Permeability prediction of heterogeneous carbonate gas condensate reservoirs applying group method of data handling

Carbonate petroleum reservoirs typically have lower permeabilities and recovery factors than sandstone reservoirs, so the natural fractures they often incorporate have positive impacts on resource recovery and fluid production rates. Quantifying effective permeability, incorporating contributions fr...

Full description

Saved in:
Bibliographic Details
Published inMarine and petroleum geology Vol. 139; p. 105597
Main Authors Zanganeh Kamali, Masoud, Davoodi, Shadfar, Ghorbani, Hamzeh, Wood, David A., Mohamadian, Nima, Lajmorak, Sahar, Rukavishnikov, Valeriy S., Taherizade, Farzaneh, Band, Shahab S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbonate petroleum reservoirs typically have lower permeabilities and recovery factors than sandstone reservoirs, so the natural fractures they often incorporate have positive impacts on resource recovery and fluid production rates. Quantifying effective permeability, incorporating contributions from pores and fractures, is therefore essential in the reservoir characterization and flow-regime modelling of carbonate reservoirs. This research applies a robust machine-learning forecasting model to predict permeability (K) for heterogeneous carbonate gas condensate reservoirs. A 212-point dataset from six gas-condensate carbonate reservoirs (Russia and Iran) is compiled. The input variables considered are porosity (Φ, %), specific surface area (Sp, 1/cm) and irreducible water saturation (Swir, %). These variables are assessed using four machine learning models: group method of data handling (GMDH), polynomial regression (PR), support vector machine (SVR), and decision tree (DT) to predict permeability. The GMDH algorithm, a polynomial neural network with a customized architecture is developed, such that it displays increased prediction accuracy and improved learning capabilities. All four models developed in this study substantially improve upon K predictions derived from established empirical correlations. The GMDH model also outperforms the other models in respect of K prediction accuracy using Φ, Swir, and Sp as input variables. It achieves permeability prediction accuracy for the multi-field dataset evaluated with a root mean squared error (RMSE) and coefficient of determination (R2) for the training and testing of the best model (GMDH) of RMSE = 9.2 mD and R2 = 0.9988; RMSE = 0.4 mD and R2 = 0.9972, respectively. The model can be readily adapted for application to other field datasets to estimate K from limited well-log and/or core data. •Group method of data handling provides accurate predictions of permeability.•Carbonate reservoir permeability predicted with porosity & specific surface area.•Gas-condensate reservoirs predicted without need for water saturation data.•212 core datasets from large gas condensate fields in Iran and Russia compiled.•Empirical models poorly predict permeability with just porosity/water saturation.
AbstractList Carbonate petroleum reservoirs typically have lower permeabilities and recovery factors than sandstone reservoirs, so the natural fractures they often incorporate have positive impacts on resource recovery and fluid production rates. Quantifying effective permeability, incorporating contributions from pores and fractures, is therefore essential in the reservoir characterization and flow-regime modelling of carbonate reservoirs. This research applies a robust machine-learning forecasting model to predict permeability (K) for heterogeneous carbonate gas condensate reservoirs. A 212-point dataset from six gas-condensate carbonate reservoirs (Russia and Iran) is compiled. The input variables considered are porosity (Φ, %), specific surface area (Sp, 1/cm) and irreducible water saturation (Swir, %). These variables are assessed using four machine learning models: group method of data handling (GMDH), polynomial regression (PR), support vector machine (SVR), and decision tree (DT) to predict permeability. The GMDH algorithm, a polynomial neural network with a customized architecture is developed, such that it displays increased prediction accuracy and improved learning capabilities. All four models developed in this study substantially improve upon K predictions derived from established empirical correlations. The GMDH model also outperforms the other models in respect of K prediction accuracy using Φ, Swir, and Sp as input variables. It achieves permeability prediction accuracy for the multi-field dataset evaluated with a root mean squared error (RMSE) and coefficient of determination (R2) for the training and testing of the best model (GMDH) of RMSE = 9.2 mD and R2 = 0.9988; RMSE = 0.4 mD and R2 = 0.9972, respectively. The model can be readily adapted for application to other field datasets to estimate K from limited well-log and/or core data. •Group method of data handling provides accurate predictions of permeability.•Carbonate reservoir permeability predicted with porosity & specific surface area.•Gas-condensate reservoirs predicted without need for water saturation data.•212 core datasets from large gas condensate fields in Iran and Russia compiled.•Empirical models poorly predict permeability with just porosity/water saturation.
ArticleNumber 105597
Author Zanganeh Kamali, Masoud
Lajmorak, Sahar
Taherizade, Farzaneh
Rukavishnikov, Valeriy S.
Davoodi, Shadfar
Ghorbani, Hamzeh
Wood, David A.
Band, Shahab S.
Mohamadian, Nima
Author_xml – sequence: 1
  givenname: Masoud
  surname: Zanganeh Kamali
  fullname: Zanganeh Kamali, Masoud
  email: masoud.z.kamali@stu.yazd.ac.ir
  organization: Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
– sequence: 2
  givenname: Shadfar
  surname: Davoodi
  fullname: Davoodi, Shadfar
  email: davoodis@hw.tpu.ru
  organization: School of Earth Sciences & Engineering, Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russia
– sequence: 3
  givenname: Hamzeh
  orcidid: 0000-0003-4657-8249
  surname: Ghorbani
  fullname: Ghorbani, Hamzeh
  email: hamzehghorbani68@yahoo.com
  organization: Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
– sequence: 4
  givenname: David A.
  orcidid: 0000-0003-3202-4069
  surname: Wood
  fullname: Wood, David A.
  email: dw@dwasolutions.com
  organization: DWA Energy Limited, Lincoln, United Kingdom
– sequence: 5
  givenname: Nima
  surname: Mohamadian
  fullname: Mohamadian, Nima
  email: nima.0691@gmail.com
  organization: Young Researchers and Elite Club, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
– sequence: 6
  givenname: Sahar
  surname: Lajmorak
  fullname: Lajmorak, Sahar
  email: saharlajmorak@yahoo.com
  organization: Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Yousef Sobouti Blvd., 45137-66731, Zanjan, Iran
– sequence: 7
  givenname: Valeriy S.
  surname: Rukavishnikov
  fullname: Rukavishnikov, Valeriy S.
  email: rukavishnikovvs@hw.tpu.ru
  organization: School of Earth Sciences & Engineering, Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russia
– sequence: 8
  givenname: Farzaneh
  surname: Taherizade
  fullname: Taherizade, Farzaneh
  email: farzaneh.taherizade@stu.yazd.ac.ir
  organization: Department of Computer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
– sequence: 9
  givenname: Shahab S.
  surname: Band
  fullname: Band, Shahab S.
  email: shamshirbands@yuntech.edu.tw
  organization: Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan
BookMark eNqNkMtKxDAUhoMoOF6ewbxAxyRNm87CxSDeQNCFrsNpctrJ0ElKEoV5e1tGXLjRzTmcy__D_52RYx88EnLF2ZIzXl9vlzuII-Yew1IwIaZtVa3UEVnwRpWFZKo8Jgsmalk0XIlTcpbSljGmVowvSHrFuENo3eDyno4RrTPZBU9DRzeYMYYePYaPRA3ENnjISHuYpuAt-jSPERPGz-BiojCOw975nvYxfIx0h3kT7GxlIQPdgLfDdL0gJx0MCS-_-zl5v797u30snl8enm7XzwWUZZMLBFm3LVMN2HKqVWM6IYWtKsmFAg6lRKVq0Viu6ro2wFar1khpjFRd04muPCc3B18TQ0oRO21chjldjuAGzZmeCeqt_iGoZ4L6QHDSq1_6Mbrpdf8P5fqgxCnep8Ook3HozUQ3osnaBvenxxfudJY4
CitedBy_id crossref_primary_10_1038_s41598_024_63168_8
crossref_primary_10_1007_s12665_024_11534_0
crossref_primary_10_1080_13467581_2023_2278453
crossref_primary_10_1016_j_fuel_2024_133109
crossref_primary_10_1080_10916466_2025_2465847
crossref_primary_10_1007_s11053_023_10240_1
crossref_primary_10_1007_s12145_024_01515_z
crossref_primary_10_1021_acs_jcim_3c02039
crossref_primary_10_1002_cnm_70029
crossref_primary_10_1038_s41598_022_15869_1
crossref_primary_10_1021_acsomega_3c01927
crossref_primary_10_1097_MD_0000000000038286
crossref_primary_10_1007_s13202_022_01531_z
crossref_primary_10_1080_15376494_2025_2471950
crossref_primary_10_1007_s10553_024_01754_2
crossref_primary_10_1021_acsomega_2c05759
crossref_primary_10_1080_21580103_2025_2456295
crossref_primary_10_1039_D4YA00313F
crossref_primary_10_1007_s11600_022_00964_8
crossref_primary_10_1016_j_heliyon_2024_e32666
crossref_primary_10_1007_s12145_024_01409_0
crossref_primary_10_1016_j_jrmge_2024_09_013
crossref_primary_10_1007_s13202_022_01593_z
crossref_primary_10_1016_j_apr_2023_101880
crossref_primary_10_3389_feart_2022_1023578
crossref_primary_10_1190_geo2023_0657_1
crossref_primary_10_3389_feart_2022_1043719
crossref_primary_10_1038_s41598_024_75114_9
crossref_primary_10_1080_1573062X_2024_2360184
crossref_primary_10_1016_j_geoen_2024_212851
crossref_primary_10_1080_21650373_2024_2449491
crossref_primary_10_1002_cjce_25385
crossref_primary_10_1007_s12145_024_01641_8
crossref_primary_10_1007_s13202_024_01836_1
crossref_primary_10_1016_j_ecoinf_2024_102990
crossref_primary_10_1109_ACCESS_2023_3349216
crossref_primary_10_1021_acsomega_2c01466
crossref_primary_10_1002_jnm_3317
crossref_primary_10_1007_s11004_024_10171_4
crossref_primary_10_1007_s12145_024_01581_3
crossref_primary_10_1080_10589759_2024_2431143
crossref_primary_10_1007_s12145_025_01713_3
crossref_primary_10_1190_geo2023_0609_1
crossref_primary_10_3389_fevo_2022_1066800
crossref_primary_10_47836_pjst_32_5_23
crossref_primary_10_1177_00368504241302972
crossref_primary_10_1016_j_engappai_2025_110378
crossref_primary_10_32604_fdmp_2022_020942
crossref_primary_10_3390_su15129289
crossref_primary_10_31548_machinery_1_2024_33
Cites_doi 10.1016/j.petrol.2010.07.003
10.1016/j.petlm.2018.06.002
10.1016/j.icheatmasstransfer.2020.104825
10.1016/j.asoc.2019.105940
10.1504/IJOGCT.2008.020369
10.1016/j.jngse.2014.09.037
10.1016/j.oceaneng.2015.05.016
10.1190/geo2018-0588.1
10.1016/j.fuel.2018.08.109
10.1016/j.petrol.2014.06.033
10.2136/vzj2004.0116
10.1016/j.enggeo.2010.05.005
10.1007/s13202-021-01087-4
10.1190/1.1443970
10.1016/j.ymssp.2018.03.022
10.1016/j.petrol.2018.09.085
10.1016/j.petrol.2019.01.110
10.1016/j.apenergy.2012.01.010
10.1002/ghg.1982
10.1016/j.energy.2011.04.017
10.1016/j.jsg.2015.03.013
10.1016/j.jappgeo.2011.02.010
10.1016/j.fuel.2020.117389
10.1006/enfo.2001.0061
10.1016/j.epsr.2017.01.035
10.1016/j.jtice.2020.08.001
10.1023/B:STCO.0000035301.49549.88
10.1016/j.eng.2020.02.016
10.1007/s13369-016-2365-2
10.1007/s13202-018-0459-y
10.3390/en13030551
10.1088/1361-6501/ab4a45
10.1016/j.petrol.2020.106929
10.2118/2588-PA
10.2478/v10117-011-0021-1
10.1080/03052150500035591
10.1016/j.jhydrol.2020.125423
10.1016/j.fuel.2020.119147
10.1007/s13202-020-00838-z
10.1016/j.ces.2020.115576
10.2118/950105-G
10.1111/j.1365-2389.1958.tb01892.x
10.1007/s00521-020-05164-3
10.1016/S0920-4105(00)00037-1
10.1016/j.jngse.2020.103244
10.1016/j.fuel.2018.08.136
10.1016/j.jsm.2018.07.004
10.1080/13873959808837083
10.1016/j.measurement.2020.108943
10.1016/j.petlm.2017.06.001
10.1016/j.petrol.2019.106587
10.1016/j.jhydrol.2020.125033
10.1016/j.jtice.2021.01.007
10.1016/j.ejpe.2015.06.001
10.1016/j.ijheatmasstransfer.2018.11.011
10.1016/j.advwatres.2005.10.012
10.1186/s12874-020-01159-9
10.1016/j.proeng.2012.09.545
10.1016/j.neucom.2008.08.006
10.1016/j.marpetgeo.2019.104096
10.1016/S1876-3804(19)60250-8
10.1016/j.jrmge.2019.12.005
10.1016/j.petrol.2020.107037
10.1016/j.icheatmasstransfer.2021.105185
10.1016/j.marpetgeo.2018.12.026
10.1016/j.catena.2019.104249
10.1046/j.1365-2478.2002.00346.x
10.1007/BF00994018
10.1016/0920-4105(90)90029-3
10.1021/acs.energyfuels.8b00193
10.1177/172460080201700213
10.1016/j.petrol.2016.11.033
10.1023/A:1006503406056
10.1016/j.enconman.2007.06.002
10.1088/1742-2132/3/4/008
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.marpetgeo.2022.105597
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1873-4073
ExternalDocumentID 10_1016_j_marpetgeo_2022_105597
S0264817222000757
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a338t-ea46bb078ad307858cf242d554127a1a34e77628d17666ca099bc44cc47f8f2f3
IEDL.DBID .~1
ISSN 0264-8172
IngestDate Tue Jul 01 02:11:26 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Fri Feb 23 02:41:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heterogeneous carbonate reservoirs
Gas-condensate reservoirs
Specific surface area
Permeability prediction
Group method of data handling GMDH
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a338t-ea46bb078ad307858cf242d554127a1a34e77628d17666ca099bc44cc47f8f2f3
ORCID 0000-0003-4657-8249
0000-0003-3202-4069
ParticipantIDs crossref_citationtrail_10_1016_j_marpetgeo_2022_105597
crossref_primary_10_1016_j_marpetgeo_2022_105597
elsevier_sciencedirect_doi_10_1016_j_marpetgeo_2022_105597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Marine and petroleum geology
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Su, Li, Yang, Wen (bib88) 2018; 110
Amanifard, Nariman-Zadeh, Borji, Khalkhali, Habibdoust (bib12) 2008; 49
Srinivasan (bib86) 2008; 72
Sameen, Pradhan, Lee (bib81) 2020; 186
Draper, Smith (bib32) 1998
Lai, Li, Zhang, Dong, Kong, Jiang (bib54) 2018; 32
Wang, Wang, Liu, Zhang, Feng, Lu, Peng (bib92) 2019; 102
Mohammadi, Mikaeil, Abdollahi‐Sharif (bib64) 2020; 37
Zhou, Hu, Pan, Kong, Liu, Huang, Chen (bib98) 2020; 31
Lim, Kim (bib56) 2004
Rezaee, Jafari, Kazemzadeh (bib77) 2006; 3
Chilingarian, Chang, Bagrintseva (bib26) 1990; 4
Hauke, Kossowski (bib46) 2011; 30
Hazbeh, Ahmadi Alvar, Aghdam, Ghorbani, Mohamadian, Moghadasi (bib47) 2021; 23
Ahmadi, Chen (bib6) 2019; 5
Mueller, Ivachnenko, Lemke (bib66) 1998; 4
Zhu, Zhang, Wei, Zhang (bib100) 2017; 42
Wyllie, Rose (bib94) 1950; 2
Liu, Song, Cao, Meng, Pu, Wang, Liu (bib57) 2020; 12
Zhong, Carr, Wu, Wang (bib97) 2019; 84
Roohi, Emdad, Jafarpur (bib78) 2021; 122
Mahdaviara, Menad, Ghazanfari, Hemmati-Sarapardeh (bib59) 2020; 189
Jeddi, Sharifian (bib52) 2020; 88
Amar, Ghriga, Ouaer (bib16) 2021; 118
Hemmati-Sarapardeh, Varamesh, Amar, Husein, Dong (bib48) 2020; 118
Du, Zhao, Peng, Gao, Huang (bib33) 2020; 218
Dou, Sun, Sullivan (bib31) 2011; 74
Zhu, Zhang, Wei, Zhang (bib101) 2017; 42
Basbug, Karpyn (bib22) 2008; 1
Al-Anazi, Gates (bib10) 2010; 114
Gauthier (bib40) 2001; 2
Gholinezhad, Masihi (bib43) 2012; 1
Baziar, Tadayoni, Nabi-Bidhendi, Khalili (bib23) 2014; 21
Mohammadi, Shadizadeh, Manshad, Mohammadi (bib63) 2020; 10
Stewart, Ward, Rector (bib87) 2006; 29
Zhang, Wang, Zhang (bib96) 2017; 146
Lenhard, Oostrom (bib55) 1998; 31
Farsi, Barjouei, Wood, Ghorbani, Mohamadian, Davoodi, Nasriani, Alvar (bib38) 2021; 174
Han, Bian (bib45) 2018; 4
Amar, Zeraibi, Jahanbani Ghahfarokhi (bib15) 2020; 10
Wang, Li, Niu, Tan (bib91) 2012; 94
Anifowose, Abdulraheem, Al-Shuhail (bib17) 2019; 176
Al Khalifah, Glover, Lorinczi (bib9) 2020; 112
Akande, Owolabi, Olatunji, AbdulRaheem (bib8) 2017; 150
Abu-Shikhah, Elkarmi (bib2) 2011; 36
Dodangeh, Panahi, Rezaie, Lee, Bui, Lee, Pradhan (bib30) 2020; 590
Zhou, Lu, Zheng, Tolliver, Keramati (bib99) 2020; vol. 200
Smola, Schölkopf (bib85) 2004; 14
Armstrong (bib18) 2003
Cortes, Vapnik (bib28) 1995; 20
Rostami, Rashidi, Safari (bib79) 2019; 173
Morgan, Gordon (bib65) 1970; 22
Nkurlu, Shen, Asante-Okyere, Mulashani, Chungu, Wang (bib71) 2020; 13
Unsal, Dane, Dozier (bib90) 2005; 4
Singh (bib84) 2019; 9
Tian, Qi, Sun, Yaseen, Pham (bib89) 2020
Amar, Ghahfarokhi (bib13) 2020; 190
Rostami, Baghban, Mohammadi, Hemmati-Sarapardeh, Habibzadeh (bib80) 2019; 236
Gendy, El-Shiekh, Zakhary (bib41) 2015; 24
Belhouchet, Benzagouta, Dobbi, Alquraishi, Duplay (bib24) 2021; 33
Ebtehaj, Bonakdari, Khoshbin, Bong, AbGhani (bib34) 2017; 24
Elbaz, Shen, Zhou, Yin, Lyu (bib36) 2021; 7
Mahdaviara, Rostami, Shahbazi (bib58) 2020; 268
Huang, Shimeld, Williamson, Katsube (bib50) 1996; 61
Najafzadeh, Barani, Hessami-Kermani (bib68) 2015; 104
Karimpouli, Fathianpour, Roohi (bib53) 2010; 73
Amar, Ghahfarokhi, Zeraibi (bib14) 2020; 113
Choon, Hoong, Huey (bib27) 2008; 7
Ehrenberg, Eberli, Keramati, Moallemi (bib35) 2006; 90
Guan, Hu, Li, Ma, Ma (bib44) 2019; 130
Rawlings, Pantula, Dickey (bib76) 1998
Gan, Wang, Luo, Zhang, Li, Dai, Yang (bib39) 2019; 46
Jamialahmadi, Javadpour (bib51) 2000; 26
Xue, Cheng, Mou, Zhao (bib95) 2014; 121
Bhatt, Helle (bib25) 2008; 50
Esmaeili, Sarma, Harding, Maini (bib37) 2019; 236
Nariman-Zadeh, Atashkari, Jamali, Pilechi, Yao (bib69) 2005; 37
Adnan, Liang, Parmar, Soni, Kisi (bib4) 2021; 33
Pu, Apel, Lingga (bib75) 2018; 17
Ballas, Fossen, Soliva (bib20) 2015; 76
Naveshki, Naghiei, Soltani Tehrani, Ahmadi Alvar, Ghorbani, Mohamadian, Moghadasi (bib70) 2021
Marshall (bib62) 1958; 9
Wood (bib93) 2020; 184
Panahi, Sadhasivam, Pourghasemi, Rezaie, Lee (bib73) 2020; 588
Shang, Hamman, Chen, Caldwell (bib83) 2003; 5–8 October
Myers, Sirois (bib67) 2006
Schön (bib82) 2015
Ahmed (bib7) 2018
Mahdaviara, Amar, Hemmati-Sarapardeh, Dai, Zhang, Xiao, Zhang (bib60) 2021; 285
Barjouei, Ghorbani, Mohamadian, Wood, Davoodi, Moghadasi, Saberi (bib21) 2021; 11
Al-Anazi, Gates (bib11) 2010; vol. 13
Adeyinka, Muhajarine (bib3) 2020; 20
Howland, Voss (bib49) 2003
Cristianini, Shawe-Taylor (bib29) 2000
Park, Park, Kim, Oh (bib74) 2004; 2
Male, Jensen, Lake (bib61) 2020; 77
Ahmadi, Chen (bib5) 2019; 5
Gholami, Shahraki, Paghaleh (bib42) 2012
Artusi, Verderio, Marubini (bib19) 2002; 17
Ostertagová (bib72) 2012; 48
Cristianini (10.1016/j.marpetgeo.2022.105597_bib29) 2000
Mohammadi (10.1016/j.marpetgeo.2022.105597_bib63) 2020; 10
Akande (10.1016/j.marpetgeo.2022.105597_bib8) 2017; 150
Gauthier (10.1016/j.marpetgeo.2022.105597_bib40) 2001; 2
Draper (10.1016/j.marpetgeo.2022.105597_bib32) 1998
Baziar (10.1016/j.marpetgeo.2022.105597_bib23) 2014; 21
Park (10.1016/j.marpetgeo.2022.105597_bib74) 2004; 2
Zhang (10.1016/j.marpetgeo.2022.105597_bib96) 2017; 146
Zhu (10.1016/j.marpetgeo.2022.105597_bib100) 2017; 42
Jamialahmadi (10.1016/j.marpetgeo.2022.105597_bib51) 2000; 26
Wang (10.1016/j.marpetgeo.2022.105597_bib91) 2012; 94
Esmaeili (10.1016/j.marpetgeo.2022.105597_bib37) 2019; 236
Liu (10.1016/j.marpetgeo.2022.105597_bib57) 2020; 12
Gholinezhad (10.1016/j.marpetgeo.2022.105597_bib43) 2012; 1
Ehrenberg (10.1016/j.marpetgeo.2022.105597_bib35) 2006; 90
Howland (10.1016/j.marpetgeo.2022.105597_bib49) 2003
Pu (10.1016/j.marpetgeo.2022.105597_bib75) 2018; 17
Al-Anazi (10.1016/j.marpetgeo.2022.105597_bib11) 2010; vol. 13
Elbaz (10.1016/j.marpetgeo.2022.105597_bib36) 2021; 7
Lai (10.1016/j.marpetgeo.2022.105597_bib54) 2018; 32
Zhu (10.1016/j.marpetgeo.2022.105597_bib101) 2017; 42
Marshall (10.1016/j.marpetgeo.2022.105597_bib62) 1958; 9
Nkurlu (10.1016/j.marpetgeo.2022.105597_bib71) 2020; 13
Wang (10.1016/j.marpetgeo.2022.105597_bib92) 2019; 102
Bhatt (10.1016/j.marpetgeo.2022.105597_bib25) 2008; 50
Wood (10.1016/j.marpetgeo.2022.105597_bib93) 2020; 184
Gan (10.1016/j.marpetgeo.2022.105597_bib39) 2019; 46
Gholami (10.1016/j.marpetgeo.2022.105597_bib42) 2012
Chilingarian (10.1016/j.marpetgeo.2022.105597_bib26) 1990; 4
Ebtehaj (10.1016/j.marpetgeo.2022.105597_bib34) 2017; 24
Farsi (10.1016/j.marpetgeo.2022.105597_bib38) 2021; 174
Basbug (10.1016/j.marpetgeo.2022.105597_bib22) 2008; 1
Belhouchet (10.1016/j.marpetgeo.2022.105597_bib24) 2021; 33
Karimpouli (10.1016/j.marpetgeo.2022.105597_bib53) 2010; 73
Hauke (10.1016/j.marpetgeo.2022.105597_bib46) 2011; 30
Gendy (10.1016/j.marpetgeo.2022.105597_bib41) 2015; 24
Male (10.1016/j.marpetgeo.2022.105597_bib61) 2020; 77
Naveshki (10.1016/j.marpetgeo.2022.105597_bib70) 2021
Roohi (10.1016/j.marpetgeo.2022.105597_bib78) 2021; 122
Mahdaviara (10.1016/j.marpetgeo.2022.105597_bib58) 2020; 268
Hemmati-Sarapardeh (10.1016/j.marpetgeo.2022.105597_bib48) 2020; 118
Najafzadeh (10.1016/j.marpetgeo.2022.105597_bib68) 2015; 104
Amar (10.1016/j.marpetgeo.2022.105597_bib16) 2021; 118
Barjouei (10.1016/j.marpetgeo.2022.105597_bib21) 2021; 11
Schön (10.1016/j.marpetgeo.2022.105597_bib82) 2015
Ahmadi (10.1016/j.marpetgeo.2022.105597_bib5) 2019; 5
Mahdaviara (10.1016/j.marpetgeo.2022.105597_bib60) 2021; 285
Srinivasan (10.1016/j.marpetgeo.2022.105597_bib86) 2008; 72
Myers (10.1016/j.marpetgeo.2022.105597_bib67) 2006
Rostami (10.1016/j.marpetgeo.2022.105597_bib79) 2019; 173
Lim (10.1016/j.marpetgeo.2022.105597_bib56) 2004
Singh (10.1016/j.marpetgeo.2022.105597_bib84) 2019; 9
Xue (10.1016/j.marpetgeo.2022.105597_bib95) 2014; 121
Adeyinka (10.1016/j.marpetgeo.2022.105597_bib3) 2020; 20
Shang (10.1016/j.marpetgeo.2022.105597_bib83) 2003; 5–8 October
Su (10.1016/j.marpetgeo.2022.105597_bib88) 2018; 110
Morgan (10.1016/j.marpetgeo.2022.105597_bib65) 1970; 22
Zhong (10.1016/j.marpetgeo.2022.105597_bib97) 2019; 84
Zhou (10.1016/j.marpetgeo.2022.105597_bib98) 2020; 31
Armstrong (10.1016/j.marpetgeo.2022.105597_bib18) 2003
Guan (10.1016/j.marpetgeo.2022.105597_bib44) 2019; 130
Rezaee (10.1016/j.marpetgeo.2022.105597_bib77) 2006; 3
Unsal (10.1016/j.marpetgeo.2022.105597_bib90) 2005; 4
Mueller (10.1016/j.marpetgeo.2022.105597_bib66) 1998; 4
Han (10.1016/j.marpetgeo.2022.105597_bib45) 2018; 4
Amar (10.1016/j.marpetgeo.2022.105597_bib15) 2020; 10
Smola (10.1016/j.marpetgeo.2022.105597_bib85) 2004; 14
Anifowose (10.1016/j.marpetgeo.2022.105597_bib17) 2019; 176
Zhou (10.1016/j.marpetgeo.2022.105597_bib99) 2020; vol. 200
Huang (10.1016/j.marpetgeo.2022.105597_bib50) 1996; 61
Wyllie (10.1016/j.marpetgeo.2022.105597_bib94) 1950; 2
Dodangeh (10.1016/j.marpetgeo.2022.105597_bib30) 2020; 590
Hazbeh (10.1016/j.marpetgeo.2022.105597_bib47) 2021; 23
Lenhard (10.1016/j.marpetgeo.2022.105597_bib55) 1998; 31
Jeddi (10.1016/j.marpetgeo.2022.105597_bib52) 2020; 88
Nariman-Zadeh (10.1016/j.marpetgeo.2022.105597_bib69) 2005; 37
Tian (10.1016/j.marpetgeo.2022.105597_bib89) 2020
Ostertagová (10.1016/j.marpetgeo.2022.105597_bib72) 2012; 48
Choon (10.1016/j.marpetgeo.2022.105597_bib27) 2008; 7
Al-Anazi (10.1016/j.marpetgeo.2022.105597_bib10) 2010; 114
Amanifard (10.1016/j.marpetgeo.2022.105597_bib12) 2008; 49
Amar (10.1016/j.marpetgeo.2022.105597_bib13) 2020; 190
Artusi (10.1016/j.marpetgeo.2022.105597_bib19) 2002; 17
Dou (10.1016/j.marpetgeo.2022.105597_bib31) 2011; 74
Sameen (10.1016/j.marpetgeo.2022.105597_bib81) 2020; 186
Cortes (10.1016/j.marpetgeo.2022.105597_bib28) 1995; 20
Mohammadi (10.1016/j.marpetgeo.2022.105597_bib64) 2020; 37
Ballas (10.1016/j.marpetgeo.2022.105597_bib20) 2015; 76
Ahmadi (10.1016/j.marpetgeo.2022.105597_bib6) 2019; 5
Ahmed (10.1016/j.marpetgeo.2022.105597_bib7) 2018
Stewart (10.1016/j.marpetgeo.2022.105597_bib87) 2006; 29
Du (10.1016/j.marpetgeo.2022.105597_bib33) 2020; 218
Al Khalifah (10.1016/j.marpetgeo.2022.105597_bib9) 2020; 112
Adnan (10.1016/j.marpetgeo.2022.105597_bib4) 2021; 33
Rawlings (10.1016/j.marpetgeo.2022.105597_bib76) 1998
Panahi (10.1016/j.marpetgeo.2022.105597_bib73) 2020; 588
Amar (10.1016/j.marpetgeo.2022.105597_bib14) 2020; 113
Abu-Shikhah (10.1016/j.marpetgeo.2022.105597_bib2) 2011; 36
Mahdaviara (10.1016/j.marpetgeo.2022.105597_bib59) 2020; 189
Rostami (10.1016/j.marpetgeo.2022.105597_bib80) 2019; 236
References_xml – volume: 122
  start-page: 105185
  year: 2021
  ident: bib78
  article-title: Toward a realistic reconstruction and determination of blood flow pattern in complex vascular network: 3D, non-Newtonian, multi-branch simulation based on CFD and GMDH algorithm
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 190
  start-page: 107037
  year: 2020
  ident: bib13
  article-title: Prediction of CO2 diffusivity in brine using white-box machine learning
  publication-title: J. Petrol. Sci. Eng.
– volume: 37
  start-page: 437
  year: 2005
  end-page: 462
  ident: bib69
  article-title: Inverse modelling of multi-objective thermodynamically optimized turbojet engines using GMDH-type neural networks and evolutionary algorithms
  publication-title: Eng. Optim.
– volume: 1
  start-page: 382
  year: 2008
  end-page: 398
  ident: bib22
  article-title: A study of absolute permeability dependence on pore-scale characteristics of carbonate reservoirs using artificial intelligence
  publication-title: Int. J. Oil Gas Coal Technol.
– start-page: 18
  year: 2012
  ident: bib42
  article-title: Prediction of hydrocarbon reservoirs permeability using support vector machine
  publication-title: Math. Probl Eng.
– volume: 184
  start-page: 17
  year: 2020
  ident: bib93
  article-title: Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data
  publication-title: J. Petrol. Sci. Eng.
– volume: 5–8 October
  year: 2003
  ident: bib83
  article-title: A model to correlate permeability with efficient porosity and irreducible water saturation. SPE-84303-MS
  publication-title: SPE Annual Technical Conference and Exhibition
– volume: 285
  start-page: 119147
  year: 2021
  ident: bib60
  article-title: Toward smart schemes for modeling CO2 solubility in crude oil: application to carbon dioxide enhanced oil recovery
  publication-title: Fuel
– volume: 42
  start-page: 1643
  year: 2017
  end-page: 1654
  ident: bib101
  article-title: Engineering, Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data
  publication-title: Arabian J. Sci. Eng.
– start-page: 1524
  year: 2018
  ident: bib7
  article-title: Reservoir Engineering Handbook
– volume: 50
  start-page: 645
  year: 2008
  end-page: 660
  ident: bib25
  article-title: Committee neural networks for porosity and permeability prediction from well logs
  publication-title: Geophys. Prospect.
– volume: 4
  start-page: 43
  year: 2018
  end-page: 49
  ident: bib45
  article-title: A hybrid PSO-SVM-based model for determination of oil recovery factor in the low-permeability reservoir
  publication-title: Petroleum
– volume: 150
  start-page: 43
  year: 2017
  end-page: 53
  ident: bib8
  article-title: A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir
  publication-title: J. Petrol. Sci. Eng.
– volume: 5
  start-page: 271
  year: 2019
  end-page: 284
  ident: bib6
  article-title: Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs
  publication-title: Petroleum
– start-page: 9
  year: 2004
  ident: bib56
  article-title: Reservoir porosity and permeability estimation from well logs using fuzzy logic and neural networks. SPE-88476-MS
  publication-title: SPE Asia Pacific Oil and Gas Conference and Exhibition
– volume: 130
  start-page: 1045
  year: 2019
  end-page: 1052
  ident: bib44
  article-title: Prediction of oil-water relative permeability with a fractal method in ultra-high water cut stage
  publication-title: Int. J. Heat Mass Tran.
– volume: 2
  start-page: 423
  year: 2004
  end-page: 434
  ident: bib74
  article-title: Self-organizing polynomial neural networks based on genetically optimized multi-layer perceptron architecture
  publication-title: Int. J. Control Autom. Syst.
– volume: 94
  start-page: 65
  year: 2012
  end-page: 70
  ident: bib91
  article-title: An annual load forecasting model based on support vector regression with differential evolution algorithm
  publication-title: Appl. Energy
– volume: 102
  start-page: 33
  year: 2019
  end-page: 47
  ident: bib92
  article-title: Relationships among composition, porosity and permeability of longmaxi shale reservoir in the weiyuan block, sichuan basin, China
  publication-title: Mar. Petrol. Geol.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib28
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 236
  start-page: 264
  year: 2019
  end-page: 277
  ident: bib37
  article-title: A data-driven model for predicting the effect of temperature on oil-water relative permeability
  publication-title: Fuel
– volume: 4
  start-page: 389
  year: 2005
  end-page: 397
  ident: bib90
  article-title: A genetic algorithm for predicting pore geometry based on air permeability measurements
  publication-title: Vadose Zone J.
– volume: 31
  year: 2020
  ident: bib98
  article-title: Fast prediction of reservoir permeability based on embedded feature selection and Light GBM using direct logging data
  publication-title: Meas. Sci. Technol.
– volume: 11
  start-page: 1233
  year: 2021
  end-page: 1261
  ident: bib21
  article-title: Prediction performance advantages of deep machine learning algorithms for two-phase flow rates through wellhead chokes
  publication-title: J. Petrol. Explor. Product.
– start-page: 13
  year: 2003
  ident: bib18
  article-title: Permeability correlations for carbonate and other rocks
  publication-title: Paper #58400 GSA Meeting 2003 Seattle USA
– volume: 174
  start-page: 108943
  year: 2021
  ident: bib38
  article-title: Prediction of oil flow rate through orifice flow meters: optimized machine-learning techniques
  publication-title: Measurement
– volume: 33
  start-page: 136
  year: 2021
  end-page: 145
  ident: bib24
  article-title: A new empirical model for enhancing well log permeability prediction, using nonlinear regression method: case study from Hassi-Berkine oil field reservoir–Algeria
  publication-title: J. King Saud Univ. Eng. Sci.
– volume: 189
  start-page: 106929
  year: 2020
  ident: bib59
  article-title: Modeling relative permeability of gas condensate reservoirs: advanced computational frameworks
  publication-title: J. Petrol. Sci. Eng.
– volume: 176
  start-page: 762
  year: 2019
  end-page: 774
  ident: bib17
  article-title: A parametric study of machine learning techniques in petroleum reservoir permeability prediction by integrating seismic attributes and wireline data
  publication-title: J. Petrol. Sci. Eng.
– volume: 17
  start-page: 148
  year: 2002
  end-page: 151
  ident: bib19
  article-title: Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval
  publication-title: Int. J. Biol. Markers
– year: 2000
  ident: bib29
  article-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
– volume: 24
  start-page: 1000
  year: 2017
  end-page: 1009
  ident: bib34
  article-title: Development of group method of data handling based on genetic algorithm to predict incipient motion in rigid rectangular storm water channel
  publication-title: Scientia Iranica. Transaction A, Civil Engineering
– volume: 10
  start-page: 1817
  year: 2020
  end-page: 1834
  ident: bib63
  article-title: Experimental study of the relationship between porosity and surface area of carbonate reservoir rocks
  publication-title: J. Petrol. Explor. Prod. Technol.
– volume: 22
  year: 1970
  ident: bib65
  article-title: Influence of pore geometry on water-oil relative permeability. SPE-2588-PA
  publication-title: J. Petrol. Technol.
– volume: 42
  start-page: 1643
  year: 2017
  end-page: 1654
  ident: bib100
  article-title: Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data
  publication-title: Arabian J. Sci. Eng.
– volume: vol. 13
  start-page: 485
  year: 2010
  end-page: 495
  ident: bib11
  publication-title: Engineering, Support-Vector Regression for Permeability Prediction in a Heterogeneous Reservoir: A Comparative Study. SPE-126339-PA
– volume: 46
  start-page: 935
  year: 2019
  end-page: 942
  ident: bib39
  article-title: A permeability prediction method based on pore structure and lithofacies
  publication-title: Petrol. Explor. Dev.
– volume: 588
  start-page: 125033
  year: 2020
  ident: bib73
  article-title: Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)
  publication-title: J. Hydrol.
– volume: 37
  year: 2020
  ident: bib64
  article-title: Implementation of an optimized binary classification by GMDH‐type neural network algorithm for predicting the blast produced ground vibration
  publication-title: Expet Syst.
– volume: vol. 200
  start-page: 106931
  year: 2020
  ident: bib99
  publication-title: Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree
– volume: 114
  start-page: 267
  year: 2010
  end-page: 277
  ident: bib10
  article-title: A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs
  publication-title: Eng. Geol.
– volume: 590
  start-page: 125423
  year: 2020
  ident: bib30
  article-title: Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search
  publication-title: J. Hydrol.
– start-page: 2
  year: 2006
  ident: bib67
  article-title: Differences between Spearman Correlation Coefficients
– year: 2003
  ident: bib49
  article-title: Natural gas prediction using the group method of data handling
  publication-title: 7th International Conference on Artificial Intelligence and Soft Computing
– volume: 118
  start-page: 104825
  year: 2020
  ident: bib48
  article-title: On the evaluation of thermal conductivity of nanofluids using advanced intelligent models
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 49
  start-page: 311
  year: 2008
  end-page: 325
  ident: bib12
  article-title: Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms
  publication-title: Energy Convers. Manag.
– volume: 4
  start-page: 317
  year: 1990
  end-page: 322
  ident: bib26
  article-title: Empirical expression of permeability in terms of porosity, specific surface area, and residual water saturation of carbonate rocks
  publication-title: J. Petrol. Sci. Eng.
– year: 1998
  ident: bib32
  article-title: Applied Regression Analysis
– volume: 74
  start-page: 8
  year: 2011
  end-page: 18
  ident: bib31
  article-title: Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, West Texas
  publication-title: J. Appl. Geophys.
– volume: 7
  start-page: 238
  year: 2021
  end-page: 251
  ident: bib36
  article-title: Prediction of disc cutter life during shield tunneling with ai via the incorporation of a genetic algorithm into a gmdh-type neural network
  publication-title: Engineering
– volume: 32
  start-page: 3368
  year: 2018
  end-page: 3379
  ident: bib54
  article-title: Investigation of pore characteristics and irreducible water saturation of tight reservoir using experimental and theoretical methods
  publication-title: Energy Fuels
– volume: 20
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib3
  article-title: Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models
  publication-title: BMC Med. Res. Methodol.
– volume: 61
  start-page: 422
  year: 1996
  end-page: 436
  ident: bib50
  article-title: Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada
  publication-title: Geophysics
– volume: 121
  start-page: 159
  year: 2014
  end-page: 166
  ident: bib95
  article-title: A new fracture prediction method by combining genetic algorithm with neural network in low-permeability reservoirs
  publication-title: J. Petrol. Sci. Eng.
– volume: 9
  start-page: 297
  year: 2019
  end-page: 305
  ident: bib84
  article-title: Permeability prediction from wireline logging and core data: a case study from Assam-Arakan basin
  publication-title: J. Petrol. Explor. Product. Technol.
– volume: 268
  start-page: 117389
  year: 2020
  ident: bib58
  article-title: State-of-the-art modeling permeability of the heterogeneous carbonate oil reservoirs using robust computational approaches
  publication-title: Fuel
– volume: 77
  start-page: 103244
  year: 2020
  ident: bib61
  article-title: Comparison of permeability predictions on cemented sandstones with physics-based and machine learning approaches
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 72
  start-page: 625
  year: 2008
  end-page: 629
  ident: bib86
  article-title: Energy demand prediction using GMDH networks
  publication-title: Neurocomputing
– start-page: 1
  year: 2020
  end-page: 17
  ident: bib89
  article-title: Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods
  publication-title: Eng. Comput.
– volume: 146
  start-page: 270
  year: 2017
  end-page: 285
  ident: bib96
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm
  publication-title: Elec. Power Syst. Res.
– volume: 1
  start-page: 25
  year: 2012
  end-page: 36
  ident: bib43
  article-title: A physical-based model of permeability/porosity relationship for the rock data of Iran southern carbonate reservoirs
  publication-title: Iranian J. Oil Gas Sci. Technol.
– volume: 3
  start-page: 370
  year: 2006
  end-page: 376
  ident: bib77
  article-title: Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks
  publication-title: J. Geophys. Eng.
– volume: 76
  start-page: 1
  year: 2015
  end-page: 21
  ident: bib20
  article-title: Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs
  publication-title: J. Struct. Geol.
– volume: 73
  start-page: 227
  year: 2010
  end-page: 232
  ident: bib53
  article-title: A new approach to improve neural networks' algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN)
  publication-title: J. Petrol. Sci. Eng.
– volume: 90
  start-page: 91
  year: 2006
  end-page: 114
  ident: bib35
  article-title: Porosity-permeability relationships in interlayered limestone-dolostone reservoirs
  publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull.
– volume: 36
  start-page: 4259
  year: 2011
  end-page: 4271
  ident: bib2
  article-title: Medium-term electric load forecasting using singular value decomposition
  publication-title: Energy
– volume: 236
  start-page: 110
  year: 2019
  end-page: 123
  ident: bib80
  article-title: Rigorous prognostication of permeability of heterogeneous carbonate oil reservoirs: smart modeling and correlation development
  publication-title: Fuel
– volume: 88
  start-page: 105940
  year: 2020
  ident: bib52
  article-title: A hybrid wavelet decomposer and GMDH-ELM ensemble model for Network function virtualization workload forecasting in cloud computing
  publication-title: Appl. Soft Comput.
– volume: 84
  start-page: B363
  year: 2019
  end-page: B373
  ident: bib97
  article-title: Application of a convolutional neural network in permeability prediction: a case study in the Jacksonburg-Stringtown oil field, West Virginia, USA
  publication-title: Geophysics
– volume: 4
  start-page: 275
  year: 1998
  end-page: 316
  ident: bib66
  article-title: GMDH algorithms for complex systems modelling
  publication-title: Math. Comput. Model. Dyn. Syst.
– volume: 118
  start-page: 159
  year: 2021
  end-page: 168
  ident: bib16
  article-title: On the evaluation of solubility of hydrogen sulfide in ionic liquids using advanced committee machine intelligent systems
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 218
  start-page: 115576
  year: 2020
  ident: bib33
  article-title: Fractal characterization of permeability prediction model in hydrate-bearing porous media
  publication-title: Chem. Eng. Sci.
– volume: 21
  start-page: 718
  year: 2014
  end-page: 724
  ident: bib23
  article-title: Prediction of permeability in a tight gas reservoir by using three soft computing approaches: a comparative study
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 173
  start-page: 170
  year: 2019
  end-page: 186
  ident: bib79
  article-title: Prediction of oil-water relative permeability in sandstone and carbonate reservoir rocks using the CSA-LSSVM algorithm
  publication-title: J. Petrol. Sci. Eng.
– volume: 17
  start-page: 158
  year: 2018
  end-page: 165
  ident: bib75
  article-title: Rockburst prediction in kimberlite using decision tree with incomplete data
  publication-title: J. Sustain. Mining
– volume: 24
  start-page: 445
  year: 2015
  end-page: 453
  ident: bib41
  article-title: A polynomial regression model for stabilized turbulent confined jet diffusion flames using bluff body burners
  publication-title: Egyptian J. Petrol.
– volume: 9
  start-page: 1
  year: 1958
  end-page: 8
  ident: bib62
  article-title: A relation between permeability and size distribution of pores
  publication-title: Eur. J. Soil Sci.
– start-page: 512
  year: 2015
  ident: bib82
  article-title: Physical Properties of Rocks: Fundamentals and Principles of Petrophysics
– start-page: 660
  year: 1998
  ident: bib76
  article-title: Applied Regression Analysis: a Research Tool
– volume: 112
  start-page: 104096
  year: 2020
  ident: bib9
  article-title: Permeability prediction and diagenesis in tight carbonates using machine learning techniques
  publication-title: Mar. Petrol. Geol.
– volume: 2
  start-page: 105
  year: 1950
  end-page: 118
  ident: bib94
  article-title: Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data. SPE-950105-G
  publication-title: J. Petrol. Technol.
– volume: 5
  start-page: 271
  year: 2019
  end-page: 284
  ident: bib5
  article-title: Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs
  publication-title: Petroleum
– volume: 33
  start-page: 2853
  year: 2021
  end-page: 2871
  ident: bib4
  article-title: Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data
  publication-title: Neural Comput. Appl.
– volume: 31
  start-page: 109
  year: 1998
  end-page: 131
  ident: bib55
  article-title: A parametric model for predicting relative permeability-saturation-capillary pressure relationships of oil–water systems in porous media with mixed wettability
  publication-title: Transport Porous Media
– volume: 104
  start-page: 387
  year: 2015
  end-page: 396
  ident: bib68
  article-title: Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds
  publication-title: Ocean Eng.
– volume: 110
  start-page: 412
  year: 2018
  end-page: 427
  ident: bib88
  article-title: Wavelet support vector machine-based prediction model of dam deformation
  publication-title: Mech. Syst. Signal Process.
– volume: 29
  start-page: 1328
  year: 2006
  end-page: 1340
  ident: bib87
  article-title: A study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann method
  publication-title: Adv. Water Resour.
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: bib85
  article-title: A tutorial on support vector regression
  publication-title: statist. Comput
– volume: 2
  start-page: 359
  year: 2001
  end-page: 362
  ident: bib40
  article-title: Detecting trends using Spearman's rank correlation coefficient
  publication-title: Environ. Forensics
– volume: 113
  start-page: 165
  year: 2020
  end-page: 177
  ident: bib14
  article-title: Predicting thermal conductivity of carbon dioxide using group of data-driven models
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 23
  start-page: 17
  year: 2021
  end-page: 30
  ident: bib47
  article-title: Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm
  publication-title: J. Petrol. Mining Eng.
– volume: 7
  start-page: 353
  year: 2008
  end-page: 363
  ident: bib27
  article-title: A functional approximation comparison between neural networks and polynomial regression
  publication-title: WSEAS Trans. Math.
– volume: 13
  start-page: 551
  year: 2020
  ident: bib71
  article-title: Prediction of permeability using group method of data handling (GMDH) neural network from well log data
  publication-title: Energies
– volume: 26
  start-page: 235
  year: 2000
  end-page: 239
  ident: bib51
  article-title: Relationship of permeability, porosity and depth using an artificial neural network
  publication-title: J. Petrol. Sci. Eng.
– year: 2021
  ident: bib70
  article-title: Prediction of bubble point pressure using new hybrid computationail intelligence models
  publication-title: J. Chem. Petrol. ENg.
– volume: 10
  start-page: 613
  year: 2020
  end-page: 630
  ident: bib15
  article-title: Applying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EOR
  publication-title: Greenhouse Gases: Sci. Technol.
– volume: 12
  start-page: 403
  year: 2020
  end-page: 413
  ident: bib57
  article-title: Determination of full-scale pore size distribution of Gaomiaozi bentonite and its permeability prediction
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 48
  start-page: 500
  year: 2012
  end-page: 506
  ident: bib72
  article-title: Modelling using polynomial regression
  publication-title: Procedia Eng.
– volume: 186
  start-page: 104249
  year: 2020
  ident: bib81
  article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment
  publication-title: Catena
– volume: 30
  start-page: 87
  year: 2011
  end-page: 93
  ident: bib46
  article-title: Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data
  publication-title: Quaest. Geogr.
– volume: 73
  start-page: 227
  year: 2010
  ident: 10.1016/j.marpetgeo.2022.105597_bib53
  article-title: A new approach to improve neural networks' algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN)
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2010.07.003
– start-page: 9
  year: 2004
  ident: 10.1016/j.marpetgeo.2022.105597_bib56
  article-title: Reservoir porosity and permeability estimation from well logs using fuzzy logic and neural networks. SPE-88476-MS
– year: 2021
  ident: 10.1016/j.marpetgeo.2022.105597_bib70
  article-title: Prediction of bubble point pressure using new hybrid computationail intelligence models
  publication-title: J. Chem. Petrol. ENg.
– volume: 5
  start-page: 271
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib5
  article-title: Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2018.06.002
– volume: 118
  start-page: 104825
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib48
  article-title: On the evaluation of thermal conductivity of nanofluids using advanced intelligent models
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2020.104825
– volume: 88
  start-page: 105940
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib52
  article-title: A hybrid wavelet decomposer and GMDH-ELM ensemble model for Network function virtualization workload forecasting in cloud computing
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105940
– year: 2000
  ident: 10.1016/j.marpetgeo.2022.105597_bib29
– volume: 1
  start-page: 382
  year: 2008
  ident: 10.1016/j.marpetgeo.2022.105597_bib22
  article-title: A study of absolute permeability dependence on pore-scale characteristics of carbonate reservoirs using artificial intelligence
  publication-title: Int. J. Oil Gas Coal Technol.
  doi: 10.1504/IJOGCT.2008.020369
– volume: 21
  start-page: 718
  year: 2014
  ident: 10.1016/j.marpetgeo.2022.105597_bib23
  article-title: Prediction of permeability in a tight gas reservoir by using three soft computing approaches: a comparative study
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2014.09.037
– volume: 104
  start-page: 387
  year: 2015
  ident: 10.1016/j.marpetgeo.2022.105597_bib68
  article-title: Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.05.016
– volume: 84
  start-page: B363
  issue: 6
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib97
  article-title: Application of a convolutional neural network in permeability prediction: a case study in the Jacksonburg-Stringtown oil field, West Virginia, USA
  publication-title: Geophysics
  doi: 10.1190/geo2018-0588.1
– volume: 236
  start-page: 264
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib37
  article-title: A data-driven model for predicting the effect of temperature on oil-water relative permeability
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.08.109
– volume: 121
  start-page: 159
  year: 2014
  ident: 10.1016/j.marpetgeo.2022.105597_bib95
  article-title: A new fracture prediction method by combining genetic algorithm with neural network in low-permeability reservoirs
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2014.06.033
– volume: 4
  start-page: 389
  year: 2005
  ident: 10.1016/j.marpetgeo.2022.105597_bib90
  article-title: A genetic algorithm for predicting pore geometry based on air permeability measurements
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2004.0116
– volume: 114
  start-page: 267
  year: 2010
  ident: 10.1016/j.marpetgeo.2022.105597_bib10
  article-title: A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2010.05.005
– volume: 11
  start-page: 1233
  issue: 3
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105597_bib21
  article-title: Prediction performance advantages of deep machine learning algorithms for two-phase flow rates through wellhead chokes
  publication-title: J. Petrol. Explor. Product.
  doi: 10.1007/s13202-021-01087-4
– volume: 61
  start-page: 422
  year: 1996
  ident: 10.1016/j.marpetgeo.2022.105597_bib50
  article-title: Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada
  publication-title: Geophysics
  doi: 10.1190/1.1443970
– volume: 110
  start-page: 412
  year: 2018
  ident: 10.1016/j.marpetgeo.2022.105597_bib88
  article-title: Wavelet support vector machine-based prediction model of dam deformation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.03.022
– volume: 173
  start-page: 170
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib79
  article-title: Prediction of oil-water relative permeability in sandstone and carbonate reservoir rocks using the CSA-LSSVM algorithm
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2018.09.085
– volume: 176
  start-page: 762
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib17
  article-title: A parametric study of machine learning techniques in petroleum reservoir permeability prediction by integrating seismic attributes and wireline data
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2019.01.110
– volume: 94
  start-page: 65
  year: 2012
  ident: 10.1016/j.marpetgeo.2022.105597_bib91
  article-title: An annual load forecasting model based on support vector regression with differential evolution algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.01.010
– volume: 10
  start-page: 613
  issue: 3
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib15
  article-title: Applying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EOR
  publication-title: Greenhouse Gases: Sci. Technol.
  doi: 10.1002/ghg.1982
– year: 2003
  ident: 10.1016/j.marpetgeo.2022.105597_bib49
  article-title: Natural gas prediction using the group method of data handling
– volume: 36
  start-page: 4259
  year: 2011
  ident: 10.1016/j.marpetgeo.2022.105597_bib2
  article-title: Medium-term electric load forecasting using singular value decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2011.04.017
– volume: 76
  start-page: 1
  year: 2015
  ident: 10.1016/j.marpetgeo.2022.105597_bib20
  article-title: Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2015.03.013
– volume: 74
  start-page: 8
  year: 2011
  ident: 10.1016/j.marpetgeo.2022.105597_bib31
  article-title: Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, West Texas
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2011.02.010
– volume: 268
  start-page: 117389
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib58
  article-title: State-of-the-art modeling permeability of the heterogeneous carbonate oil reservoirs using robust computational approaches
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117389
– volume: 2
  start-page: 359
  issue: 4
  year: 2001
  ident: 10.1016/j.marpetgeo.2022.105597_bib40
  article-title: Detecting trends using Spearman's rank correlation coefficient
  publication-title: Environ. Forensics
  doi: 10.1006/enfo.2001.0061
– volume: 146
  start-page: 270
  year: 2017
  ident: 10.1016/j.marpetgeo.2022.105597_bib96
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm
  publication-title: Elec. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.01.035
– volume: 113
  start-page: 165
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib14
  article-title: Predicting thermal conductivity of carbon dioxide using group of data-driven models
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2020.08.001
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.marpetgeo.2022.105597_bib85
  article-title: A tutorial on support vector regression
  publication-title: statist. Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 7
  start-page: 238
  issue: 2
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105597_bib36
  article-title: Prediction of disc cutter life during shield tunneling with ai via the incorporation of a genetic algorithm into a gmdh-type neural network
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.02.016
– volume: 42
  start-page: 1643
  year: 2017
  ident: 10.1016/j.marpetgeo.2022.105597_bib101
  article-title: Engineering, Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-016-2365-2
– volume: 5
  start-page: 271
  issue: 3
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib6
  article-title: Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2018.06.002
– volume: 1
  start-page: 25
  year: 2012
  ident: 10.1016/j.marpetgeo.2022.105597_bib43
  article-title: A physical-based model of permeability/porosity relationship for the rock data of Iran southern carbonate reservoirs
  publication-title: Iranian J. Oil Gas Sci. Technol.
– volume: 9
  start-page: 297
  issue: 1
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib84
  article-title: Permeability prediction from wireline logging and core data: a case study from Assam-Arakan basin
  publication-title: J. Petrol. Explor. Product. Technol.
  doi: 10.1007/s13202-018-0459-y
– volume: 13
  start-page: 551
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib71
  article-title: Prediction of permeability using group method of data handling (GMDH) neural network from well log data
  publication-title: Energies
  doi: 10.3390/en13030551
– volume: 31
  issue: 4
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib98
  article-title: Fast prediction of reservoir permeability based on embedded feature selection and Light GBM using direct logging data
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab4a45
– volume: 2
  start-page: 423
  year: 2004
  ident: 10.1016/j.marpetgeo.2022.105597_bib74
  article-title: Self-organizing polynomial neural networks based on genetically optimized multi-layer perceptron architecture
  publication-title: Int. J. Control Autom. Syst.
– volume: 189
  start-page: 106929
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib59
  article-title: Modeling relative permeability of gas condensate reservoirs: advanced computational frameworks
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2020.106929
– volume: 22
  issue: 10
  year: 1970
  ident: 10.1016/j.marpetgeo.2022.105597_bib65
  article-title: Influence of pore geometry on water-oil relative permeability. SPE-2588-PA
  publication-title: J. Petrol. Technol.
  doi: 10.2118/2588-PA
– volume: 30
  start-page: 87
  issue: 2
  year: 2011
  ident: 10.1016/j.marpetgeo.2022.105597_bib46
  article-title: Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data
  publication-title: Quaest. Geogr.
  doi: 10.2478/v10117-011-0021-1
– volume: 37
  start-page: 437
  year: 2005
  ident: 10.1016/j.marpetgeo.2022.105597_bib69
  article-title: Inverse modelling of multi-objective thermodynamically optimized turbojet engines using GMDH-type neural networks and evolutionary algorithms
  publication-title: Eng. Optim.
  doi: 10.1080/03052150500035591
– volume: vol. 200
  start-page: 106931
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib99
– volume: 590
  start-page: 125423
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib30
  article-title: Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125423
– start-page: 1
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib89
  article-title: Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods
  publication-title: Eng. Comput.
– volume: 285
  start-page: 119147
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105597_bib60
  article-title: Toward smart schemes for modeling CO2 solubility in crude oil: application to carbon dioxide enhanced oil recovery
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119147
– volume: 23
  start-page: 17
  issue: 1
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105597_bib47
  article-title: Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm
  publication-title: J. Petrol. Mining Eng.
– volume: 10
  start-page: 1817
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib63
  article-title: Experimental study of the relationship between porosity and surface area of carbonate reservoir rocks
  publication-title: J. Petrol. Explor. Prod. Technol.
  doi: 10.1007/s13202-020-00838-z
– volume: 218
  start-page: 115576
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib33
  article-title: Fractal characterization of permeability prediction model in hydrate-bearing porous media
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115576
– volume: 24
  start-page: 1000
  year: 2017
  ident: 10.1016/j.marpetgeo.2022.105597_bib34
  article-title: Development of group method of data handling based on genetic algorithm to predict incipient motion in rigid rectangular storm water channel
  publication-title: Scientia Iranica. Transaction A, Civil Engineering
– volume: 2
  start-page: 105
  year: 1950
  ident: 10.1016/j.marpetgeo.2022.105597_bib94
  article-title: Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data. SPE-950105-G
  publication-title: J. Petrol. Technol.
  doi: 10.2118/950105-G
– volume: 37
  issue: 5
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib64
  article-title: Implementation of an optimized binary classification by GMDH‐type neural network algorithm for predicting the blast produced ground vibration
  publication-title: Expet Syst.
– volume: 9
  start-page: 1
  year: 1958
  ident: 10.1016/j.marpetgeo.2022.105597_bib62
  article-title: A relation between permeability and size distribution of pores
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1958.tb01892.x
– volume: 33
  start-page: 2853
  issue: 7
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105597_bib4
  article-title: Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05164-3
– volume: 26
  start-page: 235
  year: 2000
  ident: 10.1016/j.marpetgeo.2022.105597_bib51
  article-title: Relationship of permeability, porosity and depth using an artificial neural network
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/S0920-4105(00)00037-1
– volume: 77
  start-page: 103244
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib61
  article-title: Comparison of permeability predictions on cemented sandstones with physics-based and machine learning approaches
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103244
– volume: 236
  start-page: 110
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib80
  article-title: Rigorous prognostication of permeability of heterogeneous carbonate oil reservoirs: smart modeling and correlation development
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.08.136
– start-page: 13
  year: 2003
  ident: 10.1016/j.marpetgeo.2022.105597_bib18
  article-title: Permeability correlations for carbonate and other rocks
– volume: 17
  start-page: 158
  issue: 3
  year: 2018
  ident: 10.1016/j.marpetgeo.2022.105597_bib75
  article-title: Rockburst prediction in kimberlite using decision tree with incomplete data
  publication-title: J. Sustain. Mining
  doi: 10.1016/j.jsm.2018.07.004
– volume: 4
  start-page: 275
  year: 1998
  ident: 10.1016/j.marpetgeo.2022.105597_bib66
  article-title: GMDH algorithms for complex systems modelling
  publication-title: Math. Comput. Model. Dyn. Syst.
  doi: 10.1080/13873959808837083
– volume: 174
  start-page: 108943
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105597_bib38
  article-title: Prediction of oil flow rate through orifice flow meters: optimized machine-learning techniques
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108943
– start-page: 660
  year: 1998
  ident: 10.1016/j.marpetgeo.2022.105597_bib76
– volume: 4
  start-page: 43
  year: 2018
  ident: 10.1016/j.marpetgeo.2022.105597_bib45
  article-title: A hybrid PSO-SVM-based model for determination of oil recovery factor in the low-permeability reservoir
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2017.06.001
– volume: 184
  start-page: 17
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib93
  article-title: Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2019.106587
– volume: 588
  start-page: 125033
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib73
  article-title: Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125033
– volume: 118
  start-page: 159
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105597_bib16
  article-title: On the evaluation of solubility of hydrogen sulfide in ionic liquids using advanced committee machine intelligent systems
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2021.01.007
– volume: 24
  start-page: 445
  year: 2015
  ident: 10.1016/j.marpetgeo.2022.105597_bib41
  article-title: A polynomial regression model for stabilized turbulent confined jet diffusion flames using bluff body burners
  publication-title: Egyptian J. Petrol.
  doi: 10.1016/j.ejpe.2015.06.001
– volume: 130
  start-page: 1045
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib44
  article-title: Prediction of oil-water relative permeability with a fractal method in ultra-high water cut stage
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.11.011
– volume: vol. 13
  start-page: 485
  year: 2010
  ident: 10.1016/j.marpetgeo.2022.105597_bib11
– volume: 29
  start-page: 1328
  year: 2006
  ident: 10.1016/j.marpetgeo.2022.105597_bib87
  article-title: A study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann method
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2005.10.012
– start-page: 1524
  year: 2018
  ident: 10.1016/j.marpetgeo.2022.105597_bib7
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib3
  article-title: Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-020-01159-9
– volume: 7
  start-page: 353
  year: 2008
  ident: 10.1016/j.marpetgeo.2022.105597_bib27
  article-title: A functional approximation comparison between neural networks and polynomial regression
  publication-title: WSEAS Trans. Math.
– volume: 48
  start-page: 500
  year: 2012
  ident: 10.1016/j.marpetgeo.2022.105597_bib72
  article-title: Modelling using polynomial regression
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.09.545
– volume: 42
  start-page: 1643
  year: 2017
  ident: 10.1016/j.marpetgeo.2022.105597_bib100
  article-title: Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-016-2365-2
– volume: 72
  start-page: 625
  issue: 1–3
  year: 2008
  ident: 10.1016/j.marpetgeo.2022.105597_bib86
  article-title: Energy demand prediction using GMDH networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.08.006
– volume: 112
  start-page: 104096
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib9
  article-title: Permeability prediction and diagenesis in tight carbonates using machine learning techniques
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2019.104096
– volume: 46
  start-page: 935
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib39
  article-title: A permeability prediction method based on pore structure and lithofacies
  publication-title: Petrol. Explor. Dev.
  doi: 10.1016/S1876-3804(19)60250-8
– volume: 12
  start-page: 403
  issue: 2
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib57
  article-title: Determination of full-scale pore size distribution of Gaomiaozi bentonite and its permeability prediction
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2019.12.005
– start-page: 2
  year: 2006
  ident: 10.1016/j.marpetgeo.2022.105597_bib67
– start-page: 512
  year: 2015
  ident: 10.1016/j.marpetgeo.2022.105597_bib82
– volume: 190
  start-page: 107037
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib13
  article-title: Prediction of CO2 diffusivity in brine using white-box machine learning
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107037
– volume: 122
  start-page: 105185
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105597_bib78
  article-title: Toward a realistic reconstruction and determination of blood flow pattern in complex vascular network: 3D, non-Newtonian, multi-branch simulation based on CFD and GMDH algorithm
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2021.105185
– volume: 102
  start-page: 33
  year: 2019
  ident: 10.1016/j.marpetgeo.2022.105597_bib92
  article-title: Relationships among composition, porosity and permeability of longmaxi shale reservoir in the weiyuan block, sichuan basin, China
  publication-title: Mar. Petrol. Geol.
  doi: 10.1016/j.marpetgeo.2018.12.026
– volume: 186
  start-page: 104249
  year: 2020
  ident: 10.1016/j.marpetgeo.2022.105597_bib81
  article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104249
– start-page: 18
  year: 2012
  ident: 10.1016/j.marpetgeo.2022.105597_bib42
  article-title: Prediction of hydrocarbon reservoirs permeability using support vector machine
  publication-title: Math. Probl Eng.
– volume: 90
  start-page: 91
  issue: 1
  year: 2006
  ident: 10.1016/j.marpetgeo.2022.105597_bib35
  article-title: Porosity-permeability relationships in interlayered limestone-dolostone reservoirs
  publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull.
– volume: 50
  start-page: 645
  year: 2008
  ident: 10.1016/j.marpetgeo.2022.105597_bib25
  article-title: Committee neural networks for porosity and permeability prediction from well logs
  publication-title: Geophys. Prospect.
  doi: 10.1046/j.1365-2478.2002.00346.x
– volume: 33
  start-page: 136
  issue: 2
  year: 2021
  ident: 10.1016/j.marpetgeo.2022.105597_bib24
  article-title: A new empirical model for enhancing well log permeability prediction, using nonlinear regression method: case study from Hassi-Berkine oil field reservoir–Algeria
  publication-title: J. King Saud Univ. Eng. Sci.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.marpetgeo.2022.105597_bib28
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 4
  start-page: 317
  year: 1990
  ident: 10.1016/j.marpetgeo.2022.105597_bib26
  article-title: Empirical expression of permeability in terms of porosity, specific surface area, and residual water saturation of carbonate rocks
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/0920-4105(90)90029-3
– volume: 32
  start-page: 3368
  year: 2018
  ident: 10.1016/j.marpetgeo.2022.105597_bib54
  article-title: Investigation of pore characteristics and irreducible water saturation of tight reservoir using experimental and theoretical methods
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.8b00193
– volume: 17
  start-page: 148
  issue: 2
  year: 2002
  ident: 10.1016/j.marpetgeo.2022.105597_bib19
  article-title: Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval
  publication-title: Int. J. Biol. Markers
  doi: 10.1177/172460080201700213
– volume: 150
  start-page: 43
  year: 2017
  ident: 10.1016/j.marpetgeo.2022.105597_bib8
  article-title: A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2016.11.033
– volume: 5–8 October
  year: 2003
  ident: 10.1016/j.marpetgeo.2022.105597_bib83
  article-title: A model to correlate permeability with efficient porosity and irreducible water saturation. SPE-84303-MS
– volume: 31
  start-page: 109
  year: 1998
  ident: 10.1016/j.marpetgeo.2022.105597_bib55
  article-title: A parametric model for predicting relative permeability-saturation-capillary pressure relationships of oil–water systems in porous media with mixed wettability
  publication-title: Transport Porous Media
  doi: 10.1023/A:1006503406056
– volume: 49
  start-page: 311
  year: 2008
  ident: 10.1016/j.marpetgeo.2022.105597_bib12
  article-title: Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2007.06.002
– year: 1998
  ident: 10.1016/j.marpetgeo.2022.105597_bib32
– volume: 3
  start-page: 370
  year: 2006
  ident: 10.1016/j.marpetgeo.2022.105597_bib77
  article-title: Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks
  publication-title: J. Geophys. Eng.
  doi: 10.1088/1742-2132/3/4/008
SSID ssj0007901
Score 2.5825338
Snippet Carbonate petroleum reservoirs typically have lower permeabilities and recovery factors than sandstone reservoirs, so the natural fractures they often...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105597
SubjectTerms Gas-condensate reservoirs
Group method of data handling GMDH
Heterogeneous carbonate reservoirs
Machine learning
Permeability prediction
Specific surface area
Title Permeability prediction of heterogeneous carbonate gas condensate reservoirs applying group method of data handling
URI https://dx.doi.org/10.1016/j.marpetgeo.2022.105597
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA5jIuiD6FScP0YefK3r0jTtfBvDORWHoIO9lTRN50TX0VVhL_7t3qXt3EDYg49pc6XkLnfX5rvvCLl0Y6HbIROWEmFocYl7LvKF5WiIzrYdCW54Ch4Hoj_k9yN3VCHdshYGYZWF7899uvHWxZVmsZrN2WTSfLYRnAXxlzET-LCinHMPrfzq-xfm4bVNC2ScbOHsNYzXB55xZGNTBcgY9rx1kf3prwi1EnV6-2SvSBdpJ3-jA1LR0xrZXSERrJHtW9Ocd3FI5k_gZnVOvL2gsxTPYHDdaRLTV4S9JGAtGj71qZJpiL_NNR1LGCXYBneOQyxGSr-SSTqneLSNNVDUFH7QvNU0PgpBpdSwM8DdIzLs3bx0-1bRVMGS8DWaWVpy0AokBjKC7e27voohSkeQVbSYJ1vS4doDB-lHyBwplIQMMlScK8W92I9Z7ByT6jSZ6hNCHSZ9IeOWA0kTj-yozYXPHcl9rWGidutElAsZqIJxHBtfvAcltOwtWGogQA0EuQbqxF4KznLSjc0i16WmgjX7CSA0bBI-_Y_wGdnBUQ6CPCfVLP3UF5CoZGHDWGKDbHXuHvqDH0kC6sc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEL4gxqgPRlEj_uyDr5Oxdd3wzRARFYiJkPC2dFuHGGVkoAkv_u3edQMhMfHBx669Zem1d9f1u-8ALp1YqFpgCSMUQWBwSXsu8oRhK_TOphkJrnkK2h3R7PGHvtMvQH2eC0Owytz2ZzZdW-v8SSWfzcp4OKw8mwTOQv9rWdrxuWuwznH7UhmDq68fnIdb0zWQabRBw1dAXu90yTEd6DRAy6Kitw7RP_3mopbcTmMXdvJ4kd1kn7QHBTUqwfYSi2AJNu50dd7ZPkye0M6qjHl7xsYpXcLQxLMkZi-Ee0lwuSg867NQpgH9N1dsILGVUB3cCTUpGyn9TIbphNHdNiVBMZ35wbJa0_QqQpUyTc-AvQfQa9x2600jr6pgSDyOTg0lOaoFIwMZ4f72HC-M0U1HGFZULVdWpc2VixbSi4g6UoQSQ8gg5DwMuRt7sRXbh1AcJSN1BMy2pCdkXLUxauKRGdW48LgtuacUDlROGcR8Iv0wpxynyhdv_hxb9uovNOCTBvxMA2UwF4LjjHXjb5Hruab8lQXko2_4S_j4P8IXsNnstlt-677zeAJb1JMhIk-hOE0_1BlGLdPgXK_Kb7Av7FU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permeability+prediction+of+heterogeneous+carbonate+gas+condensate+reservoirs+applying+group+method+of+data+handling&rft.jtitle=Marine+and+petroleum+geology&rft.au=Zanganeh+Kamali%2C+Masoud&rft.au=Davoodi%2C+Shadfar&rft.au=Ghorbani%2C+Hamzeh&rft.au=Wood%2C+David+A.&rft.date=2022-05-01&rft.issn=0264-8172&rft.volume=139&rft.spage=105597&rft_id=info:doi/10.1016%2Fj.marpetgeo.2022.105597&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marpetgeo_2022_105597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-8172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-8172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-8172&client=summon