Enhanced Proton Conductivity of Sulfonated Polysulfone Membranes under Low Humidity via the Incorporation of Multifunctional Graphene Oxide
Development of proton exchange membranes with sufficiently high proton conductivity, especially at low relative humidity (RH), remains a big challenge in the field of fuel cells. In this study, graphene oxide-based nanoscale ionic materials (NIMs-GO) were prepared by sulfonation with 3-(trihydroxysi...
Saved in:
Published in | ACS applied nano materials Vol. 2; no. 8; pp. 4734 - 4743 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
23.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of proton exchange membranes with sufficiently high proton conductivity, especially at low relative humidity (RH), remains a big challenge in the field of fuel cells. In this study, graphene oxide-based nanoscale ionic materials (NIMs-GO) were prepared by sulfonation with 3-(trihydroxysilyl)-1-propanesulfonic acid and subsequent neutralization with amino-terminated polyoxypropylene (PO)–polyoxyethylene (EO) block copolymer. The resultant NIMs-GO with acid–base pairs and hygroscopic EO units were incorporated into sulfonated polysulfone (SPSF) to fabricate nanocomposite membranes. A matrix-softening phenomenon was found due to the extensive interaction between the SPSF matrix and the amphiphilic NIMs-GO, which primarily contributes to the homogeneous dispersion of the NIMs-GO filler in the nanocomposite membranes. The acid–base pairs and the interconnected hydrogen-bonded networks formed between the EO units and water molecules imparted efficient proton transfer via the Grotthuss mechanism. The water uptake and retention ability of the SPSF/NIMs-GO nanocomposite membranes were enhanced due to the hydrophilic EO units on NIMs-GO. As a result, the nanocomposite membrane exhibited a 52% increase compared with the pristine SPSF membrane in proton conductivity at 75 °C, 100% RH and a 24-fold increase at 75 °C, 40% RH. This enhanced proton conductivity led to an elevated fuel cell performance under both hydrous and low RH conditions. |
---|---|
AbstractList | Development of proton exchange membranes with sufficiently high proton conductivity, especially at low relative humidity (RH), remains a big challenge in the field of fuel cells. In this study, graphene oxide-based nanoscale ionic materials (NIMs-GO) were prepared by sulfonation with 3-(trihydroxysilyl)-1-propanesulfonic acid and subsequent neutralization with amino-terminated polyoxypropylene (PO)–polyoxyethylene (EO) block copolymer. The resultant NIMs-GO with acid–base pairs and hygroscopic EO units were incorporated into sulfonated polysulfone (SPSF) to fabricate nanocomposite membranes. A matrix-softening phenomenon was found due to the extensive interaction between the SPSF matrix and the amphiphilic NIMs-GO, which primarily contributes to the homogeneous dispersion of the NIMs-GO filler in the nanocomposite membranes. The acid–base pairs and the interconnected hydrogen-bonded networks formed between the EO units and water molecules imparted efficient proton transfer via the Grotthuss mechanism. The water uptake and retention ability of the SPSF/NIMs-GO nanocomposite membranes were enhanced due to the hydrophilic EO units on NIMs-GO. As a result, the nanocomposite membrane exhibited a 52% increase compared with the pristine SPSF membrane in proton conductivity at 75 °C, 100% RH and a 24-fold increase at 75 °C, 40% RH. This enhanced proton conductivity led to an elevated fuel cell performance under both hydrous and low RH conditions. |
Author | Li, Jinzhao Xu, Mingzhao He, Xueyi Li, Yan Jiang, Zhongyi Shi, Benbing Cao, Li Wu, Hong |
AuthorAffiliation | Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology Tianjin Key Laboratory of Membrane Science and Desalination Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) |
AuthorAffiliation_xml | – name: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology – name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – name: Tianjin Key Laboratory of Membrane Science and Desalination Technology |
Author_xml | – sequence: 1 givenname: Jinzhao surname: Li fullname: Li, Jinzhao organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 2 givenname: Hong orcidid: 0000-0001-6600-4459 surname: Wu fullname: Wu, Hong email: wuhong@tju.edu.cn organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 3 givenname: Li surname: Cao fullname: Cao, Li organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 4 givenname: Xueyi surname: He fullname: He, Xueyi organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 5 givenname: Benbing surname: Shi fullname: Shi, Benbing organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 6 givenname: Yan surname: Li fullname: Li, Yan organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 7 givenname: Mingzhao surname: Xu fullname: Xu, Mingzhao organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 8 givenname: Zhongyi orcidid: 0000-0002-2492-4094 surname: Jiang fullname: Jiang, Zhongyi organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) |
BookMark | eNp1kEtrAjEUhUOxUGvddp11YWySeUSXRawKioW26yFPjMwkkmRs_Q39051RF6Xg4nIf3O_AOfegZ51VADxiNMKI4GcmArP1aMIRyrLiBvRJTrMETSjq_ZnvwDCEHUIIT3CRItQHPzO7ZVYoCd-8i87CqbOyEdEcTDxCp-F7U2lnWew-XHUMp1XBtaq5Z1YF2FipPFy5L7hoaiM77GAYjFsFl1Y4v3eeRdMqt2LrpopGN1Z0B1bBuWf7rWrlNt9Gqgdwq1kV1PDSB-DzdfYxXSSrzXw5fVklLM1QTIrxmOZU61RSJjgmQvCCI53rLMd5lmumJRE0xYIrTLGkiHGiONGCtKWITAdgdNYV3oXglS733tTMH0uMyi7N8pxmeUmzBbJ_gDDxZCp6Zqrr2NMZa-_lzjW-tRyuPf8CP2qPtA |
CitedBy_id | crossref_primary_10_1021_acsami_9b18059 crossref_primary_10_1021_acsaelm_2c00721 crossref_primary_10_1007_s40201_021_00624_x crossref_primary_10_1016_j_ssi_2022_115858 crossref_primary_10_1016_j_ijhydene_2023_08_102 crossref_primary_10_1016_j_memsci_2020_118880 crossref_primary_10_1016_j_jece_2022_108295 crossref_primary_10_3390_en16237759 crossref_primary_10_1016_j_materresbull_2021_111425 crossref_primary_10_1016_j_memsci_2024_123359 crossref_primary_10_1021_acsapm_3c00150 crossref_primary_10_7316_JHNE_2023_34_2_178 crossref_primary_10_1016_j_ssi_2020_115294 crossref_primary_10_1021_acsanm_0c02055 crossref_primary_10_1016_j_apsusc_2022_153157 crossref_primary_10_1016_j_ijhydene_2021_05_048 crossref_primary_10_1016_j_jsamd_2020_01_006 crossref_primary_10_3390_membranes13070684 crossref_primary_10_1016_j_cej_2021_133526 crossref_primary_10_1021_acsami_4c06985 crossref_primary_10_1016_j_ijhydene_2023_04_250 crossref_primary_10_1016_j_memsci_2020_118339 crossref_primary_10_1002_app_51207 crossref_primary_10_1016_j_flatc_2023_100479 crossref_primary_10_1039_D4TA00470A crossref_primary_10_1039_D1QM00066G crossref_primary_10_1021_acsapm_2c00629 crossref_primary_10_1016_j_memsci_2020_118198 crossref_primary_10_1002_masy_202300050 crossref_primary_10_1016_j_eurpolymj_2022_111601 crossref_primary_10_1039_D3RA01130E crossref_primary_10_1016_j_eurpolymj_2023_112316 crossref_primary_10_1557_s43580_022_00250_1 crossref_primary_10_1021_acssuschemeng_2c00087 crossref_primary_10_3390_molecules27051507 crossref_primary_10_1149_1945_7111_ac3593 crossref_primary_10_1016_j_ssi_2023_116411 crossref_primary_10_1016_j_desal_2022_115954 crossref_primary_10_1016_j_ssi_2023_116152 crossref_primary_10_1016_j_memsci_2021_119650 crossref_primary_10_1016_j_jpowsour_2022_231416 crossref_primary_10_1007_s11706_023_0662_8 crossref_primary_10_1016_j_ijhydene_2021_05_119 crossref_primary_10_1016_j_memsci_2020_118428 crossref_primary_10_1021_acs_jpcc_2c02377 crossref_primary_10_3390_polym14020300 crossref_primary_10_1002_slct_202201028 |
Cites_doi | 10.1039/b702339a 10.1021/acsami.7b06424 10.1021/acsami.6b04800 10.1016/j.rser.2017.09.081 10.1016/j.carbpol.2018.01.032 10.1021/la203827h 10.1016/j.rser.2017.05.154 10.1021/nl803798y 10.1080/03602559.2017.1289398 10.1016/j.jiec.2019.03.012 10.1021/acs.chemrev.6b00159 10.1016/j.ijhydene.2015.02.078 10.1002/anie.201004497 10.1149/1.1859814 10.1039/C7TA03513F 10.1016/j.electacta.2017.11.047 10.1016/j.carbon.2012.07.025 10.1016/j.jpowsour.2007.12.079 10.1021/cm902283r 10.1016/j.nantod.2017.10.010 10.1016/j.progpolymsci.2010.12.005 10.1002/adma.200401060 10.1016/j.memsci.2014.07.003 10.1016/j.triboint.2016.09.040 10.1016/j.memsci.2015.12.021 10.1002/adma.200903932 10.1021/jp1112153 10.1016/j.memsci.2016.04.071 10.1002/app.46547 10.1016/j.electacta.2017.10.002 10.1016/j.carbon.2016.09.004 10.1002/adma.200801975 10.1002/adma.201707516 10.1021/ja01539a017 10.1016/j.polymer.2013.08.026 10.1021/nn100112h 10.1002/anie.201609306 10.1016/j.ijhydene.2016.08.142 10.1021/cm402372q 10.1021/acs.chemrev.6b00586 10.1021/cm0486969 10.1002/chem.201200596 10.1016/j.memsci.2013.10.018 10.1016/j.progpolymsci.2015.11.004 10.1016/j.ijhydene.2009.02.019 10.1016/j.ijhydene.2013.07.092 10.1016/j.memsci.2018.07.065 10.1039/C3RA42390E 10.1039/B917103G 10.1016/j.memsci.2017.02.043 10.1039/c3ta15301k 10.1016/j.memsci.2016.04.062 10.1016/j.electacta.2016.04.040 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acsanm.9b00446 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2574-0970 |
EndPage | 4743 |
ExternalDocumentID | 10_1021_acsanm_9b00446 a873482089 |
GroupedDBID | ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS EJD VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a340t-688757ff3d7acb12ccb6b0f5f451545fafd2c731cbe171d70ab2eb2fc22fce2d3 |
IEDL.DBID | ACS |
ISSN | 2574-0970 |
IngestDate | Thu Apr 24 22:52:13 EDT 2025 Tue Jul 01 02:29:23 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | acid−base pairs low humidity proton conductivity amphiphilic block copolymer multifunctional graphene oxide |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a340t-688757ff3d7acb12ccb6b0f5f451545fafd2c731cbe171d70ab2eb2fc22fce2d3 |
ORCID | 0000-0002-2492-4094 0000-0001-6600-4459 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1021_acsanm_9b00446 crossref_citationtrail_10_1021_acsanm_9b00446 acs_journals_10_1021_acsanm_9b00446 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 W1F CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-23 |
PublicationDateYYYYMMDD | 2019-08-23 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-23 day: 23 |
PublicationDecade | 2010 |
PublicationTitle | ACS applied nano materials |
PublicationTitleAlternate | ACS Appl. Nano Mater |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref49/cit49 doi: 10.1039/b702339a – ident: ref30/cit30 doi: 10.1021/acsami.7b06424 – ident: ref13/cit13 doi: 10.1021/acsami.6b04800 – ident: ref1/cit1 doi: 10.1016/j.rser.2017.09.081 – ident: ref27/cit27 doi: 10.1016/j.carbpol.2018.01.032 – ident: ref29/cit29 doi: 10.1021/la203827h – ident: ref45/cit45 doi: 10.1016/j.rser.2017.05.154 – ident: ref42/cit42 doi: 10.1021/nl803798y – ident: ref18/cit18 doi: 10.1080/03602559.2017.1289398 – ident: ref21/cit21 doi: 10.1016/j.jiec.2019.03.012 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.6b00159 – ident: ref53/cit53 doi: 10.1016/j.ijhydene.2015.02.078 – ident: ref43/cit43 doi: 10.1002/anie.201004497 – ident: ref50/cit50 doi: 10.1149/1.1859814 – ident: ref41/cit41 doi: 10.1039/C7TA03513F – ident: ref9/cit9 doi: 10.1016/j.electacta.2017.11.047 – ident: ref16/cit16 doi: 10.1016/j.carbon.2012.07.025 – ident: ref5/cit5 doi: 10.1016/j.jpowsour.2007.12.079 – ident: ref33/cit33 doi: 10.1021/cm902283r – ident: ref14/cit14 doi: 10.1016/j.nantod.2017.10.010 – ident: ref7/cit7 doi: 10.1016/j.progpolymsci.2010.12.005 – ident: ref22/cit22 doi: 10.1002/adma.200401060 – ident: ref37/cit37 doi: 10.1016/j.memsci.2014.07.003 – ident: ref26/cit26 doi: 10.1016/j.triboint.2016.09.040 – ident: ref52/cit52 doi: 10.1016/j.memsci.2015.12.021 – ident: ref35/cit35 doi: 10.1002/adma.200903932 – ident: ref31/cit31 doi: 10.1021/jp1112153 – ident: ref11/cit11 doi: 10.1016/j.memsci.2016.04.071 – ident: ref19/cit19 doi: 10.1002/app.46547 – ident: ref4/cit4 doi: 10.1016/j.electacta.2017.10.002 – ident: ref39/cit39 doi: 10.1016/j.carbon.2016.09.004 – ident: ref23/cit23 doi: 10.1002/adma.200801975 – ident: ref8/cit8 doi: 10.1002/adma.201707516 – ident: ref34/cit34 doi: 10.1021/ja01539a017 – ident: ref36/cit36 doi: 10.1016/j.polymer.2013.08.026 – ident: ref24/cit24 doi: 10.1021/nn100112h – ident: ref12/cit12 doi: 10.1002/anie.201609306 – ident: ref28/cit28 doi: 10.1016/j.ijhydene.2016.08.142 – ident: ref25/cit25 doi: 10.1021/cm402372q – ident: ref2/cit2 doi: 10.1021/acs.chemrev.6b00586 – ident: ref32/cit32 doi: 10.1021/cm0486969 – ident: ref40/cit40 doi: 10.1002/chem.201200596 – ident: ref15/cit15 doi: 10.1016/j.memsci.2013.10.018 – ident: ref6/cit6 doi: 10.1016/j.progpolymsci.2015.11.004 – ident: ref44/cit44 doi: 10.1016/j.ijhydene.2009.02.019 – ident: ref46/cit46 doi: 10.1016/j.ijhydene.2013.07.092 – ident: ref10/cit10 doi: 10.1016/j.memsci.2018.07.065 – ident: ref20/cit20 doi: 10.1039/C3RA42390E – ident: ref17/cit17 doi: 10.1039/B917103G – ident: ref38/cit38 doi: 10.1016/j.memsci.2017.02.043 – ident: ref47/cit47 doi: 10.1039/c3ta15301k – ident: ref51/cit51 doi: 10.1016/j.memsci.2016.04.062 – ident: ref48/cit48 doi: 10.1016/j.electacta.2016.04.040 |
SSID | ssj0001916300 |
Score | 2.320851 |
Snippet | Development of proton exchange membranes with sufficiently high proton conductivity, especially at low relative humidity (RH), remains a big challenge in the... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 4734 |
Title | Enhanced Proton Conductivity of Sulfonated Polysulfone Membranes under Low Humidity via the Incorporation of Multifunctional Graphene Oxide |
URI | http://dx.doi.org/10.1021/acsanm.9b00446 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA4eL754oOJNQMGnrG3SY_soiydeoIJvJScu7ray3fX6C_5pZ9J6oIg-9KF0moZkkvlmpvmGkC0BEDSQbc2sMZxFLotZ2wrLhOWxtGGilMR4x-lZcngdHd_EN5_xju8ZfB7uSF3Jot9C7j5wXcbJJE9gBSMI6lx-RlMA5Qh_3gRUMGJBlgbvDI0_mkA7pKsvduiLQdmfqdmNKs9DiP-R3LVGQ9XSLz9ZGv_s6yyZblAl3a3VYI6M2WKevO4Vtz6_Ty8GJUA82ikLZHf15SJo6ejlqOcweI4SZe-58reWnto-uNCwBVI8YDagJ-UjhVnvGnztoSspYEZ6hPyX943-YGP-JC9ayTq4SA-QCRs2Unr-1DV2gVzv7111DllTe4FJEQVDlrSR6d45YVKpVci1VokKXOyiGEGXk85wnYpQKxumoUkDqTg46U5zuCw3YpFMFNDnJUJNKpwNs8yoFMBOJpSzaaSF5_6CZ2qZbMK45c3aqXKfFudhXg9m3gzmMmHv85Xrhr4cq2j0fpXf_pC_r4k7fpFc-df3V8kUYKUMw8lcrJGJ4WBk1wGPDNWGV8U3FgrfkA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9pAEF4l9JBc-lASJU0fKzVST0vsXRvjY4SSQgsUCZBys_apoBAbYUgff6F_ujOLSVArpOTgg-3x7mg93vlm1vMtIWcCIGggm5pZYziLXBqzphWWCctjacOGUhLzHb1-oz2Ovl7H1zvkfF0LA0qU0FLpF_Ef2QXCc7gm87s6UvhBBLNLXgAS4WjSF63hY1IFwI7wZSdgiREL0iRYEzX-1wS6I11uuKMNv3L1igweNPK_k9zWlwtV17__IWt8hsqvycsKY9KLlVG8ITs2PyB_LvMbv9pPB_MCAB9tFTlyvfrNI2jh6HA5dZhKR4li-qv0p5b27B0E1DAhUiw3m9Nu8YOCDUwMPnY_kRQQJO0gG-assiZszNf1os9cpRrpF-TFhmmVfv85MfaQjK8uR602q3ZiYFJEwYI1msh775wwidQq5Fqrhgpc7KIYIZiTznCdiFArGyahSQKpOITsTnM4LDfiiNRy0PmYUJMIZ8M0NSoB6JMK5WwSaeGZwOCeOiGfYNyy6ksqM79IzsNsNZhZNZgnhK1fW6YrMnPcU2O6Vf7zg_xsReOxRfLtk_r_SPbao14363b6307JPqCoFBPNXLwjtcV8ad8DUlmoD946_wI3Wefx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJyFe9iFAbMCwBBJPLomdNM3j1K1s0I5JbaW-Rf4UFW1SNS1s-xf4p3fnpl21qRI85CHJxTk5Z9_Pd7mfCfkkAIIGsqmZNYazyKUxa1phmbA8ljZsKCUx3tG9alwMom_DeFjVcWMtDChRQkulT-LjqJ4aVzEMhF_guswndaTxg1XMM7KLOTs069NW7yGwAoBH-NITsMaIBWkSrMganzSBLkmXGy5pw7e090l_rZX_peRXfTFXdX33iLDxP9U-IHsV1qSnS-M4JDs2f0n-nuc_fdafXs8KAH60VeTI-eo3kaCFo73F2GFIHSWK8W3pTy3t2gksrGFipFh2NqOd4g8FWxgZfOz3SFJAkvQSWTGnlVVhY76-F33nMuRIvyI_Nkyv9MfNyNhXZNA-77cuWLUjA5MiCuas0UT-e-eESaRWIddaNVTgYhfFCMWcdIbrRIRa2TAJTRJIxWHp7jSHw3IjXpNaDjq_IdQkwtkwTY1KAAKlQjmbRFp4RjC4p47IR-i3rBpRZeaT5TzMlp2ZVZ15RNjq02W6IjXHvTXGW-U_r-WnSzqPLZLH__T-D-T59Vk761xefX9LXgCYSjHezMU7UpvPFvY9AJa5OvEGeg-pfOp0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Proton+Conductivity+of+Sulfonated+Polysulfone+Membranes+under+Low+Humidity+via+the+Incorporation+of+Multifunctional+Graphene+Oxide&rft.jtitle=ACS+applied+nano+materials&rft.au=Li%2C+Jinzhao&rft.au=Wu%2C+Hong&rft.au=Cao%2C+Li&rft.au=He%2C+Xueyi&rft.date=2019-08-23&rft.pub=American+Chemical+Society&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=2&rft.issue=8&rft.spage=4734&rft.epage=4743&rft_id=info:doi/10.1021%2Facsanm.9b00446&rft.externalDocID=a873482089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon |