Chemistry under Cover: Tuning Metal−Graphene Interaction by Reactive Intercalation

Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene−metal...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 132; no. 23; pp. 8175 - 8179
Main Authors Sutter, Peter, Sadowski, Jerzy T, Sutter, Eli A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.06.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene−metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal−carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate−metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet.
AbstractList Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene-metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal-carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate-metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet.
Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene−metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal−carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate−metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet.
Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene-metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal-carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate-metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet.Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene-metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal-carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate-metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet.
Author Sutter, Peter
Sadowski, Jerzy T
Sutter, Eli A
Author_xml – sequence: 1
  givenname: Peter
  surname: Sutter
  fullname: Sutter, Peter
  email: psutter@bnl.gov
– sequence: 2
  givenname: Jerzy T
  surname: Sadowski
  fullname: Sadowski, Jerzy T
– sequence: 3
  givenname: Eli A
  surname: Sutter
  fullname: Sutter, Eli A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20527937$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1019833$$D View this record in Osti.gov
BookMark eNptkUtLAzEQx4MoWh8Hv4AsgoiHtXnsI-tNitaCIkg9h2x2ardsk5pkC_0Gnv2IfhJTt_Ygnub1m2HmP4doVxsNCJ0SfE0wJf2ZDIYVXO-gHkkpjlNCs13UwxjTOOcZO0CHzs1CmFBO9tEBxSnNC5b30HgwhXntvF1Fra7ARgOzBHsTjVtd67foCbxsvj4-h1YupqAhGmkPVipfGx2Vq-gF1v5yk1eykevKMdqbyMbBycYeodf7u_HgIX58Ho4Gt4-xZAnxcYGLvJIJV6rEHCirUlqoMLAKi5aJTFkxUcBoBZylGc8ZFJRzlbIcKsxkWbEjdN7NNc7Xwqnag5oqozUoLwgmBWcsQJcdtLDmvQXnRbhXQdNIDaZ1ImeMZjhNSCDPNmRbzqESC1vPpV2JX7UCcNUByhrnLEy2CMFi_Qmx_URg-3_YsN6POt7Kuvm346LrkMqJmWmtDtr9w30DxkyW1g
CitedBy_id crossref_primary_10_1016_j_susc_2014_10_008
crossref_primary_10_1002_adma_201801838
crossref_primary_10_1016_j_susc_2015_12_018
crossref_primary_10_1002_smll_201703701
crossref_primary_10_1063_1_4868119
crossref_primary_10_1039_C8CS00286J
crossref_primary_10_1021_acs_nanolett_7b02621
crossref_primary_10_1016_j_susc_2018_02_016
crossref_primary_10_1021_acs_chemmater_0c02296
crossref_primary_10_1039_C8NR08339H
crossref_primary_10_1088_1757_899X_182_1_012030
crossref_primary_10_1021_acsami_7b06633
crossref_primary_10_1103_PhysRevLett_111_085501
crossref_primary_10_1021_jp512593r
crossref_primary_10_1088_2053_1583_aaf033
crossref_primary_10_1016_j_susc_2015_08_042
crossref_primary_10_1103_PhysRevLett_109_026101
crossref_primary_10_1115_1_4063230
crossref_primary_10_1039_C5CC06073G
crossref_primary_10_1103_PhysRevB_98_205428
crossref_primary_10_1021_acsami_3c07763
crossref_primary_10_1021_acs_jpcc_4c06593
crossref_primary_10_4028_www_scientific_net_MSF_717_720_649
crossref_primary_10_1088_2053_1583_ab2268
crossref_primary_10_1007_s12274_013_0342_6
crossref_primary_10_1093_nsr_nwv024
crossref_primary_10_1039_D0CP00592D
crossref_primary_10_1088_1361_6528_aae1e3
crossref_primary_10_1002_pssr_202400274
crossref_primary_10_1002_celc_201900251
crossref_primary_10_1007_s12274_019_2561_y
crossref_primary_10_1016_j_susc_2018_10_009
crossref_primary_10_1021_am3032772
crossref_primary_10_1063_1_4821269
crossref_primary_10_1103_PhysRevB_85_195405
crossref_primary_10_1016_j_progsurf_2018_07_001
crossref_primary_10_1063_1_3687688
crossref_primary_10_1016_j_carbon_2018_05_057
crossref_primary_10_1021_nl301614j
crossref_primary_10_1063_1_4901165
crossref_primary_10_1088_2053_1583_abb71f
crossref_primary_10_3390_nano8050284
crossref_primary_10_1016_j_cartre_2022_100201
crossref_primary_10_1021_acs_jpclett_0c02112
crossref_primary_10_1103_PhysRevB_90_155428
crossref_primary_10_1038_srep14374
crossref_primary_10_1103_PhysRevLett_111_246805
crossref_primary_10_1016_j_apsusc_2020_147100
crossref_primary_10_1021_acs_jpcc_6b09892
crossref_primary_10_1021_jacs_5b08729
crossref_primary_10_1039_C8CP01032C
crossref_primary_10_1088_0953_8984_24_31_314209
crossref_primary_10_1016_j_solener_2014_05_021
crossref_primary_10_1021_jp503253a
crossref_primary_10_1021_jz402054e
crossref_primary_10_1016_j_cej_2017_11_127
crossref_primary_10_1007_s11426_017_9020_2
crossref_primary_10_1021_jacs_6b02990
crossref_primary_10_1039_c1cp21843c
crossref_primary_10_1088_0953_8984_24_31_314201
crossref_primary_10_1021_acs_jpcc_2c02342
crossref_primary_10_1021_acs_jpcc_9b07377
crossref_primary_10_1088_0022_3727_48_1_015308
crossref_primary_10_1103_PhysRevMaterials_2_124001
crossref_primary_10_1021_nl4023572
crossref_primary_10_1016_j_carbon_2020_03_054
crossref_primary_10_1021_jacs_6b05333
crossref_primary_10_1080_08940886_2024_2391254
crossref_primary_10_1039_C6RA08813A
crossref_primary_10_1021_ja5113657
crossref_primary_10_1016_j_compscitech_2014_10_018
crossref_primary_10_1021_nn302729j
crossref_primary_10_1007_s12274_012_0215_4
crossref_primary_10_1021_nl204414u
crossref_primary_10_1038_srep12058
crossref_primary_10_1016_j_apsusc_2012_04_067
crossref_primary_10_1021_acs_jpca_7b11586
crossref_primary_10_1016_j_susc_2011_01_026
crossref_primary_10_3762_bjnano_5_198
crossref_primary_10_1021_jp5034855
crossref_primary_10_1039_D1CP05902E
crossref_primary_10_1016_j_carbon_2017_12_104
crossref_primary_10_1021_acs_chemmater_8b03186
crossref_primary_10_1039_C7SC01615H
crossref_primary_10_1103_PhysRevLett_110_086111
crossref_primary_10_1021_acsnano_5b03722
crossref_primary_10_1080_15567265_2017_1286421
crossref_primary_10_1021_acs_chemrev_9b00209
crossref_primary_10_1088_2053_1583_ab3e9c
crossref_primary_10_1007_s12274_014_0521_0
crossref_primary_10_1021_acs_jpcc_0c04830
crossref_primary_10_1103_PhysRevB_97_165413
crossref_primary_10_1016_j_carbon_2014_03_028
crossref_primary_10_1021_acsami_9b02929
crossref_primary_10_1063_5_0116783
crossref_primary_10_1103_PhysRevB_110_155426
crossref_primary_10_1103_PhysRevB_97_115437
crossref_primary_10_1016_j_susc_2015_05_017
crossref_primary_10_1039_c2tb00454b
crossref_primary_10_1002_er_4326
crossref_primary_10_1116_1_5025489
crossref_primary_10_1016_j_carbon_2021_01_149
crossref_primary_10_1557_mrs_2012_204
crossref_primary_10_1016_j_elspec_2016_11_012
crossref_primary_10_1039_c2jm31218b
crossref_primary_10_3390_c3040029
crossref_primary_10_1016_j_carbon_2019_10_053
crossref_primary_10_1016_j_carbon_2020_03_034
crossref_primary_10_1021_acsami_5b10173
crossref_primary_10_1021_nn203169j
crossref_primary_10_1016_j_ijhydene_2013_07_074
crossref_primary_10_1021_acsami_9b08918
crossref_primary_10_1063_1_3548546
crossref_primary_10_1088_0953_8984_27_12_125003
crossref_primary_10_1002_cssc_201501439
crossref_primary_10_1039_D3NR00630A
crossref_primary_10_1063_1_4886411
crossref_primary_10_1088_1361_6463_abe5e2
crossref_primary_10_1007_s10562_016_1925_0
crossref_primary_10_1016_j_carbon_2016_01_011
crossref_primary_10_1016_S1872_2067_15_60828_2
crossref_primary_10_1002_adma_201603937
crossref_primary_10_1021_ja5054847
crossref_primary_10_1002_smtd_201900683
crossref_primary_10_1021_nn303548z
crossref_primary_10_1134_S1063782618090130
crossref_primary_10_1088_1674_1056_22_9_096803
crossref_primary_10_1021_acsnano_5b03987
crossref_primary_10_1021_nn402178u
crossref_primary_10_1021_acs_nanolett_0c03254
crossref_primary_10_7498_aps_71_20212407
crossref_primary_10_1073_pnas_1701280114
crossref_primary_10_1039_C4CP04025B
crossref_primary_10_1039_c3cp52115j
crossref_primary_10_1039_c3cp53802h
crossref_primary_10_1038_ncomms12168
crossref_primary_10_1088_2053_1583_ab056e
crossref_primary_10_1021_acsami_7b08717
crossref_primary_10_1016_j_synthmet_2019_03_016
crossref_primary_10_1016_j_surfin_2023_103735
crossref_primary_10_1021_acs_jpcc_3c07828
crossref_primary_10_1039_D2RA06079E
crossref_primary_10_1039_C5NR04976H
crossref_primary_10_1021_acs_jpcc_1c10216
crossref_primary_10_1039_c3cp52431k
crossref_primary_10_1073_pnas_1416368111
crossref_primary_10_1039_C6CS00424E
crossref_primary_10_1103_PhysRevB_96_155441
crossref_primary_10_1007_s12274_017_1512_8
crossref_primary_10_1007_s12274_014_0639_0
crossref_primary_10_1007_s12274_018_2184_8
crossref_primary_10_1016_j_comptc_2013_07_029
crossref_primary_10_1103_PhysRevB_106_L201402
crossref_primary_10_1016_j_apsusc_2019_144674
crossref_primary_10_1021_acs_jpcc_1c10289
crossref_primary_10_1063_1_4793427
crossref_primary_10_1021_acsami_0c12437
crossref_primary_10_1002_smll_202408116
crossref_primary_10_1021_jp4043045
crossref_primary_10_1038_srep00707
crossref_primary_10_1002_pssb_201451466
crossref_primary_10_1016_j_coelec_2019_06_006
crossref_primary_10_1016_j_jelechem_2015_08_013
crossref_primary_10_1103_PhysRevB_93_161402
crossref_primary_10_3390_catal10010053
crossref_primary_10_1016_j_carbon_2016_01_100
crossref_primary_10_1016_j_jcis_2019_03_015
crossref_primary_10_1088_0953_8984_27_30_303002
crossref_primary_10_1021_acs_nanolett_5b00098
crossref_primary_10_1088_1367_2630_13_11_113028
crossref_primary_10_1103_PhysRevB_84_125423
crossref_primary_10_3934_matersci_2016_4_1426
crossref_primary_10_1016_j_apcatb_2020_119537
crossref_primary_10_1038_srep02430
crossref_primary_10_1021_jp111962k
crossref_primary_10_1039_D3FD00178D
crossref_primary_10_1021_acs_jpcc_5b10017
crossref_primary_10_1021_nl402797j
crossref_primary_10_1021_nl302398m
crossref_primary_10_1016_j_susc_2015_06_019
crossref_primary_10_7498_aps_68_20190447
crossref_primary_10_1021_acsnano_2c05570
crossref_primary_10_1021_jz400400u
crossref_primary_10_1021_acsnano_2c09253
crossref_primary_10_1002_smll_201600666
crossref_primary_10_1016_j_apsadv_2021_100138
crossref_primary_10_1021_acsami_7b08665
crossref_primary_10_1016_j_susc_2017_10_026
crossref_primary_10_1021_acs_jpcc_6b02851
crossref_primary_10_1016_j_carbon_2015_11_002
crossref_primary_10_1103_PhysRevMaterials_1_053406
crossref_primary_10_1088_2053_1583_aa702c
crossref_primary_10_1016_j_apcatb_2014_04_018
crossref_primary_10_1063_1_4790382
crossref_primary_10_1080_00268976_2016_1162863
crossref_primary_10_1038_srep11378
crossref_primary_10_1088_1361_648X_aaf2ce
crossref_primary_10_1016_j_jssc_2011_07_001
crossref_primary_10_1002_adfm_201203426
crossref_primary_10_1088_1674_1056_accff4
crossref_primary_10_1016_j_apsusc_2021_150866
crossref_primary_10_7567_JJAP_54_050301
crossref_primary_10_1007_s11434_015_0875_z
crossref_primary_10_1038_ncomms6062
crossref_primary_10_1016_j_carbon_2015_01_029
crossref_primary_10_1016_j_apsusc_2017_07_279
crossref_primary_10_1016_j_carbon_2021_01_120
crossref_primary_10_1021_jp411979x
crossref_primary_10_1016_j_apsusc_2022_154584
crossref_primary_10_1103_PhysRevB_91_041406
crossref_primary_10_1088_0953_8984_25_42_423201
crossref_primary_10_1021_acsnano_7b02686
crossref_primary_10_1039_D3CP01285A
crossref_primary_10_1021_ja110962h
crossref_primary_10_1039_C3NR03849A
crossref_primary_10_1016_j_carbon_2018_06_014
crossref_primary_10_1016_j_carbon_2015_09_063
crossref_primary_10_1021_cm502603n
crossref_primary_10_1007_s12598_021_01792_3
crossref_primary_10_1016_j_matpr_2019_08_213
crossref_primary_10_1039_C6CP03660K
crossref_primary_10_1039_D3CP04085B
crossref_primary_10_1088_1674_1056_abe22c
crossref_primary_10_1021_acs_iecr_8b02547
crossref_primary_10_1016_j_surfrep_2023_100586
crossref_primary_10_1021_acs_cgd_3c00902
crossref_primary_10_1021_acs_jpclett_5b01052
crossref_primary_10_1021_jp210206y
crossref_primary_10_1021_nl203530t
crossref_primary_10_1038_ncomms1818
crossref_primary_10_1021_ja3003809
crossref_primary_10_1021_acs_jpcc_3c02643
crossref_primary_10_1021_acs_jpcc_8b05370
crossref_primary_10_1002_anie_201200413
crossref_primary_10_1088_1361_648X_aba316
crossref_primary_10_1088_2053_1583_aa78c2
crossref_primary_10_1039_C8CP00877A
crossref_primary_10_1103_PhysRevB_90_165403
crossref_primary_10_1039_D3MH00420A
crossref_primary_10_1016_j_cattod_2020_02_006
crossref_primary_10_1021_jacs_2c04359
crossref_primary_10_1021_cm101568z
crossref_primary_10_1002_cphc_202400586
crossref_primary_10_1088_1361_6528_aad019
crossref_primary_10_1021_acs_jpclett_5b01841
crossref_primary_10_1103_PhysRevB_90_235437
crossref_primary_10_1088_2053_1583_ab111e
crossref_primary_10_1016_j_carbon_2017_12_117
crossref_primary_10_1021_nn102467s
crossref_primary_10_1021_ja4121988
crossref_primary_10_7498_aps_66_216803
crossref_primary_10_2174_1385272826666220621141128
crossref_primary_10_1007_s12274_018_2194_6
crossref_primary_10_1103_PhysRevB_97_085407
crossref_primary_10_1021_acs_jpclett_8b00586
crossref_primary_10_1088_2053_1591_aaabca
crossref_primary_10_1016_j_pmatsci_2020_100652
crossref_primary_10_1021_acs_jpcc_8b10574
crossref_primary_10_1088_0953_8984_26_44_443001
crossref_primary_10_1038_s41598_017_18226_9
crossref_primary_10_7567_APEX_8_035101
crossref_primary_10_1016_j_susc_2014_11_001
crossref_primary_10_1021_acsnano_8b04874
crossref_primary_10_1088_2053_1583_1_2_025002
crossref_primary_10_1016_j_surfrep_2011_12_001
crossref_primary_10_1016_j_susc_2018_03_017
crossref_primary_10_1039_C7RA04519K
crossref_primary_10_1021_acs_nanolett_6b02052
crossref_primary_10_1039_C8CC02880J
crossref_primary_10_1016_j_jallcom_2024_175133
crossref_primary_10_1088_2516_1075_abd957
crossref_primary_10_1002_slct_201803626
crossref_primary_10_1021_nn3040588
crossref_primary_10_1021_jp406415h
crossref_primary_10_1002_admi_202101598
crossref_primary_10_1039_C4NR04956J
crossref_primary_10_1002_ange_201200413
crossref_primary_10_1088_0953_8984_25_9_094001
crossref_primary_10_1016_j_apsusc_2017_03_240
crossref_primary_10_1021_nn4008862
crossref_primary_10_1088_1361_6528_ab375e
crossref_primary_10_1016_j_susc_2013_07_008
crossref_primary_10_1021_acs_nanolett_5b01205
crossref_primary_10_1038_srep20285
crossref_primary_10_1063_1_5098351
crossref_primary_10_1016_j_apsusc_2013_11_117
crossref_primary_10_1016_j_compositesa_2016_04_011
crossref_primary_10_1088_2053_1583_abe777
crossref_primary_10_1007_s12274_013_0365_z
crossref_primary_10_1016_j_jhazmat_2016_08_019
crossref_primary_10_3390_c8040062
crossref_primary_10_1039_C9CC04225C
crossref_primary_10_1021_acs_chemmater_6b00053
crossref_primary_10_1021_nl501900x
crossref_primary_10_1016_j_gee_2018_06_003
crossref_primary_10_1021_acs_jpcc_6b11112
crossref_primary_10_1021_jp400838j
crossref_primary_10_1002_chem_201600901
crossref_primary_10_1039_c3ta14546h
crossref_primary_10_1016_j_carbon_2013_10_033
crossref_primary_10_1016_j_carbon_2016_01_079
crossref_primary_10_1002_smll_201501766
crossref_primary_10_1088_0953_8984_24_47_475305
crossref_primary_10_7498_aps_64_078101
Cites_doi 10.1103/PhysRevLett.101.157601
10.1103/PhysRevB.50.17487
10.1021/nl901040v
10.1021/jp810514u
10.1002/anie.200602223
10.1039/b801785a
10.1038/nnano.2009.292
10.1016/0039-6028(75)90409-4
10.1038/nnano.2008.172
10.1103/PhysRevB.54.17850
10.1038/nature04233
10.1126/science.1171245
10.1021/nl801457b
10.1103/PhysRevB.77.155303
10.1103/PhysRevLett.77.3371
10.1103/PhysRevLett.101.026803
10.1021/nl803316h
10.1016/S0039-6028(97)00604-3
10.1103/PhysRevB.59.4680
10.1103/PhysRevB.76.075429
10.1103/PhysRevB.79.045407
10.1038/nature06037
10.1021/nl0808684
10.1021/nl801827v
10.1038/nmat2166
10.1103/PhysRevLett.101.086402
10.1103/PhysRevB.80.245411
10.1016/0039-6028(89)90462-7
10.1073/pnas.0703337104
10.1038/nature07719
10.1063/1.3106057
10.1016/j.ssc.2009.02.049
10.1103/PhysRevLett.103.246804
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
CorporateAuthor Brookhaven National Laboratory (BNL) National Synchrotron Light Source
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL) National Synchrotron Light Source
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1021/ja102398n
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Tuning Metal−Graphene Interaction by Reactive Intercalation
EISSN 1520-5126
EndPage 8179
ExternalDocumentID 1019833
20527937
10_1021_ja102398n
d091553423
Genre Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFNX
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
ABFRP
OTOTI
ZCG
ID FETCH-LOGICAL-a341t-9097da48ccb08e23d529ceacd000b4a539fce32de8356873e9288c537ed03abd3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu May 18 22:22:21 EDT 2023
Fri Jul 11 08:02:16 EDT 2025
Mon Jul 21 05:40:50 EDT 2025
Thu Apr 24 22:50:50 EDT 2025
Tue Jul 01 04:15:00 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a341t-9097da48ccb08e23d529ceacd000b4a539fce32de8356873e9288c537ed03abd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
BNL-95679-2011-JA
DE-AC02-98CH10886
DOE - OFFICE OF SCIENCE
PMID 20527937
PQID 733260541
PQPubID 23479
PageCount 5
ParticipantIDs osti_scitechconnect_1019833
proquest_miscellaneous_733260541
pubmed_primary_20527937
crossref_primary_10_1021_ja102398n
crossref_citationtrail_10_1021_ja102398n
acs_journals_10_1021_ja102398n
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-06-16
PublicationDateYYYYMMDD 2010-06-16
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Tombros N. (ref8/cit8) 2007; 448
Lin Y.-M. (ref2/cit2) 2009; 9
Novoselov K. S. (ref1/cit1) 2005; 438
ref18/cit18
Emtsev K. V. (ref12/cit12) 2008; 77
Zhou S. Y. (ref16/cit16) 2008; 101
Sutter E. A. (ref28/cit28) 2009; 94
Varykhalov A. (ref9/cit9) 2008; 101
Kim K. S. (ref5/cit5) 2009; 457
Riedl C. (ref15/cit15) 2009; 103
Wang B. (ref24/cit24) 2008; 10
Sutter P. (ref35/cit35) 2009; 80
Nilekar A. U. (ref33/cit33) 2006; 45
Madey T. E. (ref19/cit19) 1975; 48
Trost J. (ref36/cit36) 1996; 54
Lee E. J. H. (ref7/cit7) 2008; 3
Marchini S. (ref27/cit27) 2007; 76
Stampfl C. (ref31/cit31) 1996; 77
Stolyarova E. (ref29/cit29) 2007; 104
Sutter P. (ref20/cit20) 2009; 9
Pfnür H. (ref22/cit22) 1989; 220
Bunch J. S. (ref34/cit34) 2008; 8
Li X. (ref6/cit6) 2009; 324
Reuter K. (ref26/cit26) 2007
Heske C. (ref25/cit25) 1999; 59
Zhang H. (ref21/cit21) 2009; 113
Giovannetti G. (ref11/cit11) 2008; 101
Feigel’man M. V. (ref10/cit10) 2009; 149
Reina A. (ref37/cit37) 2009; 9
Brugger T. (ref23/cit23) 2009; 79
Oshima C. (ref13/cit13) 1997; 9
Nagashima A. (ref14/cit14) 1994; 50
Sutter P. W. (ref4/cit4) 2008; 7
Liu L. (ref17/cit17) 2008; 8
ref30/cit30
Xia F. (ref3/cit3) 2009; 4
Wintterlin J. (ref32/cit32) 1997; 394
References_xml – volume: 101
  start-page: 157601
  year: 2008
  ident: ref9/cit9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.157601
– volume: 50
  start-page: 17487
  year: 1994
  ident: ref14/cit14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17487
– volume: 9
  start-page: 2654
  year: 2009
  ident: ref20/cit20
  publication-title: Nano Lett.
  doi: 10.1021/nl901040v
– volume: 113
  start-page: 8296
  year: 2009
  ident: ref21/cit21
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp810514u
– volume: 45
  start-page: 7046
  year: 2006
  ident: ref33/cit33
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200602223
– volume: 10
  start-page: 3530
  year: 2008
  ident: ref24/cit24
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b801785a
– volume: 4
  start-page: 839
  year: 2009
  ident: ref3/cit3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.292
– volume: 48
  start-page: 304
  year: 1975
  ident: ref19/cit19
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(75)90409-4
– volume: 3
  start-page: 486
  year: 2008
  ident: ref7/cit7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.172
– volume: 54
  start-page: 17850
  year: 1996
  ident: ref36/cit36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.17850
– volume: 438
  start-page: 197
  year: 2005
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 324
  start-page: 1312
  year: 2009
  ident: ref6/cit6
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 8
  start-page: 2458
  year: 2008
  ident: ref34/cit34
  publication-title: Nano Lett.
  doi: 10.1021/nl801457b
– volume: 77
  start-page: 155303
  year: 2008
  ident: ref12/cit12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.155303
– ident: ref18/cit18
– volume: 77
  start-page: 3371
  year: 1996
  ident: ref31/cit31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3371
– volume: 101
  start-page: 026803
  year: 2008
  ident: ref11/cit11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.026803
– volume: 9
  start-page: 1
  year: 1997
  ident: ref13/cit13
  publication-title: J. Phys: Condens. Matter
– volume: 9
  start-page: 422
  year: 2009
  ident: ref2/cit2
  publication-title: Nano Lett.
  doi: 10.1021/nl803316h
– volume: 394
  start-page: 159
  year: 1997
  ident: ref32/cit32
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(97)00604-3
– volume: 59
  start-page: 4680
  year: 1999
  ident: ref25/cit25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.4680
– volume-title: Nanocatalysis
  year: 2007
  ident: ref26/cit26
– volume: 76
  start-page: 075429
  year: 2007
  ident: ref27/cit27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.075429
– volume: 79
  start-page: 045407
  year: 2009
  ident: ref23/cit23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.045407
– volume: 448
  start-page: 571
  year: 2007
  ident: ref8/cit8
  publication-title: Nature
  doi: 10.1038/nature06037
– volume: 8
  start-page: 1965
  year: 2008
  ident: ref17/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl0808684
– volume: 9
  start-page: 30
  year: 2009
  ident: ref37/cit37
  publication-title: Nano Lett.
  doi: 10.1021/nl801827v
– volume: 7
  start-page: 406
  year: 2008
  ident: ref4/cit4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2166
– volume: 101
  start-page: 086402
  year: 2008
  ident: ref16/cit16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.086402
– volume: 80
  start-page: 245411
  year: 2009
  ident: ref35/cit35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.245411
– volume: 220
  start-page: 43
  year: 1989
  ident: ref22/cit22
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(89)90462-7
– volume: 104
  start-page: 9209
  year: 2007
  ident: ref29/cit29
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0703337104
– volume: 457
  start-page: 706
  year: 2009
  ident: ref5/cit5
  publication-title: Nature
  doi: 10.1038/nature07719
– volume: 94
  start-page: 133101
  year: 2009
  ident: ref28/cit28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3106057
– volume: 149
  start-page: 1101
  year: 2009
  ident: ref10/cit10
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2009.02.049
– ident: ref30/cit30
– volume: 103
  start-page: 246804
  year: 2009
  ident: ref15/cit15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.246804
SSID ssj0004281
Score 2.4867218
Snippet Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8175
SubjectTerms ATOMS
CHEMICAL REACTIONS
CHEMISTRY
CONES
ELEVATORS
ETCHING
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
MODIFICATIONS
national synchrotron light source
OXIDATION
OXYGEN
PROCESSING
RUTHENIUM
TUNING
Title Chemistry under Cover: Tuning Metal−Graphene Interaction by Reactive Intercalation
URI http://dx.doi.org/10.1021/ja102398n
https://www.ncbi.nlm.nih.gov/pubmed/20527937
https://www.proquest.com/docview/733260541
https://www.osti.gov/biblio/1019833
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED5BGWDh_SiPygIGllSJnYfDVgUKQoIBisQWObZZQCmi6QC_gJmfyC_hLmkKiBY2K3Jed7bvO9_dZ4BDRPzaQxjgGNcoB_GtdOS9sA5XoTGBT5RQtA95eRWe3_oXd8HdDBxMieBz4gcidoFY5rMwx0MZkYfVSW6-ih-59GqMG8lQ1PRB328l06MHP0xPo49TaDqsLM1LdwlO6iKdKqvkoT0ssrZ-_c3Z-NeXL8PiCF6yTjUeVmDG5qswn9Snuq1Bb9xmVD72zBLK4TxmvSFtkLBLi2D84-39jHiscRlk5Y5hVfzAshd2bVW5QFbXUb-lYtfhtnvaS86d0ckKjkKrVTixG0dGoZp05krLhQl4rPEBBqWY-SoQ8b22ghuL-AxFLmyMStSBiKxxhcqM2IBG3s_tFrAooBpMRIlKSrRtVtqAYotaGhfbvm1CC0WfjmbGIC2D3hydjlo4TTiqtZLqES85HY_xOKnr_rjrU0XGManTDqk2RQRBNLia8oV0QalssRSiCazWeIrSpuiIym1_OEgjIci3870mbFYjYfwO7gaceAS3__uXHViosgtCxwt3oVE8D-0egpYia5WD9hMW1-Rp
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB7B9gAXoC0_ywK1EEhcgrJ2fhwkDmiBLoXlAIvELTi2ubTKIpIVWp6Ac499Fd6GJ2EmP0tbgXpC6i2KrMSxv8x8Y898BthAxq_bSAMc4xrlIL-VjrwW1uEqMMb3SBKK1iF7p0H3wvt26V9OwK-6FgY7keGTsmIT_0VdgGSCSGQgkmmVQHlsR3cYnmW7R_s4l5ucHx70O12nOkHAUWidcydyo9Ao7I5OXGm5MD6PNJoag4Yg8ZQvomttBTcWeUggQ2Ej7Kz2RWiNK1RiBD53Ej4g6eEU2O11zl9qLrls19Q6lIGoVYt-7yp5PJ394fEaA_xz32azhVc7nIXH8XgUySzft4d5sq3v_5KK_D8HbA5mKjLN9kr0f4QJm36CqU59ht1n6I-vGRXL3bIOZazusP6QloNYz2Lo8fTw8yupdqPRZ8X6aFnqwZIRO7OqcAflfURzAeN5uHiXj1qARjpI7RKw0KeKU-TESkr05FZan3ZStTQuXnu2CWs4F3FlB7K42OLnGGLVk9GErRoMsa5U2OkwkB-vNV0fN70ppUdea9QiRMXIl0j0V1N2lM4pcS-SQjSB1UCLcbRpL0ildjDM4lAIimS9dhMWSwCO38FdRDuy1uV_fcsXmOr2eyfxydHpcQumy7yKwGkHK9DIb4d2FelanqwV_w2Dq_fG3TNWJEfU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbhMxEB6VVIJeoOWnpGmLhUDistHG3h8vEocobWgprRCkUm6L13YurTZRdqMqfYKe-wB9Fd6FJ2Fmf0JBQZwq9bZaWV6vPZ75xjPzGeANIn7dQRjgGNcoB_GtdORIWIerwBjfI0ooOoc8PgkOTr1PQ3-4Ajd1LQwOIsOesiKIT7t6YkYVwwBRBRHRQCTTKonyyM4v0EXLPhzu4Xq-5by_P-gdONUtAo5CDZ07kRuFRuGQdOJKy4XxeaRR3RhUBomnfBGNtBXcWMQigQyFjXDA2hehNa5QiRHY7wNYpfAgOXfd3rffdZdcdmp4HcpA1MxFt4dKVk9nf1i9xhh3778RbWHZ-k_gx2JOioSWs_YsT9r68i-6yPs7aevwuALVrFvugg1YselTeNSr77J7BoPFM6OiuSnrUebqezaY0bEQO7bogvy8uv5I7N2o_FlxTlqWfLBkzr5aVZiF8j1KdSHOz-H0Tn7qBTTScWpfAgt9qjxFbKykRItupfUpoqqlcfHZs03YxfWIK32QxUWon6OrVS9GE97VAhHrio2dLgU5X9b09aLppKQgWdaoRVIVI24i8l9NWVI6pwS-SArRBFYLW4yzTTEhldrxLItDIcij9TpN2CyFcPEN7vqc2BO3_vcvr-Dhl71-_Pnw5KgFa2V6ReB0gm1o5NOZ3UHUlie7xdZh8P2uxe4XP6JKVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemistry+under+cover%3A+tuning+metal-graphene+interaction+by+reactive+intercalation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sutter%2C+Peter&rft.au=Sadowski%2C+Jerzy+T&rft.au=Sutter%2C+Eli+A&rft.date=2010-06-16&rft.eissn=1520-5126&rft.volume=132&rft.issue=23&rft.spage=8175&rft_id=info:doi/10.1021%2Fja102398n&rft_id=info%3Apmid%2F20527937&rft.externalDocID=20527937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon