Safety Monitoring of High Arch Dams in Initial Operation Period Using Vector Error Correction Model

Conventional statistical models for dam safety monitoring often require long-term, continuous and stationary monitoring time series, which are difficult to fulfill in the initial operation period of the dams. In this study, special attention was given to the nonstationarity and lack of monitoring ti...

Full description

Saved in:
Bibliographic Details
Published inRock mechanics and rock engineering Vol. 51; no. 8; pp. 2469 - 2481
Main Authors Liang, Guohe, Hu, Yu, Li, Qingbin
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.08.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional statistical models for dam safety monitoring often require long-term, continuous and stationary monitoring time series, which are difficult to fulfill in the initial operation period of the dams. In this study, special attention was given to the nonstationarity and lack of monitoring time series, and a vector error correction model was proposed for the safety monitoring of arch dams in their initial operation period. Principal component analysis was used in the data preprocessing stage to extract uncorrelated representative temperature trends of the dam body from hundreds of multisensor temperature records to reduce variable dimensions. Then, the vector error correction model was proposed, to take into account the cointegration between the structural responses and the environmental variables. The model was further extended in order to take into account the autocorrelation and cross-correlation among multiple structural responses. The established model performed better in terms of fitting and prediction accuracy compared with existing models and provided better forecast even when limited observations were available. The proposed method was successfully implemented to analyze the deformation of the Xiluodu arch dam in southwest China.
AbstractList Conventional statistical models for dam safety monitoring often require long-term, continuous and stationary monitoring time series, which are difficult to fulfill in the initial operation period of the dams. In this study, special attention was given to the nonstationarity and lack of monitoring time series, and a vector error correction model was proposed for the safety monitoring of arch dams in their initial operation period. Principal component analysis was used in the data preprocessing stage to extract uncorrelated representative temperature trends of the dam body from hundreds of multisensor temperature records to reduce variable dimensions. Then, the vector error correction model was proposed, to take into account the cointegration between the structural responses and the environmental variables. The model was further extended in order to take into account the autocorrelation and cross-correlation among multiple structural responses. The established model performed better in terms of fitting and prediction accuracy compared with existing models and provided better forecast even when limited observations were available. The proposed method was successfully implemented to analyze the deformation of the Xiluodu arch dam in southwest China.
Author Li, Qingbin
Liang, Guohe
Hu, Yu
Author_xml – sequence: 1
  givenname: Guohe
  surname: Liang
  fullname: Liang, Guohe
  organization: State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University
– sequence: 2
  givenname: Yu
  surname: Hu
  fullname: Hu, Yu
  organization: State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University
– sequence: 3
  givenname: Qingbin
  surname: Li
  fullname: Li, Qingbin
  email: qingbinli@mail.tsinghua.edu.cn
  organization: State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University
BookMark eNp9kF1LwzAUhoNMcE5_gHcBr6v5atJejjndYGOCTrwLaZtuGV1Tk-6i_97UCoKgNwnhvE_OOc8lGNW21gDcYHSHERL3HiGOaISwiDBJRNSdgTFmlEUspu8jMEaC0IhwSi7ApfcHhEJRJGOQv6hStx1c29q01pl6B20JF2a3h1OX7-GDOnpoargMZaMquGm0U62xNXzWztgCbn3PvOk80HDuXDhn1rnw7kNrW-jqCpyXqvL6-vuegO3j_HW2iFabp-VsuooUpWkbkSzVOk0EyzDiGUcZzznjIk6Y4ggjXMYZ0wlPSBa2zFNKYyUILkoeM8bTAtMJuB3-bZz9OGnfyoM9uTq0lAQlmOKwfxJSeEjlznrvdCkbZ47KdRIj2buUg0sZusjepewCI34xuWm_NLROmepfkgykb3q52v3M9Df0CcQtiZw
CitedBy_id crossref_primary_10_1016_j_ymssp_2019_106386
crossref_primary_10_1002_stc_2638
crossref_primary_10_1061__ASCE_ST_1943_541X_0002467
crossref_primary_10_1177_14759217231203243
crossref_primary_10_32604_cmc_2020_012537
crossref_primary_10_1016_j_engappai_2023_106813
crossref_primary_10_3390_w12030791
crossref_primary_10_1007_s13349_022_00640_x
crossref_primary_10_1155_2019_7620948
crossref_primary_10_1016_j_engstruct_2022_115353
crossref_primary_10_1155_2021_8487997
crossref_primary_10_1108_EC_06_2019_0288
crossref_primary_10_1016_j_energy_2021_120962
crossref_primary_10_1016_j_jobe_2023_108106
crossref_primary_10_1177_14759217241271055
crossref_primary_10_1515_comp_2022_0280
crossref_primary_10_2113_2022_4317011
crossref_primary_10_1016_j_apm_2020_10_028
crossref_primary_10_1016_j_enggeo_2023_107201
Cites_doi 10.1007/978-3-540-32827-8
10.1016/j.strusafe.2015.07.002
10.1016/j.aei.2011.01.001
10.1007/s11431-010-0060-1
10.1007/s11831-015-9157-9
10.1061/(ASCE)0733-9399(2007)133:3(267)
10.1007/s00603-013-0507-3
10.1002/stc.1575
10.1007/s13349-014-0079-2
10.1080/15732479.2014.983528
10.1007/s00603-013-0483-7
10.1016/j.strusafe.2013.02.005
10.1093/biomet/71.3.599
10.1007/s00603-014-0686-6
10.1002/stc.1997
10.1016/0304-4076(74)90034-7
10.1016/j.strusafe.2015.05.001
10.1061/(ASCE)AS.1943-5525.0000573
10.1016/j.enggeo.2010.09.004
10.1061/(asce)cp.1943-5487.0000289
10.1016/S1003-6326(13)62717-X
10.2307/1913236
10.1016/j.aei.2007.02.002
10.1016/j.ymssp.2009.02.013
10.1080/17499518.2015.1102293
10.1016/j.engstruct.2006.04.022
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria 2017
Rock Mechanics and Rock Engineering is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Austria 2017
– notice: Rock Mechanics and Rock Engineering is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00603-017-1287-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1434-453X
EndPage 2481
ExternalDocumentID 10_1007_s00603_017_1287_y
GrantInformation_xml – fundername: Research program of State Key Laboratory of Hydroscience and Engineering
  grantid: 2015-C-02
– fundername: National Natural Science Foundation of China
  grantid: 51339003
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program)
  grantid: 2013CB035902
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MK~
MM-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TN
7UA
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H96
KR7
L.G
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-a339t-2b9ee9874b106b60b6c6467584a60101f5b4e8682b017c9335a721df654469d13
IEDL.DBID BENPR
ISSN 0723-2632
IngestDate Fri Jul 25 19:24:57 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Tue Jul 01 03:35:16 EDT 2025
Fri Feb 21 02:35:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Safety monitoring of dams
Cointegration analysis
Hydrostatic-seasonal-time model
Vector error correction model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a339t-2b9ee9874b106b60b6c6467584a60101f5b4e8682b017c9335a721df654469d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2081312638
PQPubID 60272
PageCount 13
ParticipantIDs proquest_journals_2081312638
crossref_primary_10_1007_s00603_017_1287_y
crossref_citationtrail_10_1007_s00603_017_1287_y
springer_journals_10_1007_s00603_017_1287_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180800
2018-8-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 8
  year: 2018
  text: 20180800
PublicationDecade 2010
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Rock mechanics and rock engineering
PublicationTitleAbbrev Rock Mech Rock Eng
PublicationYear 2018
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References BarlaGAntoliniFBarlaMMensiEPiovanoGMonitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniquesEng Geol201011621823510.1016/j.enggeo.2010.09.004
Willm G, Beaujoint N (1967) Les méthodes de surveillance des barrages au service de la production hydraulique d’Electricité de France, problèmes anciens et solutions nouvelles. In: IXth international congress on large dams, pp 529–550
GrangerCWNewboldPSpurious regressions in econometricsJ Econom1974211112010.1016/0304-4076(74)90034-7
LiuZShaoJXuWXuFComprehensive stability evaluation of rock slope using the cloud model-based approachRock Mech Rock Eng2014472239225210.1007/s00603-013-0507-3
Amberg F (2009) Interpretative models for concrete dam displacements. In: 23th ICOLD congress, pp. q91–R43
LombardiGAmbergFDarbreGAlgorithm for the prediction of functional delays in the behaviour of concrete damsInt J Hydropower Dams200815111
SalazarFToledoMOñateEMoránRAn empirical comparison of machine learning techniques for dam behaviour modellingStruct Saf20155691710.1016/j.strusafe.2015.05.001
KangFLiuJLiJLiSConcrete dam deformation prediction model for health monitoring based on extreme learning machineStruct Control Health Monit2017
MataJTavares de CastroASá da CostaJConstructing statistical models for arch dam deformationStruct Control Health Monit20142142343710.1002/stc.1575
PosenatoDLanataFInaudiDSmithIFCModel-free data interpretation for continuous monitoring of complex structuresAdv Eng Inform20082213514410.1016/j.aei.2007.02.002
Palumbo P, Piroddi L, Lancini S, Lozza F (2001) NARX modelling of radial crest displacements of the Schlegeis Arch Dam. In: 6th benchmark workshop on numerical analysis of dams, pp 17–19
SaidSEDickeyDATesting for unit roots in autoregressive-moving average models of unknown orderBiometrika19847159960710.1093/biomet/71.3.599
GulMCatbasFNStatistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verificationsMech Syst Signal Process2009232192220410.1016/j.ymssp.2009.02.013
SalazarFMoránRToledoMÁOñateEData-based models for the prediction of dam behaviour: a review and some methodological considerationsArch Comput Methods Eng20152412110.1007/s11831-015-9157-9
Song Z (2007) Research on methods for dam safety monitoring based on intelligence computationdoctoral dissertation, Dalian University of Technology
LiFWangZLiuGTowards an error correction model for dam monitoring data analysis based on cointegration theoryStruct Saf201343122010.1016/j.strusafe.2013.02.005
Rocha M (1958) A quantitative method for the interpretation of the results of the observation of dams. In: Proceedings of VI congress on large dams, New York, NY, USA
SuHWenZSunXYangMTime-varying identification model for dam behavior considering structural reinforcementStruct Saf2015571710.1016/j.strusafe.2015.07.002
LiFWangZLiuGFuCWangJHydrostatic seasonal state model for monitoring data analysis of concrete damsStruct Infrastruct Eng2015111616163110.1080/15732479.2014.983528
BarlaGParonuzziPThe 1963 Vajont landslide: 50th anniversaryRock Mech Rock Eng201346126710.1007/s00603-013-0483-7
Chouinard L, Roy V (2006) Performance of statistical models for dam monitoring data. In: Joint international conference on computing and decision making in civil and building engineering, Montreal, pp. 14–16
De SortisAPaolianiPStatistical analysis and structural identification in concrete dam monitoringEng Struct20072911012010.1016/j.engstruct.2006.04.022
Swiss Committee on Dams (2003) Methods of analysis for the prediction and the verification of dam behaviour. Wasser Energie Luft, 95. Jahrgang, Heft 3/4, CH-5401 Baden
ZhongDYanFLiMHuangCFanKTangJA real-time analysis and feedback system for quality control of dam foundation grouting engineeringRock Mech Rock Eng2015481947196810.1007/s00603-014-0686-6
LiQZuoZHuYLiangGSmart monitoring of a super high arch dam during the first reservoir-filling phaseJ Aerosp Eng201630B401600110.1061/(ASCE)AS.1943-5525.0000573
LaoryITrinhTNPosenatoDSmithIFCCombined model-free data-interpretation methodologies for damage detection during continuous monitoring of structuresJ Comput Civ Eng20132765766610.1061/(ASCE)CP.1943-5487.0000289
LaoryITrinhTNSmithIFCEvaluating two model-free data interpretation methods for measurements that are influenced by temperatureAdv Eng Inform20112549550610.1016/j.aei.2011.01.001
BukenyaPMoyoPBeushausenHOosthuizenCHealth monitoring of concrete dams: a literature reviewJ Civ Struct Health Monit2014423524410.1007/s13349-014-0079-2
BaecherGBUncertainty in dam safety risk analysisGeorisk Assess Manag Risk Eng Syst Geohazards2016109210810.1080/17499518.2015.1102293
EngleRFGrangerCWJCo-integration and error correction: representation, estimation, and testingEconometrica19875525127610.2307/1913236
LégerPLeclercMHydrostatic, temperature, time-displacement model for concrete damsJ Eng Mech200713326727710.1061/(ASCE)0733-9399(2007)133:3(267)
PopescuTDA new approach for dam monitoring and surveillance using blind source separationInt J Innov Comput Inf Control (IJICIC)2011738113824
DaiW-JBinLDingX-LHuangD-WModeling dam deformation using independent component regression methodTrans Nonferr Met Soc China2013232194220010.1016/S1003-6326(13)62717-X
Vincenzo Esposito VinziWWCHenselerJWangHHandbook of partial least squares2010Berlin HeidelbergSpringer10.1007/978-3-540-32827-8
YuHWuZBaoTZhangLMultivariate analysis in dam monitoring data with PCASci China Technol Sci2010531088109710.1007/s11431-010-0060-1
Z Liu (1287_CR20) 2014; 47
GB Baecher (1287_CR2) 2016; 10
RF Engle (1287_CR10) 1987; 55
H Yu (1287_CR34) 2010; 53
Q Li (1287_CR19) 2016; 30
1287_CR23
WWC Vincenzo Esposito Vinzi (1287_CR32) 2010
G Lombardi (1287_CR21) 2008; 15
I Laory (1287_CR14) 2011; 25
D Zhong (1287_CR35) 2015; 48
1287_CR1
P Léger (1287_CR16) 2007; 133
F Salazar (1287_CR29) 2015; 56
SE Said (1287_CR27) 1984; 71
1287_CR26
F Salazar (1287_CR28) 2015; 24
1287_CR8
F Li (1287_CR18) 2015; 11
1287_CR6
F Kang (1287_CR13) 2017
TD Popescu (1287_CR24) 2011; 7
M Gul (1287_CR12) 2009; 23
1287_CR33
G Barla (1287_CR3) 2013; 46
1287_CR30
G Barla (1287_CR4) 2010; 116
W-J Dai (1287_CR7) 2013; 23
I Laory (1287_CR15) 2013; 27
J Mata (1287_CR22) 2014; 21
CW Granger (1287_CR11) 1974; 2
D Posenato (1287_CR25) 2008; 22
A Sortis De (1287_CR9) 2007; 29
H Su (1287_CR31) 2015; 57
P Bukenya (1287_CR5) 2014; 4
F Li (1287_CR17) 2013; 43
References_xml – reference: De SortisAPaolianiPStatistical analysis and structural identification in concrete dam monitoringEng Struct20072911012010.1016/j.engstruct.2006.04.022
– reference: BarlaGAntoliniFBarlaMMensiEPiovanoGMonitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniquesEng Geol201011621823510.1016/j.enggeo.2010.09.004
– reference: ZhongDYanFLiMHuangCFanKTangJA real-time analysis and feedback system for quality control of dam foundation grouting engineeringRock Mech Rock Eng2015481947196810.1007/s00603-014-0686-6
– reference: BukenyaPMoyoPBeushausenHOosthuizenCHealth monitoring of concrete dams: a literature reviewJ Civ Struct Health Monit2014423524410.1007/s13349-014-0079-2
– reference: SalazarFMoránRToledoMÁOñateEData-based models for the prediction of dam behaviour: a review and some methodological considerationsArch Comput Methods Eng20152412110.1007/s11831-015-9157-9
– reference: Song Z (2007) Research on methods for dam safety monitoring based on intelligence computationdoctoral dissertation, Dalian University of Technology
– reference: Swiss Committee on Dams (2003) Methods of analysis for the prediction and the verification of dam behaviour. Wasser Energie Luft, 95. Jahrgang, Heft 3/4, CH-5401 Baden
– reference: Rocha M (1958) A quantitative method for the interpretation of the results of the observation of dams. In: Proceedings of VI congress on large dams, New York, NY, USA
– reference: LaoryITrinhTNSmithIFCEvaluating two model-free data interpretation methods for measurements that are influenced by temperatureAdv Eng Inform20112549550610.1016/j.aei.2011.01.001
– reference: SuHWenZSunXYangMTime-varying identification model for dam behavior considering structural reinforcementStruct Saf2015571710.1016/j.strusafe.2015.07.002
– reference: YuHWuZBaoTZhangLMultivariate analysis in dam monitoring data with PCASci China Technol Sci2010531088109710.1007/s11431-010-0060-1
– reference: LiFWangZLiuGFuCWangJHydrostatic seasonal state model for monitoring data analysis of concrete damsStruct Infrastruct Eng2015111616163110.1080/15732479.2014.983528
– reference: LombardiGAmbergFDarbreGAlgorithm for the prediction of functional delays in the behaviour of concrete damsInt J Hydropower Dams200815111
– reference: PosenatoDLanataFInaudiDSmithIFCModel-free data interpretation for continuous monitoring of complex structuresAdv Eng Inform20082213514410.1016/j.aei.2007.02.002
– reference: GrangerCWNewboldPSpurious regressions in econometricsJ Econom1974211112010.1016/0304-4076(74)90034-7
– reference: LiuZShaoJXuWXuFComprehensive stability evaluation of rock slope using the cloud model-based approachRock Mech Rock Eng2014472239225210.1007/s00603-013-0507-3
– reference: PopescuTDA new approach for dam monitoring and surveillance using blind source separationInt J Innov Comput Inf Control (IJICIC)2011738113824
– reference: BarlaGParonuzziPThe 1963 Vajont landslide: 50th anniversaryRock Mech Rock Eng201346126710.1007/s00603-013-0483-7
– reference: KangFLiuJLiJLiSConcrete dam deformation prediction model for health monitoring based on extreme learning machineStruct Control Health Monit2017
– reference: MataJTavares de CastroASá da CostaJConstructing statistical models for arch dam deformationStruct Control Health Monit20142142343710.1002/stc.1575
– reference: DaiW-JBinLDingX-LHuangD-WModeling dam deformation using independent component regression methodTrans Nonferr Met Soc China2013232194220010.1016/S1003-6326(13)62717-X
– reference: Palumbo P, Piroddi L, Lancini S, Lozza F (2001) NARX modelling of radial crest displacements of the Schlegeis Arch Dam. In: 6th benchmark workshop on numerical analysis of dams, pp 17–19
– reference: Amberg F (2009) Interpretative models for concrete dam displacements. In: 23th ICOLD congress, pp. q91–R43
– reference: LiFWangZLiuGTowards an error correction model for dam monitoring data analysis based on cointegration theoryStruct Saf201343122010.1016/j.strusafe.2013.02.005
– reference: LiQZuoZHuYLiangGSmart monitoring of a super high arch dam during the first reservoir-filling phaseJ Aerosp Eng201630B401600110.1061/(ASCE)AS.1943-5525.0000573
– reference: Chouinard L, Roy V (2006) Performance of statistical models for dam monitoring data. In: Joint international conference on computing and decision making in civil and building engineering, Montreal, pp. 14–16
– reference: SaidSEDickeyDATesting for unit roots in autoregressive-moving average models of unknown orderBiometrika19847159960710.1093/biomet/71.3.599
– reference: Willm G, Beaujoint N (1967) Les méthodes de surveillance des barrages au service de la production hydraulique d’Electricité de France, problèmes anciens et solutions nouvelles. In: IXth international congress on large dams, pp 529–550
– reference: BaecherGBUncertainty in dam safety risk analysisGeorisk Assess Manag Risk Eng Syst Geohazards2016109210810.1080/17499518.2015.1102293
– reference: GulMCatbasFNStatistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verificationsMech Syst Signal Process2009232192220410.1016/j.ymssp.2009.02.013
– reference: LégerPLeclercMHydrostatic, temperature, time-displacement model for concrete damsJ Eng Mech200713326727710.1061/(ASCE)0733-9399(2007)133:3(267)
– reference: SalazarFToledoMOñateEMoránRAn empirical comparison of machine learning techniques for dam behaviour modellingStruct Saf20155691710.1016/j.strusafe.2015.05.001
– reference: Vincenzo Esposito VinziWWCHenselerJWangHHandbook of partial least squares2010Berlin HeidelbergSpringer10.1007/978-3-540-32827-8
– reference: LaoryITrinhTNPosenatoDSmithIFCCombined model-free data-interpretation methodologies for damage detection during continuous monitoring of structuresJ Comput Civ Eng20132765766610.1061/(ASCE)CP.1943-5487.0000289
– reference: EngleRFGrangerCWJCo-integration and error correction: representation, estimation, and testingEconometrica19875525127610.2307/1913236
– ident: 1287_CR8
– volume-title: Handbook of partial least squares
  year: 2010
  ident: 1287_CR32
  doi: 10.1007/978-3-540-32827-8
– volume: 57
  start-page: 1
  year: 2015
  ident: 1287_CR31
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2015.07.002
– ident: 1287_CR6
– volume: 25
  start-page: 495
  year: 2011
  ident: 1287_CR14
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2011.01.001
– volume: 53
  start-page: 1088
  year: 2010
  ident: 1287_CR34
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-010-0060-1
– ident: 1287_CR26
– volume: 24
  start-page: 1
  year: 2015
  ident: 1287_CR28
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-015-9157-9
– volume: 133
  start-page: 267
  year: 2007
  ident: 1287_CR16
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2007)133:3(267)
– volume: 47
  start-page: 2239
  year: 2014
  ident: 1287_CR20
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0507-3
– volume: 21
  start-page: 423
  year: 2014
  ident: 1287_CR22
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1575
– ident: 1287_CR30
– volume: 4
  start-page: 235
  year: 2014
  ident: 1287_CR5
  publication-title: J Civ Struct Health Monit
  doi: 10.1007/s13349-014-0079-2
– volume: 7
  start-page: 3811
  year: 2011
  ident: 1287_CR24
  publication-title: Int J Innov Comput Inf Control (IJICIC)
– volume: 11
  start-page: 1616
  year: 2015
  ident: 1287_CR18
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2014.983528
– volume: 46
  start-page: 1267
  year: 2013
  ident: 1287_CR3
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0483-7
– volume: 43
  start-page: 12
  year: 2013
  ident: 1287_CR17
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2013.02.005
– volume: 71
  start-page: 599
  year: 1984
  ident: 1287_CR27
  publication-title: Biometrika
  doi: 10.1093/biomet/71.3.599
– volume: 48
  start-page: 1947
  year: 2015
  ident: 1287_CR35
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-014-0686-6
– year: 2017
  ident: 1287_CR13
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1997
– volume: 2
  start-page: 111
  year: 1974
  ident: 1287_CR11
  publication-title: J Econom
  doi: 10.1016/0304-4076(74)90034-7
– ident: 1287_CR1
– ident: 1287_CR23
– volume: 56
  start-page: 9
  year: 2015
  ident: 1287_CR29
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2015.05.001
– volume: 30
  start-page: B4016001
  year: 2016
  ident: 1287_CR19
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)AS.1943-5525.0000573
– volume: 116
  start-page: 218
  year: 2010
  ident: 1287_CR4
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2010.09.004
– volume: 27
  start-page: 657
  year: 2013
  ident: 1287_CR15
  publication-title: J Comput Civ Eng
  doi: 10.1061/(asce)cp.1943-5487.0000289
– volume: 23
  start-page: 2194
  year: 2013
  ident: 1287_CR7
  publication-title: Trans Nonferr Met Soc China
  doi: 10.1016/S1003-6326(13)62717-X
– volume: 55
  start-page: 251
  year: 1987
  ident: 1287_CR10
  publication-title: Econometrica
  doi: 10.2307/1913236
– volume: 15
  start-page: 111
  year: 2008
  ident: 1287_CR21
  publication-title: Int J Hydropower Dams
– volume: 22
  start-page: 135
  year: 2008
  ident: 1287_CR25
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2007.02.002
– volume: 23
  start-page: 2192
  year: 2009
  ident: 1287_CR12
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2009.02.013
– volume: 10
  start-page: 92
  year: 2016
  ident: 1287_CR2
  publication-title: Georisk Assess Manag Risk Eng Syst Geohazards
  doi: 10.1080/17499518.2015.1102293
– ident: 1287_CR33
– volume: 29
  start-page: 110
  year: 2007
  ident: 1287_CR9
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2006.04.022
SSID ssj0014378
Score 2.269528
Snippet Conventional statistical models for dam safety monitoring often require long-term, continuous and stationary monitoring time series, which are difficult to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2469
SubjectTerms Arch dams
Autocorrelation
Body temperature
Civil Engineering
Cointegration analysis
Dam safety
Dams
Data processing
Deformation
Dimensions
Earth and Environmental Science
Earth Sciences
Economic models
Error correction
Error correction & detection
Geophysics/Geodesy
Mathematical models
Model accuracy
Monitoring
Original Paper
Principal components analysis
Safety
Statistical analysis
Statistical models
Temperature
Time series
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86EfQgOhWnU3LwpATWJm3a45ibU_ADdLJbSboUhNmNrR763_te-jEVFbz0kvS1vJfkvV_eFyHnsQQdZ5Rik1i5AFCckCkjsB9xAApdoqDxQv_u3h-OxO3YG5d53Msq2r1ySdqTuk52w9IhGPsjGZypkuXrZMND6A6LeOR2a9eB4MXxK13OsBh55cr8icRXZbSyML85Ra2uGeySndJIpN1CqntkzaRNsv2pdGCTbF7blrz5PomfVGKynBa7E0fpLKEYv0GxrCy9Um9L-prSGwwTAqoPc1NInT4CrdmE2qgB-mKv72l_sYBnD3t22IwHis3SpgdkNOg_94asbJ3AFOdhxlwdGhMGUmiAfNrvaD_2BWIDoRCBOYmnhQn8wNXAjDjk3FMABSeJ7wE8DCcOPySNdJaaI0LdWItEu2A6cC4SqbXUTgBWjnKUJ4x0WqRT8TCKy7ri2N5iGtUVkS3bI_hShGyP8ha5qF-ZF0U1_prcrgQTlftrGdnfcUC8QYtcVsJaDf9K7Phfs0_IFthHQRHv1yaNbPFuTsEGyfSZXXMfqxnQfA
  priority: 102
  providerName: Springer Nature
Title Safety Monitoring of High Arch Dams in Initial Operation Period Using Vector Error Correction Model
URI https://link.springer.com/article/10.1007/s00603-017-1287-y
https://www.proquest.com/docview/2081312638
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9tADLdoq0nwMAEbWhlU98AT6KQmd0kuT1ML_QBEQbBO7Cm6Sy7SpNKWtnvof499Sdpt0nhJHi5xJNtn-3d2bICzNEIfZ7XmWap9BChezLWVNI9YoUOPSNB0oH83CodjefMcPJcHbsuyrLKyic5QZ7OUzsgRpCtPeD6qy7f5K6epUZRdLUdo1KCBJlgh-Gp0e6OHx00eQYrCFke-4NSZvMprtl0b0dDVEkWcXuXrvz3TNtz8J0PqHE9_Hz6WESPrFCI-gB07PYS9P_oIHsKHgZvPu_4E6ZPO7WrNiq1Kq2yWMyrmYNRjll3plyX7NWXXVDOEVO_ntlAB9oC0ZhlzJQTshzvLZ73FAq-XNMDD_f7AaHLa5DOM-73vl0NezlHgWoh4xX0TWxurSBrEfyZsmzANJQEFqQmOeXlgpFWh8g0yI42FCDTiwiwPA8SKceaJI6hPZ1P7BZifGpkbJwsh88iYyHgKQx7t6UDayGtCu-JhkpZNxmnWxSTZtEd2bE_wSwmxPVk34XzzyrzosPHewyeVYJJysy2TrWo04aIS1nb5v8SO3yf2FXYxOlJFtd8J1FeL3_YUI5CVaUFN9QctaHT63e6I7oOft71WqXy4OvY7b7lM2ao
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4CAEHxFMMBuQAF1CktU0fOyCE9mBjvCQe4laSNpWQYBvbEOqf4jdip-sGSHDbpZe0rmQ7tr_YsQH2Ix99nJaSx5G0EaBYZS61oHnEATp0nwRNB_qXV17jXpw_uo9T8JnfhaGyytwmGkMddyI6I0eQHliOZaO6nHTfOE2NouxqPkIjU4uWTj8QsvWPm1WU74Ft12t3lQYfThXg0nHKA26rstaItIVCNKS8kvIiT1DYLCSBEytxldCBF9gKlTVCvO9KRElx4rmInMqx5SDdaZgVSIx2VFA_G2UthJNZft92OPVBz7OoJdO01DOVSz5Hj-Dz9KcfHAe3v_Kxxs3Vl2FpGJ-y00yhVmBKt1dh8VvXwlWYOzPTgNM1iG5logcpywwDrbJOwqh0hFFHW1aVr3323GZNqlBCqtddnSkcu0FanZiZggX2YDIHrNbr4bNC40LMZQtGc9pe1uF-IvzdgJl2p603gdmREokykndE4ivlKyvAAEta0hXatwpQynkYRsOW5jRZ4yUcNWM2bA_xTyGxPUwLcDj6pJv18_jv5WIumHC4tfvhWBELcJQLa7z8J7Gt_4ntwXzj7vIivGhetbZhAeOyIKszLMLMoPeudzD2Gahdo3AMniat4V9E2Q2O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FREVwQNAWESh0D_RStGpsr73OASHIg4S2adSXcjO79lpCKk5IjJD_Gr-OmbWdAFJ768WXtcfSzOed-TyzMwBvY4k-zijFk1i5SFCcLldG0DziEB26JEPTD_3TSTC6El9m_qwBv-uzMFRWWe-JdqNO5jH9I0eSHjqe4yJcjtKqLGLaH35Y_OA0QYoyrfU4jRIix6b4hfRt9X7cR1sfuO5wcNkb8WrCAFee1825q7vGIOsWGpmRDjo6iANBIbRQRFSc1NfChEHoagRujNzfV8iYkjTwkUV1E8dDuQ-gJZEVdZrQ-jSYTM_XOQzhlX5Auh6nruh1TrVjW5gGto5JcvQPkhf_esVNqPtfdtY6veFTeFJFq-xjCa9n0DDZNjz-q4fhNmx9trOBix2IL1Rq8oKV2wStsnnKqJCEUX9b1lffV-xbxsZUr4RSzxamhB-boqx5wmz5Aru2eQQ2WC7x2qPhIfboBaOpbTe7cHUvGn4OzWyemRfA3FiLVFsceCKVWkvthBhuKUf5wkinDZ1ah1FcNTinORs30bo1s1V7hG-KSO1R0YbD9SOLsrvHXTfv1YaJqg99FW1g2YZ3tbE2y7cKe3m3sH14iOiOTsaT41fwCIO0sCw63INmvvxpXmMglOs3FeIYfL1vkP8BsfUTIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+Monitoring+of+High+Arch+Dams+in+Initial+Operation+Period+Using+Vector+Error+Correction+Model&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Liang%2C+Guohe&rft.au=Hu%2C+Yu&rft.au=Li%2C+Qingbin&rft.date=2018-08-01&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=51&rft.issue=8&rft.spage=2469&rft.epage=2481&rft_id=info:doi/10.1007%2Fs00603-017-1287-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00603_017_1287_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon