Dynamic Compartmentalization of Peptide–Oligonucleotide Conjugates with Reversible Nanovesicle–Microdroplet Phase Transition Behaviors

Developing artificial microsystems based on liquid–liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we des...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 32; pp. 36998 - 37008
Main Authors Wang, Bin, Fang, Honglong, Zhu, Weiping, Xu, Yufang, Yang, Yangyang, Qian, Xuhong
Format Journal Article
LanguageEnglish
Published American Chemical Society 17.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing artificial microsystems based on liquid–liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide–oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP–ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP–ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP–ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells.
AbstractList Developing artificial microsystems based on liquid–liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide–oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP–ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP–ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP–ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells.
Developing artificial microsystems based on liquid-liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide-oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP-ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP-ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP-ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells.Developing artificial microsystems based on liquid-liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide-oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP-ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP-ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP-ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells.
Author Fang, Honglong
Xu, Yufang
Yang, Yangyang
Qian, Xuhong
Zhu, Weiping
Wang, Bin
AuthorAffiliation East China University of Science and Technology
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy
State Key Laboratory of Bioreactor
AuthorAffiliation_xml – name: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy
– name: East China University of Science and Technology
– name: State Key Laboratory of Bioreactor
Author_xml – sequence: 1
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy
– sequence: 2
  givenname: Honglong
  surname: Fang
  fullname: Fang, Honglong
  organization: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy
– sequence: 3
  givenname: Weiping
  orcidid: 0000-0002-5201-0468
  surname: Zhu
  fullname: Zhu, Weiping
  organization: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy
– sequence: 4
  givenname: Yufang
  orcidid: 0000-0003-4946-4722
  surname: Xu
  fullname: Xu, Yufang
  organization: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy
– sequence: 5
  givenname: Yangyang
  orcidid: 0000-0002-9595-0206
  surname: Yang
  fullname: Yang, Yangyang
  email: triyang@ecust.edu.cn
  organization: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy
– sequence: 6
  givenname: Xuhong
  orcidid: 0000-0001-6777-0673
  surname: Qian
  fullname: Qian, Xuhong
  email: xhqian@ecust.edu.cn
  organization: East China University of Science and Technology
BookMark eNqFkUlPHDEQha0IJGDgyrmPEdJMvPV2DEM2iU0RnFvV7mrGI7fd2O6JyCnnXPMP80swDMoBCeVUpdL7qlTvHZAd6ywScszoglHOPoAKMOgFVzTnRfWO7LNaynnFc77zr5dyjxyEsKa0EJzm--T32YNNlMqWbhjBxwFtBKN_QtTOZq7PrnGMusO_v_5cGX3n7KQMuqdJIux6uoOIIfuh4yr7jhv0QbcGs0uwboNBJ20CL7TyrvNuNBiz6xUEzG482KCfb5ziCjba-XBIdnswAY9e6ozcfv50s_w6P7_68m358XwOQtI4Zx2TgpcsZ3UJiDlvsayLoq_ajrZM1ELxVnS9FF2X9xTrMpmhFLCatX0vy1bMyPvt3tG7-wlDbAYdFBoDFt0UmrS7EkXOKf2_tKirQtAyXZ2RxVaafg3BY9-MXg_gHxpGm6d8mm0-zUs-CZCvAKXjs-3RgzZvYydbLM2btZu8TV69JX4E-XysGQ
CitedBy_id crossref_primary_10_1016_j_actbio_2023_04_019
crossref_primary_10_1016_j_colsurfa_2023_131512
crossref_primary_10_1186_s12951_023_02184_8
crossref_primary_10_1016_j_addr_2024_115189
crossref_primary_10_1021_acs_biomac_3c00662
crossref_primary_10_1039_D4TB01670J
Cites_doi 10.1039/D0CS00307G
10.1016/j.bbamcr.2020.118876
10.1002/advs.201903359
10.1002/adma.201502389
10.1038/s41565-020-0652-2
10.1021/acsbiomaterials.1c00145
10.1021/acsnano.9b10167
10.1038/nchem.1110
10.1021/acs.bioconjchem.9b00259
10.1126/sciadv.aba3471
10.1016/j.cub.2009.03.013
10.1021/acs.biochem.7b01144
10.1038/ncomms13982
10.1038/s41557-019-0210-4
10.1126/sciadv.abf9000
10.1021/bm060936l
10.1038/s41557-021-00788-x
10.1261/rna.053116.115
10.31635/ccschem.021.202000702
10.1021/nn404916f
10.1021/ja300897h
10.1002/smll.201907671
10.1039/C8OB02436G
10.1038/nmat4539
10.1002/anie.201909228
10.1039/C6FO01019A
10.1002/marc.202000149
10.1002/anie.201605696
10.1038/s41421-020-00240-3
10.1021/acs.biomac.5b01235
10.1016/S0143-7208(99)00037-6
10.1039/C7CC07708D
10.1039/D0SM01817A
10.1021/jacs.9b10892
10.1016/j.cclet.2021.08.116
10.1002/anie.201607117
10.1016/j.addr.2015.12.007
10.1073/pnas.0908919107
10.1002/cbic.201900183
10.1016/j.chempr.2020.09.022
10.1021/jp8062977
10.3109/10717544.2013.853210
10.1016/j.febslet.2015.08.029
10.1002/wnan.1442
10.1002/anie.201602270
10.1021/acsami.8b07573
10.1038/nchembio.975
10.1021/acsnano.8b03019
10.1039/D0SC03849K
10.1021/acs.biochem.8b00081
10.1021/acs.langmuir.1c01386
10.1038/s41557-020-00585-y
10.1002/anie.201411383
10.1073/pnas.1108557109
10.1021/jacs.0c12494
10.1007/s11427-020-1702-x
10.1021/acs.biomac.1c00322
10.1073/pnas.2002437117
10.1002/anie.202112738
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/acsami.2c05268
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 37008
ExternalDocumentID 10_1021_acsami_2c05268
b202509138
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
F5P
GGK
GNL
IH9
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
ED~
JG~
7X8
7S9
L.6
ID FETCH-LOGICAL-a340t-1d1432715197aee52be7966f8bd0b1393c2b3df43dd5f0e97268cca191bff47b3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 15:41:56 EDT 2025
Fri Jul 11 06:29:39 EDT 2025
Tue Jul 01 01:14:46 EDT 2025
Thu Apr 24 22:50:06 EDT 2025
Fri Aug 19 07:59:57 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords confinement effect
nanovesicle
liquid−liquid phase separation
microdroplet
peptide−oligonucleotide conjugate
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a340t-1d1432715197aee52be7966f8bd0b1393c2b3df43dd5f0e97268cca191bff47b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6777-0673
0000-0003-4946-4722
0000-0002-5201-0468
0000-0002-9595-0206
PQID 2698630739
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2718365200
proquest_miscellaneous_2698630739
crossref_primary_10_1021_acsami_2c05268
crossref_citationtrail_10_1021_acsami_2c05268
acs_journals_10_1021_acsami_2c05268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-17
PublicationDateYYYYMMDD 2022-08-17
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-17
  day: 17
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1039/D0CS00307G
– ident: ref8/cit8
  doi: 10.1016/j.bbamcr.2020.118876
– ident: ref18/cit18
  doi: 10.1002/advs.201903359
– ident: ref5/cit5
  doi: 10.1002/adma.201502389
– ident: ref54/cit54
  doi: 10.1038/s41565-020-0652-2
– ident: ref38/cit38
  doi: 10.1021/acsbiomaterials.1c00145
– ident: ref25/cit25
  doi: 10.1021/acsnano.9b10167
– ident: ref26/cit26
  doi: 10.1038/nchem.1110
– ident: ref30/cit30
  doi: 10.1021/acs.bioconjchem.9b00259
– ident: ref43/cit43
  doi: 10.1126/sciadv.aba3471
– ident: ref6/cit6
  doi: 10.1016/j.cub.2009.03.013
– ident: ref51/cit51
  doi: 10.1021/acs.biochem.7b01144
– ident: ref59/cit59
  doi: 10.1038/ncomms13982
– ident: ref46/cit46
  doi: 10.1038/s41557-019-0210-4
– ident: ref24/cit24
  doi: 10.1126/sciadv.abf9000
– ident: ref45/cit45
  doi: 10.1021/bm060936l
– ident: ref19/cit19
  doi: 10.1038/s41557-021-00788-x
– ident: ref7/cit7
  doi: 10.1261/rna.053116.115
– ident: ref13/cit13
  doi: 10.31635/ccschem.021.202000702
– ident: ref31/cit31
  doi: 10.1021/nn404916f
– ident: ref58/cit58
  doi: 10.1021/ja300897h
– ident: ref28/cit28
  doi: 10.1002/smll.201907671
– ident: ref29/cit29
  doi: 10.1039/C8OB02436G
– ident: ref27/cit27
  doi: 10.1038/nmat4539
– ident: ref23/cit23
  doi: 10.1002/anie.201909228
– ident: ref17/cit17
  doi: 10.1039/C6FO01019A
– ident: ref21/cit21
  doi: 10.1002/marc.202000149
– ident: ref32/cit32
  doi: 10.1002/anie.201605696
– ident: ref10/cit10
  doi: 10.1038/s41421-020-00240-3
– ident: ref47/cit47
  doi: 10.1021/acs.biomac.5b01235
– ident: ref53/cit53
  doi: 10.1016/S0143-7208(99)00037-6
– ident: ref33/cit33
  doi: 10.1039/C7CC07708D
– ident: ref41/cit41
  doi: 10.1039/D0SM01817A
– ident: ref49/cit49
  doi: 10.1021/jacs.9b10892
– ident: ref42/cit42
  doi: 10.1016/j.cclet.2021.08.116
– ident: ref16/cit16
  doi: 10.1002/anie.201607117
– ident: ref37/cit37
  doi: 10.1016/j.addr.2015.12.007
– ident: ref1/cit1
  doi: 10.1073/pnas.0908919107
– ident: ref11/cit11
  doi: 10.1002/cbic.201900183
– ident: ref15/cit15
  doi: 10.1016/j.chempr.2020.09.022
– ident: ref44/cit44
  doi: 10.1021/jp8062977
– ident: ref36/cit36
  doi: 10.3109/10717544.2013.853210
– ident: ref35/cit35
  doi: 10.1016/j.febslet.2015.08.029
– ident: ref20/cit20
  doi: 10.1002/wnan.1442
– ident: ref55/cit55
  doi: 10.1002/anie.201602270
– ident: ref57/cit57
  doi: 10.1021/acsami.8b07573
– ident: ref3/cit3
  doi: 10.1038/nchembio.975
– ident: ref48/cit48
  doi: 10.1021/acsnano.8b03019
– ident: ref56/cit56
  doi: 10.1039/D0SC03849K
– ident: ref52/cit52
  doi: 10.1021/acs.biochem.8b00081
– ident: ref50/cit50
  doi: 10.1021/acs.langmuir.1c01386
– ident: ref12/cit12
  doi: 10.1038/s41557-020-00585-y
– ident: ref34/cit34
  doi: 10.1002/anie.201411383
– ident: ref2/cit2
  doi: 10.1073/pnas.1108557109
– ident: ref14/cit14
  doi: 10.1021/jacs.0c12494
– ident: ref4/cit4
  doi: 10.1007/s11427-020-1702-x
– ident: ref39/cit39
  doi: 10.1021/acs.biomac.1c00322
– ident: ref9/cit9
  doi: 10.1073/pnas.2002437117
– ident: ref40/cit40
  doi: 10.1002/anie.202112738
SSID ssj0063205
Score 2.416032
Snippet Developing artificial microsystems based on liquid–liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing...
Developing artificial microsystems based on liquid-liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36998
SubjectTerms Applications of Polymer, Composite, and Coating Materials
oligonucleotides
phase transition
polypeptides
polysaccharides
separation
temperature
Title Dynamic Compartmentalization of Peptide–Oligonucleotide Conjugates with Reversible Nanovesicle–Microdroplet Phase Transition Behaviors
URI http://dx.doi.org/10.1021/acsami.2c05268
https://www.proquest.com/docview/2698630739
https://www.proquest.com/docview/2718365200
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELU4Gii4EbeMQKIKJI6TbErEIYTEIWCl7aL44lolaJOloKKm5Q_5EmacLNdqgSZFNFbi8Xguj98QspkG2jOax470WOjwUHInbSDkvnCVAY8jYDbfcXIaHjX5cStofeY7fp7gM28nlQW2wmHSIpMMk1F4Rhhm7e5d9nRu6DNbrAgROXcaYLF68Ix949EIyeK7Efqug61hOZysUI4Ki0eI9ST3291SbMunfrTGP_95ikzU3iXdrcRhmgzpbIaMf8EcnCUv-1UPemo1QaeswP3r25g0N_Qc61yUfnt-PWvfXucZAh7n-AZGZHddTLsVFNO39ELbmg7R1hSUdP6oC_wqDDzBKj_Vwdr0kp7fgKGk1iba8jBaQzJ2ijnSPDy42jty6oYMTupzt3Q8Bd4Vizy87JpqHTChIwiXTEMoV8DC-pIJXxnuKxUYV8cRTB4kBEJCYQyPhD9PRrI80wuEBq40HKiFG_tcerEwgQqNSI2UknNXLZINYGJSb6gisWflzEsqziY1ZxeJ01vHRNaY5thaoz2QfuuD_qFC8xhIud4TiwQ2HJ6ipJnOu0XCwrgRomaMf6EBi--HiGi19K95LJMxhtcqEGo3WiEjZaerV8HZKcWalfN3AkMAjA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LU9RAEO7C9aAeEF8lIDiUVnkKJJNJsjluIdSKLGwpVHFLZV6CbiXUJsuBE2eu_EN-id2TBEULC69TPck8evox0_01wPs8MoE1IvVUwGNPxEp4eZ8g96WvLVocEXf3HaO9eHgodo6ioznY6HJhcBAVfqlyj_i_0AWCDWyjijhcOYCSB_AQLRFO3tZg82sneuOQu5hFdMyF10fF1aE0_tWfdJGqbuui26LY6ZftpzC-GZkLK_mxPqvlujr_A7TxP4a-APOtrckGDXM8gzlTPIcnvyEQvoDLj01FeubkwrRuoP7b3ExWWjamqBdtri-u9icn38qC4I9LasEexfcZXcJVjC5z2RfjIjzkxDAU2eWZqeiv2HFEMX96SpHqNRsfo9pkTkO6YDHWAjROq5dwuL11sDn02vIMXh4Kv_YCjbYWTwJKfc2Nibg0CTpPti-1L3GbQ8VlqK0ItY6sb9IEJ4_8gg6itFYkMnwFvaIszGtgka-sQGrpp6FQQSptpGMrc6uUEsLXi_AOFzFrj1eVuZdzHmTNymbtyi6C121nplqEcyq0MbmT_sMN_WmD7XEn5VrHHRkeP3pTyQtTzqqMx2k_JjmZ_oMG9X8YE77V0r3m8RYeDQ9Gu9nup73Py_CYU8IFgfAmb6BXT2dmBc2gWq461v8JnvgI7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKlSo40AcgHi0YgcQpkDhOsjmiXVbQ8ljxkLhF8YvXKkGbLAdOPffKP-SXdMbxogIC0as1TvwYz4w9M98QspZHOjCap54MWOzxWHIvbyHkvvCVAYsjYva9Y_8g3jnlP8-iM5fHjbkwMIgKvlRZJz6e6htlHMJAsAntWBWHSQtSMkY-os8Ob1xb7eOR-I1DZuMW4XLOvRYorxFS44v-qI9k9VQfPRXHVsd0P5OTx9HZ0JLrjWEtNuTdM-DG_xz-FzLlbE661TDJV_JBF9_I5D9IhNPkT6epTE-tfBjUDeS_y9GkpaE9jH5R-uH3_WH_8rwsEAa5xBboUVwN8TGuovioS4-0jfQQfU1BdJe3usK_Qsd9jP1TA4xYr2nvAtQntZrSBo1RB9Q4qGbIaXf7pL3juTINXh5yv_YCBTYXSwJMgc21jpjQCVyiTEsoX8B2h5KJUBkeKhUZX6cJTB74Bi6KwhieiHCWjBdloecIjXxpOFALPw25DFJhIhUbkRspJee-miersIiZO2ZVZj3oLMialc3cys4Tb7SlmXRI51hwo_8q_foj_U2D8fEq5cqIQzI4huhbyQtdDquMxWkrRnmZvkEDdkAYI87VwrvmsUw-9TrdbG_34NcimWCYd4FYvMl3Ml4PhvoHWEO1WLLc_xf1XQtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Compartmentalization+of+Peptide%E2%80%93Oligonucleotide+Conjugates+with+Reversible+Nanovesicle%E2%80%93Microdroplet+Phase+Transition+Behaviors&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wang%2C+Bin&rft.au=Fang%2C+Honglong&rft.au=Zhu%2C+Weiping&rft.au=Xu%2C+Yufang&rft.date=2022-08-17&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=14&rft.issue=32&rft.spage=36998&rft.epage=37008&rft_id=info:doi/10.1021%2Facsami.2c05268&rft.externalDocID=b202509138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon