biosensing Techniques - instrumentation Biosensing Techniques - methods Dimethylpolysiloxanes - chemistry Electrochemical Techniques - instrumentation Electrochemical Techniques - methods Enzymes, Immobilized - chemistry Epidermis - metabolism Glucose - analysis Glucose Oxidase - chemistry Humans Lab-On-A-Chip Devices Lactic Acid - analysis Limit of Detection Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Mixed Function Oxygenases - chemistry Monitoring, Physiologic - instrumentation Monitoring, Physiologic - methods Sweat - chemistry |
Title | Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection |
URI | http://dx.doi.org/10.1021/acssensors.7b00729 https://www.ncbi.nlm.nih.gov/pubmed/29152973 https://www.proquest.com/docview/1966441755 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ReqGHAqUfCxS5ElIPrbfrrzjhhugiVGl72SJxi2xnTFddZSuSVaX--tpOli1qQdxjK56MPW8y4_cAjpllaAqUFB1yKhl6apzxtPJKmsi_iYlLb_I1u7iUX67U1QZ8vKeCz9kn45omZHSLm2aobSK6fgJPeZbrmGqdnk3Xf1Qilk9SaVzogoqskP0tmf9PE-ORa-7Go3tAZgo259swWV3Z6XpMfgyXrR263_8yOD5qHTvwvEed5LRzk13YwPoFPPuLi3APZuOoFRuO6TmZxCY9P1_Oqpkj404nx_XEAuQztql7qyYd2fkJGdffUxsBmf4KBzuZmtikXl8TU1dkgm3wsnjPeT3wJVyej7-dXdBeh4EaIXlLmUJjlGFWYUi9JeYBAkk_Uphp7XNlM2UMY0XFUFqtg2sKXQknrIhl1ypkwa9gs17U-AbISCNKzj3PvAlTSOs15tUIC5F0gPIBvA92Kvt91JSpRM5ZuTZe2RtvAGz13UrX05lHVY35g2M-3I752ZF5PPj0u5U7lGHPxUKKqXGxDG8VcsQo3abUAF53fnI7Hy8CIiq02H_0Sg5gi0eswDjl_BA225slvg1Ip7VHycH_AIhn_S8 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB6VcoAeeD_C00ggDmhD_FpnkThUbaqUNr2klXrbenfHNCLaoO5GFfwd_go_jLF3kwCCikslrit7ZHvGnvnW428AXvKMo01QRZijiBRHF9ncuqhwWlnPv4mBS290EA-P1IdjfbwG3xZvYWgQFUmqwiX-il2Av6VvFQG72VnVNVngu24zKffwyznhtOr97jYp9ZUQO4PDrWHUlhKIrFSijrhGa7XlmUZCjwr75MWV62mMjXF9ncXaWs6TgqPKjKHVlaaQucykvzksCMiR3CtwlaIf4RHe5tZ49SPHQ4hQoU1Ik0QyTlT7OOfPw_ZuMK9-dYN_iW2Dj9u5Cd-XqxNSWz5153XWzb_-Rhz5ny_fLbjRxthss9kUt2ENyzuw8RPz4l2YDHxlXHJKUzbyKYluOp8Uk5wNmqpAeUujwLaxDrlqJWuo3d-xQXkakibY-JzcGBtbn5JffmS2LNgIa9pT_lX3quM9OLqUud6H9XJW4kNgPYOohHAidpZEqMwZ7Bc9TGSoetTvwGvSS9qeGlUaEgIET1fKSltldYAvzCXNW_J2X0NkemGfN8s-nxvqkgtbv1hYYUonjL82siXO5jQqQsS-UJ3WHXjQmOdSnkgo_kuMfPTPM3kO14aHo_10f_dg7zFcFz5K4iIS4gms12dzfEoxXp09C3uMwcllW-UPqYVf1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIiE48H6Ep5FAHJBD7LXXWSQOVZOopaRCCpV623p3xxARbaruRhX8If4KP4uxd5MAgopLD1xX9sj2zHhmdsbfADwTmUCboOKYo-RKoOM2t44XTivr8TcxYOmN9-OdA_X2UB9uwLflWxhaREWUqpDE91p9XLgWYUC8ou8VBXfzk6prsoB53VZT7uGXU4rVqje7A2LscylHww_bO7xtJ8BtpGTNhUZrtRWZRoogFfbJkivX0xgb4_o6i7W1QiSFQJUZQyccmSLKoyzy2cOCgjmiewEu-jyhj_K2tifrnzk-jAhd2mRkEh7FiWof6Px52d4U5tWvpvAv_m2wc6Nr8H11QqG85XN3UWfd_Otv4JH_wRFeh6utr822GuW4ARtY3oQrPyEw3oLp0HfIJeM0Y2Nfmuhmi2kxzdmw6Q6Ut3AKbIB1qFkrWQPx_poNy0-heIJNTsmcsYn1pfnlR2bLgo2xJt3yr7vXE2_Dwbns9Q5slvMS7wHrGUQlpZOxs0RCZc5gv-hhEoXuR_0OvCC-pO3tUaWhMECKdM2stGVWB8RSZNK8BXH3vURmZ855uZpz3ECYnDn66VISU7ppfPrIljhf0KooMvYN67TuwN1GRFf0ZEJ-YGKi-_-8kydw6f1glL7b3d97AJeld5aE5FI-hM36ZIGPyNWrs8dBzRgcnbdQ_gAiGWJX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epidermal+Microfluidic+Electrochemical+Detection+System%3A+Enhanced+Sweat+Sampling+and+Metabolite+Detection&rft.jtitle=ACS+sensors&rft.au=Mart%C3%ADn%2C+Aida&rft.au=Kim%2C+Jayoung&rft.au=Kurniawan%2C+Jonas+F.&rft.au=Sempionatto%2C+Juliane+R.&rft.date=2017-12-22&rft.issn=2379-3694&rft.eissn=2379-3694&rft.volume=2&rft.issue=12&rft.spage=1860&rft.epage=1868&rft_id=info:doi/10.1021%2Facssensors.7b00729&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acssensors_7b00729 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3694&client=summon |