Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy
RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like...
Saved in:
Published in | Molecular pharmaceutics Vol. 19; no. 12; pp. 4506 - 4526 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
05.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1543-8384 1543-8392 1543-8392 |
DOI | 10.1021/acs.molpharmaceut.2c00811 |
Cover
Loading…
Abstract | RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021. |
---|---|
AbstractList | RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021. RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021.RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021. |
Author | Pogu, Sunil Venkanna Rengan, Aravind Kumar Thanekar, Ajinkya Madhukar Ali, Mohammad Sadik Yadav, Dokkari Nagalaxmi |
AuthorAffiliation | Department of Biomedical Engineering |
AuthorAffiliation_xml | – name: Department of Biomedical Engineering |
Author_xml | – sequence: 1 givenname: Dokkari Nagalaxmi orcidid: 0000-0001-9582-3947 surname: Yadav fullname: Yadav, Dokkari Nagalaxmi – sequence: 2 givenname: Mohammad Sadik surname: Ali fullname: Ali, Mohammad Sadik – sequence: 3 givenname: Ajinkya Madhukar surname: Thanekar fullname: Thanekar, Ajinkya Madhukar – sequence: 4 givenname: Sunil Venkanna surname: Pogu fullname: Pogu, Sunil Venkanna – sequence: 5 givenname: Aravind Kumar orcidid: 0000-0003-3994-6760 surname: Rengan fullname: Rengan, Aravind Kumar email: aravind@bme.iith.ac.in |
BookMark | eNqNkE1rAjEQhkOxULX9D-mtl7XJZj-ypyL2E8SC1fOSzU5qZDfZJlHw33dFKbSnnmYY3ueFeUZoYKwBhG4pmVAS03sh_aS1TbcRrhUSdmESS0I4pRdoSNOERZwV8eBn58kVGnm_JSRO0pgN0XoJEkzA03ovjIS23z3WBocN4Efw-tNgq_BCGFtDo_fgDvjj4AO0_nj3ermYYmUdnh1ph1cbcKI7XKNLJRoPN-c5Ruvnp9XsNZq_v7zNpvNIsISESKWKFVmVcCYzlnLFZF5zKFgBVV5BSjNGiCSiioGnRDCS1gpkTqu8UFldsZqN0d2pt3P2awc-lK32EppGGLA7X8Z5_zHnCSN99OEUlc5670CVUgcRtDXBCd2UlJRHoWUvtPwltDwL7RuKPw2d061wh3-x6Yk9RrZ250yv5R_cN9OZmHA |
CitedBy_id | crossref_primary_10_2174_0113892002339055241211050131 crossref_primary_10_1002_mabi_202300362 crossref_primary_10_1007_s11356_022_24879_5 crossref_primary_10_1021_acs_molpharmaceut_2c00755 crossref_primary_10_1021_acs_molpharmaceut_3c00826 crossref_primary_10_1021_acsomega_4c03055 crossref_primary_10_1080_15257770_2024_2347499 crossref_primary_10_1021_cbmi_3c00011 crossref_primary_10_1021_acsabm_3c00711 crossref_primary_10_3390_ijms25168888 crossref_primary_10_1016_j_drudis_2024_103923 crossref_primary_10_1002_mba2_70004 crossref_primary_10_1002_cbic_202300633 crossref_primary_10_1016_j_ijbiomac_2024_137317 crossref_primary_10_1016_j_onano_2024_100214 crossref_primary_10_3390_pharmaceutics15071936 crossref_primary_10_1016_j_cellsig_2025_111605 crossref_primary_10_1021_acs_molpharmaceut_4c00502 crossref_primary_10_1080_03639045_2024_2404979 crossref_primary_10_1016_j_jddst_2025_106768 crossref_primary_10_1021_acsnano_4c11259 |
Cites_doi | 10.1021/acsami.9b20071 10.1016/j.colsurfa.2019.124054 10.1186/s12943-017-0683-y 10.3390/molecules24142570 10.1007/s10439-005-9072-6 10.1007/s00277-019-03713-y 10.1021/acs.biomac.0c01253 10.1021/nn502125h 10.3322/caac.21551 10.1021/acsami.1c18053 10.1016/j.bioactmat.2020.08.019 10.1016/j.jconrel.2020.02.013 10.1038/mt.2010.85 10.1021/bc500280q 10.1021/jacs.8b10021 10.1021/acs.bioconjchem.8b00732 10.1016/j.jconrel.2021.01.001 10.1021/acsnano.0c02633 10.1016/j.cclet.2020.09.010 10.1021/acs.molpharmaceut.9b01271 10.1021/acscombsci.0c00099 10.1371/journal.pone.0122581 10.1016/j.jconrel.2020.01.012 10.1021/acsami.9b21385 10.2147/IJN.S313339 10.1021/acsnano.0c04035 10.1021/acsami.0c13023 10.1007/s12274-017-1946-z 10.1016/j.colsurfb.2017.06.022 10.1021/acsnano.7b02044 10.1021/acs.molpharmaceut.6b00646 10.1039/D0CC01848A 10.1016/j.biomaterials.2019.119329 10.1021/nn203503h 10.1007/s13346-020-00790-9 10.1021/acs.molpharmaceut.0c00087 10.1016/j.biomaterials.2020.120304 10.1021/acsnano.8b05151 10.1021/acsbiomaterials.0c00231 10.1002/adtp.201900136 10.1016/j.omtn.2017.06.014 10.1016/j.ejps.2013.10.011 10.1021/acsami.0c06186 10.1016/j.ijpharm.2016.06.127 10.1016/j.colsurfb.2020.111491 10.1039/C6TB03116A 10.1016/j.biomaterials.2019.119463 10.1016/j.lfs.2020.118886 10.1016/j.imlet.2016.11.013 10.1016/j.omtn.2019.10.045 10.1021/acs.bioconjchem.5b00249 10.1021/mp300449t 10.3109/10717544.2014.973082 10.1016/j.ijpharm.2013.08.069 10.1021/acsabm.0c01014 10.1021/acs.molpharmaceut.0c01242 10.1021/acs.molpharmaceut.0c00052 10.1021/acs.nanolett.9b04957 10.1111/1744-7917.12822 10.1021/acs.accounts.9b00101 10.1186/s12951-021-00781-z 10.1126/sciadv.abb0616 10.1016/j.jconrel.2015.02.003 10.1021/acs.nanolett.6b02915 10.1038/gt.2011.146 10.1021/acsami.0c09494 10.1021/acsnano.0c08022 10.1016/j.msec.2020.111055 10.1021/acs.biomac.8b00922 10.2147/IJN.S115727 10.1039/C7NR08644J 10.1021/acsnano.8b02200 10.1021/acsami.0c07353 10.1016/j.xphs.2017.04.075 10.1016/j.ejps.2020.105641 10.3390/polym12020445 10.1038/s42003-020-0817-4 10.1021/acsabm.9b01074 10.1021/acsnano.9b03978 10.2147/IJN.S200253 10.1038/mt.2012.185 10.1016/j.msec.2020.111494 10.1016/j.lfs.2021.119430 10.1007/s12274-020-3216-8 10.2147/IJN.S126310 10.3390/nano7040077 10.1021/mp800032f 10.1021/acsbiomaterials.0c01511 10.1021/acs.biomac.9b01061 10.1021/acs.nanolett.0c04468 10.1021/acsabm.0c00631 10.1016/j.msec.2019.110245 10.1073/pnas.1915907117 10.1016/j.omtm.2018.09.002 10.1016/j.cossms.2012.09.001 10.1038/s41392-020-0207-x 10.1016/j.ijpharm.2019.06.030 10.1021/acssynbio.9b00349 10.1021/acsami.9b16637 10.1021/acs.molpharmaceut.0c00291 10.1016/j.cclet.2020.11.024 10.1021/acs.molpharmaceut.7b01093 10.1016/j.ejpb.2020.06.019 10.1021/acsami.0c06614 10.1038/s41598-018-25930-7 10.1002/cnr2.1271 10.1016/j.colsurfb.2019.110762 10.1021/acsnano.9b08460 10.1016/j.chphma.2022.01.001 10.1016/j.cej.2021.128545 10.1039/D0NR08024A 10.1101/339820 10.1080/10717544.2019.1582730 10.3390/molecules24010004 10.1038/s41392-017-0004-3 10.1021/acsami.0c17660 10.1021/acsami.6b14184 10.1021/acsami.0c00652 10.1093/nar/gkz553 10.1021/acs.molpharmaceut.0c00618 10.1016/j.jddst.2019.101403 10.1021/acsnano.0c05169 10.1016/j.ijpharm.2017.11.045 10.59566/IJBS.2017.13048 10.1080/21691401.2017.1307210 10.1073/pnas.1621240114 10.1021/acsomega.0c04605 10.1021/mp400448w 10.1016/j.jconrel.2019.12.032 10.1021/acsnano.0c07071 10.1002/VIW.20200111 10.1021/acs.molpharmaceut.9b01288 10.1002/jbm.a.36701 10.1021/acs.biomac.8b00918 10.1002/advs.201900582 10.1016/j.nano.2019.102128 10.1038/mtna.2015.23 10.1021/acsami.7b04971 10.1039/C9TB02764E 10.1016/j.ejphar.2021.174178 10.1021/acs.molpharmaceut.9b00826 10.1038/nbt.2612 10.1080/10717544.2020.1827085 10.2217/17435889.3.5.703 10.18632/oncotarget.7368 10.1021/acsnano.7b05528 10.1021/acsabm.9b01016 10.1021/acsbiomaterials.1c00582 10.1016/j.ijpharm.2011.08.014 10.1242/jcs.066399 10.1021/acsnano.8b07746 10.1177/0885328219886953 10.1038/nrd4333 10.1021/acsami.9b19373 10.1021/acsami.8b20810 10.1021/acsabm.0c00499 10.1021/acsami.7b17109 10.1038/s41427-018-0027-4 10.1021/acsami.0c04533 10.1021/acs.biomac.1c00744 10.1021/acsami.9b22781 10.1038/s41427-020-0216-9 10.1016/j.pdpdt.2022.102915 10.1016/j.lfs.2020.118847 10.1021/acsami.0c06608 10.1016/j.apmt.2019.100521 10.1016/j.canlet.2019.02.011 10.1021/acsami.9b21667 10.1021/acsabm.0c00503 10.1021/acsami.1c21775 10.1021/acsabm.1c00732 10.1016/j.molliq.2020.114726 10.2217/nnm.12.174 10.1021/acsami.0c06273 10.1016/j.jconrel.2017.10.025 10.1002/anie.201201390 10.1089/nat.2012.0389 10.1021/mp300293n 10.7150/thno.41228 10.1016/j.jconrel.2020.04.003 10.1126/sciadv.aaw6499 10.1021/acs.jpcc.6b06943 10.1371/journal.pone.0180578 10.1016/j.canlet.2020.08.045 10.1021/acsnano.0c06656 10.1016/j.jcis.2020.07.057 10.1369/0022155413484152 10.1021/acsnano.5b02358 10.1021/acs.nanolett.9b01660 10.1016/j.biomaterials.2020.120579 10.1021/acs.molpharmaceut.6b01150 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.molpharmaceut.2c00811 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1543-8392 |
EndPage | 4526 |
ExternalDocumentID | 10_1021_acs_molpharmaceut_2c00811 e01068967 |
GroupedDBID | --- -~X 123 4.4 53G 55A 5VS 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED~ F5P GGK GNL H~9 IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ 7X8 |
ID | FETCH-LOGICAL-a340t-f5f396b483c6358f3c7d8e939eb7be516300c0ab2e850a305dfec71b79f6db3d3 |
IEDL.DBID | ACS |
ISSN | 1543-8384 1543-8392 |
IngestDate | Fri Jul 11 03:58:04 EDT 2025 Thu Apr 24 23:06:15 EDT 2025 Tue Jul 01 04:33:53 EDT 2025 Wed Dec 07 03:10:45 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | siRNA delivery RNAi cancer therapy nanocarriers |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a340t-f5f396b483c6358f3c7d8e939eb7be516300c0ab2e850a305dfec71b79f6db3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3994-6760 0000-0001-9582-3947 |
PQID | 2738488430 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2738488430 crossref_citationtrail_10_1021_acs_molpharmaceut_2c00811 crossref_primary_10_1021_acs_molpharmaceut_2c00811 acs_journals_10_1021_acs_molpharmaceut_2c00811 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-05 |
PublicationDateYYYYMMDD | 2022-12-05 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Molecular pharmaceutics |
PublicationTitleAlternate | Mol. Pharmaceutics |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref203/cit203 ref148/cit148 ref55/cit55 ref144/cit144 ref163/cit163 ref66/cit66 ref22/cit22 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref194/cit194 ref98/cit98 ref153/cit153 ref150/cit150 ref63/cit63 ref56/cit56 ref155/cit155 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 Dana H. (ref31/cit31) 2017; 13 ref82/cit82 ref147/cit147 ref145/cit145 ref21/cit21 ref166/cit166 ref164/cit164 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref40/cit40 ref131/cit131 ref161/cit161 ref142/cit142 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 ref45/cit45 ref52/cit52 ref114/cit114 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 Chhikara B. S. (ref39/cit39) 2019; 6 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref195/cit195 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref202/cit202 ref168/cit168 ref132/cit132 ref91/cit91 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref154/cit154 ref27/cit27 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref88/cit88 ref160/cit160 ref143/cit143 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref201/cit201 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref204/cit204 ref26/cit26 ref73/cit73 ref69/cit69 ref165/cit165 ref95/cit95 ref108/cit108 ref192/cit192 ref4/cit4 ref30/cit30 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref23/cit23 doi: 10.1021/acsami.9b20071 – ident: ref157/cit157 doi: 10.1016/j.colsurfa.2019.124054 – ident: ref124/cit124 doi: 10.1186/s12943-017-0683-y – ident: ref56/cit56 doi: 10.3390/molecules24142570 – ident: ref201/cit201 doi: 10.1007/s10439-005-9072-6 – ident: ref152/cit152 doi: 10.1007/s00277-019-03713-y – ident: ref58/cit58 – ident: ref198/cit198 doi: 10.1021/acs.biomac.0c01253 – ident: ref91/cit91 doi: 10.1021/nn502125h – ident: ref2/cit2 doi: 10.3322/caac.21551 – ident: ref37/cit37 doi: 10.1021/acsami.1c18053 – ident: ref188/cit188 doi: 10.1016/j.bioactmat.2020.08.019 – ident: ref196/cit196 doi: 10.1016/j.jconrel.2020.02.013 – ident: ref92/cit92 doi: 10.1038/mt.2010.85 – ident: ref172/cit172 doi: 10.1021/bc500280q – ident: ref143/cit143 doi: 10.1021/jacs.8b10021 – ident: ref71/cit71 doi: 10.1021/acs.bioconjchem.8b00732 – ident: ref61/cit61 doi: 10.1016/j.jconrel.2021.01.001 – ident: ref154/cit154 doi: 10.1021/acsnano.0c02633 – ident: ref4/cit4 doi: 10.1016/j.cclet.2020.09.010 – ident: ref164/cit164 doi: 10.1021/acs.molpharmaceut.9b01271 – ident: ref54/cit54 doi: 10.1021/acscombsci.0c00099 – ident: ref68/cit68 doi: 10.1371/journal.pone.0122581 – ident: ref102/cit102 doi: 10.1016/j.jconrel.2020.01.012 – ident: ref169/cit169 doi: 10.1021/acsami.9b21385 – ident: ref88/cit88 doi: 10.2147/IJN.S313339 – ident: ref105/cit105 doi: 10.1021/acsnano.0c04035 – ident: ref118/cit118 doi: 10.1021/acsami.0c13023 – ident: ref129/cit129 doi: 10.1007/s12274-017-1946-z – ident: ref123/cit123 doi: 10.1016/j.colsurfb.2017.06.022 – ident: ref179/cit179 doi: 10.1021/acsnano.7b02044 – ident: ref108/cit108 doi: 10.1021/acs.molpharmaceut.6b00646 – ident: ref185/cit185 doi: 10.1039/D0CC01848A – ident: ref5/cit5 doi: 10.1016/j.biomaterials.2019.119329 – ident: ref84/cit84 doi: 10.1021/nn203503h – ident: ref130/cit130 doi: 10.1007/s13346-020-00790-9 – ident: ref160/cit160 doi: 10.1021/acs.molpharmaceut.0c00087 – ident: ref109/cit109 doi: 10.1016/j.biomaterials.2020.120304 – ident: ref72/cit72 doi: 10.1021/acsnano.8b05151 – ident: ref38/cit38 doi: 10.1021/acsbiomaterials.0c00231 – ident: ref96/cit96 doi: 10.1002/adtp.201900136 – ident: ref115/cit115 doi: 10.1016/j.omtn.2017.06.014 – ident: ref112/cit112 doi: 10.1016/j.ejps.2013.10.011 – ident: ref135/cit135 doi: 10.1021/acsami.0c06186 – ident: ref151/cit151 doi: 10.1016/j.ijpharm.2016.06.127 – ident: ref110/cit110 doi: 10.1016/j.colsurfb.2020.111491 – ident: ref63/cit63 doi: 10.1039/C6TB03116A – ident: ref139/cit139 doi: 10.1016/j.biomaterials.2019.119463 – ident: ref136/cit136 doi: 10.1016/j.lfs.2020.118886 – ident: ref7/cit7 doi: 10.1016/j.jconrel.2020.02.013 – ident: ref113/cit113 doi: 10.1016/j.imlet.2016.11.013 – ident: ref161/cit161 doi: 10.1016/j.omtn.2019.10.045 – ident: ref173/cit173 doi: 10.1021/acs.bioconjchem.5b00249 – ident: ref106/cit106 doi: 10.1021/mp300449t – ident: ref90/cit90 doi: 10.3109/10717544.2014.973082 – ident: ref127/cit127 doi: 10.1016/j.ijpharm.2013.08.069 – ident: ref65/cit65 doi: 10.1021/acsabm.0c01014 – ident: ref36/cit36 doi: 10.1021/acs.molpharmaceut.0c01242 – ident: ref163/cit163 doi: 10.1021/acs.molpharmaceut.0c00052 – ident: ref40/cit40 doi: 10.1021/acs.nanolett.9b04957 – ident: ref67/cit67 doi: 10.1111/1744-7917.12822 – ident: ref95/cit95 doi: 10.1021/acs.accounts.9b00101 – ident: ref21/cit21 doi: 10.1016/j.bioactmat.2020.08.019 – ident: ref75/cit75 doi: 10.1186/s12951-021-00781-z – ident: ref193/cit193 doi: 10.1126/sciadv.abb0616 – ident: ref203/cit203 doi: 10.1016/j.jconrel.2015.02.003 – ident: ref76/cit76 doi: 10.1021/acs.nanolett.6b02915 – ident: ref200/cit200 doi: 10.1038/gt.2011.146 – ident: ref18/cit18 doi: 10.1021/acsami.0c09494 – ident: ref22/cit22 doi: 10.1021/acsnano.0c08022 – ident: ref170/cit170 doi: 10.1016/j.msec.2020.111055 – ident: ref126/cit126 doi: 10.1021/acs.biomac.8b00922 – ident: ref89/cit89 doi: 10.2147/IJN.S115727 – ident: ref191/cit191 doi: 10.1039/C7NR08644J – ident: ref178/cit178 doi: 10.1021/acsnano.8b02200 – ident: ref11/cit11 doi: 10.1021/acsami.0c07353 – ident: ref55/cit55 doi: 10.1016/j.xphs.2017.04.075 – ident: ref121/cit121 doi: 10.1016/j.ejps.2020.105641 – ident: ref131/cit131 doi: 10.3390/polym12020445 – ident: ref50/cit50 doi: 10.1038/s42003-020-0817-4 – ident: ref166/cit166 doi: 10.1021/acsabm.9b01074 – ident: ref14/cit14 doi: 10.1021/acsnano.9b03978 – ident: ref97/cit97 doi: 10.2147/IJN.S200253 – ident: ref86/cit86 doi: 10.1038/mt.2012.185 – ident: ref120/cit120 doi: 10.1016/j.msec.2020.111494 – ident: ref33/cit33 doi: 10.1016/j.lfs.2021.119430 – ident: ref141/cit141 doi: 10.1007/s12274-020-3216-8 – ident: ref85/cit85 doi: 10.2147/IJN.S126310 – ident: ref149/cit149 doi: 10.3390/nano7040077 – ident: ref204/cit204 doi: 10.1021/mp800032f – ident: ref42/cit42 doi: 10.1021/acsbiomaterials.0c01511 – ident: ref6/cit6 doi: 10.1021/acs.biomac.9b01061 – ident: ref69/cit69 doi: 10.1021/acs.nanolett.0c04468 – ident: ref26/cit26 doi: 10.1021/acsabm.0c00631 – ident: ref147/cit147 doi: 10.1016/j.msec.2019.110245 – ident: ref8/cit8 doi: 10.1073/pnas.1915907117 – ident: ref28/cit28 doi: 10.1016/j.omtm.2018.09.002 – ident: ref82/cit82 doi: 10.1016/j.cossms.2012.09.001 – ident: ref9/cit9 doi: 10.1038/s41392-020-0207-x – ident: ref107/cit107 doi: 10.1016/j.ijpharm.2019.06.030 – ident: ref25/cit25 doi: 10.1021/acssynbio.9b00349 – ident: ref44/cit44 doi: 10.1021/acsami.9b16637 – ident: ref138/cit138 doi: 10.1021/acs.molpharmaceut.0c00291 – ident: ref137/cit137 doi: 10.1016/j.cclet.2020.11.024 – ident: ref93/cit93 doi: 10.1021/acs.molpharmaceut.7b01093 – ident: ref148/cit148 doi: 10.1016/j.ejpb.2020.06.019 – ident: ref48/cit48 doi: 10.1021/acsami.0c06614 – ident: ref100/cit100 doi: 10.1038/s41598-018-25930-7 – ident: ref51/cit51 doi: 10.1002/cnr2.1271 – ident: ref24/cit24 doi: 10.1016/j.colsurfb.2019.110762 – ident: ref180/cit180 doi: 10.1021/acsnano.9b08460 – ident: ref62/cit62 doi: 10.1016/j.chphma.2022.01.001 – ident: ref99/cit99 doi: 10.1016/j.cej.2021.128545 – ident: ref194/cit194 doi: 10.1039/D0NR08024A – ident: ref34/cit34 doi: 10.1101/339820 – ident: ref64/cit64 doi: 10.1080/10717544.2019.1582730 – ident: ref83/cit83 doi: 10.3390/molecules24010004 – ident: ref165/cit165 doi: 10.1038/s41392-017-0004-3 – ident: ref192/cit192 doi: 10.1021/acsami.0c17660 – ident: ref104/cit104 doi: 10.1021/acsami.6b14184 – ident: ref156/cit156 doi: 10.1021/acsami.0c00652 – ident: ref32/cit32 doi: 10.1093/nar/gkz553 – ident: ref189/cit189 doi: 10.1021/acsami.0c13023 – ident: ref150/cit150 doi: 10.1021/acs.molpharmaceut.0c00618 – ident: ref128/cit128 doi: 10.1016/j.jddst.2019.101403 – ident: ref168/cit168 doi: 10.1021/acsnano.0c05169 – ident: ref114/cit114 doi: 10.1016/j.ijpharm.2017.11.045 – volume: 13 start-page: 48 issue: 2 year: 2017 ident: ref31/cit31 publication-title: Int. J. Biomed Sci. doi: 10.59566/IJBS.2017.13048 – ident: ref111/cit111 doi: 10.1080/21691401.2017.1307210 – ident: ref66/cit66 doi: 10.1073/pnas.1621240114 – ident: ref183/cit183 doi: 10.1021/acsomega.0c04605 – ident: ref175/cit175 doi: 10.1021/mp400448w – ident: ref132/cit132 doi: 10.1016/j.jconrel.2019.12.032 – ident: ref133/cit133 doi: 10.1021/acsnano.0c07071 – ident: ref13/cit13 doi: 10.1002/VIW.20200111 – ident: ref153/cit153 doi: 10.1021/acs.molpharmaceut.9b01288 – ident: ref144/cit144 doi: 10.1002/jbm.a.36701 – ident: ref101/cit101 doi: 10.1021/acs.biomac.8b00918 – ident: ref53/cit53 doi: 10.1002/advs.201900582 – ident: ref87/cit87 doi: 10.1016/j.nano.2019.102128 – ident: ref46/cit46 doi: 10.1038/mtna.2015.23 – ident: ref174/cit174 doi: 10.1021/acsami.7b04971 – ident: ref190/cit190 doi: 10.1039/C9TB02764E – ident: ref35/cit35 doi: 10.1016/j.ejphar.2021.174178 – ident: ref41/cit41 doi: 10.1021/acs.molpharmaceut.9b00826 – ident: ref70/cit70 doi: 10.1038/nbt.2612 – ident: ref158/cit158 doi: 10.1080/10717544.2020.1827085 – ident: ref199/cit199 doi: 10.2217/17435889.3.5.703 – ident: ref80/cit80 doi: 10.18632/oncotarget.7368 – ident: ref142/cit142 doi: 10.1021/acsnano.7b05528 – ident: ref1/cit1 doi: 10.1021/acsabm.9b01016 – ident: ref59/cit59 doi: 10.1021/acsbiomaterials.1c00582 – ident: ref74/cit74 doi: 10.1016/j.ijpharm.2011.08.014 – ident: ref202/cit202 doi: 10.1242/jcs.066399 – ident: ref186/cit186 doi: 10.1021/acsnano.0c08022 – ident: ref3/cit3 doi: 10.1021/acsnano.8b07746 – ident: ref125/cit125 doi: 10.1177/0885328219886953 – ident: ref81/cit81 doi: 10.1038/nrd4333 – ident: ref117/cit117 doi: 10.1021/acsami.9b19373 – ident: ref177/cit177 doi: 10.1021/acsami.8b20810 – ident: ref181/cit181 doi: 10.1021/acsabm.0c00499 – ident: ref47/cit47 doi: 10.1021/acsami.7b17109 – ident: ref73/cit73 doi: 10.1038/s41427-018-0027-4 – ident: ref30/cit30 doi: 10.1021/acsami.0c04533 – ident: ref16/cit16 doi: 10.1021/acs.biomac.1c00744 – ident: ref12/cit12 doi: 10.1021/acsami.9b22781 – ident: ref20/cit20 doi: 10.1038/s41427-020-0216-9 – ident: ref15/cit15 doi: 10.1016/j.pdpdt.2022.102915 – ident: ref119/cit119 doi: 10.1016/j.lfs.2020.118847 – ident: ref49/cit49 doi: 10.1021/acsami.0c06608 – ident: ref52/cit52 doi: 10.1016/j.apmt.2019.100521 – ident: ref10/cit10 doi: 10.1016/j.canlet.2019.02.011 – ident: ref140/cit140 doi: 10.1021/acsami.9b21667 – ident: ref197/cit197 doi: 10.1021/acsabm.0c00503 – ident: ref43/cit43 doi: 10.1021/acsami.1c21775 – ident: ref45/cit45 doi: 10.1021/acsabm.1c00732 – ident: ref182/cit182 doi: 10.1016/j.molliq.2020.114726 – ident: ref94/cit94 doi: 10.2217/nnm.12.174 – volume: 6 start-page: 47 year: 2019 ident: ref39/cit39 publication-title: J. Mater. NanoSci. – ident: ref162/cit162 doi: 10.1021/acsami.0c06273 – ident: ref29/cit29 doi: 10.1016/j.jconrel.2017.10.025 – ident: ref122/cit122 doi: 10.1002/anie.201201390 – ident: ref98/cit98 doi: 10.1089/nat.2012.0389 – ident: ref78/cit78 doi: 10.1021/mp300293n – ident: ref195/cit195 doi: 10.7150/thno.41228 – ident: ref145/cit145 doi: 10.1016/j.jconrel.2020.04.003 – ident: ref60/cit60 doi: 10.1126/sciadv.aaw6499 – ident: ref171/cit171 doi: 10.1021/acs.jpcc.6b06943 – ident: ref79/cit79 doi: 10.1371/journal.pone.0180578 – ident: ref155/cit155 doi: 10.1016/j.canlet.2020.08.045 – ident: ref57/cit57 doi: 10.1021/acsnano.0c06656 – ident: ref103/cit103 doi: 10.1016/j.jcis.2020.07.057 – ident: ref77/cit77 doi: 10.1369/0022155413484152 – ident: ref176/cit176 doi: 10.1021/acsnano.5b02358 – ident: ref19/cit19 doi: 10.1021/acs.nanolett.9b01660 – ident: ref159/cit159 doi: 10.1016/j.biomaterials.2020.120579 – ident: ref116/cit116 doi: 10.1021/acsami.9b19373 – ident: ref27/cit27 doi: 10.1021/acs.molpharmaceut.6b01150 |
SSID | ssj0024523 |
Score | 2.4916813 |
SecondaryResourceType | review_article |
Snippet | RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4506 |
Title | Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy |
URI | http://dx.doi.org/10.1021/acs.molpharmaceut.2c00811 https://www.proquest.com/docview/2738488430 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF6KhdJL36X2xQrFk7HJbh6bo9iKFCrSKngL2c0uSNtYjB7sr-9MEiu2h-o1ZBJ2MzvzbXa-bwi5Cx3DAsizlq-lslzNpRXqhFko_RG4SSBijWzk557fHbpPI2-04nH_PsFnzn2ssubHBImn5S_eJlOYyGDLs8t8gNuIh9qvK4E9L-_pBtCAW4ILd4_U_n0UpiaVraem9cicp5vOIRksSTtFlclbcz6TTfX1V8Nxm5EckYMSftJW4S_HZEenJ6TeL-5dNOhgRcfKGrRO-ytl68UpGQLIhCRFW0XhQM6Oo-OUAoikD3kpCJ0YCgEb2-tgwceCloroeD0bv_RaFEAybaP1tHzZ4owMO4-Ddtcq-zJYMXftmWU8w0NfuoIrgCvCcBUkQoc81DKQ2nNQxUvZsWRaeHYMASUxWgWODELjJ5In_JxU0kmqLwi1JRPal8wogBKBYbCn1Uwomyns626rKgG3yqJyXWVRfmTOnAgvrk1lVE5llYjlN4xUqXKOzTbeNzFlP6afhdTHJka1paNEsDDxtCVO9WSeRch5gujocvty20FckX2GLAusmvGuSWU2nesbwD4zeZv7-je5pwTw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QkIALb8SbICFOdLRJH-lxGkzjNU2wSZM4VE2aSBPQIbodxq_H7gLTuPC4RnWauIn9pbE_E3ISe4ZF4GedUEvl-JpLJ9YZc5D6I_KzSKQas5HvWmGz61_3gp6NqsRcGBhEAT0V5SX-lF3AO8e2lwHmn9o_vVWm0J_ByWceQAnDcL5a_WHKsxeUpd0AIXBHcOEvkOMfu0IPpYpZDzVroEuv01ghj1_jLYNNnqqjoayq929Ujv-b0CpZtmCU1iarZ43M6XydnLYnz47PaGeanFWc0VPanvJcjzdIFyAnuCxam4QRlLlytJ9TgJT0ogwMoQNDwXxjsR0M_xhTy4-O7UX_vlWjAJlpHaXf7MvGm6TbuOzUm46t0uCk3HeHjgkMj0PpC64AvAjDVZQJHfNYy0jqwENOL-WmkmkRuCmYl8xoFXkyik2YSZ7xLVLJB7neJtSVTOhQMqMAWESGwQlXM6FcprDKu6t2CGoysbusSMoLdOYl2DijysSqcoeIz0-ZKMt5jqU3nn8jyr5EXyfEH78ROv5cLwlsU7x7SXM9GBUJZkCBrfS5u_vXSRyRxWbn7ja5vWrd7JElhvkXGE8T7JPK8G2kDwAVDeVhufw_AOWXDVE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QSIgLb8SbICFOdLRJH-lxGkw8pwmYxC1q0kSagA6t22H8euwuYxoXHteoSdM0tr_E9mdCTtLAsgTsrBcbpb3QcOWlJmceUn8kYZ6IzGA28n0rvuqEN8_Rs7tww1wYmEQJI5WVEx-l-j23jmEgOMf2tx7moLrb3hrTaNPg9LOA7jsM6as3Hqdce1FV3g1QAvcEF-EiOf5xKLRSupy1UrNKurI8zRUiv-ZcBZy81IYDVdMf3-gc__9Rq2TZgVJaH--iNTJninVy2h4_OzqjT9MkrfKMntL2lO96tEE6AD3BdNH6OJygypmj3YICtKQXVYAI7VkKahyL7mAYyIg6nnRsL7sPrToF6Ewb2LvvXjbaJJ3m5VPjynPVGryMh_7As5HlaaxCwTWAGGG5TnJhUp4alSgTBcjtpf1MMSMiPwM1k1ujk0AlqY1zxXO-ReaLXmG2CfUVEyZWzGoAGIllcNI1TGifaaz27usdgqspnbSVsnKks0Bi48xSSreUO0RMfqfUjvscS3C8_qYr--r6PiYA-U2n48mekSCu6IPJCtMblhIzoUBnhtzf_etHHJHF9kVT3l23bvfIEsM0DAyrifbJ_KA_NAcAjgbqsJKAT2obD9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advancements+in+the+Design+of+Nanodelivery+Systems+of+siRNA+for+Cancer+Therapy&rft.jtitle=Molecular+pharmaceutics&rft.au=Yadav%2C+Dokkari+Nagalaxmi&rft.au=Ali%2C+Mohammad+Sadik&rft.au=Thanekar%2C+Ajinkya+Madhukar&rft.au=Pogu%2C+Sunil+Venkanna&rft.date=2022-12-05&rft.issn=1543-8392&rft.eissn=1543-8392&rft.volume=19&rft.issue=12&rft.spage=4506&rft_id=info:doi/10.1021%2Facs.molpharmaceut.2c00811&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon |