Chemistry under Cover: Tuning Metal−Graphene Interaction by Reactive Intercalation
Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene−metal...
Saved in:
Published in | Journal of the American Chemical Society Vol. 132; no. 23; pp. 8175 - 8179 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene−metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal−carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate−metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet. |
---|---|
AbstractList | Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene-metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal-carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate-metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet. Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene−metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal−carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate−metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet. Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene-metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal-carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate-metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet.Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would set the stage for a wide spectrum of interfacial chemistry. Here we demonstrate the controlled modification of a macroscopic graphene-metal interface by oxygen intercalation. The selective oxidation of a ruthenium surface beneath graphene lifts the strong metal-carbon coupling and restores the characteristic Dirac cones of isolated monolayer graphene. Our experiments establish the competition between low-temperature oxygen intercalation and graphene etching at higher temperatures and suggest that small molecules can populate the space between graphene and metals, with the adsorbate-metal interaction being modified significantly by the presence of graphene. These findings open up new avenues for the processing of graphene for device applications and for performing chemical reactions in the confined space between a metal surface and a graphene sheet. |
Author | Sutter, Peter Sadowski, Jerzy T Sutter, Eli A |
Author_xml | – sequence: 1 givenname: Peter surname: Sutter fullname: Sutter, Peter email: psutter@bnl.gov – sequence: 2 givenname: Jerzy T surname: Sadowski fullname: Sadowski, Jerzy T – sequence: 3 givenname: Eli A surname: Sutter fullname: Sutter, Eli A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20527937$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1019833$$D View this record in Osti.gov |
BookMark | eNptkUtLAzEQx4MoWh8Hv4AsgoiHtXnsI-tNitaCIkg9h2x2ardsk5pkC_0Gnv2IfhJTt_Ygnub1m2HmP4doVxsNCJ0SfE0wJf2ZDIYVXO-gHkkpjlNCs13UwxjTOOcZO0CHzs1CmFBO9tEBxSnNC5b30HgwhXntvF1Fra7ARgOzBHsTjVtd67foCbxsvj4-h1YupqAhGmkPVipfGx2Vq-gF1v5yk1eykevKMdqbyMbBycYeodf7u_HgIX58Ho4Gt4-xZAnxcYGLvJIJV6rEHCirUlqoMLAKi5aJTFkxUcBoBZylGc8ZFJRzlbIcKsxkWbEjdN7NNc7Xwqnag5oqozUoLwgmBWcsQJcdtLDmvQXnRbhXQdNIDaZ1ImeMZjhNSCDPNmRbzqESC1vPpV2JX7UCcNUByhrnLEy2CMFi_Qmx_URg-3_YsN6POt7Kuvm346LrkMqJmWmtDtr9w30DxkyW1g |
CitedBy_id | crossref_primary_10_1016_j_susc_2014_10_008 crossref_primary_10_1002_adma_201801838 crossref_primary_10_1016_j_susc_2015_12_018 crossref_primary_10_1002_smll_201703701 crossref_primary_10_1063_1_4868119 crossref_primary_10_1039_C8CS00286J crossref_primary_10_1021_acs_nanolett_7b02621 crossref_primary_10_1016_j_susc_2018_02_016 crossref_primary_10_1021_acs_chemmater_0c02296 crossref_primary_10_1039_C8NR08339H crossref_primary_10_1088_1757_899X_182_1_012030 crossref_primary_10_1021_acsami_7b06633 crossref_primary_10_1103_PhysRevLett_111_085501 crossref_primary_10_1021_jp512593r crossref_primary_10_1088_2053_1583_aaf033 crossref_primary_10_1016_j_susc_2015_08_042 crossref_primary_10_1103_PhysRevLett_109_026101 crossref_primary_10_1115_1_4063230 crossref_primary_10_1039_C5CC06073G crossref_primary_10_1103_PhysRevB_98_205428 crossref_primary_10_1021_acsami_3c07763 crossref_primary_10_1021_acs_jpcc_4c06593 crossref_primary_10_4028_www_scientific_net_MSF_717_720_649 crossref_primary_10_1088_2053_1583_ab2268 crossref_primary_10_1007_s12274_013_0342_6 crossref_primary_10_1093_nsr_nwv024 crossref_primary_10_1039_D0CP00592D crossref_primary_10_1088_1361_6528_aae1e3 crossref_primary_10_1002_pssr_202400274 crossref_primary_10_1002_celc_201900251 crossref_primary_10_1007_s12274_019_2561_y crossref_primary_10_1016_j_susc_2018_10_009 crossref_primary_10_1021_am3032772 crossref_primary_10_1063_1_4821269 crossref_primary_10_1103_PhysRevB_85_195405 crossref_primary_10_1016_j_progsurf_2018_07_001 crossref_primary_10_1063_1_3687688 crossref_primary_10_1016_j_carbon_2018_05_057 crossref_primary_10_1021_nl301614j crossref_primary_10_1063_1_4901165 crossref_primary_10_1088_2053_1583_abb71f crossref_primary_10_3390_nano8050284 crossref_primary_10_1016_j_cartre_2022_100201 crossref_primary_10_1021_acs_jpclett_0c02112 crossref_primary_10_1103_PhysRevB_90_155428 crossref_primary_10_1038_srep14374 crossref_primary_10_1103_PhysRevLett_111_246805 crossref_primary_10_1016_j_apsusc_2020_147100 crossref_primary_10_1021_acs_jpcc_6b09892 crossref_primary_10_1021_jacs_5b08729 crossref_primary_10_1039_C8CP01032C crossref_primary_10_1088_0953_8984_24_31_314209 crossref_primary_10_1016_j_solener_2014_05_021 crossref_primary_10_1021_jp503253a crossref_primary_10_1021_jz402054e crossref_primary_10_1016_j_cej_2017_11_127 crossref_primary_10_1007_s11426_017_9020_2 crossref_primary_10_1021_jacs_6b02990 crossref_primary_10_1039_c1cp21843c crossref_primary_10_1088_0953_8984_24_31_314201 crossref_primary_10_1021_acs_jpcc_2c02342 crossref_primary_10_1021_acs_jpcc_9b07377 crossref_primary_10_1088_0022_3727_48_1_015308 crossref_primary_10_1103_PhysRevMaterials_2_124001 crossref_primary_10_1021_nl4023572 crossref_primary_10_1016_j_carbon_2020_03_054 crossref_primary_10_1021_jacs_6b05333 crossref_primary_10_1080_08940886_2024_2391254 crossref_primary_10_1039_C6RA08813A crossref_primary_10_1021_ja5113657 crossref_primary_10_1016_j_compscitech_2014_10_018 crossref_primary_10_1021_nn302729j crossref_primary_10_1007_s12274_012_0215_4 crossref_primary_10_1021_nl204414u crossref_primary_10_1038_srep12058 crossref_primary_10_1016_j_apsusc_2012_04_067 crossref_primary_10_1021_acs_jpca_7b11586 crossref_primary_10_1016_j_susc_2011_01_026 crossref_primary_10_3762_bjnano_5_198 crossref_primary_10_1021_jp5034855 crossref_primary_10_1039_D1CP05902E crossref_primary_10_1016_j_carbon_2017_12_104 crossref_primary_10_1021_acs_chemmater_8b03186 crossref_primary_10_1039_C7SC01615H crossref_primary_10_1103_PhysRevLett_110_086111 crossref_primary_10_1021_acsnano_5b03722 crossref_primary_10_1080_15567265_2017_1286421 crossref_primary_10_1021_acs_chemrev_9b00209 crossref_primary_10_1088_2053_1583_ab3e9c crossref_primary_10_1007_s12274_014_0521_0 crossref_primary_10_1021_acs_jpcc_0c04830 crossref_primary_10_1103_PhysRevB_97_165413 crossref_primary_10_1016_j_carbon_2014_03_028 crossref_primary_10_1021_acsami_9b02929 crossref_primary_10_1063_5_0116783 crossref_primary_10_1103_PhysRevB_110_155426 crossref_primary_10_1103_PhysRevB_97_115437 crossref_primary_10_1016_j_susc_2015_05_017 crossref_primary_10_1039_c2tb00454b crossref_primary_10_1002_er_4326 crossref_primary_10_1116_1_5025489 crossref_primary_10_1016_j_carbon_2021_01_149 crossref_primary_10_1557_mrs_2012_204 crossref_primary_10_1016_j_elspec_2016_11_012 crossref_primary_10_1039_c2jm31218b crossref_primary_10_3390_c3040029 crossref_primary_10_1016_j_carbon_2019_10_053 crossref_primary_10_1016_j_carbon_2020_03_034 crossref_primary_10_1021_acsami_5b10173 crossref_primary_10_1021_nn203169j crossref_primary_10_1016_j_ijhydene_2013_07_074 crossref_primary_10_1021_acsami_9b08918 crossref_primary_10_1063_1_3548546 crossref_primary_10_1088_0953_8984_27_12_125003 crossref_primary_10_1002_cssc_201501439 crossref_primary_10_1039_D3NR00630A crossref_primary_10_1063_1_4886411 crossref_primary_10_1088_1361_6463_abe5e2 crossref_primary_10_1007_s10562_016_1925_0 crossref_primary_10_1016_j_carbon_2016_01_011 crossref_primary_10_1016_S1872_2067_15_60828_2 crossref_primary_10_1002_adma_201603937 crossref_primary_10_1021_ja5054847 crossref_primary_10_1002_smtd_201900683 crossref_primary_10_1021_nn303548z crossref_primary_10_1134_S1063782618090130 crossref_primary_10_1088_1674_1056_22_9_096803 crossref_primary_10_1021_acsnano_5b03987 crossref_primary_10_1021_nn402178u crossref_primary_10_1021_acs_nanolett_0c03254 crossref_primary_10_7498_aps_71_20212407 crossref_primary_10_1073_pnas_1701280114 crossref_primary_10_1039_C4CP04025B crossref_primary_10_1039_c3cp52115j crossref_primary_10_1039_c3cp53802h crossref_primary_10_1038_ncomms12168 crossref_primary_10_1088_2053_1583_ab056e crossref_primary_10_1021_acsami_7b08717 crossref_primary_10_1016_j_synthmet_2019_03_016 crossref_primary_10_1016_j_surfin_2023_103735 crossref_primary_10_1021_acs_jpcc_3c07828 crossref_primary_10_1039_D2RA06079E crossref_primary_10_1039_C5NR04976H crossref_primary_10_1021_acs_jpcc_1c10216 crossref_primary_10_1039_c3cp52431k crossref_primary_10_1073_pnas_1416368111 crossref_primary_10_1039_C6CS00424E crossref_primary_10_1103_PhysRevB_96_155441 crossref_primary_10_1007_s12274_017_1512_8 crossref_primary_10_1007_s12274_014_0639_0 crossref_primary_10_1007_s12274_018_2184_8 crossref_primary_10_1016_j_comptc_2013_07_029 crossref_primary_10_1103_PhysRevB_106_L201402 crossref_primary_10_1016_j_apsusc_2019_144674 crossref_primary_10_1021_acs_jpcc_1c10289 crossref_primary_10_1063_1_4793427 crossref_primary_10_1021_acsami_0c12437 crossref_primary_10_1002_smll_202408116 crossref_primary_10_1021_jp4043045 crossref_primary_10_1038_srep00707 crossref_primary_10_1002_pssb_201451466 crossref_primary_10_1016_j_coelec_2019_06_006 crossref_primary_10_1016_j_jelechem_2015_08_013 crossref_primary_10_1103_PhysRevB_93_161402 crossref_primary_10_3390_catal10010053 crossref_primary_10_1016_j_carbon_2016_01_100 crossref_primary_10_1016_j_jcis_2019_03_015 crossref_primary_10_1088_0953_8984_27_30_303002 crossref_primary_10_1021_acs_nanolett_5b00098 crossref_primary_10_1088_1367_2630_13_11_113028 crossref_primary_10_1103_PhysRevB_84_125423 crossref_primary_10_3934_matersci_2016_4_1426 crossref_primary_10_1016_j_apcatb_2020_119537 crossref_primary_10_1038_srep02430 crossref_primary_10_1021_jp111962k crossref_primary_10_1039_D3FD00178D crossref_primary_10_1021_acs_jpcc_5b10017 crossref_primary_10_1021_nl402797j crossref_primary_10_1021_nl302398m crossref_primary_10_1016_j_susc_2015_06_019 crossref_primary_10_7498_aps_68_20190447 crossref_primary_10_1021_acsnano_2c05570 crossref_primary_10_1021_jz400400u crossref_primary_10_1021_acsnano_2c09253 crossref_primary_10_1002_smll_201600666 crossref_primary_10_1016_j_apsadv_2021_100138 crossref_primary_10_1021_acsami_7b08665 crossref_primary_10_1016_j_susc_2017_10_026 crossref_primary_10_1021_acs_jpcc_6b02851 crossref_primary_10_1016_j_carbon_2015_11_002 crossref_primary_10_1103_PhysRevMaterials_1_053406 crossref_primary_10_1088_2053_1583_aa702c crossref_primary_10_1016_j_apcatb_2014_04_018 crossref_primary_10_1063_1_4790382 crossref_primary_10_1080_00268976_2016_1162863 crossref_primary_10_1038_srep11378 crossref_primary_10_1088_1361_648X_aaf2ce crossref_primary_10_1016_j_jssc_2011_07_001 crossref_primary_10_1002_adfm_201203426 crossref_primary_10_1088_1674_1056_accff4 crossref_primary_10_1016_j_apsusc_2021_150866 crossref_primary_10_7567_JJAP_54_050301 crossref_primary_10_1007_s11434_015_0875_z crossref_primary_10_1038_ncomms6062 crossref_primary_10_1016_j_carbon_2015_01_029 crossref_primary_10_1016_j_apsusc_2017_07_279 crossref_primary_10_1016_j_carbon_2021_01_120 crossref_primary_10_1021_jp411979x crossref_primary_10_1016_j_apsusc_2022_154584 crossref_primary_10_1103_PhysRevB_91_041406 crossref_primary_10_1088_0953_8984_25_42_423201 crossref_primary_10_1021_acsnano_7b02686 crossref_primary_10_1039_D3CP01285A crossref_primary_10_1021_ja110962h crossref_primary_10_1039_C3NR03849A crossref_primary_10_1016_j_carbon_2018_06_014 crossref_primary_10_1016_j_carbon_2015_09_063 crossref_primary_10_1021_cm502603n crossref_primary_10_1007_s12598_021_01792_3 crossref_primary_10_1016_j_matpr_2019_08_213 crossref_primary_10_1039_C6CP03660K crossref_primary_10_1039_D3CP04085B crossref_primary_10_1088_1674_1056_abe22c crossref_primary_10_1021_acs_iecr_8b02547 crossref_primary_10_1016_j_surfrep_2023_100586 crossref_primary_10_1021_acs_cgd_3c00902 crossref_primary_10_1021_acs_jpclett_5b01052 crossref_primary_10_1021_jp210206y crossref_primary_10_1021_nl203530t crossref_primary_10_1038_ncomms1818 crossref_primary_10_1021_ja3003809 crossref_primary_10_1021_acs_jpcc_3c02643 crossref_primary_10_1021_acs_jpcc_8b05370 crossref_primary_10_1002_anie_201200413 crossref_primary_10_1088_1361_648X_aba316 crossref_primary_10_1088_2053_1583_aa78c2 crossref_primary_10_1039_C8CP00877A crossref_primary_10_1103_PhysRevB_90_165403 crossref_primary_10_1039_D3MH00420A crossref_primary_10_1016_j_cattod_2020_02_006 crossref_primary_10_1021_jacs_2c04359 crossref_primary_10_1021_cm101568z crossref_primary_10_1002_cphc_202400586 crossref_primary_10_1088_1361_6528_aad019 crossref_primary_10_1021_acs_jpclett_5b01841 crossref_primary_10_1103_PhysRevB_90_235437 crossref_primary_10_1088_2053_1583_ab111e crossref_primary_10_1016_j_carbon_2017_12_117 crossref_primary_10_1021_nn102467s crossref_primary_10_1021_ja4121988 crossref_primary_10_7498_aps_66_216803 crossref_primary_10_2174_1385272826666220621141128 crossref_primary_10_1007_s12274_018_2194_6 crossref_primary_10_1103_PhysRevB_97_085407 crossref_primary_10_1021_acs_jpclett_8b00586 crossref_primary_10_1088_2053_1591_aaabca crossref_primary_10_1016_j_pmatsci_2020_100652 crossref_primary_10_1021_acs_jpcc_8b10574 crossref_primary_10_1088_0953_8984_26_44_443001 crossref_primary_10_1038_s41598_017_18226_9 crossref_primary_10_7567_APEX_8_035101 crossref_primary_10_1016_j_susc_2014_11_001 crossref_primary_10_1021_acsnano_8b04874 crossref_primary_10_1088_2053_1583_1_2_025002 crossref_primary_10_1016_j_surfrep_2011_12_001 crossref_primary_10_1016_j_susc_2018_03_017 crossref_primary_10_1039_C7RA04519K crossref_primary_10_1021_acs_nanolett_6b02052 crossref_primary_10_1039_C8CC02880J crossref_primary_10_1016_j_jallcom_2024_175133 crossref_primary_10_1088_2516_1075_abd957 crossref_primary_10_1002_slct_201803626 crossref_primary_10_1021_nn3040588 crossref_primary_10_1021_jp406415h crossref_primary_10_1002_admi_202101598 crossref_primary_10_1039_C4NR04956J crossref_primary_10_1002_ange_201200413 crossref_primary_10_1088_0953_8984_25_9_094001 crossref_primary_10_1016_j_apsusc_2017_03_240 crossref_primary_10_1021_nn4008862 crossref_primary_10_1088_1361_6528_ab375e crossref_primary_10_1016_j_susc_2013_07_008 crossref_primary_10_1021_acs_nanolett_5b01205 crossref_primary_10_1038_srep20285 crossref_primary_10_1063_1_5098351 crossref_primary_10_1016_j_apsusc_2013_11_117 crossref_primary_10_1016_j_compositesa_2016_04_011 crossref_primary_10_1088_2053_1583_abe777 crossref_primary_10_1007_s12274_013_0365_z crossref_primary_10_1016_j_jhazmat_2016_08_019 crossref_primary_10_3390_c8040062 crossref_primary_10_1039_C9CC04225C crossref_primary_10_1021_acs_chemmater_6b00053 crossref_primary_10_1021_nl501900x crossref_primary_10_1016_j_gee_2018_06_003 crossref_primary_10_1021_acs_jpcc_6b11112 crossref_primary_10_1021_jp400838j crossref_primary_10_1002_chem_201600901 crossref_primary_10_1039_c3ta14546h crossref_primary_10_1016_j_carbon_2013_10_033 crossref_primary_10_1016_j_carbon_2016_01_079 crossref_primary_10_1002_smll_201501766 crossref_primary_10_1088_0953_8984_24_47_475305 crossref_primary_10_7498_aps_64_078101 |
Cites_doi | 10.1103/PhysRevLett.101.157601 10.1103/PhysRevB.50.17487 10.1021/nl901040v 10.1021/jp810514u 10.1002/anie.200602223 10.1039/b801785a 10.1038/nnano.2009.292 10.1016/0039-6028(75)90409-4 10.1038/nnano.2008.172 10.1103/PhysRevB.54.17850 10.1038/nature04233 10.1126/science.1171245 10.1021/nl801457b 10.1103/PhysRevB.77.155303 10.1103/PhysRevLett.77.3371 10.1103/PhysRevLett.101.026803 10.1021/nl803316h 10.1016/S0039-6028(97)00604-3 10.1103/PhysRevB.59.4680 10.1103/PhysRevB.76.075429 10.1103/PhysRevB.79.045407 10.1038/nature06037 10.1021/nl0808684 10.1021/nl801827v 10.1038/nmat2166 10.1103/PhysRevLett.101.086402 10.1103/PhysRevB.80.245411 10.1016/0039-6028(89)90462-7 10.1073/pnas.0703337104 10.1038/nature07719 10.1063/1.3106057 10.1016/j.ssc.2009.02.049 10.1103/PhysRevLett.103.246804 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
CorporateAuthor | Brookhaven National Laboratory (BNL) National Synchrotron Light Source |
CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL) National Synchrotron Light Source |
DBID | AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1021/ja102398n |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Tuning Metal−Graphene Interaction by Reactive Intercalation |
EISSN | 1520-5126 |
EndPage | 8179 |
ExternalDocumentID | 1019833 20527937 10_1021_ja102398n d091553423 |
Genre | Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYOK AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 ABFRP OTOTI ZCG |
ID | FETCH-LOGICAL-a341t-9097da48ccb08e23d529ceacd000b4a539fce32de8356873e9288c537ed03abd3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu May 18 22:22:21 EDT 2023 Fri Jul 11 08:02:16 EDT 2025 Mon Jul 21 05:40:50 EDT 2025 Thu Apr 24 22:50:50 EDT 2025 Tue Jul 01 04:15:00 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a341t-9097da48ccb08e23d529ceacd000b4a539fce32de8356873e9288c537ed03abd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 BNL-95679-2011-JA DE-AC02-98CH10886 DOE - OFFICE OF SCIENCE |
PMID | 20527937 |
PQID | 733260541 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1019833 proquest_miscellaneous_733260541 pubmed_primary_20527937 crossref_primary_10_1021_ja102398n crossref_citationtrail_10_1021_ja102398n acs_journals_10_1021_ja102398n |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-06-16 |
PublicationDateYYYYMMDD | 2010-06-16 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Tombros N. (ref8/cit8) 2007; 448 Lin Y.-M. (ref2/cit2) 2009; 9 Novoselov K. S. (ref1/cit1) 2005; 438 ref18/cit18 Emtsev K. V. (ref12/cit12) 2008; 77 Zhou S. Y. (ref16/cit16) 2008; 101 Sutter E. A. (ref28/cit28) 2009; 94 Varykhalov A. (ref9/cit9) 2008; 101 Kim K. S. (ref5/cit5) 2009; 457 Riedl C. (ref15/cit15) 2009; 103 Wang B. (ref24/cit24) 2008; 10 Sutter P. (ref35/cit35) 2009; 80 Nilekar A. U. (ref33/cit33) 2006; 45 Madey T. E. (ref19/cit19) 1975; 48 Trost J. (ref36/cit36) 1996; 54 Lee E. J. H. (ref7/cit7) 2008; 3 Marchini S. (ref27/cit27) 2007; 76 Stampfl C. (ref31/cit31) 1996; 77 Stolyarova E. (ref29/cit29) 2007; 104 Sutter P. (ref20/cit20) 2009; 9 Pfnür H. (ref22/cit22) 1989; 220 Bunch J. S. (ref34/cit34) 2008; 8 Li X. (ref6/cit6) 2009; 324 Reuter K. (ref26/cit26) 2007 Heske C. (ref25/cit25) 1999; 59 Zhang H. (ref21/cit21) 2009; 113 Giovannetti G. (ref11/cit11) 2008; 101 Feigel’man M. V. (ref10/cit10) 2009; 149 Reina A. (ref37/cit37) 2009; 9 Brugger T. (ref23/cit23) 2009; 79 Oshima C. (ref13/cit13) 1997; 9 Nagashima A. (ref14/cit14) 1994; 50 Sutter P. W. (ref4/cit4) 2008; 7 Liu L. (ref17/cit17) 2008; 8 ref30/cit30 Xia F. (ref3/cit3) 2009; 4 Wintterlin J. (ref32/cit32) 1997; 394 |
References_xml | – volume: 101 start-page: 157601 year: 2008 ident: ref9/cit9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.157601 – volume: 50 start-page: 17487 year: 1994 ident: ref14/cit14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17487 – volume: 9 start-page: 2654 year: 2009 ident: ref20/cit20 publication-title: Nano Lett. doi: 10.1021/nl901040v – volume: 113 start-page: 8296 year: 2009 ident: ref21/cit21 publication-title: J. Phys. Chem. C doi: 10.1021/jp810514u – volume: 45 start-page: 7046 year: 2006 ident: ref33/cit33 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200602223 – volume: 10 start-page: 3530 year: 2008 ident: ref24/cit24 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b801785a – volume: 4 start-page: 839 year: 2009 ident: ref3/cit3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.292 – volume: 48 start-page: 304 year: 1975 ident: ref19/cit19 publication-title: Surf. Sci. doi: 10.1016/0039-6028(75)90409-4 – volume: 3 start-page: 486 year: 2008 ident: ref7/cit7 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.172 – volume: 54 start-page: 17850 year: 1996 ident: ref36/cit36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.17850 – volume: 438 start-page: 197 year: 2005 ident: ref1/cit1 publication-title: Nature doi: 10.1038/nature04233 – volume: 324 start-page: 1312 year: 2009 ident: ref6/cit6 publication-title: Science doi: 10.1126/science.1171245 – volume: 8 start-page: 2458 year: 2008 ident: ref34/cit34 publication-title: Nano Lett. doi: 10.1021/nl801457b – volume: 77 start-page: 155303 year: 2008 ident: ref12/cit12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.155303 – ident: ref18/cit18 – volume: 77 start-page: 3371 year: 1996 ident: ref31/cit31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3371 – volume: 101 start-page: 026803 year: 2008 ident: ref11/cit11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.026803 – volume: 9 start-page: 1 year: 1997 ident: ref13/cit13 publication-title: J. Phys: Condens. Matter – volume: 9 start-page: 422 year: 2009 ident: ref2/cit2 publication-title: Nano Lett. doi: 10.1021/nl803316h – volume: 394 start-page: 159 year: 1997 ident: ref32/cit32 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(97)00604-3 – volume: 59 start-page: 4680 year: 1999 ident: ref25/cit25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.4680 – volume-title: Nanocatalysis year: 2007 ident: ref26/cit26 – volume: 76 start-page: 075429 year: 2007 ident: ref27/cit27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.075429 – volume: 79 start-page: 045407 year: 2009 ident: ref23/cit23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.045407 – volume: 448 start-page: 571 year: 2007 ident: ref8/cit8 publication-title: Nature doi: 10.1038/nature06037 – volume: 8 start-page: 1965 year: 2008 ident: ref17/cit17 publication-title: Nano Lett. doi: 10.1021/nl0808684 – volume: 9 start-page: 30 year: 2009 ident: ref37/cit37 publication-title: Nano Lett. doi: 10.1021/nl801827v – volume: 7 start-page: 406 year: 2008 ident: ref4/cit4 publication-title: Nat. Mater. doi: 10.1038/nmat2166 – volume: 101 start-page: 086402 year: 2008 ident: ref16/cit16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.086402 – volume: 80 start-page: 245411 year: 2009 ident: ref35/cit35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.245411 – volume: 220 start-page: 43 year: 1989 ident: ref22/cit22 publication-title: Surf. Sci. doi: 10.1016/0039-6028(89)90462-7 – volume: 104 start-page: 9209 year: 2007 ident: ref29/cit29 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0703337104 – volume: 457 start-page: 706 year: 2009 ident: ref5/cit5 publication-title: Nature doi: 10.1038/nature07719 – volume: 94 start-page: 133101 year: 2009 ident: ref28/cit28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3106057 – volume: 149 start-page: 1101 year: 2009 ident: ref10/cit10 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2009.02.049 – ident: ref30/cit30 – volume: 103 start-page: 246804 year: 2009 ident: ref15/cit15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.246804 |
SSID | ssj0004281 |
Score | 2.4867218 |
Snippet | Intercalation of metal atoms is an established route for tuning the coupling of graphene to a substrate. The extension to reactive species such as oxygen would... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8175 |
SubjectTerms | ATOMS CHEMICAL REACTIONS CHEMISTRY CONES ELEVATORS ETCHING INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY MODIFICATIONS national synchrotron light source OXIDATION OXYGEN PROCESSING RUTHENIUM TUNING |
Title | Chemistry under Cover: Tuning Metal−Graphene Interaction by Reactive Intercalation |
URI | http://dx.doi.org/10.1021/ja102398n https://www.ncbi.nlm.nih.gov/pubmed/20527937 https://www.proquest.com/docview/733260541 https://www.osti.gov/biblio/1019833 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED5BGWDh_SiPygIGllSJnYfDVgUKQoIBisQWObZZQCmi6QC_gJmfyC_hLmkKiBY2K3Jed7bvO9_dZ4BDRPzaQxjgGNcoB_GtdOS9sA5XoTGBT5RQtA95eRWe3_oXd8HdDBxMieBz4gcidoFY5rMwx0MZkYfVSW6-ih-59GqMG8lQ1PRB328l06MHP0xPo49TaDqsLM1LdwlO6iKdKqvkoT0ssrZ-_c3Z-NeXL8PiCF6yTjUeVmDG5qswn9Snuq1Bb9xmVD72zBLK4TxmvSFtkLBLi2D84-39jHiscRlk5Y5hVfzAshd2bVW5QFbXUb-lYtfhtnvaS86d0ckKjkKrVTixG0dGoZp05krLhQl4rPEBBqWY-SoQ8b22ghuL-AxFLmyMStSBiKxxhcqM2IBG3s_tFrAooBpMRIlKSrRtVtqAYotaGhfbvm1CC0WfjmbGIC2D3hydjlo4TTiqtZLqES85HY_xOKnr_rjrU0XGManTDqk2RQRBNLia8oV0QalssRSiCazWeIrSpuiIym1_OEgjIci3870mbFYjYfwO7gaceAS3__uXHViosgtCxwt3oVE8D-0egpYia5WD9hMW1-Rp |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB7B9gAXoC0_ywK1EEhcgrJ2fhwkDmiBLoXlAIvELTi2ubTKIpIVWp6Ac499Fd6GJ2EmP0tbgXpC6i2KrMSxv8x8Y898BthAxq_bSAMc4xrlIL-VjrwW1uEqMMb3SBKK1iF7p0H3wvt26V9OwK-6FgY7keGTsmIT_0VdgGSCSGQgkmmVQHlsR3cYnmW7R_s4l5ucHx70O12nOkHAUWidcydyo9Ao7I5OXGm5MD6PNJoag4Yg8ZQvomttBTcWeUggQ2Ej7Kz2RWiNK1RiBD53Ej4g6eEU2O11zl9qLrls19Q6lIGoVYt-7yp5PJ394fEaA_xz32azhVc7nIXH8XgUySzft4d5sq3v_5KK_D8HbA5mKjLN9kr0f4QJm36CqU59ht1n6I-vGRXL3bIOZazusP6QloNYz2Lo8fTw8yupdqPRZ8X6aFnqwZIRO7OqcAflfURzAeN5uHiXj1qARjpI7RKw0KeKU-TESkr05FZan3ZStTQuXnu2CWs4F3FlB7K42OLnGGLVk9GErRoMsa5U2OkwkB-vNV0fN70ppUdea9QiRMXIl0j0V1N2lM4pcS-SQjSB1UCLcbRpL0ildjDM4lAIimS9dhMWSwCO38FdRDuy1uV_fcsXmOr2eyfxydHpcQumy7yKwGkHK9DIb4d2FelanqwV_w2Dq_fG3TNWJEfU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbhMxEB6VVIJeoOWnpGmLhUDistHG3h8vEocobWgprRCkUm6L13YurTZRdqMqfYKe-wB9Fd6FJ2Fmf0JBQZwq9bZaWV6vPZ75xjPzGeANIn7dQRjgGNcoB_GtdORIWIerwBjfI0ooOoc8PgkOTr1PQ3-4Ajd1LQwOIsOesiKIT7t6YkYVwwBRBRHRQCTTKonyyM4v0EXLPhzu4Xq-5by_P-gdONUtAo5CDZ07kRuFRuGQdOJKy4XxeaRR3RhUBomnfBGNtBXcWMQigQyFjXDA2hehNa5QiRHY7wNYpfAgOXfd3rffdZdcdmp4HcpA1MxFt4dKVk9nf1i9xhh3778RbWHZ-k_gx2JOioSWs_YsT9r68i-6yPs7aevwuALVrFvugg1YselTeNSr77J7BoPFM6OiuSnrUebqezaY0bEQO7bogvy8uv5I7N2o_FlxTlqWfLBkzr5aVZiF8j1KdSHOz-H0Tn7qBTTScWpfAgt9qjxFbKykRItupfUpoqqlcfHZs03YxfWIK32QxUWon6OrVS9GE97VAhHrio2dLgU5X9b09aLppKQgWdaoRVIVI24i8l9NWVI6pwS-SArRBFYLW4yzTTEhldrxLItDIcij9TpN2CyFcPEN7vqc2BO3_vcvr-Dhl71-_Pnw5KgFa2V6ReB0gm1o5NOZ3UHUlie7xdZh8P2uxe4XP6JKVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemistry+under+cover%3A+tuning+metal-graphene+interaction+by+reactive+intercalation&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sutter%2C+Peter&rft.au=Sadowski%2C+Jerzy+T&rft.au=Sutter%2C+Eli+A&rft.date=2010-06-16&rft.eissn=1520-5126&rft.volume=132&rft.issue=23&rft.spage=8175&rft_id=info:doi/10.1021%2Fja102398n&rft_id=info%3Apmid%2F20527937&rft.externalDocID=20527937 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |