Efficient Synthesis of Liquid Fuel Intermediates from Furfural and Levulinic Acid via Aldol Condensation over Hierarchical MFI Zeolite Catalyst

A water-tolerant, basic, and hierarchical MFI zeolite catalyst was synthesized and applied in the aldol condensation reaction between biomass-derived furfural and levulinic acid. The results showed that the addition of poly­(diallyl dimethylammonium chloride) significantly affected the textural and...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 33; no. 12; pp. 12518 - 12526
Main Authors Su, Mingxue, Li, Wenzhi, Ma, Qiaozhi, Li, Song, Yang, Tao, Dou, Xiaomeng
Format Journal Article
LanguageEnglish
Published American Chemical Society 19.12.2019
Online AccessGet full text

Cover

Loading…
Abstract A water-tolerant, basic, and hierarchical MFI zeolite catalyst was synthesized and applied in the aldol condensation reaction between biomass-derived furfural and levulinic acid. The results showed that the addition of poly­(diallyl dimethylammonium chloride) significantly affected the textural and acid–base properties of hierarchical zeolite, which subsequently influenced the catalytic performance of hierarchical zeolite. In the aqueous phase, potassium-modified, hierarchical MFI zeolite (K/H-MFI-n) was more active for aldol condensation between furfural and levulinic acid than the potassium-modified, conventional MFI zeolite (K/MFI). This was ascribed to higher basic sites density and improved diffusion limitation of K/H-MFI-n. A 70.6% yield of aldol condensation product was achieved with a complete conversion of furfural at 100 °C for 9 h by K/H-MFI-0.6. However, only 27.4% yield of aldol condensation product with 55.1% furfural conversion was obtained by K/MFI at the same condition. Two major isomeric aldol products, β-furfurylidenelevulinic acid and δ-furfurylidenelevulinic acid (β-FDLA and δ-FDLA), were obtained after acidification. K/H-MFI-n displayed an enhanced selectivity (54.9%) to δ-FDLA, owing to the stronger basicity of K/H-MFI-n. However, K/MFI showed a preferred selectivity to β-FDLA (42.7%), owing to the dominant Lewis acidity. Recyclability research showed that the catalytic performance of potassium-modified, hierarchical MFI zeolite was acceptable after five runs.
AbstractList A water-tolerant, basic, and hierarchical MFI zeolite catalyst was synthesized and applied in the aldol condensation reaction between biomass-derived furfural and levulinic acid. The results showed that the addition of poly­(diallyl dimethylammonium chloride) significantly affected the textural and acid–base properties of hierarchical zeolite, which subsequently influenced the catalytic performance of hierarchical zeolite. In the aqueous phase, potassium-modified, hierarchical MFI zeolite (K/H-MFI-n) was more active for aldol condensation between furfural and levulinic acid than the potassium-modified, conventional MFI zeolite (K/MFI). This was ascribed to higher basic sites density and improved diffusion limitation of K/H-MFI-n. A 70.6% yield of aldol condensation product was achieved with a complete conversion of furfural at 100 °C for 9 h by K/H-MFI-0.6. However, only 27.4% yield of aldol condensation product with 55.1% furfural conversion was obtained by K/MFI at the same condition. Two major isomeric aldol products, β-furfurylidenelevulinic acid and δ-furfurylidenelevulinic acid (β-FDLA and δ-FDLA), were obtained after acidification. K/H-MFI-n displayed an enhanced selectivity (54.9%) to δ-FDLA, owing to the stronger basicity of K/H-MFI-n. However, K/MFI showed a preferred selectivity to β-FDLA (42.7%), owing to the dominant Lewis acidity. Recyclability research showed that the catalytic performance of potassium-modified, hierarchical MFI zeolite was acceptable after five runs.
Author Li, Song
Ma, Qiaozhi
Yang, Tao
Dou, Xiaomeng
Li, Wenzhi
Su, Mingxue
AuthorAffiliation Chinese Academy of Sciences
Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering
South China Agricultural University
CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion
College of Materials and Energy
AuthorAffiliation_xml – name: CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion
– name: South China Agricultural University
– name: Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering
– name: College of Materials and Energy
– name: Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Mingxue
  surname: Su
  fullname: Su, Mingxue
  organization: Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering
– sequence: 2
  givenname: Wenzhi
  orcidid: 0000-0002-7082-5839
  surname: Li
  fullname: Li, Wenzhi
  email: liwenzhi@ustc.edu.cn
  organization: Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering
– sequence: 3
  givenname: Qiaozhi
  surname: Ma
  fullname: Ma, Qiaozhi
  organization: South China Agricultural University
– sequence: 4
  givenname: Song
  surname: Li
  fullname: Li, Song
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
  organization: Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering
– sequence: 6
  givenname: Xiaomeng
  surname: Dou
  fullname: Dou, Xiaomeng
  organization: Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering
BookMark eNqFkE1OwzAQRi1UJNrCGfAFUuy4-fGyqlpaqYgFsGETTZwxdZXaYDuVcgquTKqyYMdqpE_zPs28CRlZZ5GQe85mnKX8AVSYoUX_0esO2zCTNROCFVdkzLOUJRlL5YiMWVkWCcvT-Q2ZhHBgjOWizMbke6W1UQZtpC-9jXsMJlCn6c58daah66GSbm1Ef8TGQMRAtXfHIfe689BSsA3d4alrjTWKLtTAnAzQRdu4li6dbdAGiMZZ6k7o6cagB6_2Rg3s03pL39G1JiJdQoS2D_GWXGtoA979zil5W69el5tk9_y4XS52CQhRxqSoc4BaMpGmWV6ytMixzoXgKMuinEtegxSyQCUBS6mG32UDOlMZ4xIhFVxMSXHpVd6F4FFXn94cwfcVZ9XZazV4rf54rX69DqS4kOeFg-u8He78l_oBONmGow
CitedBy_id crossref_primary_10_1039_D0GC00428F
crossref_primary_10_1002_cctc_202000711
crossref_primary_10_1021_acs_energyfuels_2c03015
crossref_primary_10_1016_j_fuel_2021_122119
crossref_primary_10_1016_j_fuel_2021_121765
crossref_primary_10_1016_j_fuproc_2023_107904
crossref_primary_10_1016_j_micromeso_2022_112393
crossref_primary_10_1016_j_rser_2023_113219
crossref_primary_10_1016_S1872_2067_21_64032_9
crossref_primary_10_1016_j_fuel_2022_124387
crossref_primary_10_1016_j_fuproc_2024_108095
crossref_primary_10_1016_S1872_2067_20_63675_0
crossref_primary_10_1016_j_jcat_2021_03_003
crossref_primary_10_1016_j_indcrop_2022_115692
crossref_primary_10_1080_01614940_2022_2048570
crossref_primary_10_1016_j_cej_2023_145021
Cites_doi 10.1039/c2gc16631c
10.1016/j.indcrop.2014.10.005
10.1016/j.apcatb.2006.03.001
10.1002/cssc.201600386
10.1016/j.cattod.2013.10.059
10.1016/j.fuel.2018.10.094
10.1002/cphc.201200440
10.1016/j.apcata.2017.09.017
10.1021/acscatal.6b00561
10.1002/cssc.201200111
10.1002/anie.201502939
10.1021/cs5015964
10.1002/cssc.201501136
10.1080/01614940.2012.685811
10.1039/c3ra46485g
10.1016/j.apcatb.2013.07.006
10.1016/j.molcata.2008.09.001
10.1039/C7CY01028A
10.1016/j.biombioe.2014.02.025
10.1021/ie061186z
10.1016/j.apcatb.2015.08.052
10.1016/j.apcatb.2010.11.005
10.1039/c2gc15872h
10.1016/j.apcata.2010.10.023
10.1021/acssuschemeng.7b04621
10.1002/cssc.201000052
10.1002/macp.1954.020130120
10.1039/c0gc00263a
10.1002/cctc.201600064
10.1039/C4GC01314J
10.1039/C7GC00362E
10.1039/C4CC03970J
10.1021/acssuschemeng.5b00271
10.1016/S1872-5813(12)60035-8
10.1039/C5RA07448G
10.1002/cssc.201300318
10.1039/C6TA10044A
10.1002/adma.200306295
10.1039/C5GC01454A
10.1002/macp.1960.020360120
10.1002/anie.200801476
10.1126/science.1111166
10.1039/C6GC00118A
10.1016/j.cattod.2010.11.032
10.1021/acs.energyfuels.8b00396
10.1016/j.apcatb.2011.11.039
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.energyfuels.9b03307
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 12526
ExternalDocumentID 10_1021_acs_energyfuels_9b03307
d202095164
GroupedDBID 02
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
4.4
5VS
AAHBH
AAYXX
ABJNI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
ID FETCH-LOGICAL-a338t-7b6aab903225680276eb6331e9878491ba9397ec9ae89c8879daf5c5019ea2313
IEDL.DBID ACS
ISSN 0887-0624
IngestDate Fri Aug 23 01:37:34 EDT 2024
Thu Aug 27 13:43:59 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a338t-7b6aab903225680276eb6331e9878491ba9397ec9ae89c8879daf5c5019ea2313
ORCID 0000-0002-7082-5839
PageCount 9
ParticipantIDs crossref_primary_10_1021_acs_energyfuels_9b03307
acs_journals_10_1021_acs_energyfuels_9b03307
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-12-19
PublicationDateYYYYMMDD 2019-12-19
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-19
  day: 19
PublicationDecade 2010
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1039/c2gc16631c
– ident: ref29/cit29
  doi: 10.1016/j.indcrop.2014.10.005
– ident: ref18/cit18
  doi: 10.1016/j.apcatb.2006.03.001
– ident: ref31/cit31
  doi: 10.1002/cssc.201600386
– ident: ref41/cit41
  doi: 10.1016/j.cattod.2013.10.059
– ident: ref43/cit43
  doi: 10.1016/j.fuel.2018.10.094
– ident: ref10/cit10
  doi: 10.1002/cphc.201200440
– ident: ref37/cit37
  doi: 10.1016/j.apcata.2017.09.017
– ident: ref40/cit40
  doi: 10.1021/acscatal.6b00561
– ident: ref27/cit27
  doi: 10.1002/cssc.201200111
– ident: ref38/cit38
  doi: 10.1002/anie.201502939
– ident: ref39/cit39
  doi: 10.1021/cs5015964
– ident: ref4/cit4
  doi: 10.1002/cssc.201501136
– ident: ref3/cit3
  doi: 10.1080/01614940.2012.685811
– ident: ref22/cit22
  doi: 10.1039/c3ra46485g
– ident: ref11/cit11
  doi: 10.1016/j.apcatb.2013.07.006
– ident: ref19/cit19
  doi: 10.1016/j.molcata.2008.09.001
– ident: ref42/cit42
  doi: 10.1039/C7CY01028A
– ident: ref7/cit7
  doi: 10.1016/j.biombioe.2014.02.025
– ident: ref21/cit21
  doi: 10.1021/ie061186z
– ident: ref46/cit46
  doi: 10.1016/j.apcatb.2015.08.052
– ident: ref13/cit13
  doi: 10.1016/j.apcatb.2010.11.005
– ident: ref23/cit23
  doi: 10.1039/c2gc15872h
– ident: ref14/cit14
  doi: 10.1016/j.apcata.2010.10.023
– ident: ref28/cit28
  doi: 10.1021/acssuschemeng.7b04621
– ident: ref2/cit2
  doi: 10.1002/cssc.201000052
– ident: ref33/cit33
  doi: 10.1002/macp.1954.020130120
– ident: ref20/cit20
  doi: 10.1039/c0gc00263a
– ident: ref35/cit35
  doi: 10.1002/cctc.201600064
– ident: ref9/cit9
  doi: 10.1039/C4GC01314J
– ident: ref15/cit15
  doi: 10.1039/C7GC00362E
– ident: ref25/cit25
  doi: 10.1039/C4CC03970J
– ident: ref5/cit5
  doi: 10.1021/acssuschemeng.5b00271
– ident: ref16/cit16
  doi: 10.1016/S1872-5813(12)60035-8
– ident: ref30/cit30
  doi: 10.1039/C5RA07448G
– ident: ref6/cit6
  doi: 10.1002/cssc.201300318
– ident: ref44/cit44
  doi: 10.1039/C6TA10044A
– ident: ref45/cit45
  doi: 10.1002/adma.200306295
– ident: ref24/cit24
  doi: 10.1039/C5GC01454A
– ident: ref34/cit34
  doi: 10.1002/macp.1960.020360120
– ident: ref1/cit1
  doi: 10.1002/anie.200801476
– ident: ref17/cit17
  doi: 10.1126/science.1111166
– ident: ref36/cit36
  doi: 10.1039/C6GC00118A
– ident: ref8/cit8
  doi: 10.1016/j.cattod.2010.11.032
– ident: ref32/cit32
  doi: 10.1021/acs.energyfuels.8b00396
– ident: ref12/cit12
  doi: 10.1016/j.apcatb.2011.11.039
SSID ssj0006385
Score 2.437663
Snippet A water-tolerant, basic, and hierarchical MFI zeolite catalyst was synthesized and applied in the aldol condensation reaction between biomass-derived furfural...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 12518
Title Efficient Synthesis of Liquid Fuel Intermediates from Furfural and Levulinic Acid via Aldol Condensation over Hierarchical MFI Zeolite Catalyst
URI http://dx.doi.org/10.1021/acs.energyfuels.9b03307
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7S9NDm0DZpS5I-mEOP8Vay5YeOi8myLUkPTQIhFyPJEpgu3ja2A8mfyF_OSLsuCyW0vQokm9Fo5htpvhmAT87WuWKOkFtmTSQUryMpjIiESwxFQUoZ69nIp9-y-YX4eplebgF_5AU_5p-V6SY28ODcQO5iIjWjGDx_Ak_jnI6IR0Pl2W_jS-qUjsU9WRaLMaXr8YW8WzLdhlva8C-zl_B9ZOms0kp-TIZeT8zdn0Ub__3XX8GLNdrE6Uo9dmHLtnvwrBybvO3BzkY9wtdwfxwKSpAfwrPblqBh13S4dHjS_BqaGme0PIYrxMA3IZCKnp1C49fOV-9A1dZ4Ym-GwLbEqaE5N43C6aJeLrBc-ma7q-Qh9ImjOG88-zk0Y1ng6ewLXlmfjWex9HdKt13_Bi5mx-flPFp3bIgUhbp9lOtMKS2ZtxJZQXudWZ0lCbeyyAshuVaS8I81UtlCGtojWSuXmpRwplWENJO3sN0uW7sPyGOWaF4YzkwhbJKSnckcUwWrBS9qpw_giMRbrU9cV4XH9JhXfnBD5tVa5gfAxv2tfq7qePxtyuH_feEdPCcwFXpLcPketvvrwX4gwNLrj0FFHwAmiuvr
link.rule.ids 315,783,787,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6Vcig98CggynMOHMlib5zEPq6irraw20tbqXCJHMeWoq6y0CSV2j_BX2bs3ZQVEkJwteRH7Innsz3fNwDvna0yzRwht9SaSGheRUoYEQkXGzoFaW2sZyMvTtLZufh0kVzsgBy4MDSIllpqwyP-L3UB_tGX2UCHcz15jZEqGR3Fs3twP8nIbD0oyk_v9mCyqmTQ-GTpWAyRXX9uyHsn0255py03M30EX-4GGKJLLkd9V47M7W_ajf_zBY_h4QZ74mRtLE9gxzYHsJcPKd8OYH9LnfAp_DgK8hLklfD0piGg2NYtrhzO6-99XeGUmsdwoRjYJwRZ0XNVqPzKeS0P1E2Fc3vdB-4lTgzVua41TpbVaon5yqfeXYcSoQ8jxVntudAhNcsSF9Nj_Gp9bJ7F3N8w3bTdMzifHp3ls2iTvyHSdPDtoqxMtS4V83tGKmnlU1umccytkpkUipdaERqyRmkrlaGlUpV2iUkIdVpNuDN-DrvNqrEvAPmYxSWXhjMjhY0T2nVSx7RkleCycuUhfKDpLTb_X1uEp_UxL3zh1pwXmzk_BDYsc_Ftrerxtyov_62Hd7A3O1vMi_nxyedX8IBgVsg6wdVr2O2uevuGoExXvg1W-xObU_RL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UCmofvNRK6_U8-Oisk51rwJdl7LDVbRFqoQgy5AqDy2ztzBTqn_Ave5KdKYsgoq-BZDLJSc6X5HzfAXhtjc5EaAm5pUYFsWA64LGKg9hGik5BQijj2MjHJ-n8LP5wnpxvwbuRC0OdaKml1j_iu1V9oe2gMMDeunLjKXG2J88x4TKk43h2C24nGZu6xA2z4vRmHybLSkadzzCdxmN0158bch5KtRseasPVlA_g600nfYTJt0nfyYn68Zt-4__-xUO4P2BQnK2N5hFsmWYX7hZj6rdd2NlQKXwMPw-9zAR5Jzy9bggwtnWLK4uL-ntfayypefQXi56FQtAVHWeFyi-t0_RA0WhcmKveczBxpqjOVS1wttSrJRYrl4J3HVKELpwU57XjRPsULUs8Lo_wi3ExegYLd9N03XZ7cFYefi7mwZDHIRB0AO6CTKZCSB66vSPNyQJSI9MoYobnWR5zJgUnVGQUFybniqaLa2ETlRD6NILwZ_QEtptVY_YBaZYjyXLFQpXHJkpo90ltKPJQxyzXVh7AGxrealiHbeWf2KescoUbY14NY34A4TjV1cVa3eNvVZ7-2xdewZ1P78tqcXTy8RncI7Tlk08w_hy2u8vevCBE08mX3nB_AVCu9sU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Synthesis+of+Liquid+Fuel+Intermediates+from+Furfural+and+Levulinic+Acid+via+Aldol+Condensation+over+Hierarchical+MFI+Zeolite+Catalyst&rft.jtitle=Energy+%26+fuels&rft.au=Su%2C+Mingxue&rft.au=Li%2C+Wenzhi&rft.au=Ma%2C+Qiaozhi&rft.au=Li%2C+Song&rft.date=2019-12-19&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=33&rft.issue=12&rft.spage=12518&rft.epage=12526&rft_id=info:doi/10.1021%2Facs.energyfuels.9b03307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_energyfuels_9b03307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon