Chemical Reaction Networks for Computing Polynomials

Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding...

Full description

Saved in:
Bibliographic Details
Published inACS synthetic biology Vol. 6; no. 1; pp. 76 - 83
Main Authors Salehi, Sayed Ahmad, Parhi, Keshab K, Riedel, Marc D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.01.2017
Subjects
Online AccessGet full text
ISSN2161-5063
2161-5063
DOI10.1021/acssynbio.5b00163

Cover

Abstract Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. In the proposed encoding approach, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomial. Molecular encoders for converting any input in a standard representation to the fractional representation as well as decoders for converting the computed output from the fractional to a standard representation are presented. The method is illustrated first for generic CRNs; then chemical reactions designed for an example are mapped to DNA strand-displacement reactions.
AbstractList Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. In the proposed encoding approach, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomial. Molecular encoders for converting any input in a standard representation to the fractional representation as well as decoders for converting the computed output from the fractional to a standard representation are presented. The method is illustrated first for generic CRNs; then chemical reactions designed for an example are mapped to DNA strand-displacement reactions.
Author Salehi, Sayed Ahmad
Parhi, Keshab K
Riedel, Marc D
AuthorAffiliation Department of Electrical and Computer Engineering
University of Minnesota
AuthorAffiliation_xml – name: Department of Electrical and Computer Engineering
– name: University of Minnesota
Author_xml – sequence: 1
  givenname: Sayed Ahmad
  surname: Salehi
  fullname: Salehi, Sayed Ahmad
  email: saleh022@umn.edu
– sequence: 2
  givenname: Keshab K
  surname: Parhi
  fullname: Parhi, Keshab K
– sequence: 3
  givenname: Marc D
  surname: Riedel
  fullname: Riedel, Marc D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27598466$$D View this record in MEDLINE/PubMed
BookMark eNp9kN1LwzAUxYNM3Jz7A3yRPvrSmY8mTR6l-AVDRfQ5pG2qmW0ykxbZf2_GNhEfdl_Ohfs7F845BSPrrAbgHME5ghhdqSqEtS2Nm9MSQsTIEZhgxFBKISOjP_sYzEJYwjiUEkr4CRjjnAqeMTYBWfGhO1OpNnnRquqNs8mj7r-d_wxJ43xSuG419Ma-J8-uXVvXGdWGM3DcRNGznU7B2-3Na3GfLp7uHorrRaoIEX1aQ1oyRgXLBSaaasREyUWW8RrXjDd5QzShuKQ1qznKeK4UhljDhjaQCBYTTcHl9u_Ku69Bh152JlS6bZXVbggScSpyzJgQEb3YoUPZ6VquvOmUX8t90gjkW6DyLgSvG1mZXm0C916ZViIoN7XK31rlrtboRP-c--eHPOnWE09y6QZvY08H-B8GdYs3
CitedBy_id crossref_primary_10_1007_s00498_023_00361_6
crossref_primary_10_1016_j_compchemeng_2017_01_027
crossref_primary_10_1109_TBCAS_2020_2979485
crossref_primary_10_1007_s11047_019_09775_1
crossref_primary_10_1039_D1NR05055A
crossref_primary_10_1021_acscatal_0c02332
crossref_primary_10_1016_j_jprocont_2019_02_009
crossref_primary_10_1007_s11047_018_9687_9
crossref_primary_10_1007_s11265_017_1318_7
crossref_primary_10_1021_acs_nanolett_9b02326
crossref_primary_10_1021_acssynbio_2c00184
crossref_primary_10_3390_bioengineering10040466
crossref_primary_10_1109_TBCAS_2022_3184760
crossref_primary_10_1021_acsapm_2c00528
crossref_primary_10_1098_rspa_2020_0899
crossref_primary_10_1016_j_snb_2020_128719
crossref_primary_10_1093_synbio_ysx002
crossref_primary_10_1166_jno_2021_3062
crossref_primary_10_1007_s11047_019_09736_8
crossref_primary_10_1109_TBCAS_2023_3312300
crossref_primary_10_1007_s10910_022_01340_z
crossref_primary_10_1016_j_neucom_2019_11_098
crossref_primary_10_1109_TNNLS_2022_3146057
crossref_primary_10_1145_3590776
crossref_primary_10_1021_acssynbio_1c00483
crossref_primary_10_1371_journal_pone_0281574
crossref_primary_10_1021_acssynbio_6b00390
crossref_primary_10_1109_TNB_2021_3128393
crossref_primary_10_1038_s41598_018_26709_6
crossref_primary_10_1016_j_automatica_2025_112261
crossref_primary_10_1021_acssynbio_8b00304
Cites_doi 10.1098/rsif.2015.0586
10.1126/science.1200705
10.1109/TC.2010.202
10.1038/nnano.2013.189
10.1007/BF00251225
10.1126/science.7973651
10.1007/11864219_5
10.1145/1391469.1391636
10.1109/ICDSP.2015.7251963
10.1145/2554797.2554827
10.1021/j100540a008
10.1109/TAC.2006.890471
10.1016/j.ejc.2010.11.004
10.1007/s11047-008-9067-y
10.1162/artl.2009.15.1.15101
10.1007/978-3-540-74913-4_120
10.1063/1.4823332
10.1016/0167-8396(87)90012-4
10.1073/pnas.0909380107
10.1103/PhysRevLett.78.1190
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acssynbio.5b00163
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-5063
EndPage 83
ExternalDocumentID 27598466
10_1021_acssynbio_5b00163
d093957153
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a339t-d05b665967923e5e169b89448d2d68f7f3e352b5d6d81487aa202e0f5f0396163
IEDL.DBID ACS
ISSN 2161-5063
IngestDate Thu Jul 10 19:00:16 EDT 2025
Wed Feb 19 01:56:43 EST 2025
Thu Apr 24 22:59:40 EDT 2025
Tue Jul 01 02:19:28 EDT 2025
Thu Aug 27 13:41:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords molecular computing
mass-action kinetics
polynomials
DNA strand-displacement reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a339t-d05b665967923e5e169b89448d2d68f7f3e352b5d6d81487aa202e0f5f0396163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27598466
PQID 1859726699
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1859726699
pubmed_primary_27598466
crossref_citationtrail_10_1021_acssynbio_5b00163
crossref_primary_10_1021_acssynbio_5b00163
acs_journals_10_1021_acssynbio_5b00163
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-20
PublicationDateYYYYMMDD 2017-01-20
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS synthetic biology
PublicationTitleAlternate ACS Synth. Biol
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
Strogatz S. (ref4/cit4) 1994
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref14/cit14
Iglesias P. A. (ref23/cit23) 2010
ref5/cit5
Érdi P. (ref2/cit2) 1989
ref17/cit17
Dorf R. C. (ref24/cit24) 2001
ref26/cit26
Chen H. (ref8/cit8) 2012; 7433
Angluin D. (ref20/cit20) 2006
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
Gaines B. R. (ref10/cit10) 1967
ref1/cit1
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1098/rsif.2015.0586
– ident: ref22/cit22
  doi: 10.1126/science.1200705
– volume-title: Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models
  year: 1989
  ident: ref2/cit2
– ident: ref12/cit12
  doi: 10.1109/TC.2010.202
– ident: ref21/cit21
– ident: ref18/cit18
  doi: 10.1038/nnano.2013.189
– ident: ref1/cit1
  doi: 10.1007/BF00251225
– ident: ref5/cit5
  doi: 10.1126/science.7973651
– volume-title: Fast computation by population protocols with a leader
  year: 2006
  ident: ref20/cit20
  doi: 10.1007/11864219_5
– ident: ref11/cit11
  doi: 10.1145/1391469.1391636
– volume-title: Modern Control Systems
  year: 2001
  ident: ref24/cit24
– ident: ref13/cit13
  doi: 10.1109/ICDSP.2015.7251963
– ident: ref9/cit9
  doi: 10.1145/2554797.2554827
– ident: ref3/cit3
  doi: 10.1021/j100540a008
– ident: ref25/cit25
  doi: 10.1109/TAC.2006.890471
– ident: ref15/cit15
  doi: 10.1016/j.ejc.2010.11.004
– ident: ref7/cit7
  doi: 10.1007/s11047-008-9067-y
– ident: ref16/cit16
  doi: 10.1162/artl.2009.15.1.15101
– ident: ref19/cit19
  doi: 10.1007/978-3-540-74913-4_120
– volume-title: Control Theory and Systems Biology
  year: 2010
  ident: ref23/cit23
– volume-title: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering
  year: 1994
  ident: ref4/cit4
  doi: 10.1063/1.4823332
– volume: 7433
  start-page: 24
  volume-title: DNA Computing and Molecular Programming, LNCS
  year: 2012
  ident: ref8/cit8
– start-page: 149
  volume-title: Proceedings of AFIP spring join computer conference
  year: 1967
  ident: ref10/cit10
– ident: ref14/cit14
  doi: 10.1016/0167-8396(87)90012-4
– ident: ref17/cit17
  doi: 10.1073/pnas.0909380107
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.78.1190
SSID ssj0000553538
Score 2.2953734
Snippet Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 76
SubjectTerms Algorithms
Computer Simulation
Computers, Molecular
DNA - chemistry
Kinetics
Models, Chemical
Synthetic Biology
Title Chemical Reaction Networks for Computing Polynomials
URI http://dx.doi.org/10.1021/acssynbio.5b00163
https://www.ncbi.nlm.nih.gov/pubmed/27598466
https://www.proquest.com/docview/1859726699
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvTg-1FfVBAPQtc0adLmKIvLIriIurC30qQpiEsrtntYf72Tvnwve09CJjPJfMlkvkHonLkqCRRVcDeRJiVHeY6knDuCRAETcADy8sHtbsgHI-92zMafPNs_I_jEvYpUns9S-Zx1mfHwnC6jFcLBzAwO6j22DyqYMcrKytUEUIzDwPc2Ucy_RjHeSOXfvdE_ELN0Nf2NKoc7LxkKzQ-Tl-60kF31_pu_cREpNtF6DTnt68pGttCSTrfR2hciwh3kNbwB9oOuMh3sYfU_PLcB1dpV7Qdoat9nk5nJZAar3UWj_s1Tb-DU9RSciFJRODFmknMGyw-oTjPtciEDAfezmMQ8SPyEaoBjksU8DuCW5EcRwUTjhCWYCg5z3kOdNEv1AbLB4QWg0tj3lPBcky-uhSc8HAkmAa67FroAicN6P-RhGeombtguQ1gvg4Vwo4BQ1azkpjjGZF6Xy7bLa0XJMa_xWaPVEDaOiYZEqc6mMCWwRR_giRAW2q_U3Q5HfCYAmPHDRcU4QqvE-HvswrFzjDrF21SfAFop5GlppR_t_OIp
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGOAAH3o_xLBLigNTRpk3aHKeJacA2IdgkblXTphJi6hDtDuPX4_TFQzDBNUosJ3biL3FsA5xRM4jcwArwbiJUSE5g68JiTOfEdynHA5BlD279AeuO7JtH-lgDUsbCIBMJUkoyJ_5HdgHzEtuSWSyeJk2qDD2zFmARwQhR5Rpa7YfqXcWg1KJZAWuCYEanaIJLZ-ZPVJRRCpKvRukXpJlZnM5aHgWY8Zp9NHluTlPRDN6-pXH832TWYbUAoFor15gNqMl4E1Y-pSXcArvMIqDdyzzuQRvkv8UTDTGulleCwK7a3WQ8U3HNqMPbMOpcDdtdvaiuoPuWxVM9NKhgjKIwEONJKk3GhcvxthaSkLmRE1kSwZmgIQtdvDM5vk8MIo2IRobFGfK8A_V4Ess90ND8uSjg0LEDbpsqelxym9uGz6lA8G424Bxn7BW7I_EyxzcxvWoZvGIZGmCUcvCCIke5KpUxnjfkohrykifomNf5tBSuh9tI-Ub8WE6myBJqpoNghfMG7OZSr8gRh3KEaWz_r9M4gaXusN_zeteD2wNYJgoJGCYeSIdQT1-n8ghxTCqOM8V9B7nQ6oo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8MwDLbGkBA8cB_jLBLiAakjPZI2j9NgGtc0ARO8VU2bSoipnej2MH49Ti8Bggleo8RyYif-Esc2wAk1gsgNrADvJkKF5AS2LizGdG76LuV4ALLswe2ux7oD-_qZPteAlbEwyESKlNLMia929SiMigwDxjm2p9NYvCRNqow9s-ZgXrntVMmGVvuhelshlFo0K2JtIqDRKZrh0qH5ExVlmIL0q2H6BW1mVqezAk8Vv9lnk9fmZCyawfu3VI7_n9AqLBdAVGvlmrMGNRmvw9Kn9IQbYJfZBLR7mcc_aL3813iqIdbV8ooQ2FXrJ8Opim9GXd6EQefysd3ViyoLum9ZfKyHhArGKAoFsZ6k0mBcuBxvbaEZMjdyIksiSBM0ZKGLdyfH901iShLRiFicIc9bUI-TWO6AhmbQRUGHjh1w21BR5JLb3CY-pwJBvNGAU5yxV-yS1Msc4KbhVcvgFcvQAFLKwguKXOWqZMZw1pCzasgoT9Qxq_NxKWAPt5PykfixTCbIEmqog6CF8wZs55KvyJkO5QjX2O5fp3EEC_2Ljnd71bvZg0VTAQJi4Lm0D_Xx20QeIJwZi8NMdz8AdKrtDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+Reaction+Networks+for+Computing+Polynomials&rft.jtitle=ACS+synthetic+biology&rft.au=Salehi%2C+Sayed+Ahmad&rft.au=Parhi%2C+Keshab+K&rft.au=Riedel%2C+Marc+D&rft.date=2017-01-20&rft.eissn=2161-5063&rft.volume=6&rft.issue=1&rft.spage=76&rft.epage=83&rft_id=info:doi/10.1021%2Facssynbio.5b00163&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-5063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-5063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-5063&client=summon