1D and 2D Nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks

Few 1D T2 and 2D T1-T2 Nuclear magnetic resonance (NMR) studies have focused on oil-bearing shales with complex constituents and a deeper understanding of the NMR relaxation behaviors of oil confined in shale is needed. In this paper, a series of T2 and T1-T2 NMR experiments were performed on oil-be...

Full description

Saved in:
Bibliographic Details
Published inMarine and petroleum geology Vol. 114; p. 104210
Main Authors Zhang, Pengfei, Lu, Shuangfang, Li, Junqian, Chang, Xiangchun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Few 1D T2 and 2D T1-T2 Nuclear magnetic resonance (NMR) studies have focused on oil-bearing shales with complex constituents and a deeper understanding of the NMR relaxation behaviors of oil confined in shale is needed. In this paper, a series of T2 and T1-T2 NMR experiments were performed on oil-bearing shale and its components (clay minerals and kerogen) to obtain the T1-T2 fluid typing chart and analyze the adsorbed and free oil in shale. The results were as follows: five types of water (bound, adsorbed, free, crystal and structural water) in clay minerals were qualitatively identified and described by the specific T2 to T1/T2 ratio values, and T1-T2 maps were used to qualitatively indicate the clay type. The T1-T2 fluid typing chart containing the signatures of 8 proton populations in oil-bearing shale was defined and included bulk liquid, macropore (>1000 nm) oil, nanopore (<1000 nm) oil, and free water in clay minerals or kerogen, shale pore water, bound water in clay minerals, kerogen and crystal water. Adsorbed oil was mainly confined in nanopores, especially micropores smaller than 100 nm, while free oil composed of movable and irreducible oil was predominant in mesopores (100–1000 nm) and macropores. Furthermore, the proportion of irreducible oil gradually decreased and that of movable oil gradually increased from mesopores to macropores. The results demonstrate that the T1-T2 NMR technique may be an effective method for the assessment of fluid distributions and proton mobility and has potential applications for the characterization of shale oil occurrence states. •Five types of water in clay minerals were qualitatively identified by the specific T2 to T1/T2 ratio values.•The T1-T2 fluid typing chart containing the signatures of 8 proton populations in oil-bearing shale was defined.•Shale oil occurrence states in different size pores were qualitatively revealed.
AbstractList Few 1D T2 and 2D T1-T2 Nuclear magnetic resonance (NMR) studies have focused on oil-bearing shales with complex constituents and a deeper understanding of the NMR relaxation behaviors of oil confined in shale is needed. In this paper, a series of T2 and T1-T2 NMR experiments were performed on oil-bearing shale and its components (clay minerals and kerogen) to obtain the T1-T2 fluid typing chart and analyze the adsorbed and free oil in shale. The results were as follows: five types of water (bound, adsorbed, free, crystal and structural water) in clay minerals were qualitatively identified and described by the specific T2 to T1/T2 ratio values, and T1-T2 maps were used to qualitatively indicate the clay type. The T1-T2 fluid typing chart containing the signatures of 8 proton populations in oil-bearing shale was defined and included bulk liquid, macropore (>1000 nm) oil, nanopore (<1000 nm) oil, and free water in clay minerals or kerogen, shale pore water, bound water in clay minerals, kerogen and crystal water. Adsorbed oil was mainly confined in nanopores, especially micropores smaller than 100 nm, while free oil composed of movable and irreducible oil was predominant in mesopores (100–1000 nm) and macropores. Furthermore, the proportion of irreducible oil gradually decreased and that of movable oil gradually increased from mesopores to macropores. The results demonstrate that the T1-T2 NMR technique may be an effective method for the assessment of fluid distributions and proton mobility and has potential applications for the characterization of shale oil occurrence states. •Five types of water in clay minerals were qualitatively identified by the specific T2 to T1/T2 ratio values.•The T1-T2 fluid typing chart containing the signatures of 8 proton populations in oil-bearing shale was defined.•Shale oil occurrence states in different size pores were qualitatively revealed.
ArticleNumber 104210
Author Lu, Shuangfang
Li, Junqian
Zhang, Pengfei
Chang, Xiangchun
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Zhang
  fullname: Zhang, Pengfei
  organization: College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
– sequence: 2
  givenname: Shuangfang
  orcidid: 0000-0003-1116-1558
  surname: Lu
  fullname: Lu, Shuangfang
  email: lushuangfang@upc.edu.cn
  organization: School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
– sequence: 3
  givenname: Junqian
  surname: Li
  fullname: Li, Junqian
  email: lijunqian1987@126.com
  organization: School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
– sequence: 4
  givenname: Xiangchun
  orcidid: 0000-0002-2499-9045
  surname: Chang
  fullname: Chang, Xiangchun
  organization: College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
BookMark eNqNkMtOwzAQRS1UJErhG_ASJFLsOLHTBYuK8pJKkRCsrYkzCS7Bruzw-ntSiliwgdVoRnOudM8uGTjvkJADzsaccXmyHD9DWGHXoB-njE_6a5ZytkWGvFAiyZgSAzJkqcySgqt0h-zGuGSMqQnjQ_LGZxRcRdMZXbyYFiHQZ2gcdtbQgNE7cAbp4eLm7qjfW3iHznpHS3yEV-tDpL6mq-A77yK1jpoWPo7pEwbfoPsK9rZNyj7WuobGR2iRBm-e4h7ZrqGNuP89R-Th4vz-7CqZ315en03nCQhRdEnNMpQ5gpECKiYF1ilCWWDKFQqpcpWVEiowYqKUyGtpClaiRN5_5SkzXIyI2uSa4GMMWOtVsL2wD82ZXvvTS_3jT6_96Y2_njz9RRrbfbXvAtj2H_x0w2Nf79Vi0NFY7G1WNqDpdOXtnxmfXeyVJA
CitedBy_id crossref_primary_10_1016_j_jngse_2020_103674
crossref_primary_10_3390_pr11051466
crossref_primary_10_1016_j_watres_2024_122346
crossref_primary_10_1021_acs_energyfuels_4c00729
crossref_primary_10_1016_j_petsci_2023_03_011
crossref_primary_10_2113_2021_6646791
crossref_primary_10_1016_j_marpetgeo_2022_105996
crossref_primary_10_3390_en18010166
crossref_primary_10_1016_j_marpetgeo_2024_106844
crossref_primary_10_1016_j_petrol_2021_109516
crossref_primary_10_1021_acs_langmuir_3c01394
crossref_primary_10_1016_j_petsci_2025_03_014
crossref_primary_10_1016_j_gsf_2022_101424
crossref_primary_10_1021_acs_energyfuels_4c02071
crossref_primary_10_1016_j_jngse_2022_104412
crossref_primary_10_3390_en14092447
crossref_primary_10_2118_221496_PA
crossref_primary_10_1002_gj_3932
crossref_primary_10_1002_gj_4904
crossref_primary_10_1016_j_petrol_2020_107508
crossref_primary_10_1016_j_petrol_2022_110183
crossref_primary_10_1016_j_fuel_2024_132426
crossref_primary_10_1016_j_jrmge_2024_11_027
crossref_primary_10_3390_en15249485
crossref_primary_10_1016_j_geoen_2023_212552
crossref_primary_10_3390_en17153770
crossref_primary_10_3390_en15239043
crossref_primary_10_1016_j_marpetgeo_2023_106674
crossref_primary_10_1155_2021_9945494
crossref_primary_10_3389_feart_2023_1117193
crossref_primary_10_1016_j_fuel_2025_134532
crossref_primary_10_1016_j_marpetgeo_2025_107353
crossref_primary_10_1016_j_petrol_2022_110491
crossref_primary_10_1016_j_fuel_2021_121215
crossref_primary_10_1021_acsomega_3c03534
crossref_primary_10_1155_2022_3539482
crossref_primary_10_1021_acs_energyfuels_1c00352
crossref_primary_10_1016_j_fuel_2024_133926
crossref_primary_10_1021_acs_energyfuels_4c02207
crossref_primary_10_1016_j_fuel_2022_123243
crossref_primary_10_1016_j_geoen_2023_211734
crossref_primary_10_1021_acs_energyfuels_0c01748
crossref_primary_10_3389_feart_2021_720839
crossref_primary_10_1016_j_gsf_2023_101684
crossref_primary_10_1016_j_chemgeo_2020_120033
crossref_primary_10_1016_j_marpetgeo_2024_106986
crossref_primary_10_3390_pr12050879
crossref_primary_10_2118_225456_PA
crossref_primary_10_2118_223091_PA
crossref_primary_10_1016_j_coal_2021_103881
crossref_primary_10_1021_acs_energyfuels_2c00592
crossref_primary_10_1016_j_marpetgeo_2024_106907
crossref_primary_10_3390_min13121514
crossref_primary_10_1021_acs_energyfuels_1c02386
crossref_primary_10_1021_acs_energyfuels_4c03825
crossref_primary_10_1016_j_clay_2021_106088
crossref_primary_10_1016_j_marpetgeo_2021_105165
crossref_primary_10_1016_j_fuel_2023_127919
crossref_primary_10_1021_acs_energyfuels_2c03857
crossref_primary_10_1021_acs_energyfuels_0c04082
crossref_primary_10_1021_acs_energyfuels_3c00438
crossref_primary_10_1007_s11707_022_1051_9
crossref_primary_10_1007_s11707_020_0851_z
crossref_primary_10_1016_j_fuel_2024_132618
crossref_primary_10_1016_j_geoen_2024_212924
crossref_primary_10_1021_acs_energyfuels_2c00610
crossref_primary_10_1016_j_marpetgeo_2020_104587
crossref_primary_10_1016_j_gete_2023_100441
crossref_primary_10_1002_marc_202401115
crossref_primary_10_1021_acs_energyfuels_2c04011
crossref_primary_10_1016_j_petsci_2023_08_026
crossref_primary_10_1007_s11707_024_1100_7
crossref_primary_10_1007_s11707_022_1044_8
crossref_primary_10_1016_j_petrol_2022_111234
crossref_primary_10_3390_fractalfract8030167
crossref_primary_10_1021_acs_energyfuels_3c01517
crossref_primary_10_1016_j_petsci_2024_07_001
crossref_primary_10_1021_acsomega_3c03260
crossref_primary_10_3390_en17030694
crossref_primary_10_1021_acs_energyfuels_0c00552
crossref_primary_10_1063_5_0209910
crossref_primary_10_1016_j_geoen_2023_211827
crossref_primary_10_1007_s10712_024_09845_9
crossref_primary_10_1021_acs_energyfuels_0c01919
crossref_primary_10_1111_jpg_12825
crossref_primary_10_1016_j_geoen_2023_212115
crossref_primary_10_1021_acs_energyfuels_2c02222
crossref_primary_10_1021_acs_energyfuels_2c03395
crossref_primary_10_3390_en13205278
crossref_primary_10_3390_pr12091870
crossref_primary_10_1016_j_fuel_2023_129588
crossref_primary_10_3799_dqkx_2022_333
crossref_primary_10_1061__ASCE_EY_1943_7897_0000864
crossref_primary_10_1021_acs_energyfuels_1c02449
crossref_primary_10_1190_geo2022_0646_1
crossref_primary_10_1016_j_marpetgeo_2023_106662
crossref_primary_10_3390_app10249065
crossref_primary_10_1021_acs_energyfuels_2c01763
crossref_primary_10_3390_pr11041120
crossref_primary_10_1016_j_marpetgeo_2023_106422
crossref_primary_10_3389_feart_2022_1103286
crossref_primary_10_1016_j_fuel_2023_130162
crossref_primary_10_1016_j_petsci_2022_03_006
crossref_primary_10_1021_acs_energyfuels_2c04116
crossref_primary_10_1021_acs_energyfuels_2c00431
crossref_primary_10_1016_j_petrol_2020_107926
crossref_primary_10_1021_acs_energyfuels_3c01977
crossref_primary_10_1021_acs_energyfuels_2c03383
crossref_primary_10_1016_j_earscirev_2022_104134
crossref_primary_10_3390_molecules29225432
crossref_primary_10_1016_j_petsci_2024_07_025
crossref_primary_10_1021_acs_energyfuels_3c00527
crossref_primary_10_2118_205017_PA
crossref_primary_10_1016_j_petrol_2021_109843
crossref_primary_10_1016_j_marpetgeo_2021_105001
crossref_primary_10_1016_j_petrol_2022_110208
crossref_primary_10_1007_s00603_024_04052_9
crossref_primary_10_1016_j_energy_2021_121549
Cites_doi 10.1016/j.coal.2015.10.009
10.1016/j.marpetgeo.2017.07.011
10.1021/acs.energyfuels.8b02953
10.1002/chem.201403139
10.1016/j.micromeso.2017.05.054
10.1021/jp311006q
10.1016/j.petrol.2015.11.006
10.1021/ef502828k
10.1021/acs.energyfuels.7b01625
10.1103/PhysRev.73.679
10.1016/j.marpetgeo.2017.11.015
10.1016/j.jmr.2016.06.009
10.1016/j.fuel.2018.12.066
10.1016/j.fuel.2017.06.017
10.1016/j.marpetgeo.2019.01.012
10.2118/66185-PA
10.1016/j.petrol.2015.11.007
10.1016/j.petrol.2018.10.035
10.1016/j.jmr.2015.08.026
10.1111/1755-6724.13767
10.1016/j.cageo.2019.01.021
10.1021/acs.energyfuels.7b02763
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.marpetgeo.2019.104210
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1873-4073
ExternalDocumentID 10_1016_j_marpetgeo_2019_104210
S0264817219306646
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a338t-f04e65eac63ad063ef2eab8e217e367574b6adac397735f6c80be6e12ea520c13
IEDL.DBID .~1
ISSN 0264-8172
IngestDate Thu Apr 24 22:56:03 EDT 2025
Tue Jul 01 02:11:17 EDT 2025
Fri Feb 23 02:46:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords T1-T2 map
Oil-bearing shale
Adsorbed/free oil
Nuclear magnetic resonance (NMR)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a338t-f04e65eac63ad063ef2eab8e217e367574b6adac397735f6c80be6e12ea520c13
ORCID 0000-0002-2499-9045
0000-0003-1116-1558
ParticipantIDs crossref_primary_10_1016_j_marpetgeo_2019_104210
crossref_citationtrail_10_1016_j_marpetgeo_2019_104210
elsevier_sciencedirect_doi_10_1016_j_marpetgeo_2019_104210
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Marine and petroleum geology
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fleury, Romero-Sarmiento (bib10) 2016; 137
Bloembergen, Purcell, Pound (bib2) 1948; 73
Zhang, Lu, Li, Zhang, Xue, Chen (bib32) 2017; 31
Zhao, Wang, Sun, Cai, Wang (bib34) 2017; 86
Birdwell, Washburn (bib1) 2015; 29
Shi, Chang, Wei, Li, Mao (bib27) 2019; 173
Fleury, Kohler, Norrant, Gautier, M'Hamdi, Barré (bib9) 2013; 117
Ksusik, Minh, Zielinski, Vissapragada, Akkurt, Song, Liu, Jones, Blair (bib15) 2011; vol. 30
Li, Lu, Xie, Zhang, Xue, Zhang, Tian (bib18) 2017; 206
Li, Jin, Wang, Wu, Lu (bib16) 2016; 40
D'Agostino, Mitchell, Mantle, Gladden (bib7) 2014; 20
Zhou, Liu, Yan, Xue, Guo (bib35) 2016; 37
Li, Yin, Zhang, Lu, Wang, Li, Chen, Meng (bib17) 2015; 152
Li, Yang, Pan, Meng, Wang, Niu (bib22) 2019; 93
Jiang, Daigle, Zhang (bib13) 2018
Cai, Hu (bib3) 2019
Tan, Mao, Song, Yang, Xu (bib28) 2015; 136
Jiang, Daigle, Tian, Pyrcz, Griffith, Zhang (bib14) 2019; 126
Li, Lu, Cai, Zhang, Xue, Zhao (bib19) 2018; 31
Prammer, Drack, Bouton, Gardner (bib25) 1996; 37
Chen (bib4) 2008
Li, Wang, Lu, Zhang, Cai, Zhao, Li (bib20) 2019; 102
Matteson, Tomanic, Herron, Allen, Kenyon (bib24) 2000; 3
Daigle, Johnson, Gips, Sharma (bib8) 2014; 25–27 August
Lu, Xue, Wang, Xiao, Huang, Li, Xie, Tian, Wang, Li, Wang, Chen, Li, Xue, Liu (bib23) 2016; 37
Pang, Zeng, Liu, Lin, Peng, Yan, Chen (bib26) 2017; 36
Coates, Xiao, Prammer (bib6) 1999
Zhang, Lu, Li, Chen, Xue, Zhang (bib33) 2018; 89
Tian, Erastova, Lu, Greenwell, Underwood, Xue, Zeng, Chen, Wu, Zhao (bib29) 2017; 32
Ge, Fan, Chen, Deng, Cao, Zahid (bib11) 2015; 260
Williamson, Röding, Galvosas, Miklavcic, Nydén (bib30) 2016; 269
Xie, Xiao, Lu (bib31) 2009; 33
Habina, Radzik, Topór, Krzyżak (bib12) 2017; 252
Chen, Gang, Tang, Gao, Wang, Liu, Yang, Wang (bib5) 2019
Li, Wang, Pan, Niu, Yu, Meng (bib21) 2019; 241
Zhou (10.1016/j.marpetgeo.2019.104210_bib35) 2016; 37
Xie (10.1016/j.marpetgeo.2019.104210_bib31) 2009; 33
Zhao (10.1016/j.marpetgeo.2019.104210_bib34) 2017; 86
Ksusik (10.1016/j.marpetgeo.2019.104210_bib15) 2011; vol. 30
Ge (10.1016/j.marpetgeo.2019.104210_bib11) 2015; 260
Fleury (10.1016/j.marpetgeo.2019.104210_bib9) 2013; 117
Tan (10.1016/j.marpetgeo.2019.104210_bib28) 2015; 136
Zhang (10.1016/j.marpetgeo.2019.104210_bib33) 2018; 89
Bloembergen (10.1016/j.marpetgeo.2019.104210_bib2) 1948; 73
Li (10.1016/j.marpetgeo.2019.104210_bib18) 2017; 206
Pang (10.1016/j.marpetgeo.2019.104210_bib26) 2017; 36
Birdwell (10.1016/j.marpetgeo.2019.104210_bib1) 2015; 29
Fleury (10.1016/j.marpetgeo.2019.104210_bib10) 2016; 137
Prammer (10.1016/j.marpetgeo.2019.104210_bib25) 1996; 37
Daigle (10.1016/j.marpetgeo.2019.104210_bib8) 2014; 25–27 August
Coates (10.1016/j.marpetgeo.2019.104210_bib6) 1999
Li (10.1016/j.marpetgeo.2019.104210_bib22) 2019; 93
D'Agostino (10.1016/j.marpetgeo.2019.104210_bib7) 2014; 20
Li (10.1016/j.marpetgeo.2019.104210_bib17) 2015; 152
Zhang (10.1016/j.marpetgeo.2019.104210_bib32) 2017; 31
Li (10.1016/j.marpetgeo.2019.104210_bib21) 2019; 241
Tian (10.1016/j.marpetgeo.2019.104210_bib29) 2017; 32
Jiang (10.1016/j.marpetgeo.2019.104210_bib14) 2019; 126
Williamson (10.1016/j.marpetgeo.2019.104210_bib30) 2016; 269
Li (10.1016/j.marpetgeo.2019.104210_bib16) 2016; 40
Li (10.1016/j.marpetgeo.2019.104210_bib20) 2019; 102
Chen (10.1016/j.marpetgeo.2019.104210_bib4) 2008
Jiang (10.1016/j.marpetgeo.2019.104210_bib13) 2018
Matteson (10.1016/j.marpetgeo.2019.104210_bib24) 2000; 3
Li (10.1016/j.marpetgeo.2019.104210_bib19) 2018; 31
Cai (10.1016/j.marpetgeo.2019.104210_bib3) 2019
Habina (10.1016/j.marpetgeo.2019.104210_bib12) 2017; 252
Shi (10.1016/j.marpetgeo.2019.104210_bib27) 2019; 173
Chen (10.1016/j.marpetgeo.2019.104210_bib5) 2019
Lu (10.1016/j.marpetgeo.2019.104210_bib23) 2016; 37
References_xml – year: 2008
  ident: bib4
  article-title: Mineralogy Petrology (In Chinese)
– volume: 86
  start-page: 1067
  year: 2017
  end-page: 1108
  ident: bib34
  article-title: Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: permian Lucaogou Formation in Jimusaer Sag, Junggar Basin
  publication-title: Mar. Pet. Geol.
– volume: 32
  start-page: 1155
  year: 2017
  end-page: 1165
  ident: bib29
  article-title: Understanding model crude oil component interactions on kaolinite silicate and aluminol surfaces: toward improved understanding of shale oil recovery
  publication-title: Energy Fuels
– year: 2019
  ident: bib5
  article-title: Astronomical cycles and variations in sediment accumulation rate of the terrestrial lower cretaceous Xiagou formation from the Jiuquan Basin, NW China
  publication-title: Cretac. Res.
– volume: 31
  start-page: 9232
  year: 2017
  end-page: 9239
  ident: bib32
  article-title: Comparisons of SEM, low-field NMR, and mercury intrusion capillary pressure in characterization of the pore size distribution of lacustrine shale: a case study on the dongying depression, Bohai Bay Basin, China
  publication-title: Energy Fuels
– volume: 137
  start-page: 55
  year: 2016
  end-page: 62
  ident: bib10
  article-title: Characterization of shales using
  publication-title: J. Pet. Sci. Eng.
– volume: 93
  start-page: 111
  year: 2019
  end-page: 129
  ident: bib22
  article-title: Unconventional natural gas accumulations in stacked deposits: a discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China
  publication-title: Acta Geol. Sin.
– start-page: 23
  year: 2018
  end-page: 25
  ident: bib13
  article-title: Characterization of thermal evolution of pores and fluids in shales using NMR 2D measurement
  publication-title: Unconventional Resources Technology Conference, Houston, Texas, USA
– volume: 269
  start-page: 186
  year: 2016
  end-page: 195
  ident: bib30
  article-title: Obtaining
  publication-title: J. Magn. Reson.
– volume: 29
  start-page: 2234
  year: 2015
  end-page: 2243
  ident: bib1
  article-title: Multivariate analysis relating oil-bearing shale geochemical properties to NMR relaxometry
  publication-title: Energy Fuels
– year: 2019
  ident: bib3
  article-title: Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs
– volume: 136
  start-page: 100
  year: 2015
  end-page: 111
  ident: bib28
  article-title: NMR petrophysical interpretation method of gas shale based on core NMR experiment
  publication-title: J. Pet. Sci. Eng.
– volume: 126
  start-page: 52
  year: 2019
  end-page: 61
  ident: bib14
  article-title: A comparison of clustering algorithms applied to fluid characterization using NMR T
  publication-title: Comput. Geosci-UK
– volume: 173
  start-page: 601
  year: 2019
  end-page: 616
  ident: bib27
  article-title: Quantitative evaluation model of tight sandstone reservoirs based on statistical methods-A case study of the Triassic Chang 8 tight sandstones, Zhenjing area, Ordos Basin, China
  publication-title: J. Pet. Sci. Eng.
– volume: 40
  start-page: 460
  year: 2016
  end-page: 464
  ident: bib16
  article-title: Quantitative relationship between NMR
  publication-title: Well Logging Technol.
– volume: 37
  start-page: 61
  year: 1996
  end-page: 69
  ident: bib25
  article-title: Measurements of clay-bound water and total porosity by magnetic resonance logging
  publication-title: Log. Anal.
– volume: 36
  start-page: 66
  year: 2017
  end-page: 74
  ident: bib26
  article-title: Investigation of pore structure of an argillaceous rocks reservoir in the 5th Member of Xujiahe Formation in Western Sichuan, using NAM, NMR and AIP-FESEM
  publication-title: Rock Miner. Anal.
– volume: 25–27 August
  year: 2014
  ident: bib8
  article-title: Porosity evaluation of shales using NMR secular relaxation
  publication-title: Unconventional Resources Technology Conference
– volume: vol. 30
  year: 2011
  ident: bib15
  publication-title: Characterization of Gas Dynamics in Kerogen Nanopores by NMR: SPE Annual Technical Conference and Exhibition
– volume: 152
  start-page: 39
  year: 2015
  end-page: 49
  ident: bib17
  article-title: A comparison of experimental methods for describing shale pore features-A case study in the Bohai Bay Basin of eastern China
  publication-title: Int. J. Coal Geol.
– volume: 3
  start-page: 408
  year: 2000
  end-page: 413
  ident: bib24
  article-title: NMR relaxation of clay/brine mixtures
  publication-title: SPE Reserv. Eval. Eng.
– volume: 260
  start-page: 54
  year: 2015
  end-page: 66
  ident: bib11
  article-title: Probing the influential factors of NMR
  publication-title: J. Magn. Reson.
– volume: 102
  start-page: 496
  year: 2019
  end-page: 507
  ident: bib20
  article-title: Microdistribution and mobility of water in gas shale: a theoretical and experimental study
  publication-title: Mar. Pet. Geol.
– volume: 37
  start-page: 1309
  year: 2016
  end-page: 1322
  ident: bib23
  article-title: Several key issues and research trends in evaluation of shale oil
  publication-title: Acta Petrol. Sin.
– year: 1999
  ident: bib6
  article-title: NMR Logging Principles and Applications
– volume: 31
  start-page: 12247
  year: 2018
  end-page: 12258
  ident: bib19
  article-title: Adsorbed and free oil in lacustrine nanoporous shale: a theoretical model and a case study
  publication-title: Energy Fuels
– volume: 73
  start-page: 679
  year: 1948
  end-page: 712
  ident: bib2
  article-title: Relaxation effects in nuclear magnetic resonance absorption
  publication-title: Phys. Rev.
– volume: 33
  start-page: 26
  year: 2009
  end-page: 31
  ident: bib31
  article-title: (
  publication-title: Technol.
– volume: 252
  start-page: 37
  year: 2017
  end-page: 49
  ident: bib12
  article-title: Insight into oil and gas-shales compounds signatures in low field 1H NMR and its application in porosity evaluation
  publication-title: Microporous Mesoporous Mater.
– volume: 206
  start-page: 603
  year: 2017
  end-page: 613
  ident: bib18
  article-title: Modeling of hydrocarbon adsorption on continental oil-bearing shale: a case study on n-alkane
  publication-title: Fuel
– volume: 117
  start-page: 4551
  year: 2013
  end-page: 4560
  ident: bib9
  article-title: Characterization and quantification of water in smectites with low-field NMR
  publication-title: J. Phys. Chem. C
– volume: 20
  start-page: 13009
  year: 2014
  end-page: 13015
  ident: bib7
  article-title: Interpretation of NMR relaxation as a tool for characterising the adsorption strength of liquids inside porous materials
  publication-title: Chem. Eur J.
– volume: 241
  start-page: 417
  year: 2019
  end-page: 431
  ident: bib21
  article-title: Pore structure and its fractal dimensions of transitional shale: a cross section from east margin of the Ordos Basin, China
  publication-title: Fuel
– volume: 89
  start-page: 775
  year: 2018
  end-page: 785
  ident: bib33
  article-title: Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR)
  publication-title: Mar. Pet. Geol.
– volume: 37
  start-page: 612
  year: 2016
  end-page: 616
  ident: bib35
  article-title: NMR research of movable fluid and
  publication-title: Oil Gas Geol.
– volume: 152
  start-page: 39
  year: 2015
  ident: 10.1016/j.marpetgeo.2019.104210_bib17
  article-title: A comparison of experimental methods for describing shale pore features-A case study in the Bohai Bay Basin of eastern China
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2015.10.009
– volume: 86
  start-page: 1067
  year: 2017
  ident: 10.1016/j.marpetgeo.2019.104210_bib34
  article-title: Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: permian Lucaogou Formation in Jimusaer Sag, Junggar Basin
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2017.07.011
– volume: 31
  start-page: 12247
  issue: 12
  year: 2018
  ident: 10.1016/j.marpetgeo.2019.104210_bib19
  article-title: Adsorbed and free oil in lacustrine nanoporous shale: a theoretical model and a case study
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.8b02953
– volume: 20
  start-page: 13009
  year: 2014
  ident: 10.1016/j.marpetgeo.2019.104210_bib7
  article-title: Interpretation of NMR relaxation as a tool for characterising the adsorption strength of liquids inside porous materials
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201403139
– start-page: 23
  year: 2018
  ident: 10.1016/j.marpetgeo.2019.104210_bib13
  article-title: Characterization of thermal evolution of pores and fluids in shales using NMR 2D measurement
– volume: 252
  start-page: 37
  year: 2017
  ident: 10.1016/j.marpetgeo.2019.104210_bib12
  article-title: Insight into oil and gas-shales compounds signatures in low field 1H NMR and its application in porosity evaluation
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.05.054
– volume: 37
  start-page: 612
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.104210_bib35
  article-title: NMR research of movable fluid and T2 cutoff of marine of South China
  publication-title: Oil Gas Geol.
– volume: 117
  start-page: 4551
  year: 2013
  ident: 10.1016/j.marpetgeo.2019.104210_bib9
  article-title: Characterization and quantification of water in smectites with low-field NMR
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp311006q
– volume: 137
  start-page: 55
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.104210_bib10
  article-title: Characterization of shales using T1-T2 NMR maps
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2015.11.006
– volume: 29
  start-page: 2234
  year: 2015
  ident: 10.1016/j.marpetgeo.2019.104210_bib1
  article-title: Multivariate analysis relating oil-bearing shale geochemical properties to NMR relaxometry
  publication-title: Energy Fuels
  doi: 10.1021/ef502828k
– volume: 31
  start-page: 9232
  year: 2017
  ident: 10.1016/j.marpetgeo.2019.104210_bib32
  article-title: Comparisons of SEM, low-field NMR, and mercury intrusion capillary pressure in characterization of the pore size distribution of lacustrine shale: a case study on the dongying depression, Bohai Bay Basin, China
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b01625
– year: 2019
  ident: 10.1016/j.marpetgeo.2019.104210_bib3
– volume: 73
  start-page: 679
  issue: 7
  year: 1948
  ident: 10.1016/j.marpetgeo.2019.104210_bib2
  article-title: Relaxation effects in nuclear magnetic resonance absorption
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.73.679
– year: 1999
  ident: 10.1016/j.marpetgeo.2019.104210_bib6
– volume: 36
  start-page: 66
  year: 2017
  ident: 10.1016/j.marpetgeo.2019.104210_bib26
  article-title: Investigation of pore structure of an argillaceous rocks reservoir in the 5th Member of Xujiahe Formation in Western Sichuan, using NAM, NMR and AIP-FESEM
  publication-title: Rock Miner. Anal.
– volume: 89
  start-page: 775
  year: 2018
  ident: 10.1016/j.marpetgeo.2019.104210_bib33
  article-title: Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR)
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2017.11.015
– volume: 269
  start-page: 186
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.104210_bib30
  article-title: Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: the pseudo 2-D relaxation model
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2016.06.009
– volume: 241
  start-page: 417
  year: 2019
  ident: 10.1016/j.marpetgeo.2019.104210_bib21
  article-title: Pore structure and its fractal dimensions of transitional shale: a cross section from east margin of the Ordos Basin, China
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.12.066
– volume: 206
  start-page: 603
  year: 2017
  ident: 10.1016/j.marpetgeo.2019.104210_bib18
  article-title: Modeling of hydrocarbon adsorption on continental oil-bearing shale: a case study on n-alkane
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.06.017
– year: 2008
  ident: 10.1016/j.marpetgeo.2019.104210_bib4
– volume: 33
  start-page: 26
  year: 2009
  ident: 10.1016/j.marpetgeo.2019.104210_bib31
  article-title: (T2, T1) Two-dimensional NMR method for fluid typing: well Log
  publication-title: Technol.
– volume: 102
  start-page: 496
  year: 2019
  ident: 10.1016/j.marpetgeo.2019.104210_bib20
  article-title: Microdistribution and mobility of water in gas shale: a theoretical and experimental study
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2019.01.012
– volume: 3
  start-page: 408
  year: 2000
  ident: 10.1016/j.marpetgeo.2019.104210_bib24
  article-title: NMR relaxation of clay/brine mixtures
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/66185-PA
– volume: 136
  start-page: 100
  year: 2015
  ident: 10.1016/j.marpetgeo.2019.104210_bib28
  article-title: NMR petrophysical interpretation method of gas shale based on core NMR experiment
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2015.11.007
– volume: 173
  start-page: 601
  year: 2019
  ident: 10.1016/j.marpetgeo.2019.104210_bib27
  article-title: Quantitative evaluation model of tight sandstone reservoirs based on statistical methods-A case study of the Triassic Chang 8 tight sandstones, Zhenjing area, Ordos Basin, China
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.10.035
– volume: 260
  start-page: 54
  year: 2015
  ident: 10.1016/j.marpetgeo.2019.104210_bib11
  article-title: Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2015.08.026
– volume: 25–27 August
  year: 2014
  ident: 10.1016/j.marpetgeo.2019.104210_bib8
  article-title: Porosity evaluation of shales using NMR secular relaxation
– volume: 40
  start-page: 460
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.104210_bib16
  article-title: Quantitative relationship between NMR T2 and pore size of shale gas reservoirs from core experiment
  publication-title: Well Logging Technol.
– volume: vol. 30
  year: 2011
  ident: 10.1016/j.marpetgeo.2019.104210_bib15
– volume: 93
  start-page: 111
  issue: 1
  year: 2019
  ident: 10.1016/j.marpetgeo.2019.104210_bib22
  article-title: Unconventional natural gas accumulations in stacked deposits: a discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China
  publication-title: Acta Geol. Sin.
  doi: 10.1111/1755-6724.13767
– year: 2019
  ident: 10.1016/j.marpetgeo.2019.104210_bib5
  article-title: Astronomical cycles and variations in sediment accumulation rate of the terrestrial lower cretaceous Xiagou formation from the Jiuquan Basin, NW China
  publication-title: Cretac. Res.
– volume: 37
  start-page: 1309
  year: 2016
  ident: 10.1016/j.marpetgeo.2019.104210_bib23
  article-title: Several key issues and research trends in evaluation of shale oil
  publication-title: Acta Petrol. Sin.
– volume: 126
  start-page: 52
  year: 2019
  ident: 10.1016/j.marpetgeo.2019.104210_bib14
  article-title: A comparison of clustering algorithms applied to fluid characterization using NMR T1-T2 maps of shale
  publication-title: Comput. Geosci-UK
  doi: 10.1016/j.cageo.2019.01.021
– volume: 37
  start-page: 61
  year: 1996
  ident: 10.1016/j.marpetgeo.2019.104210_bib25
  article-title: Measurements of clay-bound water and total porosity by magnetic resonance logging
  publication-title: Log. Anal.
– volume: 32
  start-page: 1155
  year: 2017
  ident: 10.1016/j.marpetgeo.2019.104210_bib29
  article-title: Understanding model crude oil component interactions on kaolinite silicate and aluminol surfaces: toward improved understanding of shale oil recovery
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b02763
SSID ssj0007901
Score 2.5850725
Snippet Few 1D T2 and 2D T1-T2 Nuclear magnetic resonance (NMR) studies have focused on oil-bearing shales with complex constituents and a deeper understanding of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104210
SubjectTerms Adsorbed/free oil
Nuclear magnetic resonance (NMR)
Oil-bearing shale
T1-T2 map
Title 1D and 2D Nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks
URI https://dx.doi.org/10.1016/j.marpetgeo.2019.104210
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwNBDB5EEfQgPvFNDh4UHDvdx7TrTXxVxR58gLdlZpvVat0tbUV78bebTHd9gODB6zKZWSYhycckX4TYUimqBFUga4GtSfKSkbQeRjINdYIU8NB3lPmXTd24Dc7vwrsxcVj2wnBZZeH7Rz7deeviS6W4zUq33a5cKy7OYgQTUdqrA6bdDoIaW_ne-1eZRy1yI5B5seTVP2q8nvmNY3DvugCrEb93etxK-1uE-hZ1TmbFTJEuwsHoj-bEGGbzYvobieC8mDx1w3mHC-K1egQma4F3BE2mKTY9eDb3GbcpAqHqnLk1ELabl1c7wD0sb04rUHbq9yFPgXkbyBChnUHSMcNdeMJeTkbmNs7bHWlpWzoX-g8UWoDC31N_UdyeHN8cNmQxWEEaQqQDmaoAdUguV_umRTkKph4aW0eCJ-gTgiC9adMyCSeHfpjqpK4saqzSqtBTSdVfEuNZnuGyAAr4BKD81NfaBlbVTdqyzP8S8SB1Sq1WhC4vM04K1nEeftGJy_Kyx_hTCzFrIR5pYUWoT8HuiHjjb5H9UlvxDxuKKTz8Jbz6H-E1MeUxDncVPetifNB7wQ1KVgZ201njppg4OLtoND8AQDPpKw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxNBEJ4gxIgPBlEDojgPmmji2u392PZMfDBULEL7oJDwduxe57BS7khbgn3xn_IfdGZ7h5CY8GB4vdzubWbmZr65m_kG4KXOSWekI9WKXEuxl0yUCyhReWwy4oBHoafM7_VN9yD6chgfLsDvuhdGyior3z_36d5bV1calTQbZ8Nh45uW4izJYBKGvSYyVWXlLs0uOG-bfNjpsJJfBcH2p_2trqpGCyjLOdlU5ToiE7PTMaEdcJSmPCDr2sQAnULG0HxyYwc2E3gUxrnJ2tqRoSbfFQc6a4a87x1YithdyNiEd7_-1pW0Ej9zWU6n5HjXispO5afK9Ni3HTYT-cEaSO_uv0LilTC3vQIPKnyKH-cieAgLVKzC_Sushatw97OfBjx7BBfNDtpigEEH-8KLbMd4ao8L6YtETuNLIfMgfN3vfX2D0jTz05sB1tQAEyxzFKIItnwcFpiN7OwtntC4ZKv2G5fDkXK8LT8XJ985liHH25PJYzi4FXE_gcWiLGgNkBEGZ2xhHhrjIqfbNh84IZxJZHI7Y7l1MLUw06yiOZdpG6O0rmf7kV5qIRUtpHMtrIO-XHg2Z_q4ecn7WlvpNaNNOR7dtPjp_yx-Afe6-729dG-nv7sBy4F8BPDlRM9gcTo-p-eMlKZu01smwtFtvwp_AKtNJaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1D+and+2D+Nuclear+magnetic+resonance+%28NMR%29+relaxation+behaviors+of+protons+in+clay%2C+kerogen+and+oil-bearing+shale+rocks&rft.jtitle=Marine+and+petroleum+geology&rft.au=Zhang%2C+Pengfei&rft.au=Lu%2C+Shuangfang&rft.au=Li%2C+Junqian&rft.au=Chang%2C+Xiangchun&rft.date=2020-04-01&rft.issn=0264-8172&rft.volume=114&rft.spage=104210&rft_id=info:doi/10.1016%2Fj.marpetgeo.2019.104210&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marpetgeo_2019_104210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-8172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-8172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-8172&client=summon