Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy

RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like...

Full description

Saved in:
Bibliographic Details
Published inMolecular pharmaceutics Vol. 19; no. 12; pp. 4506 - 4526
Main Authors Yadav, Dokkari Nagalaxmi, Ali, Mohammad Sadik, Thanekar, Ajinkya Madhukar, Pogu, Sunil Venkanna, Rengan, Aravind Kumar
Format Journal Article
LanguageEnglish
Published American Chemical Society 05.12.2022
Subjects
Online AccessGet full text
ISSN1543-8384
1543-8392
1543-8392
DOI10.1021/acs.molpharmaceut.2c00811

Cover

Loading…
Abstract RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021.
AbstractList RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021.
RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021.RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021.
Author Pogu, Sunil Venkanna
Rengan, Aravind Kumar
Thanekar, Ajinkya Madhukar
Ali, Mohammad Sadik
Yadav, Dokkari Nagalaxmi
AuthorAffiliation Department of Biomedical Engineering
AuthorAffiliation_xml – name: Department of Biomedical Engineering
Author_xml – sequence: 1
  givenname: Dokkari Nagalaxmi
  orcidid: 0000-0001-9582-3947
  surname: Yadav
  fullname: Yadav, Dokkari Nagalaxmi
– sequence: 2
  givenname: Mohammad Sadik
  surname: Ali
  fullname: Ali, Mohammad Sadik
– sequence: 3
  givenname: Ajinkya Madhukar
  surname: Thanekar
  fullname: Thanekar, Ajinkya Madhukar
– sequence: 4
  givenname: Sunil Venkanna
  surname: Pogu
  fullname: Pogu, Sunil Venkanna
– sequence: 5
  givenname: Aravind Kumar
  orcidid: 0000-0003-3994-6760
  surname: Rengan
  fullname: Rengan, Aravind Kumar
  email: aravind@bme.iith.ac.in
BookMark eNqNkE1rAjEQhkOxULX9D-mtl7XJZj-ypyL2E8SC1fOSzU5qZDfZJlHw33dFKbSnnmYY3ueFeUZoYKwBhG4pmVAS03sh_aS1TbcRrhUSdmESS0I4pRdoSNOERZwV8eBn58kVGnm_JSRO0pgN0XoJEkzA03ovjIS23z3WBocN4Efw-tNgq_BCGFtDo_fgDvjj4AO0_nj3ermYYmUdnh1ph1cbcKI7XKNLJRoPN-c5Ruvnp9XsNZq_v7zNpvNIsISESKWKFVmVcCYzlnLFZF5zKFgBVV5BSjNGiCSiioGnRDCS1gpkTqu8UFldsZqN0d2pt3P2awc-lK32EppGGLA7X8Z5_zHnCSN99OEUlc5670CVUgcRtDXBCd2UlJRHoWUvtPwltDwL7RuKPw2d061wh3-x6Yk9RrZ250yv5R_cN9OZmHA
CitedBy_id crossref_primary_10_2174_0113892002339055241211050131
crossref_primary_10_1002_mabi_202300362
crossref_primary_10_1007_s11356_022_24879_5
crossref_primary_10_1021_acs_molpharmaceut_2c00755
crossref_primary_10_1021_acs_molpharmaceut_3c00826
crossref_primary_10_1021_acsomega_4c03055
crossref_primary_10_1080_15257770_2024_2347499
crossref_primary_10_1021_cbmi_3c00011
crossref_primary_10_1021_acsabm_3c00711
crossref_primary_10_3390_ijms25168888
crossref_primary_10_1016_j_drudis_2024_103923
crossref_primary_10_1002_mba2_70004
crossref_primary_10_1002_cbic_202300633
crossref_primary_10_1016_j_ijbiomac_2024_137317
crossref_primary_10_1016_j_onano_2024_100214
crossref_primary_10_3390_pharmaceutics15071936
crossref_primary_10_1016_j_cellsig_2025_111605
crossref_primary_10_1021_acs_molpharmaceut_4c00502
crossref_primary_10_1080_03639045_2024_2404979
crossref_primary_10_1016_j_jddst_2025_106768
crossref_primary_10_1021_acsnano_4c11259
Cites_doi 10.1021/acsami.9b20071
10.1016/j.colsurfa.2019.124054
10.1186/s12943-017-0683-y
10.3390/molecules24142570
10.1007/s10439-005-9072-6
10.1007/s00277-019-03713-y
10.1021/acs.biomac.0c01253
10.1021/nn502125h
10.3322/caac.21551
10.1021/acsami.1c18053
10.1016/j.bioactmat.2020.08.019
10.1016/j.jconrel.2020.02.013
10.1038/mt.2010.85
10.1021/bc500280q
10.1021/jacs.8b10021
10.1021/acs.bioconjchem.8b00732
10.1016/j.jconrel.2021.01.001
10.1021/acsnano.0c02633
10.1016/j.cclet.2020.09.010
10.1021/acs.molpharmaceut.9b01271
10.1021/acscombsci.0c00099
10.1371/journal.pone.0122581
10.1016/j.jconrel.2020.01.012
10.1021/acsami.9b21385
10.2147/IJN.S313339
10.1021/acsnano.0c04035
10.1021/acsami.0c13023
10.1007/s12274-017-1946-z
10.1016/j.colsurfb.2017.06.022
10.1021/acsnano.7b02044
10.1021/acs.molpharmaceut.6b00646
10.1039/D0CC01848A
10.1016/j.biomaterials.2019.119329
10.1021/nn203503h
10.1007/s13346-020-00790-9
10.1021/acs.molpharmaceut.0c00087
10.1016/j.biomaterials.2020.120304
10.1021/acsnano.8b05151
10.1021/acsbiomaterials.0c00231
10.1002/adtp.201900136
10.1016/j.omtn.2017.06.014
10.1016/j.ejps.2013.10.011
10.1021/acsami.0c06186
10.1016/j.ijpharm.2016.06.127
10.1016/j.colsurfb.2020.111491
10.1039/C6TB03116A
10.1016/j.biomaterials.2019.119463
10.1016/j.lfs.2020.118886
10.1016/j.imlet.2016.11.013
10.1016/j.omtn.2019.10.045
10.1021/acs.bioconjchem.5b00249
10.1021/mp300449t
10.3109/10717544.2014.973082
10.1016/j.ijpharm.2013.08.069
10.1021/acsabm.0c01014
10.1021/acs.molpharmaceut.0c01242
10.1021/acs.molpharmaceut.0c00052
10.1021/acs.nanolett.9b04957
10.1111/1744-7917.12822
10.1021/acs.accounts.9b00101
10.1186/s12951-021-00781-z
10.1126/sciadv.abb0616
10.1016/j.jconrel.2015.02.003
10.1021/acs.nanolett.6b02915
10.1038/gt.2011.146
10.1021/acsami.0c09494
10.1021/acsnano.0c08022
10.1016/j.msec.2020.111055
10.1021/acs.biomac.8b00922
10.2147/IJN.S115727
10.1039/C7NR08644J
10.1021/acsnano.8b02200
10.1021/acsami.0c07353
10.1016/j.xphs.2017.04.075
10.1016/j.ejps.2020.105641
10.3390/polym12020445
10.1038/s42003-020-0817-4
10.1021/acsabm.9b01074
10.1021/acsnano.9b03978
10.2147/IJN.S200253
10.1038/mt.2012.185
10.1016/j.msec.2020.111494
10.1016/j.lfs.2021.119430
10.1007/s12274-020-3216-8
10.2147/IJN.S126310
10.3390/nano7040077
10.1021/mp800032f
10.1021/acsbiomaterials.0c01511
10.1021/acs.biomac.9b01061
10.1021/acs.nanolett.0c04468
10.1021/acsabm.0c00631
10.1016/j.msec.2019.110245
10.1073/pnas.1915907117
10.1016/j.omtm.2018.09.002
10.1016/j.cossms.2012.09.001
10.1038/s41392-020-0207-x
10.1016/j.ijpharm.2019.06.030
10.1021/acssynbio.9b00349
10.1021/acsami.9b16637
10.1021/acs.molpharmaceut.0c00291
10.1016/j.cclet.2020.11.024
10.1021/acs.molpharmaceut.7b01093
10.1016/j.ejpb.2020.06.019
10.1021/acsami.0c06614
10.1038/s41598-018-25930-7
10.1002/cnr2.1271
10.1016/j.colsurfb.2019.110762
10.1021/acsnano.9b08460
10.1016/j.chphma.2022.01.001
10.1016/j.cej.2021.128545
10.1039/D0NR08024A
10.1101/339820
10.1080/10717544.2019.1582730
10.3390/molecules24010004
10.1038/s41392-017-0004-3
10.1021/acsami.0c17660
10.1021/acsami.6b14184
10.1021/acsami.0c00652
10.1093/nar/gkz553
10.1021/acs.molpharmaceut.0c00618
10.1016/j.jddst.2019.101403
10.1021/acsnano.0c05169
10.1016/j.ijpharm.2017.11.045
10.59566/IJBS.2017.13048
10.1080/21691401.2017.1307210
10.1073/pnas.1621240114
10.1021/acsomega.0c04605
10.1021/mp400448w
10.1016/j.jconrel.2019.12.032
10.1021/acsnano.0c07071
10.1002/VIW.20200111
10.1021/acs.molpharmaceut.9b01288
10.1002/jbm.a.36701
10.1021/acs.biomac.8b00918
10.1002/advs.201900582
10.1016/j.nano.2019.102128
10.1038/mtna.2015.23
10.1021/acsami.7b04971
10.1039/C9TB02764E
10.1016/j.ejphar.2021.174178
10.1021/acs.molpharmaceut.9b00826
10.1038/nbt.2612
10.1080/10717544.2020.1827085
10.2217/17435889.3.5.703
10.18632/oncotarget.7368
10.1021/acsnano.7b05528
10.1021/acsabm.9b01016
10.1021/acsbiomaterials.1c00582
10.1016/j.ijpharm.2011.08.014
10.1242/jcs.066399
10.1021/acsnano.8b07746
10.1177/0885328219886953
10.1038/nrd4333
10.1021/acsami.9b19373
10.1021/acsami.8b20810
10.1021/acsabm.0c00499
10.1021/acsami.7b17109
10.1038/s41427-018-0027-4
10.1021/acsami.0c04533
10.1021/acs.biomac.1c00744
10.1021/acsami.9b22781
10.1038/s41427-020-0216-9
10.1016/j.pdpdt.2022.102915
10.1016/j.lfs.2020.118847
10.1021/acsami.0c06608
10.1016/j.apmt.2019.100521
10.1016/j.canlet.2019.02.011
10.1021/acsami.9b21667
10.1021/acsabm.0c00503
10.1021/acsami.1c21775
10.1021/acsabm.1c00732
10.1016/j.molliq.2020.114726
10.2217/nnm.12.174
10.1021/acsami.0c06273
10.1016/j.jconrel.2017.10.025
10.1002/anie.201201390
10.1089/nat.2012.0389
10.1021/mp300293n
10.7150/thno.41228
10.1016/j.jconrel.2020.04.003
10.1126/sciadv.aaw6499
10.1021/acs.jpcc.6b06943
10.1371/journal.pone.0180578
10.1016/j.canlet.2020.08.045
10.1021/acsnano.0c06656
10.1016/j.jcis.2020.07.057
10.1369/0022155413484152
10.1021/acsnano.5b02358
10.1021/acs.nanolett.9b01660
10.1016/j.biomaterials.2020.120579
10.1021/acs.molpharmaceut.6b01150
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.molpharmaceut.2c00811
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1543-8392
EndPage 4526
ExternalDocumentID 10_1021_acs_molpharmaceut_2c00811
e01068967
GroupedDBID ---
-~X
123
4.4
53G
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED~
F5P
GGK
GNL
H~9
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a340t-f5f396b483c6358f3c7d8e939eb7be516300c0ab2e850a305dfec71b79f6db3d3
IEDL.DBID ACS
ISSN 1543-8384
1543-8392
IngestDate Fri Jul 11 03:58:04 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Tue Jul 01 04:33:53 EDT 2025
Wed Dec 07 03:10:45 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords siRNA delivery
RNAi
cancer
therapy
nanocarriers
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a340t-f5f396b483c6358f3c7d8e939eb7be516300c0ab2e850a305dfec71b79f6db3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3994-6760
0000-0001-9582-3947
PQID 2738488430
PQPubID 23479
PageCount 21
ParticipantIDs proquest_miscellaneous_2738488430
crossref_citationtrail_10_1021_acs_molpharmaceut_2c00811
crossref_primary_10_1021_acs_molpharmaceut_2c00811
acs_journals_10_1021_acs_molpharmaceut_2c00811
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-05
PublicationDateYYYYMMDD 2022-12-05
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-05
  day: 05
PublicationDecade 2020
PublicationTitle Molecular pharmaceutics
PublicationTitleAlternate Mol. Pharmaceutics
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref203/cit203
ref148/cit148
ref55/cit55
ref144/cit144
ref163/cit163
ref66/cit66
ref22/cit22
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref194/cit194
ref98/cit98
ref153/cit153
ref150/cit150
ref63/cit63
ref56/cit56
ref155/cit155
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
Dana H. (ref31/cit31) 2017; 13
ref82/cit82
ref147/cit147
ref145/cit145
ref21/cit21
ref166/cit166
ref164/cit164
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref40/cit40
ref131/cit131
ref161/cit161
ref142/cit142
ref15/cit15
ref180/cit180
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref114/cit114
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
Chhikara B. S. (ref39/cit39) 2019; 6
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref195/cit195
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref76/cit76
ref32/cit32
ref202/cit202
ref168/cit168
ref132/cit132
ref91/cit91
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref154/cit154
ref27/cit27
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref88/cit88
ref160/cit160
ref143/cit143
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref201/cit201
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref26/cit26
ref73/cit73
ref69/cit69
ref165/cit165
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref47/cit47
ref127/cit127
References_xml – ident: ref23/cit23
  doi: 10.1021/acsami.9b20071
– ident: ref157/cit157
  doi: 10.1016/j.colsurfa.2019.124054
– ident: ref124/cit124
  doi: 10.1186/s12943-017-0683-y
– ident: ref56/cit56
  doi: 10.3390/molecules24142570
– ident: ref201/cit201
  doi: 10.1007/s10439-005-9072-6
– ident: ref152/cit152
  doi: 10.1007/s00277-019-03713-y
– ident: ref58/cit58
– ident: ref198/cit198
  doi: 10.1021/acs.biomac.0c01253
– ident: ref91/cit91
  doi: 10.1021/nn502125h
– ident: ref2/cit2
  doi: 10.3322/caac.21551
– ident: ref37/cit37
  doi: 10.1021/acsami.1c18053
– ident: ref188/cit188
  doi: 10.1016/j.bioactmat.2020.08.019
– ident: ref196/cit196
  doi: 10.1016/j.jconrel.2020.02.013
– ident: ref92/cit92
  doi: 10.1038/mt.2010.85
– ident: ref172/cit172
  doi: 10.1021/bc500280q
– ident: ref143/cit143
  doi: 10.1021/jacs.8b10021
– ident: ref71/cit71
  doi: 10.1021/acs.bioconjchem.8b00732
– ident: ref61/cit61
  doi: 10.1016/j.jconrel.2021.01.001
– ident: ref154/cit154
  doi: 10.1021/acsnano.0c02633
– ident: ref4/cit4
  doi: 10.1016/j.cclet.2020.09.010
– ident: ref164/cit164
  doi: 10.1021/acs.molpharmaceut.9b01271
– ident: ref54/cit54
  doi: 10.1021/acscombsci.0c00099
– ident: ref68/cit68
  doi: 10.1371/journal.pone.0122581
– ident: ref102/cit102
  doi: 10.1016/j.jconrel.2020.01.012
– ident: ref169/cit169
  doi: 10.1021/acsami.9b21385
– ident: ref88/cit88
  doi: 10.2147/IJN.S313339
– ident: ref105/cit105
  doi: 10.1021/acsnano.0c04035
– ident: ref118/cit118
  doi: 10.1021/acsami.0c13023
– ident: ref129/cit129
  doi: 10.1007/s12274-017-1946-z
– ident: ref123/cit123
  doi: 10.1016/j.colsurfb.2017.06.022
– ident: ref179/cit179
  doi: 10.1021/acsnano.7b02044
– ident: ref108/cit108
  doi: 10.1021/acs.molpharmaceut.6b00646
– ident: ref185/cit185
  doi: 10.1039/D0CC01848A
– ident: ref5/cit5
  doi: 10.1016/j.biomaterials.2019.119329
– ident: ref84/cit84
  doi: 10.1021/nn203503h
– ident: ref130/cit130
  doi: 10.1007/s13346-020-00790-9
– ident: ref160/cit160
  doi: 10.1021/acs.molpharmaceut.0c00087
– ident: ref109/cit109
  doi: 10.1016/j.biomaterials.2020.120304
– ident: ref72/cit72
  doi: 10.1021/acsnano.8b05151
– ident: ref38/cit38
  doi: 10.1021/acsbiomaterials.0c00231
– ident: ref96/cit96
  doi: 10.1002/adtp.201900136
– ident: ref115/cit115
  doi: 10.1016/j.omtn.2017.06.014
– ident: ref112/cit112
  doi: 10.1016/j.ejps.2013.10.011
– ident: ref135/cit135
  doi: 10.1021/acsami.0c06186
– ident: ref151/cit151
  doi: 10.1016/j.ijpharm.2016.06.127
– ident: ref110/cit110
  doi: 10.1016/j.colsurfb.2020.111491
– ident: ref63/cit63
  doi: 10.1039/C6TB03116A
– ident: ref139/cit139
  doi: 10.1016/j.biomaterials.2019.119463
– ident: ref136/cit136
  doi: 10.1016/j.lfs.2020.118886
– ident: ref7/cit7
  doi: 10.1016/j.jconrel.2020.02.013
– ident: ref113/cit113
  doi: 10.1016/j.imlet.2016.11.013
– ident: ref161/cit161
  doi: 10.1016/j.omtn.2019.10.045
– ident: ref173/cit173
  doi: 10.1021/acs.bioconjchem.5b00249
– ident: ref106/cit106
  doi: 10.1021/mp300449t
– ident: ref90/cit90
  doi: 10.3109/10717544.2014.973082
– ident: ref127/cit127
  doi: 10.1016/j.ijpharm.2013.08.069
– ident: ref65/cit65
  doi: 10.1021/acsabm.0c01014
– ident: ref36/cit36
  doi: 10.1021/acs.molpharmaceut.0c01242
– ident: ref163/cit163
  doi: 10.1021/acs.molpharmaceut.0c00052
– ident: ref40/cit40
  doi: 10.1021/acs.nanolett.9b04957
– ident: ref67/cit67
  doi: 10.1111/1744-7917.12822
– ident: ref95/cit95
  doi: 10.1021/acs.accounts.9b00101
– ident: ref21/cit21
  doi: 10.1016/j.bioactmat.2020.08.019
– ident: ref75/cit75
  doi: 10.1186/s12951-021-00781-z
– ident: ref193/cit193
  doi: 10.1126/sciadv.abb0616
– ident: ref203/cit203
  doi: 10.1016/j.jconrel.2015.02.003
– ident: ref76/cit76
  doi: 10.1021/acs.nanolett.6b02915
– ident: ref200/cit200
  doi: 10.1038/gt.2011.146
– ident: ref18/cit18
  doi: 10.1021/acsami.0c09494
– ident: ref22/cit22
  doi: 10.1021/acsnano.0c08022
– ident: ref170/cit170
  doi: 10.1016/j.msec.2020.111055
– ident: ref126/cit126
  doi: 10.1021/acs.biomac.8b00922
– ident: ref89/cit89
  doi: 10.2147/IJN.S115727
– ident: ref191/cit191
  doi: 10.1039/C7NR08644J
– ident: ref178/cit178
  doi: 10.1021/acsnano.8b02200
– ident: ref11/cit11
  doi: 10.1021/acsami.0c07353
– ident: ref55/cit55
  doi: 10.1016/j.xphs.2017.04.075
– ident: ref121/cit121
  doi: 10.1016/j.ejps.2020.105641
– ident: ref131/cit131
  doi: 10.3390/polym12020445
– ident: ref50/cit50
  doi: 10.1038/s42003-020-0817-4
– ident: ref166/cit166
  doi: 10.1021/acsabm.9b01074
– ident: ref14/cit14
  doi: 10.1021/acsnano.9b03978
– ident: ref97/cit97
  doi: 10.2147/IJN.S200253
– ident: ref86/cit86
  doi: 10.1038/mt.2012.185
– ident: ref120/cit120
  doi: 10.1016/j.msec.2020.111494
– ident: ref33/cit33
  doi: 10.1016/j.lfs.2021.119430
– ident: ref141/cit141
  doi: 10.1007/s12274-020-3216-8
– ident: ref85/cit85
  doi: 10.2147/IJN.S126310
– ident: ref149/cit149
  doi: 10.3390/nano7040077
– ident: ref204/cit204
  doi: 10.1021/mp800032f
– ident: ref42/cit42
  doi: 10.1021/acsbiomaterials.0c01511
– ident: ref6/cit6
  doi: 10.1021/acs.biomac.9b01061
– ident: ref69/cit69
  doi: 10.1021/acs.nanolett.0c04468
– ident: ref26/cit26
  doi: 10.1021/acsabm.0c00631
– ident: ref147/cit147
  doi: 10.1016/j.msec.2019.110245
– ident: ref8/cit8
  doi: 10.1073/pnas.1915907117
– ident: ref28/cit28
  doi: 10.1016/j.omtm.2018.09.002
– ident: ref82/cit82
  doi: 10.1016/j.cossms.2012.09.001
– ident: ref9/cit9
  doi: 10.1038/s41392-020-0207-x
– ident: ref107/cit107
  doi: 10.1016/j.ijpharm.2019.06.030
– ident: ref25/cit25
  doi: 10.1021/acssynbio.9b00349
– ident: ref44/cit44
  doi: 10.1021/acsami.9b16637
– ident: ref138/cit138
  doi: 10.1021/acs.molpharmaceut.0c00291
– ident: ref137/cit137
  doi: 10.1016/j.cclet.2020.11.024
– ident: ref93/cit93
  doi: 10.1021/acs.molpharmaceut.7b01093
– ident: ref148/cit148
  doi: 10.1016/j.ejpb.2020.06.019
– ident: ref48/cit48
  doi: 10.1021/acsami.0c06614
– ident: ref100/cit100
  doi: 10.1038/s41598-018-25930-7
– ident: ref51/cit51
  doi: 10.1002/cnr2.1271
– ident: ref24/cit24
  doi: 10.1016/j.colsurfb.2019.110762
– ident: ref180/cit180
  doi: 10.1021/acsnano.9b08460
– ident: ref62/cit62
  doi: 10.1016/j.chphma.2022.01.001
– ident: ref99/cit99
  doi: 10.1016/j.cej.2021.128545
– ident: ref194/cit194
  doi: 10.1039/D0NR08024A
– ident: ref34/cit34
  doi: 10.1101/339820
– ident: ref64/cit64
  doi: 10.1080/10717544.2019.1582730
– ident: ref83/cit83
  doi: 10.3390/molecules24010004
– ident: ref165/cit165
  doi: 10.1038/s41392-017-0004-3
– ident: ref192/cit192
  doi: 10.1021/acsami.0c17660
– ident: ref104/cit104
  doi: 10.1021/acsami.6b14184
– ident: ref156/cit156
  doi: 10.1021/acsami.0c00652
– ident: ref32/cit32
  doi: 10.1093/nar/gkz553
– ident: ref189/cit189
  doi: 10.1021/acsami.0c13023
– ident: ref150/cit150
  doi: 10.1021/acs.molpharmaceut.0c00618
– ident: ref128/cit128
  doi: 10.1016/j.jddst.2019.101403
– ident: ref168/cit168
  doi: 10.1021/acsnano.0c05169
– ident: ref114/cit114
  doi: 10.1016/j.ijpharm.2017.11.045
– volume: 13
  start-page: 48
  issue: 2
  year: 2017
  ident: ref31/cit31
  publication-title: Int. J. Biomed Sci.
  doi: 10.59566/IJBS.2017.13048
– ident: ref111/cit111
  doi: 10.1080/21691401.2017.1307210
– ident: ref66/cit66
  doi: 10.1073/pnas.1621240114
– ident: ref183/cit183
  doi: 10.1021/acsomega.0c04605
– ident: ref175/cit175
  doi: 10.1021/mp400448w
– ident: ref132/cit132
  doi: 10.1016/j.jconrel.2019.12.032
– ident: ref133/cit133
  doi: 10.1021/acsnano.0c07071
– ident: ref13/cit13
  doi: 10.1002/VIW.20200111
– ident: ref153/cit153
  doi: 10.1021/acs.molpharmaceut.9b01288
– ident: ref144/cit144
  doi: 10.1002/jbm.a.36701
– ident: ref101/cit101
  doi: 10.1021/acs.biomac.8b00918
– ident: ref53/cit53
  doi: 10.1002/advs.201900582
– ident: ref87/cit87
  doi: 10.1016/j.nano.2019.102128
– ident: ref46/cit46
  doi: 10.1038/mtna.2015.23
– ident: ref174/cit174
  doi: 10.1021/acsami.7b04971
– ident: ref190/cit190
  doi: 10.1039/C9TB02764E
– ident: ref35/cit35
  doi: 10.1016/j.ejphar.2021.174178
– ident: ref41/cit41
  doi: 10.1021/acs.molpharmaceut.9b00826
– ident: ref70/cit70
  doi: 10.1038/nbt.2612
– ident: ref158/cit158
  doi: 10.1080/10717544.2020.1827085
– ident: ref199/cit199
  doi: 10.2217/17435889.3.5.703
– ident: ref80/cit80
  doi: 10.18632/oncotarget.7368
– ident: ref142/cit142
  doi: 10.1021/acsnano.7b05528
– ident: ref1/cit1
  doi: 10.1021/acsabm.9b01016
– ident: ref59/cit59
  doi: 10.1021/acsbiomaterials.1c00582
– ident: ref74/cit74
  doi: 10.1016/j.ijpharm.2011.08.014
– ident: ref202/cit202
  doi: 10.1242/jcs.066399
– ident: ref186/cit186
  doi: 10.1021/acsnano.0c08022
– ident: ref3/cit3
  doi: 10.1021/acsnano.8b07746
– ident: ref125/cit125
  doi: 10.1177/0885328219886953
– ident: ref81/cit81
  doi: 10.1038/nrd4333
– ident: ref117/cit117
  doi: 10.1021/acsami.9b19373
– ident: ref177/cit177
  doi: 10.1021/acsami.8b20810
– ident: ref181/cit181
  doi: 10.1021/acsabm.0c00499
– ident: ref47/cit47
  doi: 10.1021/acsami.7b17109
– ident: ref73/cit73
  doi: 10.1038/s41427-018-0027-4
– ident: ref30/cit30
  doi: 10.1021/acsami.0c04533
– ident: ref16/cit16
  doi: 10.1021/acs.biomac.1c00744
– ident: ref12/cit12
  doi: 10.1021/acsami.9b22781
– ident: ref20/cit20
  doi: 10.1038/s41427-020-0216-9
– ident: ref15/cit15
  doi: 10.1016/j.pdpdt.2022.102915
– ident: ref119/cit119
  doi: 10.1016/j.lfs.2020.118847
– ident: ref49/cit49
  doi: 10.1021/acsami.0c06608
– ident: ref52/cit52
  doi: 10.1016/j.apmt.2019.100521
– ident: ref10/cit10
  doi: 10.1016/j.canlet.2019.02.011
– ident: ref140/cit140
  doi: 10.1021/acsami.9b21667
– ident: ref197/cit197
  doi: 10.1021/acsabm.0c00503
– ident: ref43/cit43
  doi: 10.1021/acsami.1c21775
– ident: ref45/cit45
  doi: 10.1021/acsabm.1c00732
– ident: ref182/cit182
  doi: 10.1016/j.molliq.2020.114726
– ident: ref94/cit94
  doi: 10.2217/nnm.12.174
– volume: 6
  start-page: 47
  year: 2019
  ident: ref39/cit39
  publication-title: J. Mater. NanoSci.
– ident: ref162/cit162
  doi: 10.1021/acsami.0c06273
– ident: ref29/cit29
  doi: 10.1016/j.jconrel.2017.10.025
– ident: ref122/cit122
  doi: 10.1002/anie.201201390
– ident: ref98/cit98
  doi: 10.1089/nat.2012.0389
– ident: ref78/cit78
  doi: 10.1021/mp300293n
– ident: ref195/cit195
  doi: 10.7150/thno.41228
– ident: ref145/cit145
  doi: 10.1016/j.jconrel.2020.04.003
– ident: ref60/cit60
  doi: 10.1126/sciadv.aaw6499
– ident: ref171/cit171
  doi: 10.1021/acs.jpcc.6b06943
– ident: ref79/cit79
  doi: 10.1371/journal.pone.0180578
– ident: ref155/cit155
  doi: 10.1016/j.canlet.2020.08.045
– ident: ref57/cit57
  doi: 10.1021/acsnano.0c06656
– ident: ref103/cit103
  doi: 10.1016/j.jcis.2020.07.057
– ident: ref77/cit77
  doi: 10.1369/0022155413484152
– ident: ref176/cit176
  doi: 10.1021/acsnano.5b02358
– ident: ref19/cit19
  doi: 10.1021/acs.nanolett.9b01660
– ident: ref159/cit159
  doi: 10.1016/j.biomaterials.2020.120579
– ident: ref116/cit116
  doi: 10.1021/acsami.9b19373
– ident: ref27/cit27
  doi: 10.1021/acs.molpharmaceut.6b01150
SSID ssj0024523
Score 2.4916813
SecondaryResourceType review_article
Snippet RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4506
Title Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy
URI http://dx.doi.org/10.1021/acs.molpharmaceut.2c00811
https://www.proquest.com/docview/2738488430
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF6KhdJL36X2xQrFk7HJbh6bo9iKFCrSKngL2c0uSNtYjB7sr-9MEiu2h-o1ZBJ2MzvzbXa-bwi5Cx3DAsizlq-lslzNpRXqhFko_RG4SSBijWzk557fHbpPI2-04nH_PsFnzn2ssubHBImn5S_eJlOYyGDLs8t8gNuIh9qvK4E9L-_pBtCAW4ILd4_U_n0UpiaVraem9cicp5vOIRksSTtFlclbcz6TTfX1V8Nxm5EckYMSftJW4S_HZEenJ6TeL-5dNOhgRcfKGrRO-ytl68UpGQLIhCRFW0XhQM6Oo-OUAoikD3kpCJ0YCgEb2-tgwceCloroeD0bv_RaFEAybaP1tHzZ4owMO4-Ddtcq-zJYMXftmWU8w0NfuoIrgCvCcBUkQoc81DKQ2nNQxUvZsWRaeHYMASUxWgWODELjJ5In_JxU0kmqLwi1JRPal8wogBKBYbCn1Uwomyns626rKgG3yqJyXWVRfmTOnAgvrk1lVE5llYjlN4xUqXKOzTbeNzFlP6afhdTHJka1paNEsDDxtCVO9WSeRch5gujocvty20FckX2GLAusmvGuSWU2nesbwD4zeZv7-je5pwTw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QkIALb8SbICFOdLRJH-lxGkzjNU2wSZM4VE2aSBPQIbodxq_H7gLTuPC4RnWauIn9pbE_E3ISe4ZF4GedUEvl-JpLJ9YZc5D6I_KzSKQas5HvWmGz61_3gp6NqsRcGBhEAT0V5SX-lF3AO8e2lwHmn9o_vVWm0J_ByWceQAnDcL5a_WHKsxeUpd0AIXBHcOEvkOMfu0IPpYpZDzVroEuv01ghj1_jLYNNnqqjoayq929Ujv-b0CpZtmCU1iarZ43M6XydnLYnz47PaGeanFWc0VPanvJcjzdIFyAnuCxam4QRlLlytJ9TgJT0ogwMoQNDwXxjsR0M_xhTy4-O7UX_vlWjAJlpHaXf7MvGm6TbuOzUm46t0uCk3HeHjgkMj0PpC64AvAjDVZQJHfNYy0jqwENOL-WmkmkRuCmYl8xoFXkyik2YSZ7xLVLJB7neJtSVTOhQMqMAWESGwQlXM6FcprDKu6t2CGoysbusSMoLdOYl2DijysSqcoeIz0-ZKMt5jqU3nn8jyr5EXyfEH78ROv5cLwlsU7x7SXM9GBUJZkCBrfS5u_vXSRyRxWbn7ja5vWrd7JElhvkXGE8T7JPK8G2kDwAVDeVhufw_AOWXDVE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QSIgLb8SbICFOdLRJH-lxGkw8pwmYxC1q0kSagA6t22H8euwuYxoXHteoSdM0tr_E9mdCTtLAsgTsrBcbpb3QcOWlJmceUn8kYZ6IzGA28n0rvuqEN8_Rs7tww1wYmEQJI5WVEx-l-j23jmEgOMf2tx7moLrb3hrTaNPg9LOA7jsM6as3Hqdce1FV3g1QAvcEF-EiOf5xKLRSupy1UrNKurI8zRUiv-ZcBZy81IYDVdMf3-gc__9Rq2TZgVJaH--iNTJninVy2h4_OzqjT9MkrfKMntL2lO96tEE6AD3BdNH6OJygypmj3YICtKQXVYAI7VkKahyL7mAYyIg6nnRsL7sPrToF6Ewb2LvvXjbaJJ3m5VPjynPVGryMh_7As5HlaaxCwTWAGGG5TnJhUp4alSgTBcjtpf1MMSMiPwM1k1ujk0AlqY1zxXO-ReaLXmG2CfUVEyZWzGoAGIllcNI1TGifaaz27usdgqspnbSVsnKks0Bi48xSSreUO0RMfqfUjvscS3C8_qYr--r6PiYA-U2n48mekSCu6IPJCtMblhIzoUBnhtzf_etHHJHF9kVT3l23bvfIEsM0DAyrifbJ_KA_NAcAjgbqsJKAT2obD9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advancements+in+the+Design+of+Nanodelivery+Systems+of+siRNA+for+Cancer+Therapy&rft.jtitle=Molecular+pharmaceutics&rft.au=Yadav%2C+Dokkari+Nagalaxmi&rft.au=Ali%2C+Mohammad+Sadik&rft.au=Thanekar%2C+Ajinkya+Madhukar&rft.au=Pogu%2C+Sunil+Venkanna&rft.date=2022-12-05&rft.issn=1543-8392&rft.eissn=1543-8392&rft.volume=19&rft.issue=12&rft.spage=4506&rft_id=info:doi/10.1021%2Facs.molpharmaceut.2c00811&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon