Chemical Reaction Networks for Computing Polynomials
Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding...
Saved in:
Published in | ACS synthetic biology Vol. 6; no. 1; pp. 76 - 83 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2161-5063 2161-5063 |
DOI | 10.1021/acssynbio.5b00163 |
Cover
Abstract | Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. In the proposed encoding approach, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomial. Molecular encoders for converting any input in a standard representation to the fractional representation as well as decoders for converting the computed output from the fractional to a standard representation are presented. The method is illustrated first for generic CRNs; then chemical reactions designed for an example are mapped to DNA strand-displacement reactions. |
---|---|
AbstractList | Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. In the proposed encoding approach, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomial. Molecular encoders for converting any input in a standard representation to the fractional representation as well as decoders for converting the computed output from the fractional to a standard representation are presented. The method is illustrated first for generic CRNs; then chemical reactions designed for an example are mapped to DNA strand-displacement reactions. |
Author | Salehi, Sayed Ahmad Parhi, Keshab K Riedel, Marc D |
AuthorAffiliation | Department of Electrical and Computer Engineering University of Minnesota |
AuthorAffiliation_xml | – name: Department of Electrical and Computer Engineering – name: University of Minnesota |
Author_xml | – sequence: 1 givenname: Sayed Ahmad surname: Salehi fullname: Salehi, Sayed Ahmad email: saleh022@umn.edu – sequence: 2 givenname: Keshab K surname: Parhi fullname: Parhi, Keshab K – sequence: 3 givenname: Marc D surname: Riedel fullname: Riedel, Marc D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27598466$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kN1LwzAUxYNM3Jz7A3yRPvrSmY8mTR6l-AVDRfQ5pG2qmW0ykxbZf2_GNhEfdl_Ohfs7F845BSPrrAbgHME5ghhdqSqEtS2Nm9MSQsTIEZhgxFBKISOjP_sYzEJYwjiUEkr4CRjjnAqeMTYBWfGhO1OpNnnRquqNs8mj7r-d_wxJ43xSuG419Ma-J8-uXVvXGdWGM3DcRNGznU7B2-3Na3GfLp7uHorrRaoIEX1aQ1oyRgXLBSaaasREyUWW8RrXjDd5QzShuKQ1qznKeK4UhljDhjaQCBYTTcHl9u_Ku69Bh152JlS6bZXVbggScSpyzJgQEb3YoUPZ6VquvOmUX8t90gjkW6DyLgSvG1mZXm0C916ZViIoN7XK31rlrtboRP-c--eHPOnWE09y6QZvY08H-B8GdYs3 |
CitedBy_id | crossref_primary_10_1007_s00498_023_00361_6 crossref_primary_10_1016_j_compchemeng_2017_01_027 crossref_primary_10_1109_TBCAS_2020_2979485 crossref_primary_10_1007_s11047_019_09775_1 crossref_primary_10_1039_D1NR05055A crossref_primary_10_1021_acscatal_0c02332 crossref_primary_10_1016_j_jprocont_2019_02_009 crossref_primary_10_1007_s11047_018_9687_9 crossref_primary_10_1007_s11265_017_1318_7 crossref_primary_10_1021_acs_nanolett_9b02326 crossref_primary_10_1021_acssynbio_2c00184 crossref_primary_10_3390_bioengineering10040466 crossref_primary_10_1109_TBCAS_2022_3184760 crossref_primary_10_1021_acsapm_2c00528 crossref_primary_10_1098_rspa_2020_0899 crossref_primary_10_1016_j_snb_2020_128719 crossref_primary_10_1093_synbio_ysx002 crossref_primary_10_1166_jno_2021_3062 crossref_primary_10_1007_s11047_019_09736_8 crossref_primary_10_1109_TBCAS_2023_3312300 crossref_primary_10_1007_s10910_022_01340_z crossref_primary_10_1016_j_neucom_2019_11_098 crossref_primary_10_1109_TNNLS_2022_3146057 crossref_primary_10_1145_3590776 crossref_primary_10_1021_acssynbio_1c00483 crossref_primary_10_1371_journal_pone_0281574 crossref_primary_10_1021_acssynbio_6b00390 crossref_primary_10_1109_TNB_2021_3128393 crossref_primary_10_1038_s41598_018_26709_6 crossref_primary_10_1016_j_automatica_2025_112261 crossref_primary_10_1021_acssynbio_8b00304 |
Cites_doi | 10.1098/rsif.2015.0586 10.1126/science.1200705 10.1109/TC.2010.202 10.1038/nnano.2013.189 10.1007/BF00251225 10.1126/science.7973651 10.1007/11864219_5 10.1145/1391469.1391636 10.1109/ICDSP.2015.7251963 10.1145/2554797.2554827 10.1021/j100540a008 10.1109/TAC.2006.890471 10.1016/j.ejc.2010.11.004 10.1007/s11047-008-9067-y 10.1162/artl.2009.15.1.15101 10.1007/978-3-540-74913-4_120 10.1063/1.4823332 10.1016/0167-8396(87)90012-4 10.1073/pnas.0909380107 10.1103/PhysRevLett.78.1190 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acssynbio.5b00163 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-5063 |
EndPage | 83 |
ExternalDocumentID | 27598466 10_1021_acssynbio_5b00163 d093957153 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a339t-d05b665967923e5e169b89448d2d68f7f3e352b5d6d81487aa202e0f5f0396163 |
IEDL.DBID | ACS |
ISSN | 2161-5063 |
IngestDate | Thu Jul 10 19:00:16 EDT 2025 Wed Feb 19 01:56:43 EST 2025 Thu Apr 24 22:59:40 EDT 2025 Tue Jul 01 02:19:28 EDT 2025 Thu Aug 27 13:41:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | molecular computing mass-action kinetics polynomials DNA strand-displacement reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a339t-d05b665967923e5e169b89448d2d68f7f3e352b5d6d81487aa202e0f5f0396163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27598466 |
PQID | 1859726699 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1859726699 pubmed_primary_27598466 crossref_citationtrail_10_1021_acssynbio_5b00163 crossref_primary_10_1021_acssynbio_5b00163 acs_journals_10_1021_acssynbio_5b00163 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-20 |
PublicationDateYYYYMMDD | 2017-01-20 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS synthetic biology |
PublicationTitleAlternate | ACS Synth. Biol |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 Strogatz S. (ref4/cit4) 1994 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref14/cit14 Iglesias P. A. (ref23/cit23) 2010 ref5/cit5 Érdi P. (ref2/cit2) 1989 ref17/cit17 Dorf R. C. (ref24/cit24) 2001 ref26/cit26 Chen H. (ref8/cit8) 2012; 7433 Angluin D. (ref20/cit20) 2006 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 Gaines B. R. (ref10/cit10) 1967 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1098/rsif.2015.0586 – ident: ref22/cit22 doi: 10.1126/science.1200705 – volume-title: Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models year: 1989 ident: ref2/cit2 – ident: ref12/cit12 doi: 10.1109/TC.2010.202 – ident: ref21/cit21 – ident: ref18/cit18 doi: 10.1038/nnano.2013.189 – ident: ref1/cit1 doi: 10.1007/BF00251225 – ident: ref5/cit5 doi: 10.1126/science.7973651 – volume-title: Fast computation by population protocols with a leader year: 2006 ident: ref20/cit20 doi: 10.1007/11864219_5 – ident: ref11/cit11 doi: 10.1145/1391469.1391636 – volume-title: Modern Control Systems year: 2001 ident: ref24/cit24 – ident: ref13/cit13 doi: 10.1109/ICDSP.2015.7251963 – ident: ref9/cit9 doi: 10.1145/2554797.2554827 – ident: ref3/cit3 doi: 10.1021/j100540a008 – ident: ref25/cit25 doi: 10.1109/TAC.2006.890471 – ident: ref15/cit15 doi: 10.1016/j.ejc.2010.11.004 – ident: ref7/cit7 doi: 10.1007/s11047-008-9067-y – ident: ref16/cit16 doi: 10.1162/artl.2009.15.1.15101 – ident: ref19/cit19 doi: 10.1007/978-3-540-74913-4_120 – volume-title: Control Theory and Systems Biology year: 2010 ident: ref23/cit23 – volume-title: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering year: 1994 ident: ref4/cit4 doi: 10.1063/1.4823332 – volume: 7433 start-page: 24 volume-title: DNA Computing and Molecular Programming, LNCS year: 2012 ident: ref8/cit8 – start-page: 149 volume-title: Proceedings of AFIP spring join computer conference year: 1967 ident: ref10/cit10 – ident: ref14/cit14 doi: 10.1016/0167-8396(87)90012-4 – ident: ref17/cit17 doi: 10.1073/pnas.0909380107 – ident: ref6/cit6 doi: 10.1103/PhysRevLett.78.1190 |
SSID | ssj0000553538 |
Score | 2.2953734 |
Snippet | Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 76 |
SubjectTerms | Algorithms Computer Simulation Computers, Molecular DNA - chemistry Kinetics Models, Chemical Synthetic Biology |
Title | Chemical Reaction Networks for Computing Polynomials |
URI | http://dx.doi.org/10.1021/acssynbio.5b00163 https://www.ncbi.nlm.nih.gov/pubmed/27598466 https://www.proquest.com/docview/1859726699 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvTg-1FfVBAPQtc0adLmKIvLIriIurC30qQpiEsrtntYf72Tvnwve09CJjPJfMlkvkHonLkqCRRVcDeRJiVHeY6knDuCRAETcADy8sHtbsgHI-92zMafPNs_I_jEvYpUns9S-Zx1mfHwnC6jFcLBzAwO6j22DyqYMcrKytUEUIzDwPc2Ucy_RjHeSOXfvdE_ELN0Nf2NKoc7LxkKzQ-Tl-60kF31_pu_cREpNtF6DTnt68pGttCSTrfR2hciwh3kNbwB9oOuMh3sYfU_PLcB1dpV7Qdoat9nk5nJZAar3UWj_s1Tb-DU9RSciFJRODFmknMGyw-oTjPtciEDAfezmMQ8SPyEaoBjksU8DuCW5EcRwUTjhCWYCg5z3kOdNEv1AbLB4QWg0tj3lPBcky-uhSc8HAkmAa67FroAicN6P-RhGeombtguQ1gvg4Vwo4BQ1azkpjjGZF6Xy7bLa0XJMa_xWaPVEDaOiYZEqc6mMCWwRR_giRAW2q_U3Q5HfCYAmPHDRcU4QqvE-HvswrFzjDrF21SfAFop5GlppR_t_OIp |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGOAAH3o_xLBLigNTRpk3aHKeJacA2IdgkblXTphJi6hDtDuPX4_TFQzDBNUosJ3biL3FsA5xRM4jcwArwbiJUSE5g68JiTOfEdynHA5BlD279AeuO7JtH-lgDUsbCIBMJUkoyJ_5HdgHzEtuSWSyeJk2qDD2zFmARwQhR5Rpa7YfqXcWg1KJZAWuCYEanaIJLZ-ZPVJRRCpKvRukXpJlZnM5aHgWY8Zp9NHluTlPRDN6-pXH832TWYbUAoFor15gNqMl4E1Y-pSXcArvMIqDdyzzuQRvkv8UTDTGulleCwK7a3WQ8U3HNqMPbMOpcDdtdvaiuoPuWxVM9NKhgjKIwEONJKk3GhcvxthaSkLmRE1kSwZmgIQtdvDM5vk8MIo2IRobFGfK8A_V4Ess90ND8uSjg0LEDbpsqelxym9uGz6lA8G424Bxn7BW7I_EyxzcxvWoZvGIZGmCUcvCCIke5KpUxnjfkohrykifomNf5tBSuh9tI-Ub8WE6myBJqpoNghfMG7OZSr8gRh3KEaWz_r9M4gaXusN_zeteD2wNYJgoJGCYeSIdQT1-n8ghxTCqOM8V9B7nQ6oo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8MwDLbGkBA8cB_jLBLiAakjPZI2j9NgGtc0ARO8VU2bSoipnej2MH49Ti8Bggleo8RyYif-Esc2wAk1gsgNrADvJkKF5AS2LizGdG76LuV4ALLswe2ux7oD-_qZPteAlbEwyESKlNLMia929SiMigwDxjm2p9NYvCRNqow9s-ZgXrntVMmGVvuhelshlFo0K2JtIqDRKZrh0qH5ExVlmIL0q2H6BW1mVqezAk8Vv9lnk9fmZCyawfu3VI7_n9AqLBdAVGvlmrMGNRmvw9Kn9IQbYJfZBLR7mcc_aL3813iqIdbV8ooQ2FXrJ8Opim9GXd6EQefysd3ViyoLum9ZfKyHhArGKAoFsZ6k0mBcuBxvbaEZMjdyIksiSBM0ZKGLdyfH901iShLRiFicIc9bUI-TWO6AhmbQRUGHjh1w21BR5JLb3CY-pwJBvNGAU5yxV-yS1Msc4KbhVcvgFcvQAFLKwguKXOWqZMZw1pCzasgoT9Qxq_NxKWAPt5PykfixTCbIEmqog6CF8wZs55KvyJkO5QjX2O5fp3EEC_2Ljnd71bvZg0VTAQJi4Lm0D_Xx20QeIJwZi8NMdz8AdKrtDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+Reaction+Networks+for+Computing+Polynomials&rft.jtitle=ACS+synthetic+biology&rft.au=Salehi%2C+Sayed+Ahmad&rft.au=Parhi%2C+Keshab+K&rft.au=Riedel%2C+Marc+D&rft.date=2017-01-20&rft.eissn=2161-5063&rft.volume=6&rft.issue=1&rft.spage=76&rft.epage=83&rft_id=info:doi/10.1021%2Facssynbio.5b00163&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-5063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-5063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-5063&client=summon |