Permeability prediction of heterogeneous carbonate gas condensate reservoirs applying group method of data handling
Carbonate petroleum reservoirs typically have lower permeabilities and recovery factors than sandstone reservoirs, so the natural fractures they often incorporate have positive impacts on resource recovery and fluid production rates. Quantifying effective permeability, incorporating contributions fr...
Saved in:
Published in | Marine and petroleum geology Vol. 139; p. 105597 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbonate petroleum reservoirs typically have lower permeabilities and recovery factors than sandstone reservoirs, so the natural fractures they often incorporate have positive impacts on resource recovery and fluid production rates. Quantifying effective permeability, incorporating contributions from pores and fractures, is therefore essential in the reservoir characterization and flow-regime modelling of carbonate reservoirs. This research applies a robust machine-learning forecasting model to predict permeability (K) for heterogeneous carbonate gas condensate reservoirs. A 212-point dataset from six gas-condensate carbonate reservoirs (Russia and Iran) is compiled. The input variables considered are porosity (Φ, %), specific surface area (Sp, 1/cm) and irreducible water saturation (Swir, %). These variables are assessed using four machine learning models: group method of data handling (GMDH), polynomial regression (PR), support vector machine (SVR), and decision tree (DT) to predict permeability. The GMDH algorithm, a polynomial neural network with a customized architecture is developed, such that it displays increased prediction accuracy and improved learning capabilities. All four models developed in this study substantially improve upon K predictions derived from established empirical correlations. The GMDH model also outperforms the other models in respect of K prediction accuracy using Φ, Swir, and Sp as input variables. It achieves permeability prediction accuracy for the multi-field dataset evaluated with a root mean squared error (RMSE) and coefficient of determination (R2) for the training and testing of the best model (GMDH) of RMSE = 9.2 mD and R2 = 0.9988; RMSE = 0.4 mD and R2 = 0.9972, respectively. The model can be readily adapted for application to other field datasets to estimate K from limited well-log and/or core data.
•Group method of data handling provides accurate predictions of permeability.•Carbonate reservoir permeability predicted with porosity & specific surface area.•Gas-condensate reservoirs predicted without need for water saturation data.•212 core datasets from large gas condensate fields in Iran and Russia compiled.•Empirical models poorly predict permeability with just porosity/water saturation. |
---|---|
AbstractList | Carbonate petroleum reservoirs typically have lower permeabilities and recovery factors than sandstone reservoirs, so the natural fractures they often incorporate have positive impacts on resource recovery and fluid production rates. Quantifying effective permeability, incorporating contributions from pores and fractures, is therefore essential in the reservoir characterization and flow-regime modelling of carbonate reservoirs. This research applies a robust machine-learning forecasting model to predict permeability (K) for heterogeneous carbonate gas condensate reservoirs. A 212-point dataset from six gas-condensate carbonate reservoirs (Russia and Iran) is compiled. The input variables considered are porosity (Φ, %), specific surface area (Sp, 1/cm) and irreducible water saturation (Swir, %). These variables are assessed using four machine learning models: group method of data handling (GMDH), polynomial regression (PR), support vector machine (SVR), and decision tree (DT) to predict permeability. The GMDH algorithm, a polynomial neural network with a customized architecture is developed, such that it displays increased prediction accuracy and improved learning capabilities. All four models developed in this study substantially improve upon K predictions derived from established empirical correlations. The GMDH model also outperforms the other models in respect of K prediction accuracy using Φ, Swir, and Sp as input variables. It achieves permeability prediction accuracy for the multi-field dataset evaluated with a root mean squared error (RMSE) and coefficient of determination (R2) for the training and testing of the best model (GMDH) of RMSE = 9.2 mD and R2 = 0.9988; RMSE = 0.4 mD and R2 = 0.9972, respectively. The model can be readily adapted for application to other field datasets to estimate K from limited well-log and/or core data.
•Group method of data handling provides accurate predictions of permeability.•Carbonate reservoir permeability predicted with porosity & specific surface area.•Gas-condensate reservoirs predicted without need for water saturation data.•212 core datasets from large gas condensate fields in Iran and Russia compiled.•Empirical models poorly predict permeability with just porosity/water saturation. |
ArticleNumber | 105597 |
Author | Zanganeh Kamali, Masoud Lajmorak, Sahar Taherizade, Farzaneh Rukavishnikov, Valeriy S. Davoodi, Shadfar Ghorbani, Hamzeh Wood, David A. Band, Shahab S. Mohamadian, Nima |
Author_xml | – sequence: 1 givenname: Masoud surname: Zanganeh Kamali fullname: Zanganeh Kamali, Masoud email: masoud.z.kamali@stu.yazd.ac.ir organization: Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran – sequence: 2 givenname: Shadfar surname: Davoodi fullname: Davoodi, Shadfar email: davoodis@hw.tpu.ru organization: School of Earth Sciences & Engineering, Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russia – sequence: 3 givenname: Hamzeh orcidid: 0000-0003-4657-8249 surname: Ghorbani fullname: Ghorbani, Hamzeh email: hamzehghorbani68@yahoo.com organization: Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran – sequence: 4 givenname: David A. orcidid: 0000-0003-3202-4069 surname: Wood fullname: Wood, David A. email: dw@dwasolutions.com organization: DWA Energy Limited, Lincoln, United Kingdom – sequence: 5 givenname: Nima surname: Mohamadian fullname: Mohamadian, Nima email: nima.0691@gmail.com organization: Young Researchers and Elite Club, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran – sequence: 6 givenname: Sahar surname: Lajmorak fullname: Lajmorak, Sahar email: saharlajmorak@yahoo.com organization: Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Yousef Sobouti Blvd., 45137-66731, Zanjan, Iran – sequence: 7 givenname: Valeriy S. surname: Rukavishnikov fullname: Rukavishnikov, Valeriy S. email: rukavishnikovvs@hw.tpu.ru organization: School of Earth Sciences & Engineering, Tomsk Polytechnic University, Lenin Avenue, Tomsk, Russia – sequence: 8 givenname: Farzaneh surname: Taherizade fullname: Taherizade, Farzaneh email: farzaneh.taherizade@stu.yazd.ac.ir organization: Department of Computer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran – sequence: 9 givenname: Shahab S. surname: Band fullname: Band, Shahab S. email: shamshirbands@yuntech.edu.tw organization: Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan |
BookMark | eNqNkMtKxDAUhoMoOF6ewbxAxyRNm87CxSDeQNCFrsNpctrJ0ElKEoV5e1tGXLjRzTmcy__D_52RYx88EnLF2ZIzXl9vlzuII-Yew1IwIaZtVa3UEVnwRpWFZKo8Jgsmalk0XIlTcpbSljGmVowvSHrFuENo3eDyno4RrTPZBU9DRzeYMYYePYaPRA3ENnjISHuYpuAt-jSPERPGz-BiojCOw975nvYxfIx0h3kT7GxlIQPdgLfDdL0gJx0MCS-_-zl5v797u30snl8enm7XzwWUZZMLBFm3LVMN2HKqVWM6IYWtKsmFAg6lRKVq0Viu6ro2wFar1khpjFRd04muPCc3B18TQ0oRO21chjldjuAGzZmeCeqt_iGoZ4L6QHDSq1_6Mbrpdf8P5fqgxCnep8Ook3HozUQ3osnaBvenxxfudJY4 |
CitedBy_id | crossref_primary_10_1038_s41598_024_63168_8 crossref_primary_10_1007_s12665_024_11534_0 crossref_primary_10_1080_13467581_2023_2278453 crossref_primary_10_1016_j_fuel_2024_133109 crossref_primary_10_1080_10916466_2025_2465847 crossref_primary_10_1007_s11053_023_10240_1 crossref_primary_10_1007_s12145_024_01515_z crossref_primary_10_1021_acs_jcim_3c02039 crossref_primary_10_1002_cnm_70029 crossref_primary_10_1038_s41598_022_15869_1 crossref_primary_10_1021_acsomega_3c01927 crossref_primary_10_1097_MD_0000000000038286 crossref_primary_10_1007_s13202_022_01531_z crossref_primary_10_1080_15376494_2025_2471950 crossref_primary_10_1007_s10553_024_01754_2 crossref_primary_10_1021_acsomega_2c05759 crossref_primary_10_1080_21580103_2025_2456295 crossref_primary_10_1039_D4YA00313F crossref_primary_10_1007_s11600_022_00964_8 crossref_primary_10_1016_j_heliyon_2024_e32666 crossref_primary_10_1007_s12145_024_01409_0 crossref_primary_10_1016_j_jrmge_2024_09_013 crossref_primary_10_1007_s13202_022_01593_z crossref_primary_10_1016_j_apr_2023_101880 crossref_primary_10_3389_feart_2022_1023578 crossref_primary_10_1190_geo2023_0657_1 crossref_primary_10_3389_feart_2022_1043719 crossref_primary_10_1038_s41598_024_75114_9 crossref_primary_10_1080_1573062X_2024_2360184 crossref_primary_10_1016_j_geoen_2024_212851 crossref_primary_10_1080_21650373_2024_2449491 crossref_primary_10_1002_cjce_25385 crossref_primary_10_1007_s12145_024_01641_8 crossref_primary_10_1007_s13202_024_01836_1 crossref_primary_10_1016_j_ecoinf_2024_102990 crossref_primary_10_1109_ACCESS_2023_3349216 crossref_primary_10_1021_acsomega_2c01466 crossref_primary_10_1002_jnm_3317 crossref_primary_10_1007_s11004_024_10171_4 crossref_primary_10_1007_s12145_024_01581_3 crossref_primary_10_1080_10589759_2024_2431143 crossref_primary_10_1007_s12145_025_01713_3 crossref_primary_10_1190_geo2023_0609_1 crossref_primary_10_3389_fevo_2022_1066800 crossref_primary_10_47836_pjst_32_5_23 crossref_primary_10_1177_00368504241302972 crossref_primary_10_1016_j_engappai_2025_110378 crossref_primary_10_32604_fdmp_2022_020942 crossref_primary_10_3390_su15129289 crossref_primary_10_31548_machinery_1_2024_33 |
Cites_doi | 10.1016/j.petrol.2010.07.003 10.1016/j.petlm.2018.06.002 10.1016/j.icheatmasstransfer.2020.104825 10.1016/j.asoc.2019.105940 10.1504/IJOGCT.2008.020369 10.1016/j.jngse.2014.09.037 10.1016/j.oceaneng.2015.05.016 10.1190/geo2018-0588.1 10.1016/j.fuel.2018.08.109 10.1016/j.petrol.2014.06.033 10.2136/vzj2004.0116 10.1016/j.enggeo.2010.05.005 10.1007/s13202-021-01087-4 10.1190/1.1443970 10.1016/j.ymssp.2018.03.022 10.1016/j.petrol.2018.09.085 10.1016/j.petrol.2019.01.110 10.1016/j.apenergy.2012.01.010 10.1002/ghg.1982 10.1016/j.energy.2011.04.017 10.1016/j.jsg.2015.03.013 10.1016/j.jappgeo.2011.02.010 10.1016/j.fuel.2020.117389 10.1006/enfo.2001.0061 10.1016/j.epsr.2017.01.035 10.1016/j.jtice.2020.08.001 10.1023/B:STCO.0000035301.49549.88 10.1016/j.eng.2020.02.016 10.1007/s13369-016-2365-2 10.1007/s13202-018-0459-y 10.3390/en13030551 10.1088/1361-6501/ab4a45 10.1016/j.petrol.2020.106929 10.2118/2588-PA 10.2478/v10117-011-0021-1 10.1080/03052150500035591 10.1016/j.jhydrol.2020.125423 10.1016/j.fuel.2020.119147 10.1007/s13202-020-00838-z 10.1016/j.ces.2020.115576 10.2118/950105-G 10.1111/j.1365-2389.1958.tb01892.x 10.1007/s00521-020-05164-3 10.1016/S0920-4105(00)00037-1 10.1016/j.jngse.2020.103244 10.1016/j.fuel.2018.08.136 10.1016/j.jsm.2018.07.004 10.1080/13873959808837083 10.1016/j.measurement.2020.108943 10.1016/j.petlm.2017.06.001 10.1016/j.petrol.2019.106587 10.1016/j.jhydrol.2020.125033 10.1016/j.jtice.2021.01.007 10.1016/j.ejpe.2015.06.001 10.1016/j.ijheatmasstransfer.2018.11.011 10.1016/j.advwatres.2005.10.012 10.1186/s12874-020-01159-9 10.1016/j.proeng.2012.09.545 10.1016/j.neucom.2008.08.006 10.1016/j.marpetgeo.2019.104096 10.1016/S1876-3804(19)60250-8 10.1016/j.jrmge.2019.12.005 10.1016/j.petrol.2020.107037 10.1016/j.icheatmasstransfer.2021.105185 10.1016/j.marpetgeo.2018.12.026 10.1016/j.catena.2019.104249 10.1046/j.1365-2478.2002.00346.x 10.1007/BF00994018 10.1016/0920-4105(90)90029-3 10.1021/acs.energyfuels.8b00193 10.1177/172460080201700213 10.1016/j.petrol.2016.11.033 10.1023/A:1006503406056 10.1016/j.enconman.2007.06.002 10.1088/1742-2132/3/4/008 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.marpetgeo.2022.105597 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1873-4073 |
ExternalDocumentID | 10_1016_j_marpetgeo_2022_105597 S0264817222000757 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a338t-ea46bb078ad307858cf242d554127a1a34e77628d17666ca099bc44cc47f8f2f3 |
IEDL.DBID | .~1 |
ISSN | 0264-8172 |
IngestDate | Tue Jul 01 02:11:26 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 Fri Feb 23 02:41:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterogeneous carbonate reservoirs Gas-condensate reservoirs Specific surface area Permeability prediction Group method of data handling GMDH Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a338t-ea46bb078ad307858cf242d554127a1a34e77628d17666ca099bc44cc47f8f2f3 |
ORCID | 0000-0003-4657-8249 0000-0003-3202-4069 |
ParticipantIDs | crossref_citationtrail_10_1016_j_marpetgeo_2022_105597 crossref_primary_10_1016_j_marpetgeo_2022_105597 elsevier_sciencedirect_doi_10_1016_j_marpetgeo_2022_105597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Marine and petroleum geology |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Su, Li, Yang, Wen (bib88) 2018; 110 Amanifard, Nariman-Zadeh, Borji, Khalkhali, Habibdoust (bib12) 2008; 49 Srinivasan (bib86) 2008; 72 Sameen, Pradhan, Lee (bib81) 2020; 186 Draper, Smith (bib32) 1998 Lai, Li, Zhang, Dong, Kong, Jiang (bib54) 2018; 32 Wang, Wang, Liu, Zhang, Feng, Lu, Peng (bib92) 2019; 102 Mohammadi, Mikaeil, Abdollahi‐Sharif (bib64) 2020; 37 Zhou, Hu, Pan, Kong, Liu, Huang, Chen (bib98) 2020; 31 Lim, Kim (bib56) 2004 Rezaee, Jafari, Kazemzadeh (bib77) 2006; 3 Chilingarian, Chang, Bagrintseva (bib26) 1990; 4 Hauke, Kossowski (bib46) 2011; 30 Hazbeh, Ahmadi Alvar, Aghdam, Ghorbani, Mohamadian, Moghadasi (bib47) 2021; 23 Ahmadi, Chen (bib6) 2019; 5 Mueller, Ivachnenko, Lemke (bib66) 1998; 4 Zhu, Zhang, Wei, Zhang (bib100) 2017; 42 Wyllie, Rose (bib94) 1950; 2 Liu, Song, Cao, Meng, Pu, Wang, Liu (bib57) 2020; 12 Zhong, Carr, Wu, Wang (bib97) 2019; 84 Roohi, Emdad, Jafarpur (bib78) 2021; 122 Mahdaviara, Menad, Ghazanfari, Hemmati-Sarapardeh (bib59) 2020; 189 Jeddi, Sharifian (bib52) 2020; 88 Amar, Ghriga, Ouaer (bib16) 2021; 118 Hemmati-Sarapardeh, Varamesh, Amar, Husein, Dong (bib48) 2020; 118 Du, Zhao, Peng, Gao, Huang (bib33) 2020; 218 Dou, Sun, Sullivan (bib31) 2011; 74 Zhu, Zhang, Wei, Zhang (bib101) 2017; 42 Basbug, Karpyn (bib22) 2008; 1 Al-Anazi, Gates (bib10) 2010; 114 Gauthier (bib40) 2001; 2 Gholinezhad, Masihi (bib43) 2012; 1 Baziar, Tadayoni, Nabi-Bidhendi, Khalili (bib23) 2014; 21 Mohammadi, Shadizadeh, Manshad, Mohammadi (bib63) 2020; 10 Stewart, Ward, Rector (bib87) 2006; 29 Zhang, Wang, Zhang (bib96) 2017; 146 Lenhard, Oostrom (bib55) 1998; 31 Farsi, Barjouei, Wood, Ghorbani, Mohamadian, Davoodi, Nasriani, Alvar (bib38) 2021; 174 Han, Bian (bib45) 2018; 4 Amar, Zeraibi, Jahanbani Ghahfarokhi (bib15) 2020; 10 Wang, Li, Niu, Tan (bib91) 2012; 94 Anifowose, Abdulraheem, Al-Shuhail (bib17) 2019; 176 Al Khalifah, Glover, Lorinczi (bib9) 2020; 112 Akande, Owolabi, Olatunji, AbdulRaheem (bib8) 2017; 150 Abu-Shikhah, Elkarmi (bib2) 2011; 36 Dodangeh, Panahi, Rezaie, Lee, Bui, Lee, Pradhan (bib30) 2020; 590 Zhou, Lu, Zheng, Tolliver, Keramati (bib99) 2020; vol. 200 Smola, Schölkopf (bib85) 2004; 14 Armstrong (bib18) 2003 Cortes, Vapnik (bib28) 1995; 20 Rostami, Rashidi, Safari (bib79) 2019; 173 Morgan, Gordon (bib65) 1970; 22 Nkurlu, Shen, Asante-Okyere, Mulashani, Chungu, Wang (bib71) 2020; 13 Unsal, Dane, Dozier (bib90) 2005; 4 Singh (bib84) 2019; 9 Tian, Qi, Sun, Yaseen, Pham (bib89) 2020 Amar, Ghahfarokhi (bib13) 2020; 190 Rostami, Baghban, Mohammadi, Hemmati-Sarapardeh, Habibzadeh (bib80) 2019; 236 Gendy, El-Shiekh, Zakhary (bib41) 2015; 24 Belhouchet, Benzagouta, Dobbi, Alquraishi, Duplay (bib24) 2021; 33 Ebtehaj, Bonakdari, Khoshbin, Bong, AbGhani (bib34) 2017; 24 Elbaz, Shen, Zhou, Yin, Lyu (bib36) 2021; 7 Mahdaviara, Rostami, Shahbazi (bib58) 2020; 268 Huang, Shimeld, Williamson, Katsube (bib50) 1996; 61 Najafzadeh, Barani, Hessami-Kermani (bib68) 2015; 104 Karimpouli, Fathianpour, Roohi (bib53) 2010; 73 Amar, Ghahfarokhi, Zeraibi (bib14) 2020; 113 Choon, Hoong, Huey (bib27) 2008; 7 Ehrenberg, Eberli, Keramati, Moallemi (bib35) 2006; 90 Guan, Hu, Li, Ma, Ma (bib44) 2019; 130 Rawlings, Pantula, Dickey (bib76) 1998 Gan, Wang, Luo, Zhang, Li, Dai, Yang (bib39) 2019; 46 Jamialahmadi, Javadpour (bib51) 2000; 26 Xue, Cheng, Mou, Zhao (bib95) 2014; 121 Bhatt, Helle (bib25) 2008; 50 Esmaeili, Sarma, Harding, Maini (bib37) 2019; 236 Nariman-Zadeh, Atashkari, Jamali, Pilechi, Yao (bib69) 2005; 37 Adnan, Liang, Parmar, Soni, Kisi (bib4) 2021; 33 Pu, Apel, Lingga (bib75) 2018; 17 Ballas, Fossen, Soliva (bib20) 2015; 76 Naveshki, Naghiei, Soltani Tehrani, Ahmadi Alvar, Ghorbani, Mohamadian, Moghadasi (bib70) 2021 Marshall (bib62) 1958; 9 Wood (bib93) 2020; 184 Panahi, Sadhasivam, Pourghasemi, Rezaie, Lee (bib73) 2020; 588 Shang, Hamman, Chen, Caldwell (bib83) 2003; 5–8 October Myers, Sirois (bib67) 2006 Schön (bib82) 2015 Ahmed (bib7) 2018 Mahdaviara, Amar, Hemmati-Sarapardeh, Dai, Zhang, Xiao, Zhang (bib60) 2021; 285 Barjouei, Ghorbani, Mohamadian, Wood, Davoodi, Moghadasi, Saberi (bib21) 2021; 11 Al-Anazi, Gates (bib11) 2010; vol. 13 Adeyinka, Muhajarine (bib3) 2020; 20 Howland, Voss (bib49) 2003 Cristianini, Shawe-Taylor (bib29) 2000 Park, Park, Kim, Oh (bib74) 2004; 2 Male, Jensen, Lake (bib61) 2020; 77 Ahmadi, Chen (bib5) 2019; 5 Gholami, Shahraki, Paghaleh (bib42) 2012 Artusi, Verderio, Marubini (bib19) 2002; 17 Ostertagová (bib72) 2012; 48 Cristianini (10.1016/j.marpetgeo.2022.105597_bib29) 2000 Mohammadi (10.1016/j.marpetgeo.2022.105597_bib63) 2020; 10 Akande (10.1016/j.marpetgeo.2022.105597_bib8) 2017; 150 Gauthier (10.1016/j.marpetgeo.2022.105597_bib40) 2001; 2 Draper (10.1016/j.marpetgeo.2022.105597_bib32) 1998 Baziar (10.1016/j.marpetgeo.2022.105597_bib23) 2014; 21 Park (10.1016/j.marpetgeo.2022.105597_bib74) 2004; 2 Zhang (10.1016/j.marpetgeo.2022.105597_bib96) 2017; 146 Zhu (10.1016/j.marpetgeo.2022.105597_bib100) 2017; 42 Jamialahmadi (10.1016/j.marpetgeo.2022.105597_bib51) 2000; 26 Wang (10.1016/j.marpetgeo.2022.105597_bib91) 2012; 94 Esmaeili (10.1016/j.marpetgeo.2022.105597_bib37) 2019; 236 Liu (10.1016/j.marpetgeo.2022.105597_bib57) 2020; 12 Gholinezhad (10.1016/j.marpetgeo.2022.105597_bib43) 2012; 1 Ehrenberg (10.1016/j.marpetgeo.2022.105597_bib35) 2006; 90 Howland (10.1016/j.marpetgeo.2022.105597_bib49) 2003 Pu (10.1016/j.marpetgeo.2022.105597_bib75) 2018; 17 Al-Anazi (10.1016/j.marpetgeo.2022.105597_bib11) 2010; vol. 13 Elbaz (10.1016/j.marpetgeo.2022.105597_bib36) 2021; 7 Lai (10.1016/j.marpetgeo.2022.105597_bib54) 2018; 32 Zhu (10.1016/j.marpetgeo.2022.105597_bib101) 2017; 42 Marshall (10.1016/j.marpetgeo.2022.105597_bib62) 1958; 9 Nkurlu (10.1016/j.marpetgeo.2022.105597_bib71) 2020; 13 Wang (10.1016/j.marpetgeo.2022.105597_bib92) 2019; 102 Bhatt (10.1016/j.marpetgeo.2022.105597_bib25) 2008; 50 Wood (10.1016/j.marpetgeo.2022.105597_bib93) 2020; 184 Gan (10.1016/j.marpetgeo.2022.105597_bib39) 2019; 46 Gholami (10.1016/j.marpetgeo.2022.105597_bib42) 2012 Chilingarian (10.1016/j.marpetgeo.2022.105597_bib26) 1990; 4 Ebtehaj (10.1016/j.marpetgeo.2022.105597_bib34) 2017; 24 Farsi (10.1016/j.marpetgeo.2022.105597_bib38) 2021; 174 Basbug (10.1016/j.marpetgeo.2022.105597_bib22) 2008; 1 Belhouchet (10.1016/j.marpetgeo.2022.105597_bib24) 2021; 33 Karimpouli (10.1016/j.marpetgeo.2022.105597_bib53) 2010; 73 Hauke (10.1016/j.marpetgeo.2022.105597_bib46) 2011; 30 Gendy (10.1016/j.marpetgeo.2022.105597_bib41) 2015; 24 Male (10.1016/j.marpetgeo.2022.105597_bib61) 2020; 77 Naveshki (10.1016/j.marpetgeo.2022.105597_bib70) 2021 Roohi (10.1016/j.marpetgeo.2022.105597_bib78) 2021; 122 Mahdaviara (10.1016/j.marpetgeo.2022.105597_bib58) 2020; 268 Hemmati-Sarapardeh (10.1016/j.marpetgeo.2022.105597_bib48) 2020; 118 Najafzadeh (10.1016/j.marpetgeo.2022.105597_bib68) 2015; 104 Amar (10.1016/j.marpetgeo.2022.105597_bib16) 2021; 118 Barjouei (10.1016/j.marpetgeo.2022.105597_bib21) 2021; 11 Schön (10.1016/j.marpetgeo.2022.105597_bib82) 2015 Ahmadi (10.1016/j.marpetgeo.2022.105597_bib5) 2019; 5 Mahdaviara (10.1016/j.marpetgeo.2022.105597_bib60) 2021; 285 Srinivasan (10.1016/j.marpetgeo.2022.105597_bib86) 2008; 72 Myers (10.1016/j.marpetgeo.2022.105597_bib67) 2006 Rostami (10.1016/j.marpetgeo.2022.105597_bib79) 2019; 173 Lim (10.1016/j.marpetgeo.2022.105597_bib56) 2004 Singh (10.1016/j.marpetgeo.2022.105597_bib84) 2019; 9 Xue (10.1016/j.marpetgeo.2022.105597_bib95) 2014; 121 Adeyinka (10.1016/j.marpetgeo.2022.105597_bib3) 2020; 20 Shang (10.1016/j.marpetgeo.2022.105597_bib83) 2003; 5–8 October Su (10.1016/j.marpetgeo.2022.105597_bib88) 2018; 110 Morgan (10.1016/j.marpetgeo.2022.105597_bib65) 1970; 22 Zhong (10.1016/j.marpetgeo.2022.105597_bib97) 2019; 84 Zhou (10.1016/j.marpetgeo.2022.105597_bib98) 2020; 31 Armstrong (10.1016/j.marpetgeo.2022.105597_bib18) 2003 Guan (10.1016/j.marpetgeo.2022.105597_bib44) 2019; 130 Rezaee (10.1016/j.marpetgeo.2022.105597_bib77) 2006; 3 Unsal (10.1016/j.marpetgeo.2022.105597_bib90) 2005; 4 Mueller (10.1016/j.marpetgeo.2022.105597_bib66) 1998; 4 Han (10.1016/j.marpetgeo.2022.105597_bib45) 2018; 4 Amar (10.1016/j.marpetgeo.2022.105597_bib15) 2020; 10 Smola (10.1016/j.marpetgeo.2022.105597_bib85) 2004; 14 Anifowose (10.1016/j.marpetgeo.2022.105597_bib17) 2019; 176 Zhou (10.1016/j.marpetgeo.2022.105597_bib99) 2020; vol. 200 Huang (10.1016/j.marpetgeo.2022.105597_bib50) 1996; 61 Wyllie (10.1016/j.marpetgeo.2022.105597_bib94) 1950; 2 Dodangeh (10.1016/j.marpetgeo.2022.105597_bib30) 2020; 590 Hazbeh (10.1016/j.marpetgeo.2022.105597_bib47) 2021; 23 Lenhard (10.1016/j.marpetgeo.2022.105597_bib55) 1998; 31 Jeddi (10.1016/j.marpetgeo.2022.105597_bib52) 2020; 88 Nariman-Zadeh (10.1016/j.marpetgeo.2022.105597_bib69) 2005; 37 Tian (10.1016/j.marpetgeo.2022.105597_bib89) 2020 Ostertagová (10.1016/j.marpetgeo.2022.105597_bib72) 2012; 48 Choon (10.1016/j.marpetgeo.2022.105597_bib27) 2008; 7 Al-Anazi (10.1016/j.marpetgeo.2022.105597_bib10) 2010; 114 Amanifard (10.1016/j.marpetgeo.2022.105597_bib12) 2008; 49 Amar (10.1016/j.marpetgeo.2022.105597_bib13) 2020; 190 Artusi (10.1016/j.marpetgeo.2022.105597_bib19) 2002; 17 Dou (10.1016/j.marpetgeo.2022.105597_bib31) 2011; 74 Sameen (10.1016/j.marpetgeo.2022.105597_bib81) 2020; 186 Cortes (10.1016/j.marpetgeo.2022.105597_bib28) 1995; 20 Mohammadi (10.1016/j.marpetgeo.2022.105597_bib64) 2020; 37 Ballas (10.1016/j.marpetgeo.2022.105597_bib20) 2015; 76 Ahmadi (10.1016/j.marpetgeo.2022.105597_bib6) 2019; 5 Ahmed (10.1016/j.marpetgeo.2022.105597_bib7) 2018 Stewart (10.1016/j.marpetgeo.2022.105597_bib87) 2006; 29 Du (10.1016/j.marpetgeo.2022.105597_bib33) 2020; 218 Al Khalifah (10.1016/j.marpetgeo.2022.105597_bib9) 2020; 112 Adnan (10.1016/j.marpetgeo.2022.105597_bib4) 2021; 33 Rawlings (10.1016/j.marpetgeo.2022.105597_bib76) 1998 Panahi (10.1016/j.marpetgeo.2022.105597_bib73) 2020; 588 Amar (10.1016/j.marpetgeo.2022.105597_bib14) 2020; 113 Abu-Shikhah (10.1016/j.marpetgeo.2022.105597_bib2) 2011; 36 Mahdaviara (10.1016/j.marpetgeo.2022.105597_bib59) 2020; 189 Rostami (10.1016/j.marpetgeo.2022.105597_bib80) 2019; 236 |
References_xml | – volume: 122 start-page: 105185 year: 2021 ident: bib78 article-title: Toward a realistic reconstruction and determination of blood flow pattern in complex vascular network: 3D, non-Newtonian, multi-branch simulation based on CFD and GMDH algorithm publication-title: Int. Commun. Heat Mass Tran. – volume: 190 start-page: 107037 year: 2020 ident: bib13 article-title: Prediction of CO2 diffusivity in brine using white-box machine learning publication-title: J. Petrol. Sci. Eng. – volume: 37 start-page: 437 year: 2005 end-page: 462 ident: bib69 article-title: Inverse modelling of multi-objective thermodynamically optimized turbojet engines using GMDH-type neural networks and evolutionary algorithms publication-title: Eng. Optim. – volume: 1 start-page: 382 year: 2008 end-page: 398 ident: bib22 article-title: A study of absolute permeability dependence on pore-scale characteristics of carbonate reservoirs using artificial intelligence publication-title: Int. J. Oil Gas Coal Technol. – start-page: 18 year: 2012 ident: bib42 article-title: Prediction of hydrocarbon reservoirs permeability using support vector machine publication-title: Math. Probl Eng. – volume: 184 start-page: 17 year: 2020 ident: bib93 article-title: Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data publication-title: J. Petrol. Sci. Eng. – volume: 5–8 October year: 2003 ident: bib83 article-title: A model to correlate permeability with efficient porosity and irreducible water saturation. SPE-84303-MS publication-title: SPE Annual Technical Conference and Exhibition – volume: 285 start-page: 119147 year: 2021 ident: bib60 article-title: Toward smart schemes for modeling CO2 solubility in crude oil: application to carbon dioxide enhanced oil recovery publication-title: Fuel – volume: 42 start-page: 1643 year: 2017 end-page: 1654 ident: bib101 article-title: Engineering, Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data publication-title: Arabian J. Sci. Eng. – start-page: 1524 year: 2018 ident: bib7 article-title: Reservoir Engineering Handbook – volume: 50 start-page: 645 year: 2008 end-page: 660 ident: bib25 article-title: Committee neural networks for porosity and permeability prediction from well logs publication-title: Geophys. Prospect. – volume: 4 start-page: 43 year: 2018 end-page: 49 ident: bib45 article-title: A hybrid PSO-SVM-based model for determination of oil recovery factor in the low-permeability reservoir publication-title: Petroleum – volume: 150 start-page: 43 year: 2017 end-page: 53 ident: bib8 article-title: A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir publication-title: J. Petrol. Sci. Eng. – volume: 5 start-page: 271 year: 2019 end-page: 284 ident: bib6 article-title: Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs publication-title: Petroleum – start-page: 9 year: 2004 ident: bib56 article-title: Reservoir porosity and permeability estimation from well logs using fuzzy logic and neural networks. SPE-88476-MS publication-title: SPE Asia Pacific Oil and Gas Conference and Exhibition – volume: 130 start-page: 1045 year: 2019 end-page: 1052 ident: bib44 article-title: Prediction of oil-water relative permeability with a fractal method in ultra-high water cut stage publication-title: Int. J. Heat Mass Tran. – volume: 2 start-page: 423 year: 2004 end-page: 434 ident: bib74 article-title: Self-organizing polynomial neural networks based on genetically optimized multi-layer perceptron architecture publication-title: Int. J. Control Autom. Syst. – volume: 94 start-page: 65 year: 2012 end-page: 70 ident: bib91 article-title: An annual load forecasting model based on support vector regression with differential evolution algorithm publication-title: Appl. Energy – volume: 102 start-page: 33 year: 2019 end-page: 47 ident: bib92 article-title: Relationships among composition, porosity and permeability of longmaxi shale reservoir in the weiyuan block, sichuan basin, China publication-title: Mar. Petrol. Geol. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib28 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 236 start-page: 264 year: 2019 end-page: 277 ident: bib37 article-title: A data-driven model for predicting the effect of temperature on oil-water relative permeability publication-title: Fuel – volume: 4 start-page: 389 year: 2005 end-page: 397 ident: bib90 article-title: A genetic algorithm for predicting pore geometry based on air permeability measurements publication-title: Vadose Zone J. – volume: 31 year: 2020 ident: bib98 article-title: Fast prediction of reservoir permeability based on embedded feature selection and Light GBM using direct logging data publication-title: Meas. Sci. Technol. – volume: 11 start-page: 1233 year: 2021 end-page: 1261 ident: bib21 article-title: Prediction performance advantages of deep machine learning algorithms for two-phase flow rates through wellhead chokes publication-title: J. Petrol. Explor. Product. – start-page: 13 year: 2003 ident: bib18 article-title: Permeability correlations for carbonate and other rocks publication-title: Paper #58400 GSA Meeting 2003 Seattle USA – volume: 174 start-page: 108943 year: 2021 ident: bib38 article-title: Prediction of oil flow rate through orifice flow meters: optimized machine-learning techniques publication-title: Measurement – volume: 33 start-page: 136 year: 2021 end-page: 145 ident: bib24 article-title: A new empirical model for enhancing well log permeability prediction, using nonlinear regression method: case study from Hassi-Berkine oil field reservoir–Algeria publication-title: J. King Saud Univ. Eng. Sci. – volume: 189 start-page: 106929 year: 2020 ident: bib59 article-title: Modeling relative permeability of gas condensate reservoirs: advanced computational frameworks publication-title: J. Petrol. Sci. Eng. – volume: 176 start-page: 762 year: 2019 end-page: 774 ident: bib17 article-title: A parametric study of machine learning techniques in petroleum reservoir permeability prediction by integrating seismic attributes and wireline data publication-title: J. Petrol. Sci. Eng. – volume: 17 start-page: 148 year: 2002 end-page: 151 ident: bib19 article-title: Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval publication-title: Int. J. Biol. Markers – year: 2000 ident: bib29 article-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods – volume: 24 start-page: 1000 year: 2017 end-page: 1009 ident: bib34 article-title: Development of group method of data handling based on genetic algorithm to predict incipient motion in rigid rectangular storm water channel publication-title: Scientia Iranica. Transaction A, Civil Engineering – volume: 10 start-page: 1817 year: 2020 end-page: 1834 ident: bib63 article-title: Experimental study of the relationship between porosity and surface area of carbonate reservoir rocks publication-title: J. Petrol. Explor. Prod. Technol. – volume: 22 year: 1970 ident: bib65 article-title: Influence of pore geometry on water-oil relative permeability. SPE-2588-PA publication-title: J. Petrol. Technol. – volume: 42 start-page: 1643 year: 2017 end-page: 1654 ident: bib100 article-title: Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data publication-title: Arabian J. Sci. Eng. – volume: vol. 13 start-page: 485 year: 2010 end-page: 495 ident: bib11 publication-title: Engineering, Support-Vector Regression for Permeability Prediction in a Heterogeneous Reservoir: A Comparative Study. SPE-126339-PA – volume: 46 start-page: 935 year: 2019 end-page: 942 ident: bib39 article-title: A permeability prediction method based on pore structure and lithofacies publication-title: Petrol. Explor. Dev. – volume: 588 start-page: 125033 year: 2020 ident: bib73 article-title: Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR) publication-title: J. Hydrol. – volume: 37 year: 2020 ident: bib64 article-title: Implementation of an optimized binary classification by GMDH‐type neural network algorithm for predicting the blast produced ground vibration publication-title: Expet Syst. – volume: vol. 200 start-page: 106931 year: 2020 ident: bib99 publication-title: Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree – volume: 114 start-page: 267 year: 2010 end-page: 277 ident: bib10 article-title: A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs publication-title: Eng. Geol. – volume: 590 start-page: 125423 year: 2020 ident: bib30 article-title: Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search publication-title: J. Hydrol. – start-page: 2 year: 2006 ident: bib67 article-title: Differences between Spearman Correlation Coefficients – year: 2003 ident: bib49 article-title: Natural gas prediction using the group method of data handling publication-title: 7th International Conference on Artificial Intelligence and Soft Computing – volume: 118 start-page: 104825 year: 2020 ident: bib48 article-title: On the evaluation of thermal conductivity of nanofluids using advanced intelligent models publication-title: Int. Commun. Heat Mass Tran. – volume: 49 start-page: 311 year: 2008 end-page: 325 ident: bib12 article-title: Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms publication-title: Energy Convers. Manag. – volume: 4 start-page: 317 year: 1990 end-page: 322 ident: bib26 article-title: Empirical expression of permeability in terms of porosity, specific surface area, and residual water saturation of carbonate rocks publication-title: J. Petrol. Sci. Eng. – year: 1998 ident: bib32 article-title: Applied Regression Analysis – volume: 74 start-page: 8 year: 2011 end-page: 18 ident: bib31 article-title: Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, West Texas publication-title: J. Appl. Geophys. – volume: 7 start-page: 238 year: 2021 end-page: 251 ident: bib36 article-title: Prediction of disc cutter life during shield tunneling with ai via the incorporation of a genetic algorithm into a gmdh-type neural network publication-title: Engineering – volume: 32 start-page: 3368 year: 2018 end-page: 3379 ident: bib54 article-title: Investigation of pore characteristics and irreducible water saturation of tight reservoir using experimental and theoretical methods publication-title: Energy Fuels – volume: 20 start-page: 1 year: 2020 end-page: 11 ident: bib3 article-title: Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models publication-title: BMC Med. Res. Methodol. – volume: 61 start-page: 422 year: 1996 end-page: 436 ident: bib50 article-title: Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada publication-title: Geophysics – volume: 121 start-page: 159 year: 2014 end-page: 166 ident: bib95 article-title: A new fracture prediction method by combining genetic algorithm with neural network in low-permeability reservoirs publication-title: J. Petrol. Sci. Eng. – volume: 9 start-page: 297 year: 2019 end-page: 305 ident: bib84 article-title: Permeability prediction from wireline logging and core data: a case study from Assam-Arakan basin publication-title: J. Petrol. Explor. Product. Technol. – volume: 268 start-page: 117389 year: 2020 ident: bib58 article-title: State-of-the-art modeling permeability of the heterogeneous carbonate oil reservoirs using robust computational approaches publication-title: Fuel – volume: 77 start-page: 103244 year: 2020 ident: bib61 article-title: Comparison of permeability predictions on cemented sandstones with physics-based and machine learning approaches publication-title: J. Nat. Gas Sci. Eng. – volume: 72 start-page: 625 year: 2008 end-page: 629 ident: bib86 article-title: Energy demand prediction using GMDH networks publication-title: Neurocomputing – start-page: 1 year: 2020 end-page: 17 ident: bib89 article-title: Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods publication-title: Eng. Comput. – volume: 146 start-page: 270 year: 2017 end-page: 285 ident: bib96 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm publication-title: Elec. Power Syst. Res. – volume: 1 start-page: 25 year: 2012 end-page: 36 ident: bib43 article-title: A physical-based model of permeability/porosity relationship for the rock data of Iran southern carbonate reservoirs publication-title: Iranian J. Oil Gas Sci. Technol. – volume: 3 start-page: 370 year: 2006 end-page: 376 ident: bib77 article-title: Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks publication-title: J. Geophys. Eng. – volume: 76 start-page: 1 year: 2015 end-page: 21 ident: bib20 article-title: Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs publication-title: J. Struct. Geol. – volume: 73 start-page: 227 year: 2010 end-page: 232 ident: bib53 article-title: A new approach to improve neural networks' algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN) publication-title: J. Petrol. Sci. Eng. – volume: 90 start-page: 91 year: 2006 end-page: 114 ident: bib35 article-title: Porosity-permeability relationships in interlayered limestone-dolostone reservoirs publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull. – volume: 36 start-page: 4259 year: 2011 end-page: 4271 ident: bib2 article-title: Medium-term electric load forecasting using singular value decomposition publication-title: Energy – volume: 236 start-page: 110 year: 2019 end-page: 123 ident: bib80 article-title: Rigorous prognostication of permeability of heterogeneous carbonate oil reservoirs: smart modeling and correlation development publication-title: Fuel – volume: 88 start-page: 105940 year: 2020 ident: bib52 article-title: A hybrid wavelet decomposer and GMDH-ELM ensemble model for Network function virtualization workload forecasting in cloud computing publication-title: Appl. Soft Comput. – volume: 84 start-page: B363 year: 2019 end-page: B373 ident: bib97 article-title: Application of a convolutional neural network in permeability prediction: a case study in the Jacksonburg-Stringtown oil field, West Virginia, USA publication-title: Geophysics – volume: 4 start-page: 275 year: 1998 end-page: 316 ident: bib66 article-title: GMDH algorithms for complex systems modelling publication-title: Math. Comput. Model. Dyn. Syst. – volume: 118 start-page: 159 year: 2021 end-page: 168 ident: bib16 article-title: On the evaluation of solubility of hydrogen sulfide in ionic liquids using advanced committee machine intelligent systems publication-title: J. Taiwan Inst. Chem. Eng. – volume: 218 start-page: 115576 year: 2020 ident: bib33 article-title: Fractal characterization of permeability prediction model in hydrate-bearing porous media publication-title: Chem. Eng. Sci. – volume: 21 start-page: 718 year: 2014 end-page: 724 ident: bib23 article-title: Prediction of permeability in a tight gas reservoir by using three soft computing approaches: a comparative study publication-title: J. Nat. Gas Sci. Eng. – volume: 173 start-page: 170 year: 2019 end-page: 186 ident: bib79 article-title: Prediction of oil-water relative permeability in sandstone and carbonate reservoir rocks using the CSA-LSSVM algorithm publication-title: J. Petrol. Sci. Eng. – volume: 17 start-page: 158 year: 2018 end-page: 165 ident: bib75 article-title: Rockburst prediction in kimberlite using decision tree with incomplete data publication-title: J. Sustain. Mining – volume: 24 start-page: 445 year: 2015 end-page: 453 ident: bib41 article-title: A polynomial regression model for stabilized turbulent confined jet diffusion flames using bluff body burners publication-title: Egyptian J. Petrol. – volume: 9 start-page: 1 year: 1958 end-page: 8 ident: bib62 article-title: A relation between permeability and size distribution of pores publication-title: Eur. J. Soil Sci. – start-page: 512 year: 2015 ident: bib82 article-title: Physical Properties of Rocks: Fundamentals and Principles of Petrophysics – start-page: 660 year: 1998 ident: bib76 article-title: Applied Regression Analysis: a Research Tool – volume: 112 start-page: 104096 year: 2020 ident: bib9 article-title: Permeability prediction and diagenesis in tight carbonates using machine learning techniques publication-title: Mar. Petrol. Geol. – volume: 2 start-page: 105 year: 1950 end-page: 118 ident: bib94 article-title: Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data. SPE-950105-G publication-title: J. Petrol. Technol. – volume: 5 start-page: 271 year: 2019 end-page: 284 ident: bib5 article-title: Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs publication-title: Petroleum – volume: 33 start-page: 2853 year: 2021 end-page: 2871 ident: bib4 article-title: Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data publication-title: Neural Comput. Appl. – volume: 31 start-page: 109 year: 1998 end-page: 131 ident: bib55 article-title: A parametric model for predicting relative permeability-saturation-capillary pressure relationships of oil–water systems in porous media with mixed wettability publication-title: Transport Porous Media – volume: 104 start-page: 387 year: 2015 end-page: 396 ident: bib68 article-title: Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds publication-title: Ocean Eng. – volume: 110 start-page: 412 year: 2018 end-page: 427 ident: bib88 article-title: Wavelet support vector machine-based prediction model of dam deformation publication-title: Mech. Syst. Signal Process. – volume: 29 start-page: 1328 year: 2006 end-page: 1340 ident: bib87 article-title: A study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann method publication-title: Adv. Water Resour. – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: bib85 article-title: A tutorial on support vector regression publication-title: statist. Comput – volume: 2 start-page: 359 year: 2001 end-page: 362 ident: bib40 article-title: Detecting trends using Spearman's rank correlation coefficient publication-title: Environ. Forensics – volume: 113 start-page: 165 year: 2020 end-page: 177 ident: bib14 article-title: Predicting thermal conductivity of carbon dioxide using group of data-driven models publication-title: J. Taiwan Inst. Chem. Eng. – volume: 23 start-page: 17 year: 2021 end-page: 30 ident: bib47 article-title: Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm publication-title: J. Petrol. Mining Eng. – volume: 7 start-page: 353 year: 2008 end-page: 363 ident: bib27 article-title: A functional approximation comparison between neural networks and polynomial regression publication-title: WSEAS Trans. Math. – volume: 13 start-page: 551 year: 2020 ident: bib71 article-title: Prediction of permeability using group method of data handling (GMDH) neural network from well log data publication-title: Energies – volume: 26 start-page: 235 year: 2000 end-page: 239 ident: bib51 article-title: Relationship of permeability, porosity and depth using an artificial neural network publication-title: J. Petrol. Sci. Eng. – year: 2021 ident: bib70 article-title: Prediction of bubble point pressure using new hybrid computationail intelligence models publication-title: J. Chem. Petrol. ENg. – volume: 10 start-page: 613 year: 2020 end-page: 630 ident: bib15 article-title: Applying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EOR publication-title: Greenhouse Gases: Sci. Technol. – volume: 12 start-page: 403 year: 2020 end-page: 413 ident: bib57 article-title: Determination of full-scale pore size distribution of Gaomiaozi bentonite and its permeability prediction publication-title: J. Rock Mech. Geotech. Eng. – volume: 48 start-page: 500 year: 2012 end-page: 506 ident: bib72 article-title: Modelling using polynomial regression publication-title: Procedia Eng. – volume: 186 start-page: 104249 year: 2020 ident: bib81 article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment publication-title: Catena – volume: 30 start-page: 87 year: 2011 end-page: 93 ident: bib46 article-title: Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data publication-title: Quaest. Geogr. – volume: 73 start-page: 227 year: 2010 ident: 10.1016/j.marpetgeo.2022.105597_bib53 article-title: A new approach to improve neural networks' algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN) publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2010.07.003 – start-page: 9 year: 2004 ident: 10.1016/j.marpetgeo.2022.105597_bib56 article-title: Reservoir porosity and permeability estimation from well logs using fuzzy logic and neural networks. SPE-88476-MS – year: 2021 ident: 10.1016/j.marpetgeo.2022.105597_bib70 article-title: Prediction of bubble point pressure using new hybrid computationail intelligence models publication-title: J. Chem. Petrol. ENg. – volume: 5 start-page: 271 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib5 article-title: Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs publication-title: Petroleum doi: 10.1016/j.petlm.2018.06.002 – volume: 118 start-page: 104825 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib48 article-title: On the evaluation of thermal conductivity of nanofluids using advanced intelligent models publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2020.104825 – volume: 88 start-page: 105940 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib52 article-title: A hybrid wavelet decomposer and GMDH-ELM ensemble model for Network function virtualization workload forecasting in cloud computing publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105940 – year: 2000 ident: 10.1016/j.marpetgeo.2022.105597_bib29 – volume: 1 start-page: 382 year: 2008 ident: 10.1016/j.marpetgeo.2022.105597_bib22 article-title: A study of absolute permeability dependence on pore-scale characteristics of carbonate reservoirs using artificial intelligence publication-title: Int. J. Oil Gas Coal Technol. doi: 10.1504/IJOGCT.2008.020369 – volume: 21 start-page: 718 year: 2014 ident: 10.1016/j.marpetgeo.2022.105597_bib23 article-title: Prediction of permeability in a tight gas reservoir by using three soft computing approaches: a comparative study publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2014.09.037 – volume: 104 start-page: 387 year: 2015 ident: 10.1016/j.marpetgeo.2022.105597_bib68 article-title: Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.05.016 – volume: 84 start-page: B363 issue: 6 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib97 article-title: Application of a convolutional neural network in permeability prediction: a case study in the Jacksonburg-Stringtown oil field, West Virginia, USA publication-title: Geophysics doi: 10.1190/geo2018-0588.1 – volume: 236 start-page: 264 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib37 article-title: A data-driven model for predicting the effect of temperature on oil-water relative permeability publication-title: Fuel doi: 10.1016/j.fuel.2018.08.109 – volume: 121 start-page: 159 year: 2014 ident: 10.1016/j.marpetgeo.2022.105597_bib95 article-title: A new fracture prediction method by combining genetic algorithm with neural network in low-permeability reservoirs publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2014.06.033 – volume: 4 start-page: 389 year: 2005 ident: 10.1016/j.marpetgeo.2022.105597_bib90 article-title: A genetic algorithm for predicting pore geometry based on air permeability measurements publication-title: Vadose Zone J. doi: 10.2136/vzj2004.0116 – volume: 114 start-page: 267 year: 2010 ident: 10.1016/j.marpetgeo.2022.105597_bib10 article-title: A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2010.05.005 – volume: 11 start-page: 1233 issue: 3 year: 2021 ident: 10.1016/j.marpetgeo.2022.105597_bib21 article-title: Prediction performance advantages of deep machine learning algorithms for two-phase flow rates through wellhead chokes publication-title: J. Petrol. Explor. Product. doi: 10.1007/s13202-021-01087-4 – volume: 61 start-page: 422 year: 1996 ident: 10.1016/j.marpetgeo.2022.105597_bib50 article-title: Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada publication-title: Geophysics doi: 10.1190/1.1443970 – volume: 110 start-page: 412 year: 2018 ident: 10.1016/j.marpetgeo.2022.105597_bib88 article-title: Wavelet support vector machine-based prediction model of dam deformation publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.03.022 – volume: 173 start-page: 170 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib79 article-title: Prediction of oil-water relative permeability in sandstone and carbonate reservoir rocks using the CSA-LSSVM algorithm publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2018.09.085 – volume: 176 start-page: 762 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib17 article-title: A parametric study of machine learning techniques in petroleum reservoir permeability prediction by integrating seismic attributes and wireline data publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2019.01.110 – volume: 94 start-page: 65 year: 2012 ident: 10.1016/j.marpetgeo.2022.105597_bib91 article-title: An annual load forecasting model based on support vector regression with differential evolution algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.01.010 – volume: 10 start-page: 613 issue: 3 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib15 article-title: Applying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EOR publication-title: Greenhouse Gases: Sci. Technol. doi: 10.1002/ghg.1982 – year: 2003 ident: 10.1016/j.marpetgeo.2022.105597_bib49 article-title: Natural gas prediction using the group method of data handling – volume: 36 start-page: 4259 year: 2011 ident: 10.1016/j.marpetgeo.2022.105597_bib2 article-title: Medium-term electric load forecasting using singular value decomposition publication-title: Energy doi: 10.1016/j.energy.2011.04.017 – volume: 76 start-page: 1 year: 2015 ident: 10.1016/j.marpetgeo.2022.105597_bib20 article-title: Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2015.03.013 – volume: 74 start-page: 8 year: 2011 ident: 10.1016/j.marpetgeo.2022.105597_bib31 article-title: Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, West Texas publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2011.02.010 – volume: 268 start-page: 117389 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib58 article-title: State-of-the-art modeling permeability of the heterogeneous carbonate oil reservoirs using robust computational approaches publication-title: Fuel doi: 10.1016/j.fuel.2020.117389 – volume: 2 start-page: 359 issue: 4 year: 2001 ident: 10.1016/j.marpetgeo.2022.105597_bib40 article-title: Detecting trends using Spearman's rank correlation coefficient publication-title: Environ. Forensics doi: 10.1006/enfo.2001.0061 – volume: 146 start-page: 270 year: 2017 ident: 10.1016/j.marpetgeo.2022.105597_bib96 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm publication-title: Elec. Power Syst. Res. doi: 10.1016/j.epsr.2017.01.035 – volume: 113 start-page: 165 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib14 article-title: Predicting thermal conductivity of carbon dioxide using group of data-driven models publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2020.08.001 – volume: 14 start-page: 199 year: 2004 ident: 10.1016/j.marpetgeo.2022.105597_bib85 article-title: A tutorial on support vector regression publication-title: statist. Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 7 start-page: 238 issue: 2 year: 2021 ident: 10.1016/j.marpetgeo.2022.105597_bib36 article-title: Prediction of disc cutter life during shield tunneling with ai via the incorporation of a genetic algorithm into a gmdh-type neural network publication-title: Engineering doi: 10.1016/j.eng.2020.02.016 – volume: 42 start-page: 1643 year: 2017 ident: 10.1016/j.marpetgeo.2022.105597_bib101 article-title: Engineering, Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-016-2365-2 – volume: 5 start-page: 271 issue: 3 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib6 article-title: Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs publication-title: Petroleum doi: 10.1016/j.petlm.2018.06.002 – volume: 1 start-page: 25 year: 2012 ident: 10.1016/j.marpetgeo.2022.105597_bib43 article-title: A physical-based model of permeability/porosity relationship for the rock data of Iran southern carbonate reservoirs publication-title: Iranian J. Oil Gas Sci. Technol. – volume: 9 start-page: 297 issue: 1 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib84 article-title: Permeability prediction from wireline logging and core data: a case study from Assam-Arakan basin publication-title: J. Petrol. Explor. Product. Technol. doi: 10.1007/s13202-018-0459-y – volume: 13 start-page: 551 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib71 article-title: Prediction of permeability using group method of data handling (GMDH) neural network from well log data publication-title: Energies doi: 10.3390/en13030551 – volume: 31 issue: 4 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib98 article-title: Fast prediction of reservoir permeability based on embedded feature selection and Light GBM using direct logging data publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab4a45 – volume: 2 start-page: 423 year: 2004 ident: 10.1016/j.marpetgeo.2022.105597_bib74 article-title: Self-organizing polynomial neural networks based on genetically optimized multi-layer perceptron architecture publication-title: Int. J. Control Autom. Syst. – volume: 189 start-page: 106929 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib59 article-title: Modeling relative permeability of gas condensate reservoirs: advanced computational frameworks publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2020.106929 – volume: 22 issue: 10 year: 1970 ident: 10.1016/j.marpetgeo.2022.105597_bib65 article-title: Influence of pore geometry on water-oil relative permeability. SPE-2588-PA publication-title: J. Petrol. Technol. doi: 10.2118/2588-PA – volume: 30 start-page: 87 issue: 2 year: 2011 ident: 10.1016/j.marpetgeo.2022.105597_bib46 article-title: Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data publication-title: Quaest. Geogr. doi: 10.2478/v10117-011-0021-1 – volume: 37 start-page: 437 year: 2005 ident: 10.1016/j.marpetgeo.2022.105597_bib69 article-title: Inverse modelling of multi-objective thermodynamically optimized turbojet engines using GMDH-type neural networks and evolutionary algorithms publication-title: Eng. Optim. doi: 10.1080/03052150500035591 – volume: vol. 200 start-page: 106931 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib99 – volume: 590 start-page: 125423 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib30 article-title: Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125423 – start-page: 1 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib89 article-title: Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods publication-title: Eng. Comput. – volume: 285 start-page: 119147 year: 2021 ident: 10.1016/j.marpetgeo.2022.105597_bib60 article-title: Toward smart schemes for modeling CO2 solubility in crude oil: application to carbon dioxide enhanced oil recovery publication-title: Fuel doi: 10.1016/j.fuel.2020.119147 – volume: 23 start-page: 17 issue: 1 year: 2021 ident: 10.1016/j.marpetgeo.2022.105597_bib47 article-title: Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm publication-title: J. Petrol. Mining Eng. – volume: 10 start-page: 1817 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib63 article-title: Experimental study of the relationship between porosity and surface area of carbonate reservoir rocks publication-title: J. Petrol. Explor. Prod. Technol. doi: 10.1007/s13202-020-00838-z – volume: 218 start-page: 115576 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib33 article-title: Fractal characterization of permeability prediction model in hydrate-bearing porous media publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115576 – volume: 24 start-page: 1000 year: 2017 ident: 10.1016/j.marpetgeo.2022.105597_bib34 article-title: Development of group method of data handling based on genetic algorithm to predict incipient motion in rigid rectangular storm water channel publication-title: Scientia Iranica. Transaction A, Civil Engineering – volume: 2 start-page: 105 year: 1950 ident: 10.1016/j.marpetgeo.2022.105597_bib94 article-title: Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data. SPE-950105-G publication-title: J. Petrol. Technol. doi: 10.2118/950105-G – volume: 37 issue: 5 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib64 article-title: Implementation of an optimized binary classification by GMDH‐type neural network algorithm for predicting the blast produced ground vibration publication-title: Expet Syst. – volume: 9 start-page: 1 year: 1958 ident: 10.1016/j.marpetgeo.2022.105597_bib62 article-title: A relation between permeability and size distribution of pores publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1958.tb01892.x – volume: 33 start-page: 2853 issue: 7 year: 2021 ident: 10.1016/j.marpetgeo.2022.105597_bib4 article-title: Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05164-3 – volume: 26 start-page: 235 year: 2000 ident: 10.1016/j.marpetgeo.2022.105597_bib51 article-title: Relationship of permeability, porosity and depth using an artificial neural network publication-title: J. Petrol. Sci. Eng. doi: 10.1016/S0920-4105(00)00037-1 – volume: 77 start-page: 103244 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib61 article-title: Comparison of permeability predictions on cemented sandstones with physics-based and machine learning approaches publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103244 – volume: 236 start-page: 110 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib80 article-title: Rigorous prognostication of permeability of heterogeneous carbonate oil reservoirs: smart modeling and correlation development publication-title: Fuel doi: 10.1016/j.fuel.2018.08.136 – start-page: 13 year: 2003 ident: 10.1016/j.marpetgeo.2022.105597_bib18 article-title: Permeability correlations for carbonate and other rocks – volume: 17 start-page: 158 issue: 3 year: 2018 ident: 10.1016/j.marpetgeo.2022.105597_bib75 article-title: Rockburst prediction in kimberlite using decision tree with incomplete data publication-title: J. Sustain. Mining doi: 10.1016/j.jsm.2018.07.004 – volume: 4 start-page: 275 year: 1998 ident: 10.1016/j.marpetgeo.2022.105597_bib66 article-title: GMDH algorithms for complex systems modelling publication-title: Math. Comput. Model. Dyn. Syst. doi: 10.1080/13873959808837083 – volume: 174 start-page: 108943 year: 2021 ident: 10.1016/j.marpetgeo.2022.105597_bib38 article-title: Prediction of oil flow rate through orifice flow meters: optimized machine-learning techniques publication-title: Measurement doi: 10.1016/j.measurement.2020.108943 – start-page: 660 year: 1998 ident: 10.1016/j.marpetgeo.2022.105597_bib76 – volume: 4 start-page: 43 year: 2018 ident: 10.1016/j.marpetgeo.2022.105597_bib45 article-title: A hybrid PSO-SVM-based model for determination of oil recovery factor in the low-permeability reservoir publication-title: Petroleum doi: 10.1016/j.petlm.2017.06.001 – volume: 184 start-page: 17 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib93 article-title: Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2019.106587 – volume: 588 start-page: 125033 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib73 article-title: Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125033 – volume: 118 start-page: 159 year: 2021 ident: 10.1016/j.marpetgeo.2022.105597_bib16 article-title: On the evaluation of solubility of hydrogen sulfide in ionic liquids using advanced committee machine intelligent systems publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2021.01.007 – volume: 24 start-page: 445 year: 2015 ident: 10.1016/j.marpetgeo.2022.105597_bib41 article-title: A polynomial regression model for stabilized turbulent confined jet diffusion flames using bluff body burners publication-title: Egyptian J. Petrol. doi: 10.1016/j.ejpe.2015.06.001 – volume: 130 start-page: 1045 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib44 article-title: Prediction of oil-water relative permeability with a fractal method in ultra-high water cut stage publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.11.011 – volume: vol. 13 start-page: 485 year: 2010 ident: 10.1016/j.marpetgeo.2022.105597_bib11 – volume: 29 start-page: 1328 year: 2006 ident: 10.1016/j.marpetgeo.2022.105597_bib87 article-title: A study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann method publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2005.10.012 – start-page: 1524 year: 2018 ident: 10.1016/j.marpetgeo.2022.105597_bib7 – volume: 20 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib3 article-title: Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-020-01159-9 – volume: 7 start-page: 353 year: 2008 ident: 10.1016/j.marpetgeo.2022.105597_bib27 article-title: A functional approximation comparison between neural networks and polynomial regression publication-title: WSEAS Trans. Math. – volume: 48 start-page: 500 year: 2012 ident: 10.1016/j.marpetgeo.2022.105597_bib72 article-title: Modelling using polynomial regression publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.09.545 – volume: 42 start-page: 1643 year: 2017 ident: 10.1016/j.marpetgeo.2022.105597_bib100 article-title: Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-016-2365-2 – volume: 72 start-page: 625 issue: 1–3 year: 2008 ident: 10.1016/j.marpetgeo.2022.105597_bib86 article-title: Energy demand prediction using GMDH networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.08.006 – volume: 112 start-page: 104096 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib9 article-title: Permeability prediction and diagenesis in tight carbonates using machine learning techniques publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2019.104096 – volume: 46 start-page: 935 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib39 article-title: A permeability prediction method based on pore structure and lithofacies publication-title: Petrol. Explor. Dev. doi: 10.1016/S1876-3804(19)60250-8 – volume: 12 start-page: 403 issue: 2 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib57 article-title: Determination of full-scale pore size distribution of Gaomiaozi bentonite and its permeability prediction publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2019.12.005 – start-page: 2 year: 2006 ident: 10.1016/j.marpetgeo.2022.105597_bib67 – start-page: 512 year: 2015 ident: 10.1016/j.marpetgeo.2022.105597_bib82 – volume: 190 start-page: 107037 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib13 article-title: Prediction of CO2 diffusivity in brine using white-box machine learning publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2020.107037 – volume: 122 start-page: 105185 year: 2021 ident: 10.1016/j.marpetgeo.2022.105597_bib78 article-title: Toward a realistic reconstruction and determination of blood flow pattern in complex vascular network: 3D, non-Newtonian, multi-branch simulation based on CFD and GMDH algorithm publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105185 – volume: 102 start-page: 33 year: 2019 ident: 10.1016/j.marpetgeo.2022.105597_bib92 article-title: Relationships among composition, porosity and permeability of longmaxi shale reservoir in the weiyuan block, sichuan basin, China publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2018.12.026 – volume: 186 start-page: 104249 year: 2020 ident: 10.1016/j.marpetgeo.2022.105597_bib81 article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment publication-title: Catena doi: 10.1016/j.catena.2019.104249 – start-page: 18 year: 2012 ident: 10.1016/j.marpetgeo.2022.105597_bib42 article-title: Prediction of hydrocarbon reservoirs permeability using support vector machine publication-title: Math. Probl Eng. – volume: 90 start-page: 91 issue: 1 year: 2006 ident: 10.1016/j.marpetgeo.2022.105597_bib35 article-title: Porosity-permeability relationships in interlayered limestone-dolostone reservoirs publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull. – volume: 50 start-page: 645 year: 2008 ident: 10.1016/j.marpetgeo.2022.105597_bib25 article-title: Committee neural networks for porosity and permeability prediction from well logs publication-title: Geophys. Prospect. doi: 10.1046/j.1365-2478.2002.00346.x – volume: 33 start-page: 136 issue: 2 year: 2021 ident: 10.1016/j.marpetgeo.2022.105597_bib24 article-title: A new empirical model for enhancing well log permeability prediction, using nonlinear regression method: case study from Hassi-Berkine oil field reservoir–Algeria publication-title: J. King Saud Univ. Eng. Sci. – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.marpetgeo.2022.105597_bib28 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 4 start-page: 317 year: 1990 ident: 10.1016/j.marpetgeo.2022.105597_bib26 article-title: Empirical expression of permeability in terms of porosity, specific surface area, and residual water saturation of carbonate rocks publication-title: J. Petrol. Sci. Eng. doi: 10.1016/0920-4105(90)90029-3 – volume: 32 start-page: 3368 year: 2018 ident: 10.1016/j.marpetgeo.2022.105597_bib54 article-title: Investigation of pore characteristics and irreducible water saturation of tight reservoir using experimental and theoretical methods publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b00193 – volume: 17 start-page: 148 issue: 2 year: 2002 ident: 10.1016/j.marpetgeo.2022.105597_bib19 article-title: Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval publication-title: Int. J. Biol. Markers doi: 10.1177/172460080201700213 – volume: 150 start-page: 43 year: 2017 ident: 10.1016/j.marpetgeo.2022.105597_bib8 article-title: A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2016.11.033 – volume: 5–8 October year: 2003 ident: 10.1016/j.marpetgeo.2022.105597_bib83 article-title: A model to correlate permeability with efficient porosity and irreducible water saturation. SPE-84303-MS – volume: 31 start-page: 109 year: 1998 ident: 10.1016/j.marpetgeo.2022.105597_bib55 article-title: A parametric model for predicting relative permeability-saturation-capillary pressure relationships of oil–water systems in porous media with mixed wettability publication-title: Transport Porous Media doi: 10.1023/A:1006503406056 – volume: 49 start-page: 311 year: 2008 ident: 10.1016/j.marpetgeo.2022.105597_bib12 article-title: Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2007.06.002 – year: 1998 ident: 10.1016/j.marpetgeo.2022.105597_bib32 – volume: 3 start-page: 370 year: 2006 ident: 10.1016/j.marpetgeo.2022.105597_bib77 article-title: Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/3/4/008 |
SSID | ssj0007901 |
Score | 2.5825338 |
Snippet | Carbonate petroleum reservoirs typically have lower permeabilities and recovery factors than sandstone reservoirs, so the natural fractures they often... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105597 |
SubjectTerms | Gas-condensate reservoirs Group method of data handling GMDH Heterogeneous carbonate reservoirs Machine learning Permeability prediction Specific surface area |
Title | Permeability prediction of heterogeneous carbonate gas condensate reservoirs applying group method of data handling |
URI | https://dx.doi.org/10.1016/j.marpetgeo.2022.105597 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA5jIuiD6FScP0YefK3r0jTtfBvDORWHoIO9lTRN50TX0VVhL_7t3qXt3EDYg49pc6XkLnfX5rvvCLl0Y6HbIROWEmFocYl7LvKF5WiIzrYdCW54Ch4Hoj_k9yN3VCHdshYGYZWF7899uvHWxZVmsZrN2WTSfLYRnAXxlzET-LCinHMPrfzq-xfm4bVNC2ScbOHsNYzXB55xZGNTBcgY9rx1kf3prwi1EnV6-2SvSBdpJ3-jA1LR0xrZXSERrJHtW9Ocd3FI5k_gZnVOvL2gsxTPYHDdaRLTV4S9JGAtGj71qZJpiL_NNR1LGCXYBneOQyxGSr-SSTqneLSNNVDUFH7QvNU0PgpBpdSwM8DdIzLs3bx0-1bRVMGS8DWaWVpy0AokBjKC7e27voohSkeQVbSYJ1vS4doDB-lHyBwplIQMMlScK8W92I9Z7ByT6jSZ6hNCHSZ9IeOWA0kTj-yozYXPHcl9rWGidutElAsZqIJxHBtfvAcltOwtWGogQA0EuQbqxF4KznLSjc0i16WmgjX7CSA0bBI-_Y_wGdnBUQ6CPCfVLP3UF5CoZGHDWGKDbHXuHvqDH0kC6sc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEL4gxqgPRlEj_uyDr5Oxdd3wzRARFYiJkPC2dFuHGGVkoAkv_u3edQMhMfHBx669Zem1d9f1u-8ALp1YqFpgCSMUQWBwSXsu8oRhK_TOphkJrnkK2h3R7PGHvtMvQH2eC0Owytz2ZzZdW-v8SSWfzcp4OKw8mwTOQv9rWdrxuWuwznH7UhmDq68fnIdb0zWQabRBw1dAXu90yTEd6DRAy6Kitw7RP_3mopbcTmMXdvJ4kd1kn7QHBTUqwfYSi2AJNu50dd7ZPkye0M6qjHl7xsYpXcLQxLMkZi-Ee0lwuSg867NQpgH9N1dsILGVUB3cCTUpGyn9TIbphNHdNiVBMZ35wbJa0_QqQpUyTc-AvQfQa9x2600jr6pgSDyOTg0lOaoFIwMZ4f72HC-M0U1HGFZULVdWpc2VixbSi4g6UoQSQ8gg5DwMuRt7sRXbh1AcJSN1BMy2pCdkXLUxauKRGdW48LgtuacUDlROGcR8Iv0wpxynyhdv_hxb9uovNOCTBvxMA2UwF4LjjHXjb5Hruab8lQXko2_4S_j4P8IXsNnstlt-677zeAJb1JMhIk-hOE0_1BlGLdPgXK_Kb7Av7FU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permeability+prediction+of+heterogeneous+carbonate+gas+condensate+reservoirs+applying+group+method+of+data+handling&rft.jtitle=Marine+and+petroleum+geology&rft.au=Zanganeh+Kamali%2C+Masoud&rft.au=Davoodi%2C+Shadfar&rft.au=Ghorbani%2C+Hamzeh&rft.au=Wood%2C+David+A.&rft.date=2022-05-01&rft.issn=0264-8172&rft.volume=139&rft.spage=105597&rft_id=info:doi/10.1016%2Fj.marpetgeo.2022.105597&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marpetgeo_2022_105597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-8172&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-8172&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-8172&client=summon |