Safety Monitoring of High Arch Dams in Initial Operation Period Using Vector Error Correction Model
Conventional statistical models for dam safety monitoring often require long-term, continuous and stationary monitoring time series, which are difficult to fulfill in the initial operation period of the dams. In this study, special attention was given to the nonstationarity and lack of monitoring ti...
Saved in:
Published in | Rock mechanics and rock engineering Vol. 51; no. 8; pp. 2469 - 2481 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.08.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional statistical models for dam safety monitoring often require long-term, continuous and stationary monitoring time series, which are difficult to fulfill in the initial operation period of the dams. In this study, special attention was given to the nonstationarity and lack of monitoring time series, and a vector error correction model was proposed for the safety monitoring of arch dams in their initial operation period. Principal component analysis was used in the data preprocessing stage to extract uncorrelated representative temperature trends of the dam body from hundreds of multisensor temperature records to reduce variable dimensions. Then, the vector error correction model was proposed, to take into account the cointegration between the structural responses and the environmental variables. The model was further extended in order to take into account the autocorrelation and cross-correlation among multiple structural responses. The established model performed better in terms of fitting and prediction accuracy compared with existing models and provided better forecast even when limited observations were available. The proposed method was successfully implemented to analyze the deformation of the Xiluodu arch dam in southwest China. |
---|---|
AbstractList | Conventional statistical models for dam safety monitoring often require long-term, continuous and stationary monitoring time series, which are difficult to fulfill in the initial operation period of the dams. In this study, special attention was given to the nonstationarity and lack of monitoring time series, and a vector error correction model was proposed for the safety monitoring of arch dams in their initial operation period. Principal component analysis was used in the data preprocessing stage to extract uncorrelated representative temperature trends of the dam body from hundreds of multisensor temperature records to reduce variable dimensions. Then, the vector error correction model was proposed, to take into account the cointegration between the structural responses and the environmental variables. The model was further extended in order to take into account the autocorrelation and cross-correlation among multiple structural responses. The established model performed better in terms of fitting and prediction accuracy compared with existing models and provided better forecast even when limited observations were available. The proposed method was successfully implemented to analyze the deformation of the Xiluodu arch dam in southwest China. |
Author | Li, Qingbin Liang, Guohe Hu, Yu |
Author_xml | – sequence: 1 givenname: Guohe surname: Liang fullname: Liang, Guohe organization: State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University – sequence: 2 givenname: Yu surname: Hu fullname: Hu, Yu organization: State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University – sequence: 3 givenname: Qingbin surname: Li fullname: Li, Qingbin email: qingbinli@mail.tsinghua.edu.cn organization: State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University |
BookMark | eNp9kF1LwzAUhoNMcE5_gHcBr6v5atJejjndYGOCTrwLaZtuGV1Tk-6i_97UCoKgNwnhvE_OOc8lGNW21gDcYHSHERL3HiGOaISwiDBJRNSdgTFmlEUspu8jMEaC0IhwSi7ApfcHhEJRJGOQv6hStx1c29q01pl6B20JF2a3h1OX7-GDOnpoargMZaMquGm0U62xNXzWztgCbn3PvOk80HDuXDhn1rnw7kNrW-jqCpyXqvL6-vuegO3j_HW2iFabp-VsuooUpWkbkSzVOk0EyzDiGUcZzznjIk6Y4ggjXMYZ0wlPSBa2zFNKYyUILkoeM8bTAtMJuB3-bZz9OGnfyoM9uTq0lAQlmOKwfxJSeEjlznrvdCkbZ47KdRIj2buUg0sZusjepewCI34xuWm_NLROmepfkgykb3q52v3M9Df0CcQtiZw |
CitedBy_id | crossref_primary_10_1016_j_ymssp_2019_106386 crossref_primary_10_1002_stc_2638 crossref_primary_10_1061__ASCE_ST_1943_541X_0002467 crossref_primary_10_1177_14759217231203243 crossref_primary_10_32604_cmc_2020_012537 crossref_primary_10_1016_j_engappai_2023_106813 crossref_primary_10_3390_w12030791 crossref_primary_10_1007_s13349_022_00640_x crossref_primary_10_1155_2019_7620948 crossref_primary_10_1016_j_engstruct_2022_115353 crossref_primary_10_1155_2021_8487997 crossref_primary_10_1108_EC_06_2019_0288 crossref_primary_10_1016_j_energy_2021_120962 crossref_primary_10_1016_j_jobe_2023_108106 crossref_primary_10_1177_14759217241271055 crossref_primary_10_1515_comp_2022_0280 crossref_primary_10_2113_2022_4317011 crossref_primary_10_1016_j_apm_2020_10_028 crossref_primary_10_1016_j_enggeo_2023_107201 |
Cites_doi | 10.1007/978-3-540-32827-8 10.1016/j.strusafe.2015.07.002 10.1016/j.aei.2011.01.001 10.1007/s11431-010-0060-1 10.1007/s11831-015-9157-9 10.1061/(ASCE)0733-9399(2007)133:3(267) 10.1007/s00603-013-0507-3 10.1002/stc.1575 10.1007/s13349-014-0079-2 10.1080/15732479.2014.983528 10.1007/s00603-013-0483-7 10.1016/j.strusafe.2013.02.005 10.1093/biomet/71.3.599 10.1007/s00603-014-0686-6 10.1002/stc.1997 10.1016/0304-4076(74)90034-7 10.1016/j.strusafe.2015.05.001 10.1061/(ASCE)AS.1943-5525.0000573 10.1016/j.enggeo.2010.09.004 10.1061/(asce)cp.1943-5487.0000289 10.1016/S1003-6326(13)62717-X 10.2307/1913236 10.1016/j.aei.2007.02.002 10.1016/j.ymssp.2009.02.013 10.1080/17499518.2015.1102293 10.1016/j.engstruct.2006.04.022 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Austria 2017 Rock Mechanics and Rock Engineering is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Austria 2017 – notice: Rock Mechanics and Rock Engineering is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s00603-017-1287-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1434-453X |
EndPage | 2481 |
ExternalDocumentID | 10_1007_s00603_017_1287_y |
GrantInformation_xml | – fundername: Research program of State Key Laboratory of Hydroscience and Engineering grantid: 2015-C-02 – fundername: National Natural Science Foundation of China grantid: 51339003 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program) grantid: 2013CB035902 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V L8X LAS LK5 LLZTM M2P M4Y M7R M7S MA- MK~ MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 Y6R YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TN 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-a339t-2b9ee9874b106b60b6c6467584a60101f5b4e8682b017c9335a721df654469d13 |
IEDL.DBID | BENPR |
ISSN | 0723-2632 |
IngestDate | Fri Jul 25 19:24:57 EDT 2025 Thu Apr 24 23:03:03 EDT 2025 Tue Jul 01 03:35:16 EDT 2025 Fri Feb 21 02:35:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Safety monitoring of dams Cointegration analysis Hydrostatic-seasonal-time model Vector error correction model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a339t-2b9ee9874b106b60b6c6467584a60101f5b4e8682b017c9335a721df654469d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2081312638 |
PQPubID | 60272 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2081312638 crossref_primary_10_1007_s00603_017_1287_y crossref_citationtrail_10_1007_s00603_017_1287_y springer_journals_10_1007_s00603_017_1287_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180800 2018-8-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 8 year: 2018 text: 20180800 |
PublicationDecade | 2010 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Wien |
PublicationTitle | Rock mechanics and rock engineering |
PublicationTitleAbbrev | Rock Mech Rock Eng |
PublicationYear | 2018 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | BarlaGAntoliniFBarlaMMensiEPiovanoGMonitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniquesEng Geol201011621823510.1016/j.enggeo.2010.09.004 Willm G, Beaujoint N (1967) Les méthodes de surveillance des barrages au service de la production hydraulique d’Electricité de France, problèmes anciens et solutions nouvelles. In: IXth international congress on large dams, pp 529–550 GrangerCWNewboldPSpurious regressions in econometricsJ Econom1974211112010.1016/0304-4076(74)90034-7 LiuZShaoJXuWXuFComprehensive stability evaluation of rock slope using the cloud model-based approachRock Mech Rock Eng2014472239225210.1007/s00603-013-0507-3 Amberg F (2009) Interpretative models for concrete dam displacements. In: 23th ICOLD congress, pp. q91–R43 LombardiGAmbergFDarbreGAlgorithm for the prediction of functional delays in the behaviour of concrete damsInt J Hydropower Dams200815111 SalazarFToledoMOñateEMoránRAn empirical comparison of machine learning techniques for dam behaviour modellingStruct Saf20155691710.1016/j.strusafe.2015.05.001 KangFLiuJLiJLiSConcrete dam deformation prediction model for health monitoring based on extreme learning machineStruct Control Health Monit2017 MataJTavares de CastroASá da CostaJConstructing statistical models for arch dam deformationStruct Control Health Monit20142142343710.1002/stc.1575 PosenatoDLanataFInaudiDSmithIFCModel-free data interpretation for continuous monitoring of complex structuresAdv Eng Inform20082213514410.1016/j.aei.2007.02.002 Palumbo P, Piroddi L, Lancini S, Lozza F (2001) NARX modelling of radial crest displacements of the Schlegeis Arch Dam. In: 6th benchmark workshop on numerical analysis of dams, pp 17–19 SaidSEDickeyDATesting for unit roots in autoregressive-moving average models of unknown orderBiometrika19847159960710.1093/biomet/71.3.599 GulMCatbasFNStatistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verificationsMech Syst Signal Process2009232192220410.1016/j.ymssp.2009.02.013 SalazarFMoránRToledoMÁOñateEData-based models for the prediction of dam behaviour: a review and some methodological considerationsArch Comput Methods Eng20152412110.1007/s11831-015-9157-9 Song Z (2007) Research on methods for dam safety monitoring based on intelligence computationdoctoral dissertation, Dalian University of Technology LiFWangZLiuGTowards an error correction model for dam monitoring data analysis based on cointegration theoryStruct Saf201343122010.1016/j.strusafe.2013.02.005 Rocha M (1958) A quantitative method for the interpretation of the results of the observation of dams. In: Proceedings of VI congress on large dams, New York, NY, USA SuHWenZSunXYangMTime-varying identification model for dam behavior considering structural reinforcementStruct Saf2015571710.1016/j.strusafe.2015.07.002 LiFWangZLiuGFuCWangJHydrostatic seasonal state model for monitoring data analysis of concrete damsStruct Infrastruct Eng2015111616163110.1080/15732479.2014.983528 BarlaGParonuzziPThe 1963 Vajont landslide: 50th anniversaryRock Mech Rock Eng201346126710.1007/s00603-013-0483-7 Chouinard L, Roy V (2006) Performance of statistical models for dam monitoring data. In: Joint international conference on computing and decision making in civil and building engineering, Montreal, pp. 14–16 De SortisAPaolianiPStatistical analysis and structural identification in concrete dam monitoringEng Struct20072911012010.1016/j.engstruct.2006.04.022 Swiss Committee on Dams (2003) Methods of analysis for the prediction and the verification of dam behaviour. Wasser Energie Luft, 95. Jahrgang, Heft 3/4, CH-5401 Baden ZhongDYanFLiMHuangCFanKTangJA real-time analysis and feedback system for quality control of dam foundation grouting engineeringRock Mech Rock Eng2015481947196810.1007/s00603-014-0686-6 LiQZuoZHuYLiangGSmart monitoring of a super high arch dam during the first reservoir-filling phaseJ Aerosp Eng201630B401600110.1061/(ASCE)AS.1943-5525.0000573 LaoryITrinhTNPosenatoDSmithIFCCombined model-free data-interpretation methodologies for damage detection during continuous monitoring of structuresJ Comput Civ Eng20132765766610.1061/(ASCE)CP.1943-5487.0000289 LaoryITrinhTNSmithIFCEvaluating two model-free data interpretation methods for measurements that are influenced by temperatureAdv Eng Inform20112549550610.1016/j.aei.2011.01.001 BukenyaPMoyoPBeushausenHOosthuizenCHealth monitoring of concrete dams: a literature reviewJ Civ Struct Health Monit2014423524410.1007/s13349-014-0079-2 BaecherGBUncertainty in dam safety risk analysisGeorisk Assess Manag Risk Eng Syst Geohazards2016109210810.1080/17499518.2015.1102293 EngleRFGrangerCWJCo-integration and error correction: representation, estimation, and testingEconometrica19875525127610.2307/1913236 LégerPLeclercMHydrostatic, temperature, time-displacement model for concrete damsJ Eng Mech200713326727710.1061/(ASCE)0733-9399(2007)133:3(267) PopescuTDA new approach for dam monitoring and surveillance using blind source separationInt J Innov Comput Inf Control (IJICIC)2011738113824 DaiW-JBinLDingX-LHuangD-WModeling dam deformation using independent component regression methodTrans Nonferr Met Soc China2013232194220010.1016/S1003-6326(13)62717-X Vincenzo Esposito VinziWWCHenselerJWangHHandbook of partial least squares2010Berlin HeidelbergSpringer10.1007/978-3-540-32827-8 YuHWuZBaoTZhangLMultivariate analysis in dam monitoring data with PCASci China Technol Sci2010531088109710.1007/s11431-010-0060-1 Z Liu (1287_CR20) 2014; 47 GB Baecher (1287_CR2) 2016; 10 RF Engle (1287_CR10) 1987; 55 H Yu (1287_CR34) 2010; 53 Q Li (1287_CR19) 2016; 30 1287_CR23 WWC Vincenzo Esposito Vinzi (1287_CR32) 2010 G Lombardi (1287_CR21) 2008; 15 I Laory (1287_CR14) 2011; 25 D Zhong (1287_CR35) 2015; 48 1287_CR1 P Léger (1287_CR16) 2007; 133 F Salazar (1287_CR29) 2015; 56 SE Said (1287_CR27) 1984; 71 1287_CR26 F Salazar (1287_CR28) 2015; 24 1287_CR8 F Li (1287_CR18) 2015; 11 1287_CR6 F Kang (1287_CR13) 2017 TD Popescu (1287_CR24) 2011; 7 M Gul (1287_CR12) 2009; 23 1287_CR33 G Barla (1287_CR3) 2013; 46 1287_CR30 G Barla (1287_CR4) 2010; 116 W-J Dai (1287_CR7) 2013; 23 I Laory (1287_CR15) 2013; 27 J Mata (1287_CR22) 2014; 21 CW Granger (1287_CR11) 1974; 2 D Posenato (1287_CR25) 2008; 22 A Sortis De (1287_CR9) 2007; 29 H Su (1287_CR31) 2015; 57 P Bukenya (1287_CR5) 2014; 4 F Li (1287_CR17) 2013; 43 |
References_xml | – reference: De SortisAPaolianiPStatistical analysis and structural identification in concrete dam monitoringEng Struct20072911012010.1016/j.engstruct.2006.04.022 – reference: BarlaGAntoliniFBarlaMMensiEPiovanoGMonitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniquesEng Geol201011621823510.1016/j.enggeo.2010.09.004 – reference: ZhongDYanFLiMHuangCFanKTangJA real-time analysis and feedback system for quality control of dam foundation grouting engineeringRock Mech Rock Eng2015481947196810.1007/s00603-014-0686-6 – reference: BukenyaPMoyoPBeushausenHOosthuizenCHealth monitoring of concrete dams: a literature reviewJ Civ Struct Health Monit2014423524410.1007/s13349-014-0079-2 – reference: SalazarFMoránRToledoMÁOñateEData-based models for the prediction of dam behaviour: a review and some methodological considerationsArch Comput Methods Eng20152412110.1007/s11831-015-9157-9 – reference: Song Z (2007) Research on methods for dam safety monitoring based on intelligence computationdoctoral dissertation, Dalian University of Technology – reference: Swiss Committee on Dams (2003) Methods of analysis for the prediction and the verification of dam behaviour. Wasser Energie Luft, 95. Jahrgang, Heft 3/4, CH-5401 Baden – reference: Rocha M (1958) A quantitative method for the interpretation of the results of the observation of dams. In: Proceedings of VI congress on large dams, New York, NY, USA – reference: LaoryITrinhTNSmithIFCEvaluating two model-free data interpretation methods for measurements that are influenced by temperatureAdv Eng Inform20112549550610.1016/j.aei.2011.01.001 – reference: SuHWenZSunXYangMTime-varying identification model for dam behavior considering structural reinforcementStruct Saf2015571710.1016/j.strusafe.2015.07.002 – reference: YuHWuZBaoTZhangLMultivariate analysis in dam monitoring data with PCASci China Technol Sci2010531088109710.1007/s11431-010-0060-1 – reference: LiFWangZLiuGFuCWangJHydrostatic seasonal state model for monitoring data analysis of concrete damsStruct Infrastruct Eng2015111616163110.1080/15732479.2014.983528 – reference: LombardiGAmbergFDarbreGAlgorithm for the prediction of functional delays in the behaviour of concrete damsInt J Hydropower Dams200815111 – reference: PosenatoDLanataFInaudiDSmithIFCModel-free data interpretation for continuous monitoring of complex structuresAdv Eng Inform20082213514410.1016/j.aei.2007.02.002 – reference: GrangerCWNewboldPSpurious regressions in econometricsJ Econom1974211112010.1016/0304-4076(74)90034-7 – reference: LiuZShaoJXuWXuFComprehensive stability evaluation of rock slope using the cloud model-based approachRock Mech Rock Eng2014472239225210.1007/s00603-013-0507-3 – reference: PopescuTDA new approach for dam monitoring and surveillance using blind source separationInt J Innov Comput Inf Control (IJICIC)2011738113824 – reference: BarlaGParonuzziPThe 1963 Vajont landslide: 50th anniversaryRock Mech Rock Eng201346126710.1007/s00603-013-0483-7 – reference: KangFLiuJLiJLiSConcrete dam deformation prediction model for health monitoring based on extreme learning machineStruct Control Health Monit2017 – reference: MataJTavares de CastroASá da CostaJConstructing statistical models for arch dam deformationStruct Control Health Monit20142142343710.1002/stc.1575 – reference: DaiW-JBinLDingX-LHuangD-WModeling dam deformation using independent component regression methodTrans Nonferr Met Soc China2013232194220010.1016/S1003-6326(13)62717-X – reference: Palumbo P, Piroddi L, Lancini S, Lozza F (2001) NARX modelling of radial crest displacements of the Schlegeis Arch Dam. In: 6th benchmark workshop on numerical analysis of dams, pp 17–19 – reference: Amberg F (2009) Interpretative models for concrete dam displacements. In: 23th ICOLD congress, pp. q91–R43 – reference: LiFWangZLiuGTowards an error correction model for dam monitoring data analysis based on cointegration theoryStruct Saf201343122010.1016/j.strusafe.2013.02.005 – reference: LiQZuoZHuYLiangGSmart monitoring of a super high arch dam during the first reservoir-filling phaseJ Aerosp Eng201630B401600110.1061/(ASCE)AS.1943-5525.0000573 – reference: Chouinard L, Roy V (2006) Performance of statistical models for dam monitoring data. In: Joint international conference on computing and decision making in civil and building engineering, Montreal, pp. 14–16 – reference: SaidSEDickeyDATesting for unit roots in autoregressive-moving average models of unknown orderBiometrika19847159960710.1093/biomet/71.3.599 – reference: Willm G, Beaujoint N (1967) Les méthodes de surveillance des barrages au service de la production hydraulique d’Electricité de France, problèmes anciens et solutions nouvelles. In: IXth international congress on large dams, pp 529–550 – reference: BaecherGBUncertainty in dam safety risk analysisGeorisk Assess Manag Risk Eng Syst Geohazards2016109210810.1080/17499518.2015.1102293 – reference: GulMCatbasFNStatistical pattern recognition for structural health monitoring using time series modeling: theory and experimental verificationsMech Syst Signal Process2009232192220410.1016/j.ymssp.2009.02.013 – reference: LégerPLeclercMHydrostatic, temperature, time-displacement model for concrete damsJ Eng Mech200713326727710.1061/(ASCE)0733-9399(2007)133:3(267) – reference: SalazarFToledoMOñateEMoránRAn empirical comparison of machine learning techniques for dam behaviour modellingStruct Saf20155691710.1016/j.strusafe.2015.05.001 – reference: Vincenzo Esposito VinziWWCHenselerJWangHHandbook of partial least squares2010Berlin HeidelbergSpringer10.1007/978-3-540-32827-8 – reference: LaoryITrinhTNPosenatoDSmithIFCCombined model-free data-interpretation methodologies for damage detection during continuous monitoring of structuresJ Comput Civ Eng20132765766610.1061/(ASCE)CP.1943-5487.0000289 – reference: EngleRFGrangerCWJCo-integration and error correction: representation, estimation, and testingEconometrica19875525127610.2307/1913236 – ident: 1287_CR8 – volume-title: Handbook of partial least squares year: 2010 ident: 1287_CR32 doi: 10.1007/978-3-540-32827-8 – volume: 57 start-page: 1 year: 2015 ident: 1287_CR31 publication-title: Struct Saf doi: 10.1016/j.strusafe.2015.07.002 – ident: 1287_CR6 – volume: 25 start-page: 495 year: 2011 ident: 1287_CR14 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2011.01.001 – volume: 53 start-page: 1088 year: 2010 ident: 1287_CR34 publication-title: Sci China Technol Sci doi: 10.1007/s11431-010-0060-1 – ident: 1287_CR26 – volume: 24 start-page: 1 year: 2015 ident: 1287_CR28 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-015-9157-9 – volume: 133 start-page: 267 year: 2007 ident: 1287_CR16 publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2007)133:3(267) – volume: 47 start-page: 2239 year: 2014 ident: 1287_CR20 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0507-3 – volume: 21 start-page: 423 year: 2014 ident: 1287_CR22 publication-title: Struct Control Health Monit doi: 10.1002/stc.1575 – ident: 1287_CR30 – volume: 4 start-page: 235 year: 2014 ident: 1287_CR5 publication-title: J Civ Struct Health Monit doi: 10.1007/s13349-014-0079-2 – volume: 7 start-page: 3811 year: 2011 ident: 1287_CR24 publication-title: Int J Innov Comput Inf Control (IJICIC) – volume: 11 start-page: 1616 year: 2015 ident: 1287_CR18 publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2014.983528 – volume: 46 start-page: 1267 year: 2013 ident: 1287_CR3 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0483-7 – volume: 43 start-page: 12 year: 2013 ident: 1287_CR17 publication-title: Struct Saf doi: 10.1016/j.strusafe.2013.02.005 – volume: 71 start-page: 599 year: 1984 ident: 1287_CR27 publication-title: Biometrika doi: 10.1093/biomet/71.3.599 – volume: 48 start-page: 1947 year: 2015 ident: 1287_CR35 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-014-0686-6 – year: 2017 ident: 1287_CR13 publication-title: Struct Control Health Monit doi: 10.1002/stc.1997 – volume: 2 start-page: 111 year: 1974 ident: 1287_CR11 publication-title: J Econom doi: 10.1016/0304-4076(74)90034-7 – ident: 1287_CR1 – ident: 1287_CR23 – volume: 56 start-page: 9 year: 2015 ident: 1287_CR29 publication-title: Struct Saf doi: 10.1016/j.strusafe.2015.05.001 – volume: 30 start-page: B4016001 year: 2016 ident: 1287_CR19 publication-title: J Aerosp Eng doi: 10.1061/(ASCE)AS.1943-5525.0000573 – volume: 116 start-page: 218 year: 2010 ident: 1287_CR4 publication-title: Eng Geol doi: 10.1016/j.enggeo.2010.09.004 – volume: 27 start-page: 657 year: 2013 ident: 1287_CR15 publication-title: J Comput Civ Eng doi: 10.1061/(asce)cp.1943-5487.0000289 – volume: 23 start-page: 2194 year: 2013 ident: 1287_CR7 publication-title: Trans Nonferr Met Soc China doi: 10.1016/S1003-6326(13)62717-X – volume: 55 start-page: 251 year: 1987 ident: 1287_CR10 publication-title: Econometrica doi: 10.2307/1913236 – volume: 15 start-page: 111 year: 2008 ident: 1287_CR21 publication-title: Int J Hydropower Dams – volume: 22 start-page: 135 year: 2008 ident: 1287_CR25 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2007.02.002 – volume: 23 start-page: 2192 year: 2009 ident: 1287_CR12 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2009.02.013 – volume: 10 start-page: 92 year: 2016 ident: 1287_CR2 publication-title: Georisk Assess Manag Risk Eng Syst Geohazards doi: 10.1080/17499518.2015.1102293 – ident: 1287_CR33 – volume: 29 start-page: 110 year: 2007 ident: 1287_CR9 publication-title: Eng Struct doi: 10.1016/j.engstruct.2006.04.022 |
SSID | ssj0014378 |
Score | 2.269528 |
Snippet | Conventional statistical models for dam safety monitoring often require long-term, continuous and stationary monitoring time series, which are difficult to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2469 |
SubjectTerms | Arch dams Autocorrelation Body temperature Civil Engineering Cointegration analysis Dam safety Dams Data processing Deformation Dimensions Earth and Environmental Science Earth Sciences Economic models Error correction Error correction & detection Geophysics/Geodesy Mathematical models Model accuracy Monitoring Original Paper Principal components analysis Safety Statistical analysis Statistical models Temperature Time series |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86EfQgOhWnU3LwpATWJm3a45ibU_ADdLJbSboUhNmNrR763_te-jEVFbz0kvS1vJfkvV_eFyHnsQQdZ5Rik1i5AFCckCkjsB9xAApdoqDxQv_u3h-OxO3YG5d53Msq2r1ySdqTuk52w9IhGPsjGZypkuXrZMND6A6LeOR2a9eB4MXxK13OsBh55cr8icRXZbSyML85Ra2uGeySndJIpN1CqntkzaRNsv2pdGCTbF7blrz5PomfVGKynBa7E0fpLKEYv0GxrCy9Um9L-prSGwwTAqoPc1NInT4CrdmE2qgB-mKv72l_sYBnD3t22IwHis3SpgdkNOg_94asbJ3AFOdhxlwdGhMGUmiAfNrvaD_2BWIDoRCBOYmnhQn8wNXAjDjk3FMABSeJ7wE8DCcOPySNdJaaI0LdWItEu2A6cC4SqbXUTgBWjnKUJ4x0WqRT8TCKy7ri2N5iGtUVkS3bI_hShGyP8ha5qF-ZF0U1_prcrgQTlftrGdnfcUC8QYtcVsJaDf9K7Phfs0_IFthHQRHv1yaNbPFuTsEGyfSZXXMfqxnQfA priority: 102 providerName: Springer Nature |
Title | Safety Monitoring of High Arch Dams in Initial Operation Period Using Vector Error Correction Model |
URI | https://link.springer.com/article/10.1007/s00603-017-1287-y https://www.proquest.com/docview/2081312638 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9tADLdoq0nwMAEbWhlU98AT6KQmd0kuT1ML_QBEQbBO7Cm6Sy7SpNKWtnvof499Sdpt0nhJHi5xJNtn-3d2bICzNEIfZ7XmWap9BChezLWVNI9YoUOPSNB0oH83CodjefMcPJcHbsuyrLKyic5QZ7OUzsgRpCtPeD6qy7f5K6epUZRdLUdo1KCBJlgh-Gp0e6OHx00eQYrCFke-4NSZvMprtl0b0dDVEkWcXuXrvz3TNtz8J0PqHE9_Hz6WESPrFCI-gB07PYS9P_oIHsKHgZvPu_4E6ZPO7WrNiq1Kq2yWMyrmYNRjll3plyX7NWXXVDOEVO_ntlAB9oC0ZhlzJQTshzvLZ73FAq-XNMDD_f7AaHLa5DOM-73vl0NezlHgWoh4xX0TWxurSBrEfyZsmzANJQEFqQmOeXlgpFWh8g0yI42FCDTiwiwPA8SKceaJI6hPZ1P7BZifGpkbJwsh88iYyHgKQx7t6UDayGtCu-JhkpZNxmnWxSTZtEd2bE_wSwmxPVk34XzzyrzosPHewyeVYJJysy2TrWo04aIS1nb5v8SO3yf2FXYxOlJFtd8J1FeL3_YUI5CVaUFN9QctaHT63e6I7oOft71WqXy4OvY7b7lM2ao |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4CAEHxFMMBuQAF1CktU0fOyCE9mBjvCQe4laSNpWQYBvbEOqf4jdip-sGSHDbpZe0rmQ7tr_YsQH2Ix99nJaSx5G0EaBYZS61oHnEATp0nwRNB_qXV17jXpw_uo9T8JnfhaGyytwmGkMddyI6I0eQHliOZaO6nHTfOE2NouxqPkIjU4uWTj8QsvWPm1WU74Ft12t3lQYfThXg0nHKA26rstaItIVCNKS8kvIiT1DYLCSBEytxldCBF9gKlTVCvO9KRElx4rmInMqx5SDdaZgVSIx2VFA_G2UthJNZft92OPVBz7OoJdO01DOVSz5Hj-Dz9KcfHAe3v_Kxxs3Vl2FpGJ-y00yhVmBKt1dh8VvXwlWYOzPTgNM1iG5logcpywwDrbJOwqh0hFFHW1aVr3323GZNqlBCqtddnSkcu0FanZiZggX2YDIHrNbr4bNC40LMZQtGc9pe1uF-IvzdgJl2p603gdmREokykndE4ivlKyvAAEta0hXatwpQynkYRsOW5jRZ4yUcNWM2bA_xTyGxPUwLcDj6pJv18_jv5WIumHC4tfvhWBELcJQLa7z8J7Gt_4ntwXzj7vIivGhetbZhAeOyIKszLMLMoPeudzD2Gahdo3AMniat4V9E2Q2O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FREVwQNAWESh0D_RStGpsr73OASHIg4S2adSXcjO79lpCKk5IjJD_Gr-OmbWdAFJ768WXtcfSzOed-TyzMwBvY4k-zijFk1i5SFCcLldG0DziEB26JEPTD_3TSTC6El9m_qwBv-uzMFRWWe-JdqNO5jH9I0eSHjqe4yJcjtKqLGLaH35Y_OA0QYoyrfU4jRIix6b4hfRt9X7cR1sfuO5wcNkb8WrCAFee1825q7vGIOsWGpmRDjo6iANBIbRQRFSc1NfChEHoagRujNzfV8iYkjTwkUV1E8dDuQ-gJZEVdZrQ-jSYTM_XOQzhlX5Auh6nruh1TrVjW5gGto5JcvQPkhf_esVNqPtfdtY6veFTeFJFq-xjCa9n0DDZNjz-q4fhNmx9trOBix2IL1Rq8oKV2wStsnnKqJCEUX9b1lffV-xbxsZUr4RSzxamhB-boqx5wmz5Aru2eQQ2WC7x2qPhIfboBaOpbTe7cHUvGn4OzWyemRfA3FiLVFsceCKVWkvthBhuKUf5wkinDZ1ah1FcNTinORs30bo1s1V7hG-KSO1R0YbD9SOLsrvHXTfv1YaJqg99FW1g2YZ3tbE2y7cKe3m3sH14iOiOTsaT41fwCIO0sCw63INmvvxpXmMglOs3FeIYfL1vkP8BsfUTIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+Monitoring+of+High+Arch+Dams+in+Initial+Operation+Period+Using+Vector+Error+Correction+Model&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Liang%2C+Guohe&rft.au=Hu%2C+Yu&rft.au=Li%2C+Qingbin&rft.date=2018-08-01&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=51&rft.issue=8&rft.spage=2469&rft.epage=2481&rft_id=info:doi/10.1007%2Fs00603-017-1287-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00603_017_1287_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon |