Dynamic Compartmentalization of Peptide–Oligonucleotide Conjugates with Reversible Nanovesicle–Microdroplet Phase Transition Behaviors
Developing artificial microsystems based on liquid–liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we des...
Saved in:
Published in | ACS applied materials & interfaces Vol. 14; no. 32; pp. 36998 - 37008 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
17.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing artificial microsystems based on liquid–liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide–oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP–ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP–ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP–ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells. |
---|---|
AbstractList | Developing artificial microsystems based on liquid–liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide–oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP–ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP–ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP–ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells. Developing artificial microsystems based on liquid-liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide-oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP-ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP-ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP-ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells.Developing artificial microsystems based on liquid-liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide-oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP-ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP-ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP-ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells. |
Author | Fang, Honglong Xu, Yufang Yang, Yangyang Qian, Xuhong Zhu, Weiping Wang, Bin |
AuthorAffiliation | East China University of Science and Technology Shanghai Key Laboratory of Chemical Biology, School of Pharmacy State Key Laboratory of Bioreactor |
AuthorAffiliation_xml | – name: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy – name: East China University of Science and Technology – name: State Key Laboratory of Bioreactor |
Author_xml | – sequence: 1 givenname: Bin surname: Wang fullname: Wang, Bin organization: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy – sequence: 2 givenname: Honglong surname: Fang fullname: Fang, Honglong organization: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy – sequence: 3 givenname: Weiping orcidid: 0000-0002-5201-0468 surname: Zhu fullname: Zhu, Weiping organization: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy – sequence: 4 givenname: Yufang orcidid: 0000-0003-4946-4722 surname: Xu fullname: Xu, Yufang organization: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy – sequence: 5 givenname: Yangyang orcidid: 0000-0002-9595-0206 surname: Yang fullname: Yang, Yangyang email: triyang@ecust.edu.cn organization: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy – sequence: 6 givenname: Xuhong orcidid: 0000-0001-6777-0673 surname: Qian fullname: Qian, Xuhong email: xhqian@ecust.edu.cn organization: East China University of Science and Technology |
BookMark | eNqFkUlPHDEQha0IJGDgyrmPEdJMvPV2DEM2iU0RnFvV7mrGI7fd2O6JyCnnXPMP80swDMoBCeVUpdL7qlTvHZAd6ywScszoglHOPoAKMOgFVzTnRfWO7LNaynnFc77zr5dyjxyEsKa0EJzm--T32YNNlMqWbhjBxwFtBKN_QtTOZq7PrnGMusO_v_5cGX3n7KQMuqdJIux6uoOIIfuh4yr7jhv0QbcGs0uwboNBJ20CL7TyrvNuNBiz6xUEzG482KCfb5ziCjba-XBIdnswAY9e6ozcfv50s_w6P7_68m358XwOQtI4Zx2TgpcsZ3UJiDlvsayLoq_ajrZM1ELxVnS9FF2X9xTrMpmhFLCatX0vy1bMyPvt3tG7-wlDbAYdFBoDFt0UmrS7EkXOKf2_tKirQtAyXZ2RxVaafg3BY9-MXg_gHxpGm6d8mm0-zUs-CZCvAKXjs-3RgzZvYydbLM2btZu8TV69JX4E-XysGQ |
CitedBy_id | crossref_primary_10_1016_j_actbio_2023_04_019 crossref_primary_10_1016_j_colsurfa_2023_131512 crossref_primary_10_1186_s12951_023_02184_8 crossref_primary_10_1016_j_addr_2024_115189 crossref_primary_10_1021_acs_biomac_3c00662 crossref_primary_10_1039_D4TB01670J |
Cites_doi | 10.1039/D0CS00307G 10.1016/j.bbamcr.2020.118876 10.1002/advs.201903359 10.1002/adma.201502389 10.1038/s41565-020-0652-2 10.1021/acsbiomaterials.1c00145 10.1021/acsnano.9b10167 10.1038/nchem.1110 10.1021/acs.bioconjchem.9b00259 10.1126/sciadv.aba3471 10.1016/j.cub.2009.03.013 10.1021/acs.biochem.7b01144 10.1038/ncomms13982 10.1038/s41557-019-0210-4 10.1126/sciadv.abf9000 10.1021/bm060936l 10.1038/s41557-021-00788-x 10.1261/rna.053116.115 10.31635/ccschem.021.202000702 10.1021/nn404916f 10.1021/ja300897h 10.1002/smll.201907671 10.1039/C8OB02436G 10.1038/nmat4539 10.1002/anie.201909228 10.1039/C6FO01019A 10.1002/marc.202000149 10.1002/anie.201605696 10.1038/s41421-020-00240-3 10.1021/acs.biomac.5b01235 10.1016/S0143-7208(99)00037-6 10.1039/C7CC07708D 10.1039/D0SM01817A 10.1021/jacs.9b10892 10.1016/j.cclet.2021.08.116 10.1002/anie.201607117 10.1016/j.addr.2015.12.007 10.1073/pnas.0908919107 10.1002/cbic.201900183 10.1016/j.chempr.2020.09.022 10.1021/jp8062977 10.3109/10717544.2013.853210 10.1016/j.febslet.2015.08.029 10.1002/wnan.1442 10.1002/anie.201602270 10.1021/acsami.8b07573 10.1038/nchembio.975 10.1021/acsnano.8b03019 10.1039/D0SC03849K 10.1021/acs.biochem.8b00081 10.1021/acs.langmuir.1c01386 10.1038/s41557-020-00585-y 10.1002/anie.201411383 10.1073/pnas.1108557109 10.1021/jacs.0c12494 10.1007/s11427-020-1702-x 10.1021/acs.biomac.1c00322 10.1073/pnas.2002437117 10.1002/anie.202112738 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/acsami.2c05268 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 37008 |
ExternalDocumentID | 10_1021_acsami_2c05268 b202509138 |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED F5P GGK GNL IH9 JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ ED~ JG~ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a340t-1d1432715197aee52be7966f8bd0b1393c2b3df43dd5f0e97268cca191bff47b3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 15:41:56 EDT 2025 Fri Jul 11 06:29:39 EDT 2025 Tue Jul 01 01:14:46 EDT 2025 Thu Apr 24 22:50:06 EDT 2025 Fri Aug 19 07:59:57 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | confinement effect nanovesicle liquid−liquid phase separation microdroplet peptide−oligonucleotide conjugate |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a340t-1d1432715197aee52be7966f8bd0b1393c2b3df43dd5f0e97268cca191bff47b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6777-0673 0000-0003-4946-4722 0000-0002-5201-0468 0000-0002-9595-0206 |
PQID | 2698630739 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2718365200 proquest_miscellaneous_2698630739 crossref_primary_10_1021_acsami_2c05268 crossref_citationtrail_10_1021_acsami_2c05268 acs_journals_10_1021_acsami_2c05268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-17 |
PublicationDateYYYYMMDD | 2022-08-17 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref22/cit22 doi: 10.1039/D0CS00307G – ident: ref8/cit8 doi: 10.1016/j.bbamcr.2020.118876 – ident: ref18/cit18 doi: 10.1002/advs.201903359 – ident: ref5/cit5 doi: 10.1002/adma.201502389 – ident: ref54/cit54 doi: 10.1038/s41565-020-0652-2 – ident: ref38/cit38 doi: 10.1021/acsbiomaterials.1c00145 – ident: ref25/cit25 doi: 10.1021/acsnano.9b10167 – ident: ref26/cit26 doi: 10.1038/nchem.1110 – ident: ref30/cit30 doi: 10.1021/acs.bioconjchem.9b00259 – ident: ref43/cit43 doi: 10.1126/sciadv.aba3471 – ident: ref6/cit6 doi: 10.1016/j.cub.2009.03.013 – ident: ref51/cit51 doi: 10.1021/acs.biochem.7b01144 – ident: ref59/cit59 doi: 10.1038/ncomms13982 – ident: ref46/cit46 doi: 10.1038/s41557-019-0210-4 – ident: ref24/cit24 doi: 10.1126/sciadv.abf9000 – ident: ref45/cit45 doi: 10.1021/bm060936l – ident: ref19/cit19 doi: 10.1038/s41557-021-00788-x – ident: ref7/cit7 doi: 10.1261/rna.053116.115 – ident: ref13/cit13 doi: 10.31635/ccschem.021.202000702 – ident: ref31/cit31 doi: 10.1021/nn404916f – ident: ref58/cit58 doi: 10.1021/ja300897h – ident: ref28/cit28 doi: 10.1002/smll.201907671 – ident: ref29/cit29 doi: 10.1039/C8OB02436G – ident: ref27/cit27 doi: 10.1038/nmat4539 – ident: ref23/cit23 doi: 10.1002/anie.201909228 – ident: ref17/cit17 doi: 10.1039/C6FO01019A – ident: ref21/cit21 doi: 10.1002/marc.202000149 – ident: ref32/cit32 doi: 10.1002/anie.201605696 – ident: ref10/cit10 doi: 10.1038/s41421-020-00240-3 – ident: ref47/cit47 doi: 10.1021/acs.biomac.5b01235 – ident: ref53/cit53 doi: 10.1016/S0143-7208(99)00037-6 – ident: ref33/cit33 doi: 10.1039/C7CC07708D – ident: ref41/cit41 doi: 10.1039/D0SM01817A – ident: ref49/cit49 doi: 10.1021/jacs.9b10892 – ident: ref42/cit42 doi: 10.1016/j.cclet.2021.08.116 – ident: ref16/cit16 doi: 10.1002/anie.201607117 – ident: ref37/cit37 doi: 10.1016/j.addr.2015.12.007 – ident: ref1/cit1 doi: 10.1073/pnas.0908919107 – ident: ref11/cit11 doi: 10.1002/cbic.201900183 – ident: ref15/cit15 doi: 10.1016/j.chempr.2020.09.022 – ident: ref44/cit44 doi: 10.1021/jp8062977 – ident: ref36/cit36 doi: 10.3109/10717544.2013.853210 – ident: ref35/cit35 doi: 10.1016/j.febslet.2015.08.029 – ident: ref20/cit20 doi: 10.1002/wnan.1442 – ident: ref55/cit55 doi: 10.1002/anie.201602270 – ident: ref57/cit57 doi: 10.1021/acsami.8b07573 – ident: ref3/cit3 doi: 10.1038/nchembio.975 – ident: ref48/cit48 doi: 10.1021/acsnano.8b03019 – ident: ref56/cit56 doi: 10.1039/D0SC03849K – ident: ref52/cit52 doi: 10.1021/acs.biochem.8b00081 – ident: ref50/cit50 doi: 10.1021/acs.langmuir.1c01386 – ident: ref12/cit12 doi: 10.1038/s41557-020-00585-y – ident: ref34/cit34 doi: 10.1002/anie.201411383 – ident: ref2/cit2 doi: 10.1073/pnas.1108557109 – ident: ref14/cit14 doi: 10.1021/jacs.0c12494 – ident: ref4/cit4 doi: 10.1007/s11427-020-1702-x – ident: ref39/cit39 doi: 10.1021/acs.biomac.1c00322 – ident: ref9/cit9 doi: 10.1073/pnas.2002437117 – ident: ref40/cit40 doi: 10.1002/anie.202112738 |
SSID | ssj0063205 |
Score | 2.416032 |
Snippet | Developing artificial microsystems based on liquid–liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing... Developing artificial microsystems based on liquid-liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 36998 |
SubjectTerms | Applications of Polymer, Composite, and Coating Materials oligonucleotides phase transition polypeptides polysaccharides separation temperature |
Title | Dynamic Compartmentalization of Peptide–Oligonucleotide Conjugates with Reversible Nanovesicle–Microdroplet Phase Transition Behaviors |
URI | http://dx.doi.org/10.1021/acsami.2c05268 https://www.proquest.com/docview/2698630739 https://www.proquest.com/docview/2718365200 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELU4Gii4EbeMQKIKJI6TbErEIYTEIWCl7aL44lolaJOloKKm5Q_5EmacLNdqgSZFNFbi8Xguj98QspkG2jOax470WOjwUHInbSDkvnCVAY8jYDbfcXIaHjX5cStofeY7fp7gM28nlQW2wmHSIpMMk1F4Rhhm7e5d9nRu6DNbrAgROXcaYLF68Ix949EIyeK7Efqug61hOZysUI4Ki0eI9ST3291SbMunfrTGP_95ikzU3iXdrcRhmgzpbIaMf8EcnCUv-1UPemo1QaeswP3r25g0N_Qc61yUfnt-PWvfXucZAh7n-AZGZHddTLsVFNO39ELbmg7R1hSUdP6oC_wqDDzBKj_Vwdr0kp7fgKGk1iba8jBaQzJ2ijnSPDy42jty6oYMTupzt3Q8Bd4Vizy87JpqHTChIwiXTEMoV8DC-pIJXxnuKxUYV8cRTB4kBEJCYQyPhD9PRrI80wuEBq40HKiFG_tcerEwgQqNSI2UknNXLZINYGJSb6gisWflzEsqziY1ZxeJ01vHRNaY5thaoz2QfuuD_qFC8xhIud4TiwQ2HJ6ipJnOu0XCwrgRomaMf6EBi--HiGi19K95LJMxhtcqEGo3WiEjZaerV8HZKcWalfN3AkMAjA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LU9RAEO7C9aAeEF8lIDiUVnkKJJNJsjluIdSKLGwpVHFLZV6CbiXUJsuBE2eu_EN-id2TBEULC69TPck8evox0_01wPs8MoE1IvVUwGNPxEp4eZ8g96WvLVocEXf3HaO9eHgodo6ioznY6HJhcBAVfqlyj_i_0AWCDWyjijhcOYCSB_AQLRFO3tZg82sneuOQu5hFdMyF10fF1aE0_tWfdJGqbuui26LY6ZftpzC-GZkLK_mxPqvlujr_A7TxP4a-APOtrckGDXM8gzlTPIcnvyEQvoDLj01FeubkwrRuoP7b3ExWWjamqBdtri-u9icn38qC4I9LasEexfcZXcJVjC5z2RfjIjzkxDAU2eWZqeiv2HFEMX96SpHqNRsfo9pkTkO6YDHWAjROq5dwuL11sDn02vIMXh4Kv_YCjbYWTwJKfc2Nibg0CTpPti-1L3GbQ8VlqK0ItY6sb9IEJ4_8gg6itFYkMnwFvaIszGtgka-sQGrpp6FQQSptpGMrc6uUEsLXi_AOFzFrj1eVuZdzHmTNymbtyi6C121nplqEcyq0MbmT_sMN_WmD7XEn5VrHHRkeP3pTyQtTzqqMx2k_JjmZ_oMG9X8YE77V0r3m8RYeDQ9Gu9nup73Py_CYU8IFgfAmb6BXT2dmBc2gWq461v8JnvgI7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKlSo40AcgHi0YgcQpkDhOsjmiXVbQ8ljxkLhF8YvXKkGbLAdOPffKP-SXdMbxogIC0as1TvwYz4w9M98QspZHOjCap54MWOzxWHIvbyHkvvCVAYsjYva9Y_8g3jnlP8-iM5fHjbkwMIgKvlRZJz6e6htlHMJAsAntWBWHSQtSMkY-os8Ob1xb7eOR-I1DZuMW4XLOvRYorxFS44v-qI9k9VQfPRXHVsd0P5OTx9HZ0JLrjWEtNuTdM-DG_xz-FzLlbE661TDJV_JBF9_I5D9IhNPkT6epTE-tfBjUDeS_y9GkpaE9jH5R-uH3_WH_8rwsEAa5xBboUVwN8TGuovioS4-0jfQQfU1BdJe3usK_Qsd9jP1TA4xYr2nvAtQntZrSBo1RB9Q4qGbIaXf7pL3juTINXh5yv_YCBTYXSwJMgc21jpjQCVyiTEsoX8B2h5KJUBkeKhUZX6cJTB74Bi6KwhieiHCWjBdloecIjXxpOFALPw25DFJhIhUbkRspJee-miersIiZO2ZVZj3oLMialc3cys4Tb7SlmXRI51hwo_8q_foj_U2D8fEq5cqIQzI4huhbyQtdDquMxWkrRnmZvkEDdkAYI87VwrvmsUw-9TrdbG_34NcimWCYd4FYvMl3Ml4PhvoHWEO1WLLc_xf1XQtw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Compartmentalization+of+Peptide%E2%80%93Oligonucleotide+Conjugates+with+Reversible+Nanovesicle%E2%80%93Microdroplet+Phase+Transition+Behaviors&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wang%2C+Bin&rft.au=Fang%2C+Honglong&rft.au=Zhu%2C+Weiping&rft.au=Xu%2C+Yufang&rft.date=2022-08-17&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=14&rft.issue=32&rft.spage=36998&rft.epage=37008&rft_id=info:doi/10.1021%2Facsami.2c05268&rft.externalDocID=b202509138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |