1D and 2D Nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks
Few 1D T2 and 2D T1-T2 Nuclear magnetic resonance (NMR) studies have focused on oil-bearing shales with complex constituents and a deeper understanding of the NMR relaxation behaviors of oil confined in shale is needed. In this paper, a series of T2 and T1-T2 NMR experiments were performed on oil-be...
Saved in:
Published in | Marine and petroleum geology Vol. 114; p. 104210 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Few 1D T2 and 2D T1-T2 Nuclear magnetic resonance (NMR) studies have focused on oil-bearing shales with complex constituents and a deeper understanding of the NMR relaxation behaviors of oil confined in shale is needed. In this paper, a series of T2 and T1-T2 NMR experiments were performed on oil-bearing shale and its components (clay minerals and kerogen) to obtain the T1-T2 fluid typing chart and analyze the adsorbed and free oil in shale. The results were as follows: five types of water (bound, adsorbed, free, crystal and structural water) in clay minerals were qualitatively identified and described by the specific T2 to T1/T2 ratio values, and T1-T2 maps were used to qualitatively indicate the clay type. The T1-T2 fluid typing chart containing the signatures of 8 proton populations in oil-bearing shale was defined and included bulk liquid, macropore (>1000 nm) oil, nanopore (<1000 nm) oil, and free water in clay minerals or kerogen, shale pore water, bound water in clay minerals, kerogen and crystal water. Adsorbed oil was mainly confined in nanopores, especially micropores smaller than 100 nm, while free oil composed of movable and irreducible oil was predominant in mesopores (100–1000 nm) and macropores. Furthermore, the proportion of irreducible oil gradually decreased and that of movable oil gradually increased from mesopores to macropores. The results demonstrate that the T1-T2 NMR technique may be an effective method for the assessment of fluid distributions and proton mobility and has potential applications for the characterization of shale oil occurrence states.
•Five types of water in clay minerals were qualitatively identified by the specific T2 to T1/T2 ratio values.•The T1-T2 fluid typing chart containing the signatures of 8 proton populations in oil-bearing shale was defined.•Shale oil occurrence states in different size pores were qualitatively revealed. |
---|---|
AbstractList | Few 1D T2 and 2D T1-T2 Nuclear magnetic resonance (NMR) studies have focused on oil-bearing shales with complex constituents and a deeper understanding of the NMR relaxation behaviors of oil confined in shale is needed. In this paper, a series of T2 and T1-T2 NMR experiments were performed on oil-bearing shale and its components (clay minerals and kerogen) to obtain the T1-T2 fluid typing chart and analyze the adsorbed and free oil in shale. The results were as follows: five types of water (bound, adsorbed, free, crystal and structural water) in clay minerals were qualitatively identified and described by the specific T2 to T1/T2 ratio values, and T1-T2 maps were used to qualitatively indicate the clay type. The T1-T2 fluid typing chart containing the signatures of 8 proton populations in oil-bearing shale was defined and included bulk liquid, macropore (>1000 nm) oil, nanopore (<1000 nm) oil, and free water in clay minerals or kerogen, shale pore water, bound water in clay minerals, kerogen and crystal water. Adsorbed oil was mainly confined in nanopores, especially micropores smaller than 100 nm, while free oil composed of movable and irreducible oil was predominant in mesopores (100–1000 nm) and macropores. Furthermore, the proportion of irreducible oil gradually decreased and that of movable oil gradually increased from mesopores to macropores. The results demonstrate that the T1-T2 NMR technique may be an effective method for the assessment of fluid distributions and proton mobility and has potential applications for the characterization of shale oil occurrence states.
•Five types of water in clay minerals were qualitatively identified by the specific T2 to T1/T2 ratio values.•The T1-T2 fluid typing chart containing the signatures of 8 proton populations in oil-bearing shale was defined.•Shale oil occurrence states in different size pores were qualitatively revealed. |
ArticleNumber | 104210 |
Author | Lu, Shuangfang Li, Junqian Zhang, Pengfei Chang, Xiangchun |
Author_xml | – sequence: 1 givenname: Pengfei surname: Zhang fullname: Zhang, Pengfei organization: College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China – sequence: 2 givenname: Shuangfang orcidid: 0000-0003-1116-1558 surname: Lu fullname: Lu, Shuangfang email: lushuangfang@upc.edu.cn organization: School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, China – sequence: 3 givenname: Junqian surname: Li fullname: Li, Junqian email: lijunqian1987@126.com organization: School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, China – sequence: 4 givenname: Xiangchun orcidid: 0000-0002-2499-9045 surname: Chang fullname: Chang, Xiangchun organization: College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China |
BookMark | eNqNkMtOwzAQRS1UJErhG_ASJFLsOLHTBYuK8pJKkRCsrYkzCS7Bruzw-ntSiliwgdVoRnOudM8uGTjvkJADzsaccXmyHD9DWGHXoB-njE_6a5ZytkWGvFAiyZgSAzJkqcySgqt0h-zGuGSMqQnjQ_LGZxRcRdMZXbyYFiHQZ2gcdtbQgNE7cAbp4eLm7qjfW3iHznpHS3yEV-tDpL6mq-A77yK1jpoWPo7pEwbfoPsK9rZNyj7WuobGR2iRBm-e4h7ZrqGNuP89R-Th4vz-7CqZ315en03nCQhRdEnNMpQ5gpECKiYF1ilCWWDKFQqpcpWVEiowYqKUyGtpClaiRN5_5SkzXIyI2uSa4GMMWOtVsL2wD82ZXvvTS_3jT6_96Y2_njz9RRrbfbXvAtj2H_x0w2Nf79Vi0NFY7G1WNqDpdOXtnxmfXeyVJA |
CitedBy_id | crossref_primary_10_1016_j_jngse_2020_103674 crossref_primary_10_3390_pr11051466 crossref_primary_10_1016_j_watres_2024_122346 crossref_primary_10_1021_acs_energyfuels_4c00729 crossref_primary_10_1016_j_petsci_2023_03_011 crossref_primary_10_2113_2021_6646791 crossref_primary_10_1016_j_marpetgeo_2022_105996 crossref_primary_10_3390_en18010166 crossref_primary_10_1016_j_marpetgeo_2024_106844 crossref_primary_10_1016_j_petrol_2021_109516 crossref_primary_10_1021_acs_langmuir_3c01394 crossref_primary_10_1016_j_petsci_2025_03_014 crossref_primary_10_1016_j_gsf_2022_101424 crossref_primary_10_1021_acs_energyfuels_4c02071 crossref_primary_10_1016_j_jngse_2022_104412 crossref_primary_10_3390_en14092447 crossref_primary_10_2118_221496_PA crossref_primary_10_1002_gj_3932 crossref_primary_10_1002_gj_4904 crossref_primary_10_1016_j_petrol_2020_107508 crossref_primary_10_1016_j_petrol_2022_110183 crossref_primary_10_1016_j_fuel_2024_132426 crossref_primary_10_1016_j_jrmge_2024_11_027 crossref_primary_10_3390_en15249485 crossref_primary_10_1016_j_geoen_2023_212552 crossref_primary_10_3390_en17153770 crossref_primary_10_3390_en15239043 crossref_primary_10_1016_j_marpetgeo_2023_106674 crossref_primary_10_1155_2021_9945494 crossref_primary_10_3389_feart_2023_1117193 crossref_primary_10_1016_j_fuel_2025_134532 crossref_primary_10_1016_j_marpetgeo_2025_107353 crossref_primary_10_1016_j_petrol_2022_110491 crossref_primary_10_1016_j_fuel_2021_121215 crossref_primary_10_1021_acsomega_3c03534 crossref_primary_10_1155_2022_3539482 crossref_primary_10_1021_acs_energyfuels_1c00352 crossref_primary_10_1016_j_fuel_2024_133926 crossref_primary_10_1021_acs_energyfuels_4c02207 crossref_primary_10_1016_j_fuel_2022_123243 crossref_primary_10_1016_j_geoen_2023_211734 crossref_primary_10_1021_acs_energyfuels_0c01748 crossref_primary_10_3389_feart_2021_720839 crossref_primary_10_1016_j_gsf_2023_101684 crossref_primary_10_1016_j_chemgeo_2020_120033 crossref_primary_10_1016_j_marpetgeo_2024_106986 crossref_primary_10_3390_pr12050879 crossref_primary_10_2118_225456_PA crossref_primary_10_2118_223091_PA crossref_primary_10_1016_j_coal_2021_103881 crossref_primary_10_1021_acs_energyfuels_2c00592 crossref_primary_10_1016_j_marpetgeo_2024_106907 crossref_primary_10_3390_min13121514 crossref_primary_10_1021_acs_energyfuels_1c02386 crossref_primary_10_1021_acs_energyfuels_4c03825 crossref_primary_10_1016_j_clay_2021_106088 crossref_primary_10_1016_j_marpetgeo_2021_105165 crossref_primary_10_1016_j_fuel_2023_127919 crossref_primary_10_1021_acs_energyfuels_2c03857 crossref_primary_10_1021_acs_energyfuels_0c04082 crossref_primary_10_1021_acs_energyfuels_3c00438 crossref_primary_10_1007_s11707_022_1051_9 crossref_primary_10_1007_s11707_020_0851_z crossref_primary_10_1016_j_fuel_2024_132618 crossref_primary_10_1016_j_geoen_2024_212924 crossref_primary_10_1021_acs_energyfuels_2c00610 crossref_primary_10_1016_j_marpetgeo_2020_104587 crossref_primary_10_1016_j_gete_2023_100441 crossref_primary_10_1002_marc_202401115 crossref_primary_10_1021_acs_energyfuels_2c04011 crossref_primary_10_1016_j_petsci_2023_08_026 crossref_primary_10_1007_s11707_024_1100_7 crossref_primary_10_1007_s11707_022_1044_8 crossref_primary_10_1016_j_petrol_2022_111234 crossref_primary_10_3390_fractalfract8030167 crossref_primary_10_1021_acs_energyfuels_3c01517 crossref_primary_10_1016_j_petsci_2024_07_001 crossref_primary_10_1021_acsomega_3c03260 crossref_primary_10_3390_en17030694 crossref_primary_10_1021_acs_energyfuels_0c00552 crossref_primary_10_1063_5_0209910 crossref_primary_10_1016_j_geoen_2023_211827 crossref_primary_10_1007_s10712_024_09845_9 crossref_primary_10_1021_acs_energyfuels_0c01919 crossref_primary_10_1111_jpg_12825 crossref_primary_10_1016_j_geoen_2023_212115 crossref_primary_10_1021_acs_energyfuels_2c02222 crossref_primary_10_1021_acs_energyfuels_2c03395 crossref_primary_10_3390_en13205278 crossref_primary_10_3390_pr12091870 crossref_primary_10_1016_j_fuel_2023_129588 crossref_primary_10_3799_dqkx_2022_333 crossref_primary_10_1061__ASCE_EY_1943_7897_0000864 crossref_primary_10_1021_acs_energyfuels_1c02449 crossref_primary_10_1190_geo2022_0646_1 crossref_primary_10_1016_j_marpetgeo_2023_106662 crossref_primary_10_3390_app10249065 crossref_primary_10_1021_acs_energyfuels_2c01763 crossref_primary_10_3390_pr11041120 crossref_primary_10_1016_j_marpetgeo_2023_106422 crossref_primary_10_3389_feart_2022_1103286 crossref_primary_10_1016_j_fuel_2023_130162 crossref_primary_10_1016_j_petsci_2022_03_006 crossref_primary_10_1021_acs_energyfuels_2c04116 crossref_primary_10_1021_acs_energyfuels_2c00431 crossref_primary_10_1016_j_petrol_2020_107926 crossref_primary_10_1021_acs_energyfuels_3c01977 crossref_primary_10_1021_acs_energyfuels_2c03383 crossref_primary_10_1016_j_earscirev_2022_104134 crossref_primary_10_3390_molecules29225432 crossref_primary_10_1016_j_petsci_2024_07_025 crossref_primary_10_1021_acs_energyfuels_3c00527 crossref_primary_10_2118_205017_PA crossref_primary_10_1016_j_petrol_2021_109843 crossref_primary_10_1016_j_marpetgeo_2021_105001 crossref_primary_10_1016_j_petrol_2022_110208 crossref_primary_10_1007_s00603_024_04052_9 crossref_primary_10_1016_j_energy_2021_121549 |
Cites_doi | 10.1016/j.coal.2015.10.009 10.1016/j.marpetgeo.2017.07.011 10.1021/acs.energyfuels.8b02953 10.1002/chem.201403139 10.1016/j.micromeso.2017.05.054 10.1021/jp311006q 10.1016/j.petrol.2015.11.006 10.1021/ef502828k 10.1021/acs.energyfuels.7b01625 10.1103/PhysRev.73.679 10.1016/j.marpetgeo.2017.11.015 10.1016/j.jmr.2016.06.009 10.1016/j.fuel.2018.12.066 10.1016/j.fuel.2017.06.017 10.1016/j.marpetgeo.2019.01.012 10.2118/66185-PA 10.1016/j.petrol.2015.11.007 10.1016/j.petrol.2018.10.035 10.1016/j.jmr.2015.08.026 10.1111/1755-6724.13767 10.1016/j.cageo.2019.01.021 10.1021/acs.energyfuels.7b02763 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.marpetgeo.2019.104210 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1873-4073 |
ExternalDocumentID | 10_1016_j_marpetgeo_2019_104210 S0264817219306646 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a338t-f04e65eac63ad063ef2eab8e217e367574b6adac397735f6c80be6e12ea520c13 |
IEDL.DBID | .~1 |
ISSN | 0264-8172 |
IngestDate | Thu Apr 24 22:56:03 EDT 2025 Tue Jul 01 02:11:17 EDT 2025 Fri Feb 23 02:46:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | T1-T2 map Oil-bearing shale Adsorbed/free oil Nuclear magnetic resonance (NMR) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a338t-f04e65eac63ad063ef2eab8e217e367574b6adac397735f6c80be6e12ea520c13 |
ORCID | 0000-0002-2499-9045 0000-0003-1116-1558 |
ParticipantIDs | crossref_primary_10_1016_j_marpetgeo_2019_104210 crossref_citationtrail_10_1016_j_marpetgeo_2019_104210 elsevier_sciencedirect_doi_10_1016_j_marpetgeo_2019_104210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | Marine and petroleum geology |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fleury, Romero-Sarmiento (bib10) 2016; 137 Bloembergen, Purcell, Pound (bib2) 1948; 73 Zhang, Lu, Li, Zhang, Xue, Chen (bib32) 2017; 31 Zhao, Wang, Sun, Cai, Wang (bib34) 2017; 86 Birdwell, Washburn (bib1) 2015; 29 Shi, Chang, Wei, Li, Mao (bib27) 2019; 173 Fleury, Kohler, Norrant, Gautier, M'Hamdi, Barré (bib9) 2013; 117 Ksusik, Minh, Zielinski, Vissapragada, Akkurt, Song, Liu, Jones, Blair (bib15) 2011; vol. 30 Li, Lu, Xie, Zhang, Xue, Zhang, Tian (bib18) 2017; 206 Li, Jin, Wang, Wu, Lu (bib16) 2016; 40 D'Agostino, Mitchell, Mantle, Gladden (bib7) 2014; 20 Zhou, Liu, Yan, Xue, Guo (bib35) 2016; 37 Li, Yin, Zhang, Lu, Wang, Li, Chen, Meng (bib17) 2015; 152 Li, Yang, Pan, Meng, Wang, Niu (bib22) 2019; 93 Jiang, Daigle, Zhang (bib13) 2018 Cai, Hu (bib3) 2019 Tan, Mao, Song, Yang, Xu (bib28) 2015; 136 Jiang, Daigle, Tian, Pyrcz, Griffith, Zhang (bib14) 2019; 126 Li, Lu, Cai, Zhang, Xue, Zhao (bib19) 2018; 31 Prammer, Drack, Bouton, Gardner (bib25) 1996; 37 Chen (bib4) 2008 Li, Wang, Lu, Zhang, Cai, Zhao, Li (bib20) 2019; 102 Matteson, Tomanic, Herron, Allen, Kenyon (bib24) 2000; 3 Daigle, Johnson, Gips, Sharma (bib8) 2014; 25–27 August Lu, Xue, Wang, Xiao, Huang, Li, Xie, Tian, Wang, Li, Wang, Chen, Li, Xue, Liu (bib23) 2016; 37 Pang, Zeng, Liu, Lin, Peng, Yan, Chen (bib26) 2017; 36 Coates, Xiao, Prammer (bib6) 1999 Zhang, Lu, Li, Chen, Xue, Zhang (bib33) 2018; 89 Tian, Erastova, Lu, Greenwell, Underwood, Xue, Zeng, Chen, Wu, Zhao (bib29) 2017; 32 Ge, Fan, Chen, Deng, Cao, Zahid (bib11) 2015; 260 Williamson, Röding, Galvosas, Miklavcic, Nydén (bib30) 2016; 269 Xie, Xiao, Lu (bib31) 2009; 33 Habina, Radzik, Topór, Krzyżak (bib12) 2017; 252 Chen, Gang, Tang, Gao, Wang, Liu, Yang, Wang (bib5) 2019 Li, Wang, Pan, Niu, Yu, Meng (bib21) 2019; 241 Zhou (10.1016/j.marpetgeo.2019.104210_bib35) 2016; 37 Xie (10.1016/j.marpetgeo.2019.104210_bib31) 2009; 33 Zhao (10.1016/j.marpetgeo.2019.104210_bib34) 2017; 86 Ksusik (10.1016/j.marpetgeo.2019.104210_bib15) 2011; vol. 30 Ge (10.1016/j.marpetgeo.2019.104210_bib11) 2015; 260 Fleury (10.1016/j.marpetgeo.2019.104210_bib9) 2013; 117 Tan (10.1016/j.marpetgeo.2019.104210_bib28) 2015; 136 Zhang (10.1016/j.marpetgeo.2019.104210_bib33) 2018; 89 Bloembergen (10.1016/j.marpetgeo.2019.104210_bib2) 1948; 73 Li (10.1016/j.marpetgeo.2019.104210_bib18) 2017; 206 Pang (10.1016/j.marpetgeo.2019.104210_bib26) 2017; 36 Birdwell (10.1016/j.marpetgeo.2019.104210_bib1) 2015; 29 Fleury (10.1016/j.marpetgeo.2019.104210_bib10) 2016; 137 Prammer (10.1016/j.marpetgeo.2019.104210_bib25) 1996; 37 Daigle (10.1016/j.marpetgeo.2019.104210_bib8) 2014; 25–27 August Coates (10.1016/j.marpetgeo.2019.104210_bib6) 1999 Li (10.1016/j.marpetgeo.2019.104210_bib22) 2019; 93 D'Agostino (10.1016/j.marpetgeo.2019.104210_bib7) 2014; 20 Li (10.1016/j.marpetgeo.2019.104210_bib17) 2015; 152 Zhang (10.1016/j.marpetgeo.2019.104210_bib32) 2017; 31 Li (10.1016/j.marpetgeo.2019.104210_bib21) 2019; 241 Tian (10.1016/j.marpetgeo.2019.104210_bib29) 2017; 32 Jiang (10.1016/j.marpetgeo.2019.104210_bib14) 2019; 126 Williamson (10.1016/j.marpetgeo.2019.104210_bib30) 2016; 269 Li (10.1016/j.marpetgeo.2019.104210_bib16) 2016; 40 Li (10.1016/j.marpetgeo.2019.104210_bib20) 2019; 102 Chen (10.1016/j.marpetgeo.2019.104210_bib4) 2008 Jiang (10.1016/j.marpetgeo.2019.104210_bib13) 2018 Matteson (10.1016/j.marpetgeo.2019.104210_bib24) 2000; 3 Li (10.1016/j.marpetgeo.2019.104210_bib19) 2018; 31 Cai (10.1016/j.marpetgeo.2019.104210_bib3) 2019 Habina (10.1016/j.marpetgeo.2019.104210_bib12) 2017; 252 Shi (10.1016/j.marpetgeo.2019.104210_bib27) 2019; 173 Chen (10.1016/j.marpetgeo.2019.104210_bib5) 2019 Lu (10.1016/j.marpetgeo.2019.104210_bib23) 2016; 37 |
References_xml | – year: 2008 ident: bib4 article-title: Mineralogy Petrology (In Chinese) – volume: 86 start-page: 1067 year: 2017 end-page: 1108 ident: bib34 article-title: Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: permian Lucaogou Formation in Jimusaer Sag, Junggar Basin publication-title: Mar. Pet. Geol. – volume: 32 start-page: 1155 year: 2017 end-page: 1165 ident: bib29 article-title: Understanding model crude oil component interactions on kaolinite silicate and aluminol surfaces: toward improved understanding of shale oil recovery publication-title: Energy Fuels – year: 2019 ident: bib5 article-title: Astronomical cycles and variations in sediment accumulation rate of the terrestrial lower cretaceous Xiagou formation from the Jiuquan Basin, NW China publication-title: Cretac. Res. – volume: 31 start-page: 9232 year: 2017 end-page: 9239 ident: bib32 article-title: Comparisons of SEM, low-field NMR, and mercury intrusion capillary pressure in characterization of the pore size distribution of lacustrine shale: a case study on the dongying depression, Bohai Bay Basin, China publication-title: Energy Fuels – volume: 137 start-page: 55 year: 2016 end-page: 62 ident: bib10 article-title: Characterization of shales using publication-title: J. Pet. Sci. Eng. – volume: 93 start-page: 111 year: 2019 end-page: 129 ident: bib22 article-title: Unconventional natural gas accumulations in stacked deposits: a discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China publication-title: Acta Geol. Sin. – start-page: 23 year: 2018 end-page: 25 ident: bib13 article-title: Characterization of thermal evolution of pores and fluids in shales using NMR 2D measurement publication-title: Unconventional Resources Technology Conference, Houston, Texas, USA – volume: 269 start-page: 186 year: 2016 end-page: 195 ident: bib30 article-title: Obtaining publication-title: J. Magn. Reson. – volume: 29 start-page: 2234 year: 2015 end-page: 2243 ident: bib1 article-title: Multivariate analysis relating oil-bearing shale geochemical properties to NMR relaxometry publication-title: Energy Fuels – year: 2019 ident: bib3 article-title: Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs – volume: 136 start-page: 100 year: 2015 end-page: 111 ident: bib28 article-title: NMR petrophysical interpretation method of gas shale based on core NMR experiment publication-title: J. Pet. Sci. Eng. – volume: 126 start-page: 52 year: 2019 end-page: 61 ident: bib14 article-title: A comparison of clustering algorithms applied to fluid characterization using NMR T publication-title: Comput. Geosci-UK – volume: 173 start-page: 601 year: 2019 end-page: 616 ident: bib27 article-title: Quantitative evaluation model of tight sandstone reservoirs based on statistical methods-A case study of the Triassic Chang 8 tight sandstones, Zhenjing area, Ordos Basin, China publication-title: J. Pet. Sci. Eng. – volume: 40 start-page: 460 year: 2016 end-page: 464 ident: bib16 article-title: Quantitative relationship between NMR publication-title: Well Logging Technol. – volume: 37 start-page: 61 year: 1996 end-page: 69 ident: bib25 article-title: Measurements of clay-bound water and total porosity by magnetic resonance logging publication-title: Log. Anal. – volume: 36 start-page: 66 year: 2017 end-page: 74 ident: bib26 article-title: Investigation of pore structure of an argillaceous rocks reservoir in the 5th Member of Xujiahe Formation in Western Sichuan, using NAM, NMR and AIP-FESEM publication-title: Rock Miner. Anal. – volume: 25–27 August year: 2014 ident: bib8 article-title: Porosity evaluation of shales using NMR secular relaxation publication-title: Unconventional Resources Technology Conference – volume: vol. 30 year: 2011 ident: bib15 publication-title: Characterization of Gas Dynamics in Kerogen Nanopores by NMR: SPE Annual Technical Conference and Exhibition – volume: 152 start-page: 39 year: 2015 end-page: 49 ident: bib17 article-title: A comparison of experimental methods for describing shale pore features-A case study in the Bohai Bay Basin of eastern China publication-title: Int. J. Coal Geol. – volume: 3 start-page: 408 year: 2000 end-page: 413 ident: bib24 article-title: NMR relaxation of clay/brine mixtures publication-title: SPE Reserv. Eval. Eng. – volume: 260 start-page: 54 year: 2015 end-page: 66 ident: bib11 article-title: Probing the influential factors of NMR publication-title: J. Magn. Reson. – volume: 102 start-page: 496 year: 2019 end-page: 507 ident: bib20 article-title: Microdistribution and mobility of water in gas shale: a theoretical and experimental study publication-title: Mar. Pet. Geol. – volume: 37 start-page: 1309 year: 2016 end-page: 1322 ident: bib23 article-title: Several key issues and research trends in evaluation of shale oil publication-title: Acta Petrol. Sin. – year: 1999 ident: bib6 article-title: NMR Logging Principles and Applications – volume: 31 start-page: 12247 year: 2018 end-page: 12258 ident: bib19 article-title: Adsorbed and free oil in lacustrine nanoporous shale: a theoretical model and a case study publication-title: Energy Fuels – volume: 73 start-page: 679 year: 1948 end-page: 712 ident: bib2 article-title: Relaxation effects in nuclear magnetic resonance absorption publication-title: Phys. Rev. – volume: 33 start-page: 26 year: 2009 end-page: 31 ident: bib31 article-title: ( publication-title: Technol. – volume: 252 start-page: 37 year: 2017 end-page: 49 ident: bib12 article-title: Insight into oil and gas-shales compounds signatures in low field 1H NMR and its application in porosity evaluation publication-title: Microporous Mesoporous Mater. – volume: 206 start-page: 603 year: 2017 end-page: 613 ident: bib18 article-title: Modeling of hydrocarbon adsorption on continental oil-bearing shale: a case study on n-alkane publication-title: Fuel – volume: 117 start-page: 4551 year: 2013 end-page: 4560 ident: bib9 article-title: Characterization and quantification of water in smectites with low-field NMR publication-title: J. Phys. Chem. C – volume: 20 start-page: 13009 year: 2014 end-page: 13015 ident: bib7 article-title: Interpretation of NMR relaxation as a tool for characterising the adsorption strength of liquids inside porous materials publication-title: Chem. Eur J. – volume: 241 start-page: 417 year: 2019 end-page: 431 ident: bib21 article-title: Pore structure and its fractal dimensions of transitional shale: a cross section from east margin of the Ordos Basin, China publication-title: Fuel – volume: 89 start-page: 775 year: 2018 end-page: 785 ident: bib33 article-title: Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR) publication-title: Mar. Pet. Geol. – volume: 37 start-page: 612 year: 2016 end-page: 616 ident: bib35 article-title: NMR research of movable fluid and publication-title: Oil Gas Geol. – volume: 152 start-page: 39 year: 2015 ident: 10.1016/j.marpetgeo.2019.104210_bib17 article-title: A comparison of experimental methods for describing shale pore features-A case study in the Bohai Bay Basin of eastern China publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2015.10.009 – volume: 86 start-page: 1067 year: 2017 ident: 10.1016/j.marpetgeo.2019.104210_bib34 article-title: Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: permian Lucaogou Formation in Jimusaer Sag, Junggar Basin publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2017.07.011 – volume: 31 start-page: 12247 issue: 12 year: 2018 ident: 10.1016/j.marpetgeo.2019.104210_bib19 article-title: Adsorbed and free oil in lacustrine nanoporous shale: a theoretical model and a case study publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b02953 – volume: 20 start-page: 13009 year: 2014 ident: 10.1016/j.marpetgeo.2019.104210_bib7 article-title: Interpretation of NMR relaxation as a tool for characterising the adsorption strength of liquids inside porous materials publication-title: Chem. Eur J. doi: 10.1002/chem.201403139 – start-page: 23 year: 2018 ident: 10.1016/j.marpetgeo.2019.104210_bib13 article-title: Characterization of thermal evolution of pores and fluids in shales using NMR 2D measurement – volume: 252 start-page: 37 year: 2017 ident: 10.1016/j.marpetgeo.2019.104210_bib12 article-title: Insight into oil and gas-shales compounds signatures in low field 1H NMR and its application in porosity evaluation publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.05.054 – volume: 37 start-page: 612 year: 2016 ident: 10.1016/j.marpetgeo.2019.104210_bib35 article-title: NMR research of movable fluid and T2 cutoff of marine of South China publication-title: Oil Gas Geol. – volume: 117 start-page: 4551 year: 2013 ident: 10.1016/j.marpetgeo.2019.104210_bib9 article-title: Characterization and quantification of water in smectites with low-field NMR publication-title: J. Phys. Chem. C doi: 10.1021/jp311006q – volume: 137 start-page: 55 year: 2016 ident: 10.1016/j.marpetgeo.2019.104210_bib10 article-title: Characterization of shales using T1-T2 NMR maps publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2015.11.006 – volume: 29 start-page: 2234 year: 2015 ident: 10.1016/j.marpetgeo.2019.104210_bib1 article-title: Multivariate analysis relating oil-bearing shale geochemical properties to NMR relaxometry publication-title: Energy Fuels doi: 10.1021/ef502828k – volume: 31 start-page: 9232 year: 2017 ident: 10.1016/j.marpetgeo.2019.104210_bib32 article-title: Comparisons of SEM, low-field NMR, and mercury intrusion capillary pressure in characterization of the pore size distribution of lacustrine shale: a case study on the dongying depression, Bohai Bay Basin, China publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b01625 – year: 2019 ident: 10.1016/j.marpetgeo.2019.104210_bib3 – volume: 73 start-page: 679 issue: 7 year: 1948 ident: 10.1016/j.marpetgeo.2019.104210_bib2 article-title: Relaxation effects in nuclear magnetic resonance absorption publication-title: Phys. Rev. doi: 10.1103/PhysRev.73.679 – year: 1999 ident: 10.1016/j.marpetgeo.2019.104210_bib6 – volume: 36 start-page: 66 year: 2017 ident: 10.1016/j.marpetgeo.2019.104210_bib26 article-title: Investigation of pore structure of an argillaceous rocks reservoir in the 5th Member of Xujiahe Formation in Western Sichuan, using NAM, NMR and AIP-FESEM publication-title: Rock Miner. Anal. – volume: 89 start-page: 775 year: 2018 ident: 10.1016/j.marpetgeo.2019.104210_bib33 article-title: Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR) publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2017.11.015 – volume: 269 start-page: 186 year: 2016 ident: 10.1016/j.marpetgeo.2019.104210_bib30 article-title: Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: the pseudo 2-D relaxation model publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2016.06.009 – volume: 241 start-page: 417 year: 2019 ident: 10.1016/j.marpetgeo.2019.104210_bib21 article-title: Pore structure and its fractal dimensions of transitional shale: a cross section from east margin of the Ordos Basin, China publication-title: Fuel doi: 10.1016/j.fuel.2018.12.066 – volume: 206 start-page: 603 year: 2017 ident: 10.1016/j.marpetgeo.2019.104210_bib18 article-title: Modeling of hydrocarbon adsorption on continental oil-bearing shale: a case study on n-alkane publication-title: Fuel doi: 10.1016/j.fuel.2017.06.017 – year: 2008 ident: 10.1016/j.marpetgeo.2019.104210_bib4 – volume: 33 start-page: 26 year: 2009 ident: 10.1016/j.marpetgeo.2019.104210_bib31 article-title: (T2, T1) Two-dimensional NMR method for fluid typing: well Log publication-title: Technol. – volume: 102 start-page: 496 year: 2019 ident: 10.1016/j.marpetgeo.2019.104210_bib20 article-title: Microdistribution and mobility of water in gas shale: a theoretical and experimental study publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2019.01.012 – volume: 3 start-page: 408 year: 2000 ident: 10.1016/j.marpetgeo.2019.104210_bib24 article-title: NMR relaxation of clay/brine mixtures publication-title: SPE Reserv. Eval. Eng. doi: 10.2118/66185-PA – volume: 136 start-page: 100 year: 2015 ident: 10.1016/j.marpetgeo.2019.104210_bib28 article-title: NMR petrophysical interpretation method of gas shale based on core NMR experiment publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2015.11.007 – volume: 173 start-page: 601 year: 2019 ident: 10.1016/j.marpetgeo.2019.104210_bib27 article-title: Quantitative evaluation model of tight sandstone reservoirs based on statistical methods-A case study of the Triassic Chang 8 tight sandstones, Zhenjing area, Ordos Basin, China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.10.035 – volume: 260 start-page: 54 year: 2015 ident: 10.1016/j.marpetgeo.2019.104210_bib11 article-title: Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2015.08.026 – volume: 25–27 August year: 2014 ident: 10.1016/j.marpetgeo.2019.104210_bib8 article-title: Porosity evaluation of shales using NMR secular relaxation – volume: 40 start-page: 460 year: 2016 ident: 10.1016/j.marpetgeo.2019.104210_bib16 article-title: Quantitative relationship between NMR T2 and pore size of shale gas reservoirs from core experiment publication-title: Well Logging Technol. – volume: vol. 30 year: 2011 ident: 10.1016/j.marpetgeo.2019.104210_bib15 – volume: 93 start-page: 111 issue: 1 year: 2019 ident: 10.1016/j.marpetgeo.2019.104210_bib22 article-title: Unconventional natural gas accumulations in stacked deposits: a discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China publication-title: Acta Geol. Sin. doi: 10.1111/1755-6724.13767 – year: 2019 ident: 10.1016/j.marpetgeo.2019.104210_bib5 article-title: Astronomical cycles and variations in sediment accumulation rate of the terrestrial lower cretaceous Xiagou formation from the Jiuquan Basin, NW China publication-title: Cretac. Res. – volume: 37 start-page: 1309 year: 2016 ident: 10.1016/j.marpetgeo.2019.104210_bib23 article-title: Several key issues and research trends in evaluation of shale oil publication-title: Acta Petrol. Sin. – volume: 126 start-page: 52 year: 2019 ident: 10.1016/j.marpetgeo.2019.104210_bib14 article-title: A comparison of clustering algorithms applied to fluid characterization using NMR T1-T2 maps of shale publication-title: Comput. Geosci-UK doi: 10.1016/j.cageo.2019.01.021 – volume: 37 start-page: 61 year: 1996 ident: 10.1016/j.marpetgeo.2019.104210_bib25 article-title: Measurements of clay-bound water and total porosity by magnetic resonance logging publication-title: Log. Anal. – volume: 32 start-page: 1155 year: 2017 ident: 10.1016/j.marpetgeo.2019.104210_bib29 article-title: Understanding model crude oil component interactions on kaolinite silicate and aluminol surfaces: toward improved understanding of shale oil recovery publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b02763 |
SSID | ssj0007901 |
Score | 2.5850725 |
Snippet | Few 1D T2 and 2D T1-T2 Nuclear magnetic resonance (NMR) studies have focused on oil-bearing shales with complex constituents and a deeper understanding of the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104210 |
SubjectTerms | Adsorbed/free oil Nuclear magnetic resonance (NMR) Oil-bearing shale T1-T2 map |
Title | 1D and 2D Nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks |
URI | https://dx.doi.org/10.1016/j.marpetgeo.2019.104210 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwNBDB5EEfQgPvFNDh4UHDvdx7TrTXxVxR58gLdlZpvVat0tbUV78bebTHd9gODB6zKZWSYhycckX4TYUimqBFUga4GtSfKSkbQeRjINdYIU8NB3lPmXTd24Dc7vwrsxcVj2wnBZZeH7Rz7deeviS6W4zUq33a5cKy7OYgQTUdqrA6bdDoIaW_ne-1eZRy1yI5B5seTVP2q8nvmNY3DvugCrEb93etxK-1uE-hZ1TmbFTJEuwsHoj-bEGGbzYvobieC8mDx1w3mHC-K1egQma4F3BE2mKTY9eDb3GbcpAqHqnLk1ELabl1c7wD0sb04rUHbq9yFPgXkbyBChnUHSMcNdeMJeTkbmNs7bHWlpWzoX-g8UWoDC31N_UdyeHN8cNmQxWEEaQqQDmaoAdUguV_umRTkKph4aW0eCJ-gTgiC9adMyCSeHfpjqpK4saqzSqtBTSdVfEuNZnuGyAAr4BKD81NfaBlbVTdqyzP8S8SB1Sq1WhC4vM04K1nEeftGJy_Kyx_hTCzFrIR5pYUWoT8HuiHjjb5H9UlvxDxuKKTz8Jbz6H-E1MeUxDncVPetifNB7wQ1KVgZ201njppg4OLtoND8AQDPpKw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxNBEJ4gxIgPBlEDojgPmmji2u392PZMfDBULEL7oJDwduxe57BS7khbgn3xn_IfdGZ7h5CY8GB4vdzubWbmZr65m_kG4KXOSWekI9WKXEuxl0yUCyhReWwy4oBHoafM7_VN9yD6chgfLsDvuhdGyior3z_36d5bV1calTQbZ8Nh45uW4izJYBKGvSYyVWXlLs0uOG-bfNjpsJJfBcH2p_2trqpGCyjLOdlU5ToiE7PTMaEdcJSmPCDr2sQAnULG0HxyYwc2E3gUxrnJ2tqRoSbfFQc6a4a87x1YithdyNiEd7_-1pW0Ej9zWU6n5HjXispO5afK9Ni3HTYT-cEaSO_uv0LilTC3vQIPKnyKH-cieAgLVKzC_Sushatw97OfBjx7BBfNDtpigEEH-8KLbMd4ao8L6YtETuNLIfMgfN3vfX2D0jTz05sB1tQAEyxzFKIItnwcFpiN7OwtntC4ZKv2G5fDkXK8LT8XJ985liHH25PJYzi4FXE_gcWiLGgNkBEGZ2xhHhrjIqfbNh84IZxJZHI7Y7l1MLUw06yiOZdpG6O0rmf7kV5qIRUtpHMtrIO-XHg2Z_q4ecn7WlvpNaNNOR7dtPjp_yx-Afe6-729dG-nv7sBy4F8BPDlRM9gcTo-p-eMlKZu01smwtFtvwp_AKtNJaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1D+and+2D+Nuclear+magnetic+resonance+%28NMR%29+relaxation+behaviors+of+protons+in+clay%2C+kerogen+and+oil-bearing+shale+rocks&rft.jtitle=Marine+and+petroleum+geology&rft.au=Zhang%2C+Pengfei&rft.au=Lu%2C+Shuangfang&rft.au=Li%2C+Junqian&rft.au=Chang%2C+Xiangchun&rft.date=2020-04-01&rft.issn=0264-8172&rft.volume=114&rft.spage=104210&rft_id=info:doi/10.1016%2Fj.marpetgeo.2019.104210&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marpetgeo_2019_104210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-8172&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-8172&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-8172&client=summon |