Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags
Circulating cancer-derived small extracellular vesicles (EVs) are nanoscale membranous vesicles shed from cancer cells that are released into surrounding body fluids. Small EVs contain biomolecules associated with cancer such as DNA and proteins for cell-to-cell communication. Therefore, small EVs h...
Saved in:
Published in | ACS sensors Vol. 5; no. 3; pp. 764 - 771 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Circulating cancer-derived small extracellular vesicles (EVs) are nanoscale membranous vesicles shed from cancer cells that are released into surrounding body fluids. Small EVs contain biomolecules associated with cancer such as DNA and proteins for cell-to-cell communication. Therefore, small EVs have been regarded as important cancer biomarkers for liquid biopsy-based cancer diagnosis and drug treatment monitoring. However, because of the high heterogeneity and low level of small EVs in body fluids, there is a high demand for sensitive detection and characterization of such vesicles at a molecular level. In this study, we have developed a sensitive and effective approach to simultaneously profile multiple protein biomarkers expressed on cancer-derived small EVs using surface-enhanced Raman spectroscopy (SERS) nanotags in a single test, without complex isolation steps. Rapid and multiplexed phenotypic profiling of small EVs is achieved by mixing specific detection antibody-coated SERS nanotags, filtered conditioned EV-suspended medium (conditioned EVs), and capture antibody (CD63)-conjugated magnetic beads to form a sandwich immunoassay. As a proof-of-concept demonstration, we applied this approach to characterize pancreatic cancer-derived EVs by simultaneously detecting three specific EV surface receptors including Glypican-1, epithelial cell adhesion molecules (EpCAMs), and CD44 variant isoform 6 (CD44V6). The sensitivity of this method was measured down to 2.3 × 106 particles/mL, which is more sensitive and shows higher multiplexing capability than most other reported EV profiling techniques, such as western blot, enzyme-linked immunosorbent assay, and flow cytometry. Furthermore, phenotypic profiling of small EVs from colorectal cancer and bladder cancer cell lines (SW480 and C3) was conducted and compared to those derived from pancreatic cancer (Panc-1), highlighting the significant difference in EV phenotypes for various cancer cell types suspended in both phosphate-buffered saline and plasma. Thus, we believe that this technology enables a comprehensive evaluation of small secreted EV heterogeneity with high sensitivity, offering strong potential for accurate noninvasive cancer diagnosis and monitoring of drug treatment. In addition, this assay provides point-of-care use because of the easy sample preparation and portable nature of the Raman spectrometer. |
---|---|
AbstractList | Circulating cancer-derived small extracellular vesicles (EVs) are nanoscale membranous vesicles shed from cancer cells that are released into surrounding body fluids. Small EVs contain biomolecules associated with cancer such as DNA and proteins for cell-to-cell communication. Therefore, small EVs have been regarded as important cancer biomarkers for liquid biopsy-based cancer diagnosis and drug treatment monitoring. However, because of the high heterogeneity and low level of small EVs in body fluids, there is a high demand for sensitive detection and characterization of such vesicles at a molecular level. In this study, we have developed a sensitive and effective approach to simultaneously profile multiple protein biomarkers expressed on cancer-derived small EVs using surface-enhanced Raman spectroscopy (SERS) nanotags in a single test, without complex isolation steps. Rapid and multiplexed phenotypic profiling of small EVs is achieved by mixing specific detection antibody-coated SERS nanotags, filtered conditioned EV-suspended medium (conditioned EVs), and capture antibody (CD63)-conjugated magnetic beads to form a sandwich immunoassay. As a proof-of-concept demonstration, we applied this approach to characterize pancreatic cancer-derived EVs by simultaneously detecting three specific EV surface receptors including Glypican-1, epithelial cell adhesion molecules (EpCAMs), and CD44 variant isoform 6 (CD44V6). The sensitivity of this method was measured down to 2.3 × 106 particles/mL, which is more sensitive and shows higher multiplexing capability than most other reported EV profiling techniques, such as western blot, enzyme-linked immunosorbent assay, and flow cytometry. Furthermore, phenotypic profiling of small EVs from colorectal cancer and bladder cancer cell lines (SW480 and C3) was conducted and compared to those derived from pancreatic cancer (Panc-1), highlighting the significant difference in EV phenotypes for various cancer cell types suspended in both phosphate-buffered saline and plasma. Thus, we believe that this technology enables a comprehensive evaluation of small secreted EV heterogeneity with high sensitivity, offering strong potential for accurate noninvasive cancer diagnosis and monitoring of drug treatment. In addition, this assay provides point-of-care use because of the easy sample preparation and portable nature of the Raman spectrometer. Circulating cancer-derived small extracellular vesicles (EVs) are nanoscale membranous vesicles shed from cancer cells that are released into surrounding body fluids. Small EVs contain biomolecules associated with cancer such as DNA and proteins for cell-to-cell communication. Therefore, small EVs have been regarded as important cancer biomarkers for liquid biopsy-based cancer diagnosis and drug treatment monitoring. However, because of the high heterogeneity and low level of small EVs in body fluids, there is a high demand for sensitive detection and characterization of such vesicles at a molecular level. In this study, we have developed a sensitive and effective approach to simultaneously profile multiple protein biomarkers expressed on cancer-derived small EVs using surface-enhanced Raman spectroscopy (SERS) nanotags in a single test, without complex isolation steps. Rapid and multiplexed phenotypic profiling of small EVs is achieved by mixing specific detection antibody-coated SERS nanotags, filtered conditioned EV-suspended medium (conditioned EVs), and capture antibody (CD63)-conjugated magnetic beads to form a sandwich immunoassay. As a proof-of-concept demonstration, we applied this approach to characterize pancreatic cancer-derived EVs by simultaneously detecting three specific EV surface receptors including Glypican-1, epithelial cell adhesion molecules (EpCAMs), and CD44 variant isoform 6 (CD44V6). The sensitivity of this method was measured down to 2.3 × 10 particles/mL, which is more sensitive and shows higher multiplexing capability than most other reported EV profiling techniques, such as western blot, enzyme-linked immunosorbent assay, and flow cytometry. Furthermore, phenotypic profiling of small EVs from colorectal cancer and bladder cancer cell lines (SW480 and C3) was conducted and compared to those derived from pancreatic cancer (Panc-1), highlighting the significant difference in EV phenotypes for various cancer cell types suspended in both phosphate-buffered saline and plasma. Thus, we believe that this technology enables a comprehensive evaluation of small secreted EV heterogeneity with high sensitivity, offering strong potential for accurate noninvasive cancer diagnosis and monitoring of drug treatment. In addition, this assay provides point-of-care use because of the easy sample preparation and portable nature of the Raman spectrometer. |
Author | Campbell, Douglas H Packer, Nicolle H Wang, Yuling Zhang, Wei Walsh, Bradley J Jiang, Lianmei Diefenbach, Russell J |
AuthorAffiliation | Department of Biomedical Sciences Minomic International Ltd ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences Macquarie University |
AuthorAffiliation_xml | – name: Minomic International Ltd – name: Macquarie University – name: ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences – name: Department of Biomedical Sciences |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-7005-5726 surname: Zhang fullname: Zhang, Wei organization: ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences – sequence: 2 givenname: Lianmei surname: Jiang fullname: Jiang, Lianmei organization: ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences – sequence: 3 givenname: Russell J orcidid: 0000-0002-8433-4336 surname: Diefenbach fullname: Diefenbach, Russell J organization: Macquarie University – sequence: 4 givenname: Douglas H surname: Campbell fullname: Campbell, Douglas H organization: Minomic International Ltd – sequence: 5 givenname: Bradley J surname: Walsh fullname: Walsh, Bradley J organization: Minomic International Ltd – sequence: 6 givenname: Nicolle H orcidid: 0000-0002-7532-4021 surname: Packer fullname: Packer, Nicolle H organization: ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences – sequence: 7 givenname: Yuling orcidid: 0000-0003-3627-7397 surname: Wang fullname: Wang, Yuling email: yuling.wang@mq.edu.au organization: ARC Excellence Centre for Nanoscale BioPhotonics (CNBP), Department of Molecular Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32134252$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtOwzAQRS1UREvpD7BA_oEUO3HSeIlKeEgVVJSyjRx70qZKnMhOEP0E_hr3wWPFakaae-7M3HPU07UGhC4pGVPi02shrQVta2PHPCN-MJmcoIEr3Asiznp_-j4aWbshhNAw8sOYnKF-4NOA-aE_QJ-JFllZ6BVeOLeiLd4Bz9eg63bbFBLPTZ0X-3Gd46nQEox3C8apFF5Uoixx8tEaIaEsu1IY_Aa2kCVYvLR7z87kbugler1jFX4RldB40YBsTW1l3Wzxk3DLxMpeoNNclBZGxzpEy7vkdfrgzZ7vH6c3M0-4k1uPMsiIgihSnLFYTLjKWBQKEtFcKULiQMW58hkHzngQZsCkojGTRHIeSPd2MET-wVe6C6yBPG1MUQmzTSlJd9Gmv9Gmx2gddHWAmi6rQP0g30E6wfggcHC6qTuj3Q__OX4BLtyMJw |
CitedBy_id | crossref_primary_10_2217_nnm_2021_0298 crossref_primary_10_3390_biology9090258 crossref_primary_10_1021_acs_nanolett_2c02928 crossref_primary_10_1080_02648725_2022_2108994 crossref_primary_10_1002_adbi_202200201 crossref_primary_10_1016_j_talanta_2024_126225 crossref_primary_10_3390_ma16103733 crossref_primary_10_1016_j_bios_2023_115915 crossref_primary_10_1007_s40820_021_00753_w crossref_primary_10_1021_acssensors_0c02533 crossref_primary_10_1039_D0AN01274B crossref_primary_10_1360_SSC_2022_0081 crossref_primary_10_1016_j_bios_2022_114709 crossref_primary_10_1002_bio_4383 crossref_primary_10_1016_j_jlb_2024_100144 crossref_primary_10_1016_j_aca_2021_338633 crossref_primary_10_1016_j_trac_2023_117253 crossref_primary_10_1080_14712598_2022_2033204 crossref_primary_10_2147_IJN_S333969 crossref_primary_10_1016_j_snb_2023_134355 crossref_primary_10_3390_ma13173677 crossref_primary_10_1039_D2NR03005E crossref_primary_10_1021_acssensors_1c00295 crossref_primary_10_1007_s00604_023_05657_7 crossref_primary_10_1021_acs_analchem_3c02374 crossref_primary_10_1039_D3AN00398A crossref_primary_10_1186_s40580_024_00428_3 crossref_primary_10_1002_smll_202104783 crossref_primary_10_1039_D2AY01339H crossref_primary_10_1021_acssensors_1c00890 crossref_primary_10_1016_j_mtcomm_2024_109432 crossref_primary_10_1021_acs_chemrev_2c00897 crossref_primary_10_3390_bios11110449 crossref_primary_10_1002_VIW_20230070 crossref_primary_10_3390_cancers13092179 crossref_primary_10_1002_advs_202102789 crossref_primary_10_1177_15353702221110813 crossref_primary_10_1016_j_cpt_2024_04_005 crossref_primary_10_3389_fchem_2021_697595 crossref_primary_10_1016_j_jlb_2023_100129 crossref_primary_10_1002_admt_202300357 crossref_primary_10_3390_ijms21176319 crossref_primary_10_1016_j_semcancer_2023_01_003 crossref_primary_10_1186_s12951_023_01888_1 crossref_primary_10_1186_s13045_024_01531_y crossref_primary_10_1021_acsomega_2c00058 crossref_primary_10_1016_j_microc_2024_110912 crossref_primary_10_3390_molecules26030567 crossref_primary_10_1016_j_actbio_2021_07_027 crossref_primary_10_1159_000518877 crossref_primary_10_1016_j_aca_2022_340703 crossref_primary_10_1016_j_trac_2023_117077 crossref_primary_10_1002_EXP_20210176 crossref_primary_10_1021_acs_nanolett_2c04123 crossref_primary_10_1021_acsnano_3c03172 crossref_primary_10_1021_acsomega_0c01441 crossref_primary_10_1039_D2AY00536K crossref_primary_10_1016_j_snb_2023_133521 crossref_primary_10_1016_j_aca_2023_341322 crossref_primary_10_1016_j_snb_2021_129471 crossref_primary_10_1038_s41596_021_00551_z crossref_primary_10_1186_s12951_022_01641_0 crossref_primary_10_1002_advs_202204207 crossref_primary_10_1021_acsnano_3c00449 crossref_primary_10_1021_acsnano_1c07075 crossref_primary_10_1021_acs_analchem_4c00558 crossref_primary_10_1002_lpor_202000255 crossref_primary_10_3390_ijms23094740 crossref_primary_10_1039_D3CS01055D crossref_primary_10_1142_S1793545821410078 |
Cites_doi | 10.1007/s11051-017-3953-0 10.1038/nm.2994 10.7150/thno.21358 10.1371/journal.pone.0183915 10.1016/j.ymeth.2015.03.009 10.1002/jrs.5234 10.1093/intimm/dxh267 10.1038/nm.2753 10.1038/nri2567 10.1038/sj.onc.1207610 10.1038/nrd3978 10.2217/nnm.12.173 10.1186/s12943-017-0706-8 10.3964/j.issn.1000-0593(2016)01-0099-05 10.1158/0008-5472.can-04-0754 10.1007/s00018-011-0689-3 10.3389/fchem.2019.00413 10.1038/nnano.2011.49 10.1007/s13277-015-4755-6 10.1073/pnas.0403453101 10.1248/bpb.34.13 10.1039/c3an36866a 10.1002/ijc.29324 10.1038/ncb1725 10.1039/c6an00193a 10.1038/nrc3990 10.3892/ol.2015.3806 10.3892/or.2017.5714 10.3402/jev.v5.31295 10.3892/or.2016.5066 10.1038/s41467-018-04172-1 10.1002/ijc.28044 10.1039/c4nr06429a 10.1038/sj.bjc.6603494 10.1586/epr.09.17 10.1021/acssensors.8b01047 10.3978/j.issn.2305-5839.2015.10.39 10.1039/c6ay00406g 10.1016/j.cell.2016.01.043 10.1021/acs.chemrev.7b00534 10.1038/physci241020a0 10.1039/c8sc01611a 10.1039/c7nr09162a 10.1039/c8an01041b 10.1038/nature14581 10.3390/ijms17020170 10.1038/s41467-018-03725-8 10.1007/s40291-013-0042-7 10.1021/pr8004887 10.7150/jca.14645 10.1038/s41551-016-0021 10.1016/j.molonc.2010.06.002 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1021/acssensors.9b02377 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2379-3694 |
EndPage | 771 |
ExternalDocumentID | 10_1021_acssensors_9b02377 32134252 a335148894 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 53G ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS VF5 VG9 W1F ABJNI ABQRX ADHLV AHGAQ BAANH CGR CUPRZ CUY CVF ECM EIF GGK NPM AAYXX CITATION |
ID | FETCH-LOGICAL-a342t-14eb0de66d9448a79db465a061fdd0083d8fd249e94935be4cd184c0c993c2133 |
IEDL.DBID | ACS |
ISSN | 2379-3694 |
IngestDate | Fri Dec 06 03:13:33 EST 2024 Sat Sep 28 08:30:18 EDT 2024 Thu Aug 27 22:10:51 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | phenotype SERS nanotags multiplex detection extracellular vesicles immunoassay |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a342t-14eb0de66d9448a79db465a061fdd0083d8fd249e94935be4cd184c0c993c2133 |
ORCID | 0000-0001-7005-5726 0000-0002-8433-4336 0000-0003-3627-7397 0000-0002-7532-4021 |
PMID | 32134252 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1021_acssensors_9b02377 pubmed_primary_32134252 acs_journals_10_1021_acssensors_9b02377 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 W1F |
PublicationCentury | 2000 |
PublicationDate | 20200327 2020-03-27 |
PublicationDateYYYYMMDD | 2020-03-27 |
PublicationDate_xml | – month: 03 year: 2020 text: 20200327 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS sensors |
PublicationTitleAlternate | ACS Sens |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref42/cit42 doi: 10.1007/s11051-017-3953-0 – ident: ref24/cit24 doi: 10.1038/nm.2994 – ident: ref34/cit34 doi: 10.7150/thno.21358 – ident: ref46/cit46 doi: 10.1371/journal.pone.0183915 – ident: ref3/cit3 doi: 10.1016/j.ymeth.2015.03.009 – ident: ref27/cit27 doi: 10.1002/jrs.5234 – ident: ref8/cit8 doi: 10.1093/intimm/dxh267 – ident: ref23/cit23 doi: 10.1038/nm.2753 – ident: ref5/cit5 doi: 10.1038/nri2567 – ident: ref36/cit36 doi: 10.1038/sj.onc.1207610 – ident: ref15/cit15 doi: 10.1038/nrd3978 – ident: ref44/cit44 doi: 10.2217/nnm.12.173 – ident: ref21/cit21 doi: 10.1186/s12943-017-0706-8 – ident: ref43/cit43 doi: 10.3964/j.issn.1000-0593(2016)01-0099-05 – ident: ref35/cit35 doi: 10.1158/0008-5472.can-04-0754 – ident: ref14/cit14 doi: 10.1007/s00018-011-0689-3 – ident: ref10/cit10 doi: 10.3389/fchem.2019.00413 – ident: ref47/cit47 doi: 10.1038/nnano.2011.49 – ident: ref52/cit52 doi: 10.1007/s13277-015-4755-6 – ident: ref7/cit7 doi: 10.1073/pnas.0403453101 – ident: ref9/cit9 doi: 10.1248/bpb.34.13 – ident: ref28/cit28 doi: 10.1039/c3an36866a – ident: ref51/cit51 doi: 10.1002/ijc.29324 – ident: ref22/cit22 doi: 10.1038/ncb1725 – ident: ref41/cit41 doi: 10.1039/c6an00193a – ident: ref13/cit13 doi: 10.1038/nrc3990 – ident: ref25/cit25 doi: 10.3892/ol.2015.3806 – ident: ref2/cit2 doi: 10.3892/or.2017.5714 – ident: ref6/cit6 doi: 10.3402/jev.v5.31295 – ident: ref45/cit45 doi: 10.3892/or.2016.5066 – ident: ref31/cit31 doi: 10.1038/s41467-018-04172-1 – ident: ref38/cit38 doi: 10.1002/ijc.28044 – ident: ref48/cit48 doi: 10.1039/c4nr06429a – ident: ref49/cit49 doi: 10.1038/sj.bjc.6603494 – ident: ref11/cit11 doi: 10.1586/epr.09.17 – ident: ref17/cit17 doi: 10.1021/acssensors.8b01047 – ident: ref18/cit18 doi: 10.3978/j.issn.2305-5839.2015.10.39 – ident: ref32/cit32 doi: 10.1039/c6ay00406g – ident: ref4/cit4 doi: 10.1016/j.cell.2016.01.043 – ident: ref26/cit26 doi: 10.1021/acs.chemrev.7b00534 – ident: ref39/cit39 doi: 10.1038/physci241020a0 – ident: ref30/cit30 doi: 10.1039/c8sc01611a – ident: ref33/cit33 doi: 10.1039/c7nr09162a – ident: ref29/cit29 doi: 10.1039/c8an01041b – ident: ref19/cit19 doi: 10.1038/nature14581 – ident: ref1/cit1 doi: 10.3390/ijms17020170 – ident: ref40/cit40 doi: 10.1038/s41467-018-03725-8 – ident: ref12/cit12 doi: 10.1007/s40291-013-0042-7 – ident: ref16/cit16 doi: 10.1021/pr8004887 – ident: ref50/cit50 doi: 10.7150/jca.14645 – ident: ref20/cit20 doi: 10.1038/s41551-016-0021 – ident: ref37/cit37 doi: 10.1016/j.molonc.2010.06.002 |
SSID | ssj0001562580 |
Score | 2.4551535 |
Snippet | Circulating cancer-derived small extracellular vesicles (EVs) are nanoscale membranous vesicles shed from cancer cells that are released into surrounding body... |
SourceID | crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 764 |
SubjectTerms | Biomarkers, Tumor Cell Line, Tumor Extracellular Vesicles Humans Nanostructures Neoplasms Phenotype Spectrum Analysis, Raman |
Title | Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags |
URI | http://dx.doi.org/10.1021/acssensors.9b02377 https://www.ncbi.nlm.nih.gov/pubmed/32134252 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFLZY98IegF24M_lhEg-bS2s7cf2IShFCYkIrIN4i36IiIKmSFAH_gH_NOWnKRWwTb4l8kli24_N9PjdCfphOLzWRt0wZLpk0wFOsVzELinuRCsV7Ac8hj37HB6fy8Dw6nyO__mHB590d48oSGF1elG1tQcMo9YF85Ar4NwKh_vD5RAWxfF0qDYQ0E7GWTZTM31-D-siVr_TRK2RZa5j9RXI0i9OZOpZctieVbbv7t2kb39X5JbLQQE26O10bn8lcyL6QTy8SEH4lDwMMnYJLOkRHdtz66PEoZHl1N75w9Lgu6I3NeUr7uD4KtgeP3gRPh9fm6ooObqvC4OE_erPSs1DWXna0dkSgw0mRQiMbZKPaz4D-Mdcmo1jyvsIkmvn4jsLujoax8hs53R-c9A9YU5yBGSF5xboy2I4Pcew1MDyjtLcyjgzAg9R7BHa-l3rgdkFLLSIbpPNAJl3HASByHJjxMmlleRZWCXWYCsHrNOYW8I0QWqZK6yBUAFG4WSPbMI5J83OVSW03593keXCTZnDXyM_ZZCbjabaO_0qvTOf7SVZgfjse8fV3f3GDzHNk4B3BuNokraqYhC2AKZX9Xq_OR5Dp5nQ |
link.rule.ids | 314,780,784,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaemg5UOiDR6H4gNRD5WXXduL1ES2LlvIQapaKW2THjqiA7CrJIuAf8K-Z8aZsQVXV3pJ4Yju24_nG8yJky7S7uYmcZcpwyaQBOcU6FTOvuBO5ULzr8Rzy6DgenMpvZ9FZ48eNvjDQiQpqqoISfxZdoLMNzyoQ7EZl1dIWGI1SL8mrCHNWIh7qJbODFYT0IWMaEGkmYi0bZ5k_V4NsKauesKUnADMwmr23ZPjYxWBfctGa1LaV3T2L3vif37BIFhrgSXemK2WJvPDFOzL_WzjC9-S-j45UcEkTNGvHjZCenPtiVN-Of2b0JKT3xuJRTnu4Wkq2C69ee0eTK3N5Sfs3dWlQFYC2rfSHr4LNHQ1mCTSZlDkUsn5xHqwO6HdzZQqajEMeHvSOuaWw16OarPpATvf6w96ANakamBGS16wjvW07H8dOg7xnlHZWxpEBsJA7hzDPdXMHkp7XUovIepk5EC2zdgbwKOMgJ38kc8Wo8CuEZhgYwek85hbQjhBa5kprL5QHUrhZJV9gHNPmV6vSoEXnnXQ2uGkzuKvk6685TcfT2B1_pV6eTvsjrcBodzzia__c4iZ5PRgeHaaH-8cHn8gbjrJ5WzCu1slcXU78BgCY2n4OC_YBnwvu4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYGk6btYTdgYxubHybtAbm0thPXj6i0YjdULWPqW2THtkBAWiUpgv0D_jXnuBmXaUITb0l84ji-ne_43Aj5aLr9YBJnmTJcMmlATrFOpcwr7kQQivc9nkN-30t39-WXSTJpjy7QFwYaUUNNdVTi46qeudBGGOhtwfMahLtpVXe0BWaj1BJ5mMB2i7Zc24Ps-nAFYX3MmgZEmolUy9Zh5t_VIGsq6lus6RbIjMxm9IxMrpoZbUyOOvPGdorff0VwvMd_PCdPWwBKtxcz5gV54MuX5MmNsIQr5GKIDlVwSTM0b8cNkY4PfDltzmeHBR3HNN9YPA10gLOmYjvw6ql3NDsxx8d0eNZUBlUCaONKf_k62t7RaJ5As3kVoJANy4NofUB_mBNT0mwW8_Ggl8w5hT0f1WX1KtkfDX8OdlmbsoEZIXnDetLbrvNp6jTIfUZpZ2WaGAANwTmEe64fHEh8XkstEutl4UDELLoFwKSCg7y8RpbLaelfE1pggASnQ8otoB4htAxKay-UB1K4WSefoB_zdsnVedSm815-3bl527nrZPPPuOazRQyPO6lfLYb-ilZg1Due8Df__cUP5NF4Z5R_-7z39S15zFFE7wrG1Tuy3FRzvwE4prHv45y9BEwQ8WQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+Sensitive+Phenotypic+Profiling+of+Cancer-Derived+Small+Extracellular+Vesicles+Using+Surface-Enhanced+Raman+Spectroscopy+Nanotags&rft.jtitle=ACS+sensors&rft.au=Zhang%2C+Wei&rft.au=Jiang%2C+Lianmei&rft.au=Diefenbach%2C+Russell+J&rft.au=Campbell%2C+Douglas+H&rft.date=2020-03-27&rft.pub=American+Chemical+Society&rft.issn=2379-3694&rft.eissn=2379-3694&rft.volume=5&rft.issue=3&rft.spage=764&rft.epage=771&rft_id=info:doi/10.1021%2Facssensors.9b02377&rft.externalDocID=a335148894 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3694&client=summon |