Enhanced Proton Conductivity of Sulfonated Polysulfone Membranes under Low Humidity via the Incorporation of Multifunctional Graphene Oxide

Development of proton exchange membranes with sufficiently high proton conductivity, especially at low relative humidity (RH), remains a big challenge in the field of fuel cells. In this study, graphene oxide-based nanoscale ionic materials (NIMs-GO) were prepared by sulfonation with 3-(trihydroxysi...

Full description

Saved in:
Bibliographic Details
Published inACS applied nano materials Vol. 2; no. 8; pp. 4734 - 4743
Main Authors Li, Jinzhao, Wu, Hong, Cao, Li, He, Xueyi, Shi, Benbing, Li, Yan, Xu, Mingzhao, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published American Chemical Society 23.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of proton exchange membranes with sufficiently high proton conductivity, especially at low relative humidity (RH), remains a big challenge in the field of fuel cells. In this study, graphene oxide-based nanoscale ionic materials (NIMs-GO) were prepared by sulfonation with 3-(trihydroxysilyl)-1-propane­sulfonic acid and subsequent neutralization with amino-terminated polyoxypropylene (PO)–polyoxyethylene (EO) block copolymer. The resultant NIMs-GO with acid–base pairs and hygroscopic EO units were incorporated into sulfonated polysulfone (SPSF) to fabricate nanocomposite membranes. A matrix-softening phenomenon was found due to the extensive interaction between the SPSF matrix and the amphiphilic NIMs-GO, which primarily contributes to the homogeneous dispersion of the NIMs-GO filler in the nanocomposite membranes. The acid–base pairs and the interconnected hydrogen-bonded networks formed between the EO units and water molecules imparted efficient proton transfer via the Grotthuss mechanism. The water uptake and retention ability of the SPSF/NIMs-GO nanocomposite membranes were enhanced due to the hydrophilic EO units on NIMs-GO. As a result, the nanocomposite membrane exhibited a 52% increase compared with the pristine SPSF membrane in proton conductivity at 75 °C, 100% RH and a 24-fold increase at 75 °C, 40% RH. This enhanced proton conductivity led to an elevated fuel cell performance under both hydrous and low RH conditions.
AbstractList Development of proton exchange membranes with sufficiently high proton conductivity, especially at low relative humidity (RH), remains a big challenge in the field of fuel cells. In this study, graphene oxide-based nanoscale ionic materials (NIMs-GO) were prepared by sulfonation with 3-(trihydroxysilyl)-1-propane­sulfonic acid and subsequent neutralization with amino-terminated polyoxypropylene (PO)–polyoxyethylene (EO) block copolymer. The resultant NIMs-GO with acid–base pairs and hygroscopic EO units were incorporated into sulfonated polysulfone (SPSF) to fabricate nanocomposite membranes. A matrix-softening phenomenon was found due to the extensive interaction between the SPSF matrix and the amphiphilic NIMs-GO, which primarily contributes to the homogeneous dispersion of the NIMs-GO filler in the nanocomposite membranes. The acid–base pairs and the interconnected hydrogen-bonded networks formed between the EO units and water molecules imparted efficient proton transfer via the Grotthuss mechanism. The water uptake and retention ability of the SPSF/NIMs-GO nanocomposite membranes were enhanced due to the hydrophilic EO units on NIMs-GO. As a result, the nanocomposite membrane exhibited a 52% increase compared with the pristine SPSF membrane in proton conductivity at 75 °C, 100% RH and a 24-fold increase at 75 °C, 40% RH. This enhanced proton conductivity led to an elevated fuel cell performance under both hydrous and low RH conditions.
Author Li, Jinzhao
Xu, Mingzhao
He, Xueyi
Li, Yan
Jiang, Zhongyi
Shi, Benbing
Cao, Li
Wu, Hong
AuthorAffiliation Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology
Tianjin Key Laboratory of Membrane Science and Desalination Technology
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
AuthorAffiliation_xml – name: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology
– name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– name: Tianjin Key Laboratory of Membrane Science and Desalination Technology
Author_xml – sequence: 1
  givenname: Jinzhao
  surname: Li
  fullname: Li, Jinzhao
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 2
  givenname: Hong
  orcidid: 0000-0001-6600-4459
  surname: Wu
  fullname: Wu, Hong
  email: wuhong@tju.edu.cn
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 3
  givenname: Li
  surname: Cao
  fullname: Cao, Li
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 4
  givenname: Xueyi
  surname: He
  fullname: He, Xueyi
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 5
  givenname: Benbing
  surname: Shi
  fullname: Shi, Benbing
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 6
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 7
  givenname: Mingzhao
  surname: Xu
  fullname: Xu, Mingzhao
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 8
  givenname: Zhongyi
  orcidid: 0000-0002-2492-4094
  surname: Jiang
  fullname: Jiang, Zhongyi
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
BookMark eNp1kEtrAjEUhUOxUGvddp11YWySeUSXRawKioW26yFPjMwkkmRs_Q39051RF6Xg4nIf3O_AOfegZ51VADxiNMKI4GcmArP1aMIRyrLiBvRJTrMETSjq_ZnvwDCEHUIIT3CRItQHPzO7ZVYoCd-8i87CqbOyEdEcTDxCp-F7U2lnWew-XHUMp1XBtaq5Z1YF2FipPFy5L7hoaiM77GAYjFsFl1Y4v3eeRdMqt2LrpopGN1Z0B1bBuWf7rWrlNt9Gqgdwq1kV1PDSB-DzdfYxXSSrzXw5fVklLM1QTIrxmOZU61RSJjgmQvCCI53rLMd5lmumJRE0xYIrTLGkiHGiONGCtKWITAdgdNYV3oXglS733tTMH0uMyi7N8pxmeUmzBbJ_gDDxZCp6Zqrr2NMZa-_lzjW-tRyuPf8CP2qPtA
CitedBy_id crossref_primary_10_1021_acsami_9b18059
crossref_primary_10_1021_acsaelm_2c00721
crossref_primary_10_1007_s40201_021_00624_x
crossref_primary_10_1016_j_ssi_2022_115858
crossref_primary_10_1016_j_ijhydene_2023_08_102
crossref_primary_10_1016_j_memsci_2020_118880
crossref_primary_10_1016_j_jece_2022_108295
crossref_primary_10_3390_en16237759
crossref_primary_10_1016_j_materresbull_2021_111425
crossref_primary_10_1016_j_memsci_2024_123359
crossref_primary_10_1021_acsapm_3c00150
crossref_primary_10_7316_JHNE_2023_34_2_178
crossref_primary_10_1016_j_ssi_2020_115294
crossref_primary_10_1021_acsanm_0c02055
crossref_primary_10_1016_j_apsusc_2022_153157
crossref_primary_10_1016_j_ijhydene_2021_05_048
crossref_primary_10_1016_j_jsamd_2020_01_006
crossref_primary_10_3390_membranes13070684
crossref_primary_10_1016_j_cej_2021_133526
crossref_primary_10_1021_acsami_4c06985
crossref_primary_10_1016_j_ijhydene_2023_04_250
crossref_primary_10_1016_j_memsci_2020_118339
crossref_primary_10_1002_app_51207
crossref_primary_10_1016_j_flatc_2023_100479
crossref_primary_10_1039_D4TA00470A
crossref_primary_10_1039_D1QM00066G
crossref_primary_10_1021_acsapm_2c00629
crossref_primary_10_1016_j_memsci_2020_118198
crossref_primary_10_1002_masy_202300050
crossref_primary_10_1016_j_eurpolymj_2022_111601
crossref_primary_10_1039_D3RA01130E
crossref_primary_10_1016_j_eurpolymj_2023_112316
crossref_primary_10_1557_s43580_022_00250_1
crossref_primary_10_1021_acssuschemeng_2c00087
crossref_primary_10_3390_molecules27051507
crossref_primary_10_1149_1945_7111_ac3593
crossref_primary_10_1016_j_ssi_2023_116411
crossref_primary_10_1016_j_desal_2022_115954
crossref_primary_10_1016_j_ssi_2023_116152
crossref_primary_10_1016_j_memsci_2021_119650
crossref_primary_10_1016_j_jpowsour_2022_231416
crossref_primary_10_1007_s11706_023_0662_8
crossref_primary_10_1016_j_ijhydene_2021_05_119
crossref_primary_10_1016_j_memsci_2020_118428
crossref_primary_10_1021_acs_jpcc_2c02377
crossref_primary_10_3390_polym14020300
crossref_primary_10_1002_slct_202201028
Cites_doi 10.1039/b702339a
10.1021/acsami.7b06424
10.1021/acsami.6b04800
10.1016/j.rser.2017.09.081
10.1016/j.carbpol.2018.01.032
10.1021/la203827h
10.1016/j.rser.2017.05.154
10.1021/nl803798y
10.1080/03602559.2017.1289398
10.1016/j.jiec.2019.03.012
10.1021/acs.chemrev.6b00159
10.1016/j.ijhydene.2015.02.078
10.1002/anie.201004497
10.1149/1.1859814
10.1039/C7TA03513F
10.1016/j.electacta.2017.11.047
10.1016/j.carbon.2012.07.025
10.1016/j.jpowsour.2007.12.079
10.1021/cm902283r
10.1016/j.nantod.2017.10.010
10.1016/j.progpolymsci.2010.12.005
10.1002/adma.200401060
10.1016/j.memsci.2014.07.003
10.1016/j.triboint.2016.09.040
10.1016/j.memsci.2015.12.021
10.1002/adma.200903932
10.1021/jp1112153
10.1016/j.memsci.2016.04.071
10.1002/app.46547
10.1016/j.electacta.2017.10.002
10.1016/j.carbon.2016.09.004
10.1002/adma.200801975
10.1002/adma.201707516
10.1021/ja01539a017
10.1016/j.polymer.2013.08.026
10.1021/nn100112h
10.1002/anie.201609306
10.1016/j.ijhydene.2016.08.142
10.1021/cm402372q
10.1021/acs.chemrev.6b00586
10.1021/cm0486969
10.1002/chem.201200596
10.1016/j.memsci.2013.10.018
10.1016/j.progpolymsci.2015.11.004
10.1016/j.ijhydene.2009.02.019
10.1016/j.ijhydene.2013.07.092
10.1016/j.memsci.2018.07.065
10.1039/C3RA42390E
10.1039/B917103G
10.1016/j.memsci.2017.02.043
10.1039/c3ta15301k
10.1016/j.memsci.2016.04.062
10.1016/j.electacta.2016.04.040
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acsanm.9b00446
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2574-0970
EndPage 4743
ExternalDocumentID 10_1021_acsanm_9b00446
a873482089
GroupedDBID ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a340t-688757ff3d7acb12ccb6b0f5f451545fafd2c731cbe171d70ab2eb2fc22fce2d3
IEDL.DBID ACS
ISSN 2574-0970
IngestDate Thu Apr 24 22:52:13 EDT 2025
Tue Jul 01 02:29:23 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords acid−base pairs
low humidity
proton conductivity
amphiphilic block copolymer
multifunctional graphene oxide
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a340t-688757ff3d7acb12ccb6b0f5f451545fafd2c731cbe171d70ab2eb2fc22fce2d3
ORCID 0000-0002-2492-4094
0000-0001-6600-4459
PageCount 10
ParticipantIDs crossref_primary_10_1021_acsanm_9b00446
crossref_citationtrail_10_1021_acsanm_9b00446
acs_journals_10_1021_acsanm_9b00446
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
W1F
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-23
PublicationDateYYYYMMDD 2019-08-23
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-23
  day: 23
PublicationDecade 2010
PublicationTitle ACS applied nano materials
PublicationTitleAlternate ACS Appl. Nano Mater
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref49/cit49
  doi: 10.1039/b702339a
– ident: ref30/cit30
  doi: 10.1021/acsami.7b06424
– ident: ref13/cit13
  doi: 10.1021/acsami.6b04800
– ident: ref1/cit1
  doi: 10.1016/j.rser.2017.09.081
– ident: ref27/cit27
  doi: 10.1016/j.carbpol.2018.01.032
– ident: ref29/cit29
  doi: 10.1021/la203827h
– ident: ref45/cit45
  doi: 10.1016/j.rser.2017.05.154
– ident: ref42/cit42
  doi: 10.1021/nl803798y
– ident: ref18/cit18
  doi: 10.1080/03602559.2017.1289398
– ident: ref21/cit21
  doi: 10.1016/j.jiec.2019.03.012
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.6b00159
– ident: ref53/cit53
  doi: 10.1016/j.ijhydene.2015.02.078
– ident: ref43/cit43
  doi: 10.1002/anie.201004497
– ident: ref50/cit50
  doi: 10.1149/1.1859814
– ident: ref41/cit41
  doi: 10.1039/C7TA03513F
– ident: ref9/cit9
  doi: 10.1016/j.electacta.2017.11.047
– ident: ref16/cit16
  doi: 10.1016/j.carbon.2012.07.025
– ident: ref5/cit5
  doi: 10.1016/j.jpowsour.2007.12.079
– ident: ref33/cit33
  doi: 10.1021/cm902283r
– ident: ref14/cit14
  doi: 10.1016/j.nantod.2017.10.010
– ident: ref7/cit7
  doi: 10.1016/j.progpolymsci.2010.12.005
– ident: ref22/cit22
  doi: 10.1002/adma.200401060
– ident: ref37/cit37
  doi: 10.1016/j.memsci.2014.07.003
– ident: ref26/cit26
  doi: 10.1016/j.triboint.2016.09.040
– ident: ref52/cit52
  doi: 10.1016/j.memsci.2015.12.021
– ident: ref35/cit35
  doi: 10.1002/adma.200903932
– ident: ref31/cit31
  doi: 10.1021/jp1112153
– ident: ref11/cit11
  doi: 10.1016/j.memsci.2016.04.071
– ident: ref19/cit19
  doi: 10.1002/app.46547
– ident: ref4/cit4
  doi: 10.1016/j.electacta.2017.10.002
– ident: ref39/cit39
  doi: 10.1016/j.carbon.2016.09.004
– ident: ref23/cit23
  doi: 10.1002/adma.200801975
– ident: ref8/cit8
  doi: 10.1002/adma.201707516
– ident: ref34/cit34
  doi: 10.1021/ja01539a017
– ident: ref36/cit36
  doi: 10.1016/j.polymer.2013.08.026
– ident: ref24/cit24
  doi: 10.1021/nn100112h
– ident: ref12/cit12
  doi: 10.1002/anie.201609306
– ident: ref28/cit28
  doi: 10.1016/j.ijhydene.2016.08.142
– ident: ref25/cit25
  doi: 10.1021/cm402372q
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.6b00586
– ident: ref32/cit32
  doi: 10.1021/cm0486969
– ident: ref40/cit40
  doi: 10.1002/chem.201200596
– ident: ref15/cit15
  doi: 10.1016/j.memsci.2013.10.018
– ident: ref6/cit6
  doi: 10.1016/j.progpolymsci.2015.11.004
– ident: ref44/cit44
  doi: 10.1016/j.ijhydene.2009.02.019
– ident: ref46/cit46
  doi: 10.1016/j.ijhydene.2013.07.092
– ident: ref10/cit10
  doi: 10.1016/j.memsci.2018.07.065
– ident: ref20/cit20
  doi: 10.1039/C3RA42390E
– ident: ref17/cit17
  doi: 10.1039/B917103G
– ident: ref38/cit38
  doi: 10.1016/j.memsci.2017.02.043
– ident: ref47/cit47
  doi: 10.1039/c3ta15301k
– ident: ref51/cit51
  doi: 10.1016/j.memsci.2016.04.062
– ident: ref48/cit48
  doi: 10.1016/j.electacta.2016.04.040
SSID ssj0001916300
Score 2.320851
Snippet Development of proton exchange membranes with sufficiently high proton conductivity, especially at low relative humidity (RH), remains a big challenge in the...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 4734
Title Enhanced Proton Conductivity of Sulfonated Polysulfone Membranes under Low Humidity via the Incorporation of Multifunctional Graphene Oxide
URI http://dx.doi.org/10.1021/acsanm.9b00446
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA4eL754oOJNQMGnrG3SY_soiydeoIJvJScu7ray3fX6C_5pZ9J6oIg-9KF0moZkkvlmpvmGkC0BEDSQbc2sMZxFLotZ2wrLhOWxtGGilMR4x-lZcngdHd_EN5_xju8ZfB7uSF3Jot9C7j5wXcbJJE9gBSMI6lx-RlMA5Qh_3gRUMGJBlgbvDI0_mkA7pKsvduiLQdmfqdmNKs9DiP-R3LVGQ9XSLz9ZGv_s6yyZblAl3a3VYI6M2WKevO4Vtz6_Ty8GJUA82ikLZHf15SJo6ejlqOcweI4SZe-58reWnto-uNCwBVI8YDagJ-UjhVnvGnztoSspYEZ6hPyX943-YGP-JC9ayTq4SA-QCRs2Unr-1DV2gVzv7111DllTe4FJEQVDlrSR6d45YVKpVci1VokKXOyiGEGXk85wnYpQKxumoUkDqTg46U5zuCw3YpFMFNDnJUJNKpwNs8yoFMBOJpSzaaSF5_6CZ2qZbMK45c3aqXKfFudhXg9m3gzmMmHv85Xrhr4cq2j0fpXf_pC_r4k7fpFc-df3V8kUYKUMw8lcrJGJ4WBk1wGPDNWGV8U3FgrfkA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9pAEF4l9JBc-lASJU0fKzVST0vsXRvjY4SSQgsUCZBys_apoBAbYUgff6F_ujOLSVArpOTgg-3x7mg93vlm1vMtIWcCIGggm5pZYziLXBqzphWWCctjacOGUhLzHb1-oz2Ovl7H1zvkfF0LA0qU0FLpF_Ef2QXCc7gm87s6UvhBBLNLXgAS4WjSF63hY1IFwI7wZSdgiREL0iRYEzX-1wS6I11uuKMNv3L1igweNPK_k9zWlwtV17__IWt8hsqvycsKY9KLlVG8ITs2PyB_LvMbv9pPB_MCAB9tFTlyvfrNI2jh6HA5dZhKR4li-qv0p5b27B0E1DAhUiw3m9Nu8YOCDUwMPnY_kRQQJO0gG-assiZszNf1os9cpRrpF-TFhmmVfv85MfaQjK8uR602q3ZiYFJEwYI1msh775wwidQq5Fqrhgpc7KIYIZiTznCdiFArGyahSQKpOITsTnM4LDfiiNRy0PmYUJMIZ8M0NSoB6JMK5WwSaeGZwOCeOiGfYNyy6ksqM79IzsNsNZhZNZgnhK1fW6YrMnPcU2O6Vf7zg_xsReOxRfLtk_r_SPbao14363b6307JPqCoFBPNXLwjtcV8ad8DUlmoD946_wI3Wefx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJyFe9iFAbMCwBBJPLomdNM3j1K1s0I5JbaW-Rf4UFW1SNS1s-xf4p3fnpl21qRI85CHJxTk5Z9_Pd7mfCfkkAIIGsqmZNYazyKUxa1phmbA8ljZsKCUx3tG9alwMom_DeFjVcWMtDChRQkulT-LjqJ4aVzEMhF_guswndaTxg1XMM7KLOTs069NW7yGwAoBH-NITsMaIBWkSrMganzSBLkmXGy5pw7e090l_rZX_peRXfTFXdX33iLDxP9U-IHsV1qSnS-M4JDs2f0n-nuc_fdafXs8KAH60VeTI-eo3kaCFo73F2GFIHSWK8W3pTy3t2gksrGFipFh2NqOd4g8FWxgZfOz3SFJAkvQSWTGnlVVhY76-F33nMuRIvyI_Nkyv9MfNyNhXZNA-77cuWLUjA5MiCuas0UT-e-eESaRWIddaNVTgYhfFCMWcdIbrRIRa2TAJTRJIxWHp7jSHw3IjXpNaDjq_IdQkwtkwTY1KAAKlQjmbRFp4RjC4p47IR-i3rBpRZeaT5TzMlp2ZVZ15RNjq02W6IjXHvTXGW-U_r-WnSzqPLZLH__T-D-T59Vk761xefX9LXgCYSjHezMU7UpvPFvY9AJa5OvEGeg-pfOp0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Proton+Conductivity+of+Sulfonated+Polysulfone+Membranes+under+Low+Humidity+via+the+Incorporation+of+Multifunctional+Graphene+Oxide&rft.jtitle=ACS+applied+nano+materials&rft.au=Li%2C+Jinzhao&rft.au=Wu%2C+Hong&rft.au=Cao%2C+Li&rft.au=He%2C+Xueyi&rft.date=2019-08-23&rft.pub=American+Chemical+Society&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=2&rft.issue=8&rft.spage=4734&rft.epage=4743&rft_id=info:doi/10.1021%2Facsanm.9b00446&rft.externalDocID=a873482089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon