Helheim Glacier Poised for Dramatic Retreat

Helheim Glacier, one of the largest marine‐terminating outlet glaciers draining the Greenland Ice Sheet, underwent significant retreat and acceleration in the early 2000s, accounting for an appreciable proportion of the ice sheet's mass loss during that period. Using a range of remotely sensed...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 48; no. 23
Main Authors Williams, Joshua J., Gourmelen, Noel, Nienow, Peter, Bunce, Charlie, Slater, Donald
Format Journal Article
LanguageEnglish
Published 16.12.2021
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2021GL094546

Cover

Loading…
Abstract Helheim Glacier, one of the largest marine‐terminating outlet glaciers draining the Greenland Ice Sheet, underwent significant retreat and acceleration in the early 2000s, accounting for an appreciable proportion of the ice sheet's mass loss during that period. Using a range of remotely sensed datasets, we show that despite a subsequent readvance, the glacier has continued to lose mass and thin, and has retreated inland of the retracted position occupied in 2005. Critically, the near‐terminus is up to 100 m thinner than during 2005, and the front 5 km is within 25–50 m of flotation, with retrograde bed slopes extending several kilometers inland of the terminus. The neighboring Fenris and Midgard Glaciers have both undergone recent large‐scale and rapid retreat once their near‐terminus regions began to float, suggesting that under projected climate warming and associated glacier thinning, Helheim Glacier is poised to pass a threshold whereby the near‐terminus region will retreat rapidly. Plain Language Summary A significant proportion of the Greenland Ice Sheet's contribution to global sea‐level rise is as a result of mass loss from its marine‐terminating glaciers. Helheim Glacier, located in southeast Greenland, is one of the largest and fastest‐flowing glaciers draining the Greenland Ice Sheet. During the early 2000s, Helheim Glacier underwent dramatic retreat and acceleration, but subsequently readvanced during relatively cooler conditions in 2006. However, persistently high ocean and atmospheric temperatures have meant that Helheim Glacier has in fact been continuously losing mass since 2003, despite this readvance. Here, we use a range of remotely sensed data to show that since 2014, Helheim Glacier has accelerated and retreated to a greater extent than occurred in 2003–2005. More importantly, as the glacier has been losing mass over the past two decades, it is currently much thinner than during its peak retreat in 2005. As the glacier continues to lose mass, it will pass a threshold whereby the ice will float and rapidly disintegrate. We observe that this process has already occurred at the glaciers neighboring Helheim Glacier, which are subject to the same climate forcing and thus provide an analogue for the future response of Helheim Glacier to continued warming. Key Points Helheim Glacier is more retreated and the near‐terminus region is up to 100 m thinner than during its much‐reported dramatic retreat in 2005 Helheim, one of Greenland's largest ice dischargers, is now more vulnerable than at any point since the Little Ice Age Helheim's new configuration offers potential for sustained dynamic instability and a major contribution to global sea‐level rise
AbstractList Helheim Glacier, one of the largest marine‐terminating outlet glaciers draining the Greenland Ice Sheet, underwent significant retreat and acceleration in the early 2000s, accounting for an appreciable proportion of the ice sheet's mass loss during that period. Using a range of remotely sensed datasets, we show that despite a subsequent readvance, the glacier has continued to lose mass and thin, and has retreated inland of the retracted position occupied in 2005. Critically, the near‐terminus is up to 100 m thinner than during 2005, and the front 5 km is within 25–50 m of flotation, with retrograde bed slopes extending several kilometers inland of the terminus. The neighboring Fenris and Midgard Glaciers have both undergone recent large‐scale and rapid retreat once their near‐terminus regions began to float, suggesting that under projected climate warming and associated glacier thinning, Helheim Glacier is poised to pass a threshold whereby the near‐terminus region will retreat rapidly. A significant proportion of the Greenland Ice Sheet's contribution to global sea‐level rise is as a result of mass loss from its marine‐terminating glaciers. Helheim Glacier, located in southeast Greenland, is one of the largest and fastest‐flowing glaciers draining the Greenland Ice Sheet. During the early 2000s, Helheim Glacier underwent dramatic retreat and acceleration, but subsequently readvanced during relatively cooler conditions in 2006. However, persistently high ocean and atmospheric temperatures have meant that Helheim Glacier has in fact been continuously losing mass since 2003, despite this readvance. Here, we use a range of remotely sensed data to show that since 2014, Helheim Glacier has accelerated and retreated to a greater extent than occurred in 2003–2005. More importantly, as the glacier has been losing mass over the past two decades, it is currently much thinner than during its peak retreat in 2005. As the glacier continues to lose mass, it will pass a threshold whereby the ice will float and rapidly disintegrate. We observe that this process has already occurred at the glaciers neighboring Helheim Glacier, which are subject to the same climate forcing and thus provide an analogue for the future response of Helheim Glacier to continued warming. Helheim Glacier is more retreated and the near‐terminus region is up to 100 m thinner than during its much‐reported dramatic retreat in 2005 Helheim, one of Greenland's largest ice dischargers, is now more vulnerable than at any point since the Little Ice Age Helheim's new configuration offers potential for sustained dynamic instability and a major contribution to global sea‐level rise
Helheim Glacier, one of the largest marine‐terminating outlet glaciers draining the Greenland Ice Sheet, underwent significant retreat and acceleration in the early 2000s, accounting for an appreciable proportion of the ice sheet's mass loss during that period. Using a range of remotely sensed datasets, we show that despite a subsequent readvance, the glacier has continued to lose mass and thin, and has retreated inland of the retracted position occupied in 2005. Critically, the near‐terminus is up to 100 m thinner than during 2005, and the front 5 km is within 25–50 m of flotation, with retrograde bed slopes extending several kilometers inland of the terminus. The neighboring Fenris and Midgard Glaciers have both undergone recent large‐scale and rapid retreat once their near‐terminus regions began to float, suggesting that under projected climate warming and associated glacier thinning, Helheim Glacier is poised to pass a threshold whereby the near‐terminus region will retreat rapidly. Plain Language Summary A significant proportion of the Greenland Ice Sheet's contribution to global sea‐level rise is as a result of mass loss from its marine‐terminating glaciers. Helheim Glacier, located in southeast Greenland, is one of the largest and fastest‐flowing glaciers draining the Greenland Ice Sheet. During the early 2000s, Helheim Glacier underwent dramatic retreat and acceleration, but subsequently readvanced during relatively cooler conditions in 2006. However, persistently high ocean and atmospheric temperatures have meant that Helheim Glacier has in fact been continuously losing mass since 2003, despite this readvance. Here, we use a range of remotely sensed data to show that since 2014, Helheim Glacier has accelerated and retreated to a greater extent than occurred in 2003–2005. More importantly, as the glacier has been losing mass over the past two decades, it is currently much thinner than during its peak retreat in 2005. As the glacier continues to lose mass, it will pass a threshold whereby the ice will float and rapidly disintegrate. We observe that this process has already occurred at the glaciers neighboring Helheim Glacier, which are subject to the same climate forcing and thus provide an analogue for the future response of Helheim Glacier to continued warming. Key Points Helheim Glacier is more retreated and the near‐terminus region is up to 100 m thinner than during its much‐reported dramatic retreat in 2005 Helheim, one of Greenland's largest ice dischargers, is now more vulnerable than at any point since the Little Ice Age Helheim's new configuration offers potential for sustained dynamic instability and a major contribution to global sea‐level rise
Author Gourmelen, Noel
Williams, Joshua J.
Nienow, Peter
Slater, Donald
Bunce, Charlie
Author_xml – sequence: 1
  givenname: Joshua J.
  orcidid: 0000-0001-7177-6170
  surname: Williams
  fullname: Williams, Joshua J.
  email: j.j.williams-4@sms.ed.ac.uk
  organization: University of Edinburgh
– sequence: 2
  givenname: Noel
  orcidid: 0000-0003-3346-9289
  surname: Gourmelen
  fullname: Gourmelen, Noel
  organization: University of Edinburgh
– sequence: 3
  givenname: Peter
  surname: Nienow
  fullname: Nienow, Peter
  organization: University of Edinburgh
– sequence: 4
  givenname: Charlie
  surname: Bunce
  fullname: Bunce, Charlie
  organization: University of Edinburgh
– sequence: 5
  givenname: Donald
  orcidid: 0000-0001-8394-6149
  surname: Slater
  fullname: Slater, Donald
  organization: University of St Andrews
BookMark eNp9T8tKxDAUDTKCndGdH9C9Vu9N0k6zlFE7QkEZdF1u0luM9CFpQebvrTgLEXR14HCeS7Hoh56FOEe4QpDmWoLEogSjU50diQiN1kkOsF6ICGY2yeU6OxHLcXwDAAUKI3Gx5faVfRcXLTnPIX4a_Mh13Awhvg3U0eRdvOMpME2n4rihduSzA67Ey_3d82ablI_Fw-amTEgpg3OjRg2c1k1qjWZntZMWqWGTksVaauVqmVKecZ3mgGwtAefSGkIA14BaCfmd68IwjoGbyvlpHjL0UyDfVgjV193q593ZdPnL9B58R2H_l_zQ8eFb3v-rrYpdmSmVo_oEAVdlCw
CitedBy_id crossref_primary_10_1029_2023JC019953
crossref_primary_10_5194_tc_17_309_2023
crossref_primary_10_1017_jog_2022_68
crossref_primary_10_3390_rs14163956
crossref_primary_10_1017_jog_2021_141
crossref_primary_10_1029_2021JF006501
crossref_primary_10_1017_jog_2024_61
crossref_primary_10_1038_s41467_024_54045_z
crossref_primary_10_1016_j_jcp_2022_111766
crossref_primary_10_1029_2022PA004578
Cites_doi 10.1175/2009jcli2816.1
10.3189/002214308786570908
10.1017/jog.2016.24
10.1088/1748-9326/aadb2c
10.1029/2020GL089658
10.1029/2007JF000927
10.1029/2005GL024737
10.1073/pnas.1904242116
10.1002/2015JF003494
10.5194/tc-14-211-2020
10.1038/nature16183
10.5194/tc-8-1497-2014
10.1073/pnas.1801769115
10.1016/j.asr.2017.11.014
10.5194/tc-6-625-2012
10.1038/ngeo1481
10.1038/s41467-020-20011-8
10.1038/ngeo1349
10.1038/s41561-019-0329-3
10.5194/tc-13-2489-2019
10.1038/s41467-020-19580-5
10.5194/essd-12-1367-2020
10.5194/tc-7-1007-2013
10.1029/2005GL025428
10.3189/172756411799096312
10.5194/tc-14-985-2020
10.5194/esurf-6-551-2018
10.5194/tc-6-211-2012
10.5194/tc-10-1933-2016
10.1002/2013JC009067
10.1029/2017JF004499
10.5194/tc-6-1497-2012
10.1016/j.epsl.2018.05.015
10.5194/tc-6-923-2012
10.1029/2011GL047565
10.1016/j.quascirev.2018.06.018
10.1002/2016JF004133
10.1038/nature08471
10.5194/tc-13-2303-2019
10.1657/aaar0014-049
10.5194/tc-2021-81
10.1029/2010JF001847
10.5194/tc-12-811-2018
10.1073/pnas.1411680112
10.1038/ngeo1109
10.1002/2017GL074954
10.1029/2006GL028982
10.1002/2016GL069666
10.1029/2007JF000837
10.1038/s41586-019-1855-2
ContentType Journal Article
Copyright 2021. The Authors.
Copyright_xml – notice: 2021. The Authors.
DBID 24P
AAYXX
CITATION
DOI 10.1029/2021GL094546
DatabaseName Wiley Open Access Collection
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2021GL094546
GRL63381
Genre article
GrantInformation_xml – fundername: European Space Agency (ESA)
  funderid: 4000128095/19/I‐DT
– fundername: Natural Environment Research Council (NERC)
  funderid: NE/L002558/1; NE/T011920/1
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
ID FETCH-LOGICAL-a3391-804140e5df5b94ecb4c2b1afe95ab1d243cd25a86ed5801ebba0e82b9a100cf03
IEDL.DBID 24P
ISSN 0094-8276
IngestDate Thu Apr 24 23:03:44 EDT 2025
Tue Jul 01 01:41:25 EDT 2025
Wed Jan 22 16:28:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3391-804140e5df5b94ecb4c2b1afe95ab1d243cd25a86ed5801ebba0e82b9a100cf03
ORCID 0000-0001-7177-6170
0000-0003-3346-9289
0000-0001-8394-6149
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL094546
PageCount 11
ParticipantIDs crossref_citationtrail_10_1029_2021GL094546
crossref_primary_10_1029_2021GL094546
wiley_primary_10_1029_2021GL094546_GRL63381
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 December 2021
2021-12-16
PublicationDateYYYYMMDD 2021-12-16
PublicationDate_xml – month: 12
  year: 2021
  text: 16 December 2021
  day: 16
PublicationDecade 2020
PublicationTitle Geophysical research letters
PublicationYear 2021
References 2011; 116
2009; 22
2010
2006; 33
2019; 13
2017; 44
2018; 123
2019; 12
2015; 120
2016; 10
2011; 52
2020; 14
2015; 528
2008; 54
2018; 62
2020; 12
2020; 11
2013; 7
2011; 4
2014; 111
2011; 38
2007; 34
2018; 6
2015; 47
2018; 495
2018; 193
2021
2020
2018; 115
2013; 118
2016; 43
2019; 116
2005; 32
2020; 47
2016; 62
2020; 579
2008; 113
2009; 461
2012; 6
2017; 122
2018; 12
2014; 8
2012; 5
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
OMG Mission (e_1_2_8_43_1) 2020
Howat I. M. (e_1_2_8_19_1) 2020
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Thomas R. (e_1_2_8_52_1) 2010
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 11
  issue: 1
  year: 2020
  article-title: Centennial response of Greenland’s three largest outlet glaciers
  publication-title: Nature Communications
– volume: 7
  start-page: 1007
  year: 2013
  end-page: 1015
  article-title: High sensitivity of tidewater outlet glacier dynamics to shape
  publication-title: The Cryosphere
– volume: 11
  year: 2020
  article-title: Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6
  publication-title: Nature Communications
– volume: 54
  start-page: 646
  year: 2008
  end-page: 660
  article-title: Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06 ice dynamics and coupling to climate
  publication-title: Journal of Glaciology
– volume: 120
  start-page: 818
  year: 2015
  end-page: 833
  article-title: Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice melange in northwest Greenland
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 34
  year: 2007
  article-title: Rapid volume loss from two East Greenland outlet glaciers quantified using repeat stereo satellite imagery
  publication-title: Geophysical Research Letters
– volume: 47
  year: 2020
  article-title: Repeat subglacial lake drainage and filling beneath Thwaites Glacier
  publication-title: Geophysical Research Letters
– year: 2021
– volume: 113
  year: 2008
  article-title: Ice‐front variation and tidewater behaviour on Helheim and Kangerdlugssuaq Glaciers, Greenland
  publication-title: Journal of Geophysical Research
– volume: 193
  start-page: 145
  year: 2018
  end-page: 158
  article-title: Holocene history of the Helheim Glacier, southeast Greenland
  publication-title: Quaternary Science Reviews
– volume: 115
  start-page: 7907
  issue: 31
  year: 2018
  end-page: 7912
  article-title: Linear response of east Greenland’s tidewater glaciers to ocean/atmosphere warming
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 123
  start-page: 2024
  year: 2018
  end-page: 2038
  article-title: Geometric controls on tidewater glacier retreat in central western Greenland
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 6
  start-page: 551
  issue: 3
  year: 2018
  end-page: 561
  article-title: The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification Tool (MaQiT)—Simple tools for the rapid mapping and quantification of changing Earth surface margins
  publication-title: Earth Surface Dynamics
– volume: 8
  start-page: 1497
  issue: 4
  year: 2014
  end-page: 1507
  article-title: Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age
  publication-title: The Cryosphere
– volume: 14
  start-page: 211
  issue: 1
  year: 2020
  end-page: 227
  article-title: A decade of variability on Jakobshavn Isbrae: Ocean temperatures pace speed through influence on melange rigidity
  publication-title: The Cryosphere
– volume: 116
  start-page: 9239
  issue: 19
  year: 2019
  end-page: 9244
  article-title: Forty‐six years of Greenland Ice Sheet mass balance from 1972 to 2018
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 495
  start-page: 234
  year: 2018
  end-page: 241
  article-title: 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat‐2 radar altimetry
  publication-title: Earth and Planetary Science Letters
– volume: 5
  start-page: 427
  issue: 6
  year: 2012
  end-page: 432
  article-title: An aerial view of 80 years of climate‐related glacier fluctuations in southeast Greenland
  publication-title: Nature Geoscience
– volume: 47
  start-page: 427
  issue: 3
  year: 2015
  end-page: 447
  article-title: Extensive retreat of Greenland tidewater glaciers, 2000‐2010
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 33
  year: 2006
  article-title: Rapid and synchronous ice‐dynamic changes in east Greenland
  publication-title: Geophysical Research Letters
– volume: 528
  start-page: 396
  year: 2015
  end-page: 400
  article-title: Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900
  publication-title: Nature
– volume: 14
  start-page: 985
  issue: 3
  year: 2020
  end-page: 1008
  article-title: Twenty‐first century ocean forcing of the Greenland Ice Sheet for modelling of sea level contribution
  publication-title: The Cryosphere
– volume: 13
  issue: 6
  year: 2018
  article-title: The land ice contribution to sea level during the satellite era
  publication-title: Environmental Research Letters
– volume: 6
  start-page: 1497
  year: 2012
  end-page: 1505
  article-title: The stability of grounding lines on retrograde slopes
  publication-title: The Cryosphere
– volume: 44
  start-page: 11051
  year: 2017
  end-page: 11061
  article-title: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation
  publication-title: Geophysical Research Letters
– volume: 6
  start-page: 211
  year: 2012
  end-page: 220
  article-title: Changes in the marine‐terminating glaciers of central east Greenland, 2000‐2010
  publication-title: The Cryosphere
– volume: 38
  year: 2011
  article-title: Mass balance of Greenland’s three largest outlet glaciers, 2000‐2010
  publication-title: Geophysical Research Letters
– volume: 10
  start-page: 1933
  issue: 5
  year: 2016
  end-page: 1946
  article-title: On the recent contribution of the Greenland Ice Sheet to sea level change
  publication-title: The Cryosphere
– volume: 52
  start-page: 91
  issue: 59
  year: 2011
  end-page: 98
  article-title: Greenland marine‐terminating glacier area changes: 2000‐2010
  publication-title: Annals of Glaciology
– volume: 43
  start-page: 7002
  year: 2016
  end-page: 7010
  article-title: A high‐resolution record of Greenland mass balance
  publication-title: Geophysical Research Letters
– volume: 5
  start-page: 37
  year: 2012
  end-page: 41
  article-title: Rapid response of Helheim Glacier in Greenland to climate variability over the past century
  publication-title: Nature Geoscience
– volume: 62
  start-page: 1226
  issue: 6
  year: 2018
  end-page: 1242
  article-title: CryoSat‐2 swath interferometric altimetry for mapping ice elevation and elevation change
  publication-title: Advances in Space Research
– volume: 111
  start-page: 18478
  year: 2014
  end-page: 18483
  article-title: Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: 2489
  year: 2019
  end-page: 2509
  article-title: Estimating Greenland tidewater glacier retreat driven by submarine melting
  publication-title: The Cryosphere
– volume: 12
  start-page: 1367
  year: 2020
  end-page: 1383
  article-title: Greenland Ice Sheet solid ice discharge from 1986 through March 2020
  publication-title: Earth System Science Data
– volume: 6
  start-page: 625
  year: 2012
  end-page: 639
  article-title: Multi‐decadal marine‐ and land‐terminating glacier recession in the Ammassalik region, southeast Greenland
  publication-title: The Cryosphere
– volume: 118
  start-page: 6704
  year: 2013
  end-page: 6716
  article-title: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates
  publication-title: Journal of Geophysical Research: Oceans
– volume: 12
  start-page: 811
  year: 2018
  end-page: 831
  article-title: Modelling the climate and surface mass balance of polar ice sheets using RACMO2—Part 1: Greenland (1958‐2016)
  publication-title: The Cryosphere
– volume: 12
  start-page: 277
  year: 2019
  end-page: 283
  article-title: Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools
  publication-title: Nature Geoscience
– volume: 62
  start-page: 137
  issue: 231
  year: 2016
  end-page: 146
  article-title: Satellite archives reveal abrupt changes in behaviour of Helheim Glacier, southeast Greenland
  publication-title: Journal of Glaciology
– year: 2010
– volume: 13
  start-page: 2303
  year: 2019
  end-page: 2315
  article-title: Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier
  publication-title: The Cryosphere
– volume: 22
  start-page: 4029
  issue: 14
  year: 2009
  end-page: 4049
  article-title: Greenland Ice Sheet surface air temperature variability: 1840‐2007
  publication-title: Journal of Climate
– volume: 4
  start-page: 322
  issue: 5
  year: 2011
  end-page: 327
  article-title: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier
  publication-title: Nature Geoscience
– volume: 113
  year: 2008
  article-title: Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007
  publication-title: Journal of Geophysical Research
– year: 2020
– volume: 116
  year: 2011
  article-title: Ocean forcing of the Greenland Ice Sheet: Calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers
  publication-title: Journal of Geophysical Research
– volume: 6
  start-page: 923
  year: 2012
  end-page: 937
  article-title: Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers
  publication-title: The Cryosphere
– volume: 461
  start-page: 971
  issue: 7266
  year: 2009
  end-page: 975
  article-title: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets
  publication-title: Nature
– volume: 32
  year: 2005
  article-title: Rapid retreat and acceleration of Helheim Glacier, east Greenland
  publication-title: Geophysical Research Letters
– volume: 122
  start-page: 1635
  year: 2017
  end-page: 1652
  article-title: Seasonal and interannual variabilities in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 579
  start-page: 233
  year: 2020
  end-page: 239
  article-title: Mass balance of the Greenland Ice Sheet from 1992 to 2018
  publication-title: Nature
– ident: e_1_2_8_9_1
  doi: 10.1175/2009jcli2816.1
– ident: e_1_2_8_21_1
  doi: 10.3189/002214308786570908
– ident: e_1_2_8_36_1
  doi: 10.1017/jog.2016.24
– ident: e_1_2_8_3_1
  doi: 10.1088/1748-9326/aadb2c
– ident: e_1_2_8_32_1
  doi: 10.1029/2020GL089658
– ident: e_1_2_8_37_1
  doi: 10.1029/2007JF000927
– ident: e_1_2_8_22_1
  doi: 10.1029/2005GL024737
– ident: e_1_2_8_40_1
  doi: 10.1073/pnas.1904242116
– ident: e_1_2_8_38_1
  doi: 10.1002/2015JF003494
– volume-title: Glacier elevation data from the GLISTIN‐A campaigns
  year: 2020
  ident: e_1_2_8_43_1
– ident: e_1_2_8_24_1
  doi: 10.5194/tc-14-211-2020
– ident: e_1_2_8_29_1
  doi: 10.1038/nature16183
– ident: e_1_2_8_27_1
  doi: 10.5194/tc-8-1497-2014
– ident: e_1_2_8_11_1
  doi: 10.1073/pnas.1801769115
– ident: e_1_2_8_16_1
  doi: 10.1016/j.asr.2017.11.014
– ident: e_1_2_8_35_1
  doi: 10.5194/tc-6-625-2012
– ident: e_1_2_8_6_1
  doi: 10.1038/ngeo1481
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-020-20011-8
– ident: e_1_2_8_2_1
  doi: 10.1038/ngeo1349
– ident: e_1_2_8_28_1
  doi: 10.1038/s41561-019-0329-3
– ident: e_1_2_8_47_1
  doi: 10.5194/tc-13-2489-2019
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-020-19580-5
– ident: e_1_2_8_33_1
  doi: 10.5194/essd-12-1367-2020
– ident: e_1_2_8_13_1
  doi: 10.5194/tc-7-1007-2013
– ident: e_1_2_8_31_1
  doi: 10.1029/2005GL025428
– ident: e_1_2_8_8_1
  doi: 10.3189/172756411799096312
– ident: e_1_2_8_46_1
  doi: 10.5194/tc-14-985-2020
– volume-title: MEaSUREs Greenland ice velocity: Selected glacier site velocity maps from optical images, Version 3 [E66_50N, E66_60N]
  year: 2020
  ident: e_1_2_8_19_1
– ident: e_1_2_8_30_1
  doi: 10.5194/esurf-6-551-2018
– ident: e_1_2_8_54_1
  doi: 10.5194/tc-6-211-2012
– ident: e_1_2_8_53_1
  doi: 10.5194/tc-10-1933-2016
– ident: e_1_2_8_15_1
  doi: 10.1002/2013JC009067
– ident: e_1_2_8_10_1
  doi: 10.1029/2017JF004499
– ident: e_1_2_8_17_1
  doi: 10.5194/tc-6-1497-2012
– ident: e_1_2_8_48_1
  doi: 10.1016/j.epsl.2018.05.015
– ident: e_1_2_8_5_1
  doi: 10.5194/tc-6-923-2012
– ident: e_1_2_8_20_1
  doi: 10.1029/2011GL047565
– ident: e_1_2_8_7_1
  doi: 10.1016/j.quascirev.2018.06.018
– ident: e_1_2_8_25_1
  doi: 10.1002/2016JF004133
– ident: e_1_2_8_44_1
  doi: 10.1038/nature08471
– volume-title: Pre‐IceBridge ATM L2 Icessn elevation, slope, and roughness
  year: 2010
  ident: e_1_2_8_52_1
– ident: e_1_2_8_4_1
  doi: 10.5194/tc-13-2303-2019
– ident: e_1_2_8_41_1
  doi: 10.1657/aaar0014-049
– ident: e_1_2_8_14_1
  doi: 10.5194/tc-2021-81
– ident: e_1_2_8_45_1
  doi: 10.1029/2010JF001847
– ident: e_1_2_8_42_1
  doi: 10.5194/tc-12-811-2018
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.1411680112
– ident: e_1_2_8_50_1
  doi: 10.1038/ngeo1109
– ident: e_1_2_8_39_1
  doi: 10.1002/2017GL074954
– ident: e_1_2_8_49_1
  doi: 10.1029/2006GL028982
– ident: e_1_2_8_34_1
  doi: 10.1002/2016GL069666
– ident: e_1_2_8_23_1
  doi: 10.1029/2007JF000837
– ident: e_1_2_8_51_1
  doi: 10.1038/s41586-019-1855-2
SSID ssj0003031
Score 2.447838
Snippet Helheim Glacier, one of the largest marine‐terminating outlet glaciers draining the Greenland Ice Sheet, underwent significant retreat and acceleration in the...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Greenland Ice Sheet
ice dynamics
remote sensing
tidewater glaciers
Title Helheim Glacier Poised for Dramatic Retreat
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL094546
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RfAiPrE-Sg56KsHdZDfNHovaFKlSipHiJexuNljoQ9p68N87u4mlHhS8hTB7yA4z33yb2W8ArmITF3nMbHe_iH2mJfeVEpalIBowxGPiZh0-PkW9lD2M-Kg6cLN3YUp9iPWBm40Ml69tgEu1rMQGrEYmsnaa9JGdcBZtQ93errXa-QEbrDMxpudyYp5gfhy0o6rxHdffbK7-AUmbJarDmO4-7FXFodcpvXkAW2Z2CDuJG777iU-uXVMvj8CixZsZT71kIjE4F95gPl6a3MMK1LtbSCfD6g2N6yI_hrR7_3zb86uxB74MQ0F9qwjEiOF5wZVgRiumA0VlYQSXiuYBC3UecBlHJueIL0YpSUwcKCEpIbog4QnUZvOZOQWvjfyoUHmbER1i5aGERpchIxKGSBpp0oDW95dnutIEt6MpJpn7Nx2IbHOfGnC9tn4vtTB-sWu5TfzTKEuG_Qj5MT37l_U57Nr3tqGERhdQWy0-zCWWBSvVdL5vQr3zkr6mXzXvrC0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgCMGC-BTlMwNMVYTt2E48Ij5SoK2qqpW6RbbjiEqlRW0Z-PecnVCVASS2DOchds7vnnN-D6GrxCZFnjDX3S-TkBnFQ62lYymABgzwGHuvw3ZHNAfseciHlc-puwtT6kMsD9xcZvj92iW4O5Cu1AacSCbQdpK2gJ5wJtbRBhM0dplJWXe5FcP-XFrmSRYmNBZV5zuMv1kd_QOTVmtUDzKPu2inqg6D23I599CaneyjzdS7737Ck-_XNPMD5ODi1Y7egnSsIDtnQXc6mts8gBI0uJ8pr8Ma9KxvIz9Eg8eH_l0zrHwPQhVFkoROEohhy_OCa8ms0cxQTVRhJVea5JRFJqdcJcLmHADGaq2wTaiWimBsChwdodpkOrHHKIiBIBU6jxk2EZQeWhpYM6BE0mJFhMF11Ph-88xUouDOm2Kc-Z_TVGar81RH18vo91IM45e4hp_EP4OytNcSQJDJyb-iL9FWs99uZa2nzssp2nYxrruEiDNUW8w-7DnUCAt94b-DLzLjrds
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oROPF-Iz47EFPpHG33S3dIxEpKhJCrDFemn01kiAQwIP_3tltJXjQxFsP0yb7mPnm251-g9BlbOJcx9RW9_PYp0owX0puWQqgAQU8xq7X4WMv6qT0_oW9lAdu9l-YQh9ieeBmPcPFa-vgU52XYgNWIxNYO0m6wE4YjdZR1Qrlwa6uNp_T13QZiyFAFz3zOPXjoBGVpe_whevV93-A0mqS6lCmvYO2y_TQaxbruYvWzHgPbSSu_e4nPLmCTTXfRxYv3szw3UtGAtxz5vUnw7nRHuSgXmsmnBCrNzCujvwApe3bp5uOXzY-8EUYcuJbTSCKDdM5k5waJakKJBG54UxIogMaKh0wEUdGM0AYI6XAJg4kFwRjlePwEFXGk7E5Ql4DGFIudYNiFULuIbmCRQNOxA0WJFK4hurfI89UqQpum1OMMnc7HfBsdZ5q6GppPS3UMH6xq7tJ_NMoSwbdCBgyOf6X9QXa7LfaWfeu93CCtqyJrS4h0SmqLGYf5gxyhIU8LzfCF9GirtM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Helheim+Glacier+Poised+for+Dramatic+Retreat&rft.jtitle=Geophysical+research+letters&rft.au=Williams%2C+Joshua+J.&rft.au=Gourmelen%2C+Noel&rft.au=Nienow%2C+Peter&rft.au=Bunce%2C+Charlie&rft.date=2021-12-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=48&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021GL094546&rft.externalDBID=10.1029%252F2021GL094546&rft.externalDocID=GRL63381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon