Microdistribution and mobility of water in gas shale: A theoretical and experimental study
Multiphase (adsorbed and free) liquid water that is accumulated in shale matrix pores (i.e., pore water) substantially affects the storage and transport of gas in shale. Traditionally used macroscopic parameters (e.g., initial, irreducible, mobile and clay bound water saturations) are not sufficient...
Saved in:
Published in | Marine and petroleum geology Vol. 102; pp. 496 - 507 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiphase (adsorbed and free) liquid water that is accumulated in shale matrix pores (i.e., pore water) substantially affects the storage and transport of gas in shale. Traditionally used macroscopic parameters (e.g., initial, irreducible, mobile and clay bound water saturations) are not sufficient to describe the microdistribution characteristics and mobility of pore water in the complex porous shale matrix. In this paper, a new classification was proposed in which the pore water is composed of adsorbed and free parts, of which the latter is subdivided into capillary bound and mobile water. The components of pore water have the following features: during the centrifugation process, (a) adsorbed water is essentially immobile, while free water is potentially mobile; (b) capillary bound water is gradually transformed into mobile water with increased centrifugal pressure difference; and (c) the maximum mobile water amount is numerically equal to the free water amount. Based on the classification, an effective technique, which integrates centrifugation, water imbibition and low temperature nitrogen adsorption methods with the modified Li's adsorption ratio equation (2018), was established to quantitatively evaluate the microdistribution characteristics (adsorbed and free amounts and their ratios) and the mobility (mobile amount, potential and capacity) of pore water in marine shales from the southern Sichuan basin in China. Furthermore, the mechanism of controlling the microdistribution and mobility of pore water is analyzed with respect to the microscopic pore structure characteristics and material compositions of shales. The primary results demonstrate that (1) adsorbed and free water amounts obtained by centrifugation tests range from 5.145 to 31.282 mg/g (adsorbed) and from 7.880 to 49.751 mg/g (free); the weight ratio of adsorbed water is 0.268–0.629. (2) The mobile potential and mobile capacity of pore water are represented by the free water amount and mid-value pressure difference, respectively. A positive relationship between these two parameters occurs in the studied shales. (3) Pore microstructure characteristics of shale mainly impact the microdistribution and mobility of pore water in the shale matrix. The adsorbed water amount is closely associated with the specific surface area of pores, while the free and mobile water amounts are controlled by the pore volume. The ratios of adsorbed and free water depend on the size and morphology of pores for certain state parameters. The mobile ratio is impacted by pore complexity, which indicates that as the complexity increases, the mobile ratio decreases. The study provides significant insight into the microdistribution and mobility of pore water in gas shale matrix.
•A new classification was proposed for the components of pore water.•A technique was established to evaluate the microdistribution characteristics and the mobility of pore water in shales.•Mechanism of controlling the microdistribution and mobility of pore water was analyzed. |
---|---|
AbstractList | Multiphase (adsorbed and free) liquid water that is accumulated in shale matrix pores (i.e., pore water) substantially affects the storage and transport of gas in shale. Traditionally used macroscopic parameters (e.g., initial, irreducible, mobile and clay bound water saturations) are not sufficient to describe the microdistribution characteristics and mobility of pore water in the complex porous shale matrix. In this paper, a new classification was proposed in which the pore water is composed of adsorbed and free parts, of which the latter is subdivided into capillary bound and mobile water. The components of pore water have the following features: during the centrifugation process, (a) adsorbed water is essentially immobile, while free water is potentially mobile; (b) capillary bound water is gradually transformed into mobile water with increased centrifugal pressure difference; and (c) the maximum mobile water amount is numerically equal to the free water amount. Based on the classification, an effective technique, which integrates centrifugation, water imbibition and low temperature nitrogen adsorption methods with the modified Li's adsorption ratio equation (2018), was established to quantitatively evaluate the microdistribution characteristics (adsorbed and free amounts and their ratios) and the mobility (mobile amount, potential and capacity) of pore water in marine shales from the southern Sichuan basin in China. Furthermore, the mechanism of controlling the microdistribution and mobility of pore water is analyzed with respect to the microscopic pore structure characteristics and material compositions of shales. The primary results demonstrate that (1) adsorbed and free water amounts obtained by centrifugation tests range from 5.145 to 31.282 mg/g (adsorbed) and from 7.880 to 49.751 mg/g (free); the weight ratio of adsorbed water is 0.268–0.629. (2) The mobile potential and mobile capacity of pore water are represented by the free water amount and mid-value pressure difference, respectively. A positive relationship between these two parameters occurs in the studied shales. (3) Pore microstructure characteristics of shale mainly impact the microdistribution and mobility of pore water in the shale matrix. The adsorbed water amount is closely associated with the specific surface area of pores, while the free and mobile water amounts are controlled by the pore volume. The ratios of adsorbed and free water depend on the size and morphology of pores for certain state parameters. The mobile ratio is impacted by pore complexity, which indicates that as the complexity increases, the mobile ratio decreases. The study provides significant insight into the microdistribution and mobility of pore water in gas shale matrix.
•A new classification was proposed for the components of pore water.•A technique was established to evaluate the microdistribution characteristics and the mobility of pore water in shales.•Mechanism of controlling the microdistribution and mobility of pore water was analyzed. |
Author | Lu, Shuangfang Zhao, Jianhua Li, Junqian Cai, Jianchao Li, Wenbiao Zhang, Pengfei Wang, Siyuan |
Author_xml | – sequence: 1 givenname: Junqian surname: Li fullname: Li, Junqian organization: School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China – sequence: 2 givenname: Siyuan surname: Wang fullname: Wang, Siyuan organization: School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China – sequence: 3 givenname: Shuangfang orcidid: 0000-0003-1116-1558 surname: Lu fullname: Lu, Shuangfang email: lushuangfang@upc.edu.cn organization: School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China – sequence: 4 givenname: Pengfei surname: Zhang fullname: Zhang, Pengfei organization: School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China – sequence: 5 givenname: Jianchao orcidid: 0000-0003-2950-888X surname: Cai fullname: Cai, Jianchao organization: Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, 430074, PR China – sequence: 6 givenname: Jianhua surname: Zhao fullname: Zhao, Jianhua organization: School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China – sequence: 7 givenname: Wenbiao surname: Li fullname: Li, Wenbiao organization: School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China |
BookMark | eNqNkNFKwzAUhnMxwW36DOYFWpO0Nq3gxRjqhIk3euNNSJPT7YyuGUmm7u1tnXjhjcIPBw58P3z_hIw61wEhF5ylnPHicpNutd9BXIFLBeNVyngfMSJjJoo8KbkUp2QSwoYxJivGx-T1EY13FkP0WO8juo7qztKtq7HFeKCuoe86gqfY0ZUONKx1C9d0RuManIeIRrdfBHzswOMWutg_Qtzbwxk5aXQb4Pz7TsnL3e3zfJEsn-4f5rNlorOsjEnOQUqZV0xeWQumyE1diEJIYUvDhNGi7k1kZiQ0ObciKytdS8mqUtuaARfZlNwce3uREDw0ymDUg0r0GlvFmRrGURv1M44axlGM9xl4-Yvf9SLaH_5Bzo4k9HpvCF4Fg9AZsOjBRGUd_tnxCZOOih0 |
CitedBy_id | crossref_primary_10_1155_2022_1692516 crossref_primary_10_1016_j_petrol_2020_107739 crossref_primary_10_1155_2021_2637217 crossref_primary_10_1016_j_cej_2023_142637 crossref_primary_10_1177_01445987231154613 crossref_primary_10_1016_S1876_3804_24_60476_3 crossref_primary_10_1016_j_marpetgeo_2023_106205 crossref_primary_10_1016_j_dibe_2023_100270 crossref_primary_10_1016_j_petrol_2021_109516 crossref_primary_10_1016_j_petsci_2021_12_013 crossref_primary_10_1007_s11053_021_09986_3 crossref_primary_10_1016_j_jgsce_2024_205380 crossref_primary_10_1016_j_marpetgeo_2021_105510 crossref_primary_10_1016_j_marpetgeo_2023_106565 crossref_primary_10_1021_acs_energyfuels_2c01583 crossref_primary_10_1016_j_petsci_2024_08_008 crossref_primary_10_1021_acs_energyfuels_2c04011 crossref_primary_10_1021_acs_energyfuels_3c00822 crossref_primary_10_1021_acsomega_3c01640 crossref_primary_10_1016_j_jngse_2022_104836 crossref_primary_10_1021_acs_energyfuels_3c00820 crossref_primary_10_3389_feart_2022_1098035 crossref_primary_10_1007_s11707_022_1044_8 crossref_primary_10_3390_en16176170 crossref_primary_10_1007_s11053_022_10041_y crossref_primary_10_1021_acs_energyfuels_1c03495 crossref_primary_10_1016_j_petrol_2021_108698 crossref_primary_10_1016_j_petrol_2020_107387 crossref_primary_10_1016_j_marpetgeo_2022_105648 crossref_primary_10_1061__ASCE_GM_1943_5622_0002020 crossref_primary_10_1016_j_marpetgeo_2021_105382 crossref_primary_10_1021_acs_energyfuels_4c01474 crossref_primary_10_1016_j_engeos_2024_100329 crossref_primary_10_1016_j_petsci_2025_03_003 crossref_primary_10_3390_pr11020572 crossref_primary_10_1016_j_marpetgeo_2023_106674 crossref_primary_10_1007_s11430_019_9553_5 crossref_primary_10_1021_acs_energyfuels_2c03395 crossref_primary_10_1016_j_geoen_2023_211580 crossref_primary_10_1016_j_jhydrol_2022_127697 crossref_primary_10_3390_en16083305 crossref_primary_10_1007_s11707_022_1056_4 crossref_primary_10_1021_acs_energyfuels_3c02833 crossref_primary_10_1021_acs_energyfuels_2c03470 crossref_primary_10_3390_en15041532 crossref_primary_10_1016_j_petrol_2021_108567 crossref_primary_10_1061__ASCE_EY_1943_7897_0000864 crossref_primary_10_1016_j_petrol_2022_111028 crossref_primary_10_1021_acs_langmuir_3c02421 crossref_primary_10_1029_2019WR026973 crossref_primary_10_1021_acs_energyfuels_3c04620 crossref_primary_10_1016_j_jngse_2020_103369 crossref_primary_10_1016_j_jngse_2022_104553 crossref_primary_10_3390_en16041748 crossref_primary_10_1021_acs_energyfuels_9b01405 crossref_primary_10_1016_j_marpetgeo_2024_107159 crossref_primary_10_1016_j_cej_2020_125982 crossref_primary_10_1016_j_petsci_2023_05_012 crossref_primary_10_1016_j_cej_2020_126872 crossref_primary_10_1007_s11242_021_01685_0 crossref_primary_10_1016_j_clay_2020_105926 crossref_primary_10_1016_j_earscirev_2023_104472 crossref_primary_10_1021_acs_energyfuels_2c00431 crossref_primary_10_1016_j_jhydrol_2022_128799 crossref_primary_10_1021_acs_energyfuels_3c01977 crossref_primary_10_1063_5_0226864 crossref_primary_10_1016_j_marpetgeo_2019_104210 crossref_primary_10_1016_j_cej_2020_126238 crossref_primary_10_1021_acs_energyfuels_2c00592 crossref_primary_10_1166_jnn_2021_18459 crossref_primary_10_1016_j_petrol_2022_110488 crossref_primary_10_3390_en14175519 crossref_primary_10_3390_en15114053 crossref_primary_10_1021_acs_jpcc_4c07736 crossref_primary_10_1016_j_petsci_2024_04_007 crossref_primary_10_1021_acs_energyfuels_0c01932 crossref_primary_10_1021_acs_energyfuels_1c01326 crossref_primary_10_1016_j_marpetgeo_2019_08_003 crossref_primary_10_1016_j_petrol_2022_110208 crossref_primary_10_3390_en16093812 crossref_primary_10_1061__ASCE_EY_1943_7897_0000771 crossref_primary_10_1016_j_fuel_2024_131236 crossref_primary_10_2139_ssrn_4181432 crossref_primary_10_1016_j_geoen_2025_213787 crossref_primary_10_1016_j_geoen_2024_212673 crossref_primary_10_1007_s12665_024_11599_x crossref_primary_10_1016_j_petsci_2024_12_025 |
Cites_doi | 10.1016/j.carbon.2009.01.039 10.1016/j.jngse.2016.07.038 10.1088/1742-2132/11/3/035004 10.1016/j.marpetgeo.2015.11.004 10.1016/j.jngse.2016.09.053 10.1103/PhysRev.17.273 10.1144/petgeo2012-031 10.1260/0144-5987.33.5.689 10.1016/j.fluid.2014.07.035 10.1016/j.juogr.2014.03.002 10.1021/ja01145a126 10.1016/j.jhydrol.2016.09.018 10.1016/j.coal.2017.06.008 10.1021/acs.energyfuels.8b02953 10.1021/acs.energyfuels.7b01625 10.1016/j.marpetgeo.2018.05.028 10.1016/j.fuel.2013.09.046 10.1016/j.petrol.2016.10.066 10.1002/aic.16060 10.1016/j.marpetgeo.2015.05.011 10.1007/s11430-014-4849-9 10.1016/j.micromeso.2016.01.010 10.1016/j.jngse.2015.01.004 10.1016/j.coal.2018.05.003 10.1063/1.1924697 10.1007/s00267-015-0454-8 10.1016/j.coal.2013.12.004 10.1016/j.fuel.2018.05.120 10.1016/j.ces.2017.08.023 10.1016/j.jngse.2016.07.003 10.1016/j.coal.2007.07.003 10.1016/S0016-2361(02)00339-3 10.1016/j.fuel.2013.02.031 10.1190/geo2016-0462.1 10.3390/min7080151 10.1016/j.marpetgeo.2017.11.015 10.1016/j.coal.2017.05.008 10.1021/acs.energyfuels.7b01531 10.1016/j.coal.2013.06.010 10.1016/j.coal.2006.05.001 10.2118/164549-PA 10.1016/j.petrol.2013.05.009 10.1016/j.carbon.2016.10.040 10.1166/jnn.2017.14440 10.1016/j.fuel.2017.07.062 10.1016/j.coal.2016.03.012 10.1360/N092016-00011 10.2174/1874834101508010203 10.1016/j.jcis.2009.11.064 10.1016/S0008-6223(99)00159-1 10.1016/S1876-3804(13)60111-1 10.1016/j.coal.2017.05.009 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.marpetgeo.2019.01.012 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EndPage | 507 |
ExternalDocumentID | 10_1016_j_marpetgeo_2019_01_012 S0264817219300121 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a338t-41e77749075ddec64cb626272d8c02ca2b20173c7ef41d2389ab77098adb0e123 |
IEDL.DBID | .~1 |
ISSN | 0264-8172 |
IngestDate | Tue Jul 01 02:11:12 EDT 2025 Thu Apr 24 22:57:34 EDT 2025 Tue Dec 03 03:45:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water Mobility Adsorbed and free amounts Microdistribution Mobile ratio Shale gas |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a338t-41e77749075ddec64cb626272d8c02ca2b20173c7ef41d2389ab77098adb0e123 |
ORCID | 0000-0003-2950-888X 0000-0003-1116-1558 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1016_j_marpetgeo_2019_01_012 crossref_primary_10_1016_j_marpetgeo_2019_01_012 elsevier_sciencedirect_doi_10_1016_j_marpetgeo_2019_01_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationTitle | Marine and petroleum geology |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Allardice (bib1) 1991 Strioloa, Chialvo, Gubbins, Cummings (bib40) 2005; 122 Zolfaghari, Dehghanpour, Xu (bib64) 2017; 179 Slatt, O'Brien (bib38) 2011; 95 Rivard, Lavoie, Lefebvre, Séjourné, Lamontagne, Duchesne (bib35) 2014; 126 Nan, Kong, Li, Lu (bib33) 2017; 68 Wang, Guan, Feng, Bao (bib46) 2013; 40 Xiang, Zeng, Liang, Li, Song (bib50) 2014; 57 Bahadur, Contescu, Rai, Gallego, Melnichenko (bib3) 2017; 111 Washburn (bib48) 1921; 17 Fan, Li, Elsworth, Dong, Yin, Li, Chen (bib16) 2018; 231 Bust, Majid, Oletu, Worthington (bib7) 2013; 19 Li, Ding, He, Dai, Yin, Xie (bib27) 2016; 70 Zhang, Lu, Li, Zhang, Xue, Chen (bib60) 2017; 31 Zhang, Lu, Li, Chen, Xue, Zhang (bib61) 2018; 89 Gao, Hu (bib17) 2016; 34 Chalmers, Bustin (bib9) 2007; 70 Kadoura, Nair, Sun (bib24) 2016; 225 Xu, Xu, Qin (bib53) 2017; 82 Deng, Shen, Xu, Ma, Zhao, Li (bib12) 2014; 11 Yuan, Rezaee, Verrall, Hu, Zou, Testmanti (bib58) 2018; 194 Loucks, Reed, Ruppel, Hammes (bib32) 2012; 96 Tang, Ripepi, Valentine, Keles, Long, Gonciaruk (bib42) 2017; 209 Allardice, Clemow, Favas, Jackson, Marshall, Sakurovs (bib2) 2003; 82 Li, Zhang, Lu, Xue, Zhang (bib29) 2017; 17 Sulucarnain, Sondergeld, Rai (bib41) 2012 Liu, Yao, Elsworth, Liu, Cai, Long (bib31) 2017; 7 Li, Li, Wang, Li, Wu, Shi, Yang, Feng, Zhang, Yu (bib26) 2016; 159 Gasparik, Bertier, Gensterblum, Ghanizadeh, Krooss, Littke (bib20) 2014; 123 Barrett, Joyner, Halenda (bib4) 1951; 73 Wu, Bai, Ma, Ok, Yin, Neeves (bib49) 2014; 19 Odusina, Sondergeld, Rai (bib34) 2011 Engelder, Cathles, Bryndzia (bib15) 2014; 7 Zolfaghari, Dehghanpour, Holyk (bib63) 2017; 179 Yuan, Pan, Li, Yang, Zhao, Connell, Li, He (bib57) 2014; 117 Do, Junpirom, Do (bib14) 2009; 47 Li, Tang, Xu, Pan, Huang, Zhu (bib25) 2015; 33 Cai, Liu, Pan, Yao, Li, Qiu (bib8) 2013; 108 Jin, Firoozabadia (bib23) 2014; 382 Do, Do (bib13) 2000; 38 Xiao, Zou, Mao, Shi, Liu, Jin, Guo, Hu (bib51) 2013; 108 Testamanti, Rezaee (bib43) 2017; 149 Li, Lu, Cai, Zhang, Xue, Zhao (bib30) 2018; 32 Vandecasteele, Rivero, Sala, Baranzelli, Barranco, Batelaan, Lavalle (bib44) 2015; 55 Shen, Ge, Li, Yang, Kai, Yang, Su (bib36) 2016; 35 Zhou, Liu, Yan, Xue, Guo (bib62) 2016; 37 Yao, Liu, Tang, Tang, Huang (bib54) 2008; 73 Han, Han, Jiang, Han, Li, Song, Zhong, Liu, Wang (bib21) 2018 Wang, Xue, Tian, Wilkins, Wang (bib47) 2015; 67 Gao, Li (bib18) 2018; 96 Li, Li, Wu, Feng, Zhang, Zhang (bib28) 2017; 179 Zhang, Li, Sun, Feng, Miao, Li, zhang (bib59) 2017; 174 Yin, Wang, Zhang, Duan (bib55) 2015; 8 Wang, Yu (bib45) 2016; 542 Yu, Xu, Liu, Wu, Sepehrnoori (bib56) 2018; 64 Cheng, Tian, Xiao, Gai, Li, Wang (bib11) 2017; 31 Song, Zhang, Huang, Long (bib39) 2016; 46 Boyer, Kieschnick, Suarez-Rivera, Lewis, Waters (bib6) 2006; 18 Singh (bib37) 2016; 34 Xiong, Liu, Liang (bib52) 2015; 22 IUPAC (bib22) 1972; 31 Bowker (bib5) 2007; 91 Charriere, Behra (bib10) 2010; 344 Han (10.1016/j.marpetgeo.2019.01.012_bib21) 2018 Shen (10.1016/j.marpetgeo.2019.01.012_bib36) 2016; 35 Wu (10.1016/j.marpetgeo.2019.01.012_bib49) 2014; 19 Strioloa (10.1016/j.marpetgeo.2019.01.012_bib40) 2005; 122 Gao (10.1016/j.marpetgeo.2019.01.012_bib17) 2016; 34 Rivard (10.1016/j.marpetgeo.2019.01.012_bib35) 2014; 126 Gao (10.1016/j.marpetgeo.2019.01.012_bib18) 2018; 96 Allardice (10.1016/j.marpetgeo.2019.01.012_bib1) 1991 Cai (10.1016/j.marpetgeo.2019.01.012_bib8) 2013; 108 Wang (10.1016/j.marpetgeo.2019.01.012_bib46) 2013; 40 Odusina (10.1016/j.marpetgeo.2019.01.012_bib34) 2011 Gasparik (10.1016/j.marpetgeo.2019.01.012_bib20) 2014; 123 Song (10.1016/j.marpetgeo.2019.01.012_bib39) 2016; 46 Xiong (10.1016/j.marpetgeo.2019.01.012_bib52) 2015; 22 Engelder (10.1016/j.marpetgeo.2019.01.012_bib15) 2014; 7 Sulucarnain (10.1016/j.marpetgeo.2019.01.012_bib41) 2012 Yao (10.1016/j.marpetgeo.2019.01.012_bib54) 2008; 73 Do (10.1016/j.marpetgeo.2019.01.012_bib13) 2000; 38 Wang (10.1016/j.marpetgeo.2019.01.012_bib45) 2016; 542 Washburn (10.1016/j.marpetgeo.2019.01.012_bib48) 1921; 17 Vandecasteele (10.1016/j.marpetgeo.2019.01.012_bib44) 2015; 55 Nan (10.1016/j.marpetgeo.2019.01.012_bib33) 2017; 68 Li (10.1016/j.marpetgeo.2019.01.012_bib28) 2017; 179 Chalmers (10.1016/j.marpetgeo.2019.01.012_bib9) 2007; 70 Xu (10.1016/j.marpetgeo.2019.01.012_bib53) 2017; 82 Yin (10.1016/j.marpetgeo.2019.01.012_bib55) 2015; 8 Kadoura (10.1016/j.marpetgeo.2019.01.012_bib24) 2016; 225 Cheng (10.1016/j.marpetgeo.2019.01.012_bib11) 2017; 31 Li (10.1016/j.marpetgeo.2019.01.012_bib29) 2017; 17 Deng (10.1016/j.marpetgeo.2019.01.012_bib12) 2014; 11 Singh (10.1016/j.marpetgeo.2019.01.012_bib37) 2016; 34 Li (10.1016/j.marpetgeo.2019.01.012_bib25) 2015; 33 Li (10.1016/j.marpetgeo.2019.01.012_bib30) 2018; 32 Zhang (10.1016/j.marpetgeo.2019.01.012_bib61) 2018; 89 Zolfaghari (10.1016/j.marpetgeo.2019.01.012_bib63) 2017; 179 Fan (10.1016/j.marpetgeo.2019.01.012_bib16) 2018; 231 Testamanti (10.1016/j.marpetgeo.2019.01.012_bib43) 2017; 149 Bust (10.1016/j.marpetgeo.2019.01.012_bib7) 2013; 19 Zhang (10.1016/j.marpetgeo.2019.01.012_bib60) 2017; 31 Charriere (10.1016/j.marpetgeo.2019.01.012_bib10) 2010; 344 Li (10.1016/j.marpetgeo.2019.01.012_bib27) 2016; 70 Allardice (10.1016/j.marpetgeo.2019.01.012_bib2) 2003; 82 Tang (10.1016/j.marpetgeo.2019.01.012_bib42) 2017; 209 Xiang (10.1016/j.marpetgeo.2019.01.012_bib50) 2014; 57 Bahadur (10.1016/j.marpetgeo.2019.01.012_bib3) 2017; 111 Barrett (10.1016/j.marpetgeo.2019.01.012_bib4) 1951; 73 Yuan (10.1016/j.marpetgeo.2019.01.012_bib57) 2014; 117 Bowker (10.1016/j.marpetgeo.2019.01.012_bib5) 2007; 91 Do (10.1016/j.marpetgeo.2019.01.012_bib14) 2009; 47 Yu (10.1016/j.marpetgeo.2019.01.012_bib56) 2018; 64 IUPAC (10.1016/j.marpetgeo.2019.01.012_bib22) 1972; 31 Boyer (10.1016/j.marpetgeo.2019.01.012_bib6) 2006; 18 Yuan (10.1016/j.marpetgeo.2019.01.012_bib58) 2018; 194 Xiao (10.1016/j.marpetgeo.2019.01.012_bib51) 2013; 108 Wang (10.1016/j.marpetgeo.2019.01.012_bib47) 2015; 67 Slatt (10.1016/j.marpetgeo.2019.01.012_bib38) 2011; 95 Zolfaghari (10.1016/j.marpetgeo.2019.01.012_bib64) 2017; 179 Zhang (10.1016/j.marpetgeo.2019.01.012_bib59) 2017; 174 Zhou (10.1016/j.marpetgeo.2019.01.012_bib62) 2016; 37 Jin (10.1016/j.marpetgeo.2019.01.012_bib23) 2014; 382 Loucks (10.1016/j.marpetgeo.2019.01.012_bib32) 2012; 96 Liu (10.1016/j.marpetgeo.2019.01.012_bib31) 2017; 7 Li (10.1016/j.marpetgeo.2019.01.012_bib26) 2016; 159 |
References_xml | – volume: 11 year: 2014 ident: bib12 article-title: Dynamic elastic properties of the Wufeng–Longmaxi formation shale in the southeast margin of the Sichuan Basin publication-title: J. Geophys. Eng. – volume: 38 start-page: 767 year: 2000 end-page: 773 ident: bib13 article-title: A model for water adsorption in activated carbon publication-title: Carbon – volume: 108 start-page: 40 year: 2013 end-page: 51 ident: bib51 article-title: Estimation of water saturation from nuclear magnetic resonance (NMR) and conventional logs in low permeability sandstone reservoirs publication-title: J. Petrol. Sci. Eng. – volume: 123 start-page: 34 year: 2014 end-page: 51 ident: bib20 article-title: Geological controls on the methane storage capacity in organic-rich shales publication-title: Int. J. Coal Geol. – volume: 32 start-page: 12247 year: 2018 end-page: 12258 ident: bib30 article-title: Adsorbed and free oil in lacustrine nanoporous shale: a theoretical model and a case study publication-title: Energy Fuels – start-page: 102 year: 1991 end-page: 150 ident: bib1 article-title: The water in Brown coal publication-title: The Science of Victorian Brown Coal – volume: 542 start-page: 487 year: 2016 end-page: 505 ident: bib45 article-title: The effect of moisture on the methane adsorption capacity of shales: a study case in the eastern Qaidam Basin in China publication-title: J. Hydrol. – volume: 194 start-page: 11 year: 2018 end-page: 21 ident: bib58 article-title: Pore characterization and clay bound water assessment in shale with a combination of NMR and low-pressure nitrogen gas adsorption publication-title: Int. J. Coal Geol. – volume: 7 start-page: 151 year: 2017 ident: bib31 article-title: Vertical heterogeneity of the shale reservoir in the lower silurian Longmaxi formation: analogy between the southeastern and northeastern Sichuan basin, SW China publication-title: Minerals – volume: 96 start-page: 371 year: 2018 end-page: 390 ident: bib18 article-title: Water saturation-driven evolution of helium permeability in Carboniferous shale from Qaidam Basin, China: an experimental study publication-title: Mar. Petrol. Geol. – year: 2011 ident: bib34 article-title: NMR study of shale wettability publication-title: Presentation at the Canadian Unconventional Resources Conference Held in Calgary, Alberta, Canada, 15-17 November, 2011 – volume: 17 start-page: 7026 year: 2017 end-page: 7034 ident: bib29 article-title: Microstructural characterization of the clay-rich oil shales by nuclear magnetic resonance (NMR) publication-title: J. Nanosci. Nanotechnol. – volume: 209 start-page: 606 year: 2017 end-page: 614 ident: bib42 article-title: Water vapor sorption on Marcellus shale: measurement, modeling and thermodynamic analysis publication-title: Fuel – volume: 122 start-page: 234712 year: 2005 ident: bib40 article-title: Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation publication-title: J. Chem. Phys. – volume: 64 start-page: 2251 year: 2018 end-page: 2264 ident: bib56 article-title: Simulation of shale gas transport and production with complex fractures using embedded discrete fracture model publication-title: AIChE J. – volume: 46 start-page: 120 year: 2016 end-page: 126 ident: bib39 article-title: The flow characteristics of shale gas through shale rock matrix in nano-scale and water imbibition on shale sheets publication-title: Scientia Sinica Technologica – volume: 70 start-page: 46 year: 2016 end-page: 57 ident: bib27 article-title: Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: a case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, South China publication-title: Mar. Petrol. Geol. – volume: 33 start-page: 689 year: 2015 end-page: 705 ident: bib25 article-title: Comparative analysis on water movability in pores of different reservoir rocks by nuclear magnetic resonance publication-title: Energy Explor. Exploit. – volume: 149 start-page: 497 year: 2017 end-page: 503 ident: bib43 article-title: Determination of NMR T publication-title: J. Petrol. Sci. Eng. – volume: 82 start-page: 1 year: 2017 end-page: 42 ident: bib53 article-title: Two effective methods for calculating water saturations in shale-gas reservoirs publication-title: Geophysics – volume: 34 start-page: 541 year: 2016 end-page: 551 ident: bib17 article-title: Initial water saturation and imbibition fluid affect spontaneous imbibition into Barnett shale samples publication-title: J. Nat. Gas Sci. Eng. – volume: 19 start-page: 91 year: 2013 end-page: 103 ident: bib7 article-title: The petrophysics of shale gas reservoirs: technical challenges and pragmatic solutions publication-title: Petrol. Geosci. – volume: 7 start-page: 33 year: 2014 end-page: 48 ident: bib15 article-title: The fate of residual treatment water in gas shale publication-title: Journal of Unconventional Oil & Gas Resources – volume: 179 start-page: 130 year: 2017 end-page: 138 ident: bib63 article-title: Water sorption behaviour of gas shales: I. Role of clays publication-title: Int. J. Coal Geol. – volume: 34 start-page: 751 year: 2016 end-page: 766 ident: bib37 article-title: A critical review of water uptake by shales publication-title: J. Nat. Gas Sci. Eng. – volume: 70 start-page: 223 year: 2007 end-page: 239 ident: bib9 article-title: The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada publication-title: Int. J. Coal Geol. – volume: 31 start-page: 578 year: 1972 ident: bib22 article-title: Manual of symbols and terminology publication-title: Pure Appl. Chem. – volume: 73 start-page: 373 year: 1951 end-page: 380 ident: bib4 article-title: The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms publication-title: J. Am. Chem. Soc. – volume: 179 start-page: 253 year: 2017 end-page: 268 ident: bib28 article-title: Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay publication-title: Int. J. Coal Geol. – volume: 67 start-page: 144 year: 2015 end-page: 153 ident: bib47 article-title: Fractal characteristics of upper cretaceous lacustrine shale from the songliao basin, NE China publication-title: Mar. Petrol. Geol. – year: 2012 ident: bib41 article-title: An NMR study of shale wettability and effective surface relaxivity publication-title: SPE Canadian Unconventional Resources Conference – volume: 73 start-page: 27 year: 2008 end-page: 42 ident: bib54 article-title: Fractal characterization of adsorption-pores of coals from North China: an investigation on CH publication-title: Int. J. Coal Geol. – volume: 96 start-page: 1071 year: 2012 end-page: 1098 ident: bib32 article-title: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull. – volume: 40 start-page: 819 year: 2013 end-page: 824 ident: bib46 article-title: Evolution of overmature marine shale porosity and implication to the free gas volume publication-title: Petrol. Explor. Dev. – volume: 117 start-page: 509 year: 2014 end-page: 519 ident: bib57 article-title: Experimental study and modelling of methane adsorption and diffusion in shale publication-title: Fuel – volume: 57 start-page: 1749 year: 2014 end-page: 1759 ident: bib50 article-title: Molecular simulation of the CH publication-title: Sci. China Earth Sci. – volume: 126 start-page: 64 year: 2014 end-page: 76 ident: bib35 article-title: An overview of Canadian shale gas production and environmental concerns publication-title: Int. J. Coal Geol. – volume: 179 start-page: 187 year: 2017 end-page: 195 ident: bib64 article-title: Water sorption behaviour of gas shales: II. Pore size distribution publication-title: Int. J. Coal Geol. – volume: 231 start-page: 352 year: 2018 end-page: 360 ident: bib16 article-title: Three stages of methane adsorption capacity affected by moisture content publication-title: Fuel – volume: 8 start-page: 203 year: 2015 end-page: 207 ident: bib55 article-title: Shale gas productivity predicting model and analysis of influence factors publication-title: Open Petrol. Eng. J. – volume: 31 start-page: 13120 year: 2017 end-page: 13132 ident: bib11 article-title: Water distribution in overmature organic-rich shales: implications from water adsorption experiments publication-title: Energy Fuels – volume: 95 start-page: 2017 year: 2011 end-page: 2030 ident: bib38 article-title: Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull. – volume: 35 start-page: 1121 year: 2016 end-page: 1128 ident: bib36 article-title: Water imbibition of shale and its potential influence on shale gas recovery-a comparative study of marine and continental shale formations publication-title: J. Nat. Gas Sci. Eng. – volume: 47 start-page: 1466 year: 2009 end-page: 1473 ident: bib14 article-title: A new adsorption-desorption model for water adsorption publication-title: Carbon – volume: 17 start-page: 273 year: 1921 end-page: 283 ident: bib48 article-title: The dynamics of capillary flow publication-title: Phys. Rev. – volume: 108 start-page: 292 year: 2013 end-page: 302 ident: bib8 article-title: Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance publication-title: Fuel – volume: 225 start-page: 331 year: 2016 end-page: 341 ident: bib24 article-title: Adsorption of carbon dioxide, methane, and their mixture by montmorillonite in the presence of water publication-title: Microporous Mesoporous Mater. – volume: 82 start-page: 661 year: 2003 end-page: 667 ident: bib2 article-title: The characterisation of different forms of water in low rank coals and some hydrothermally dried products publication-title: Fuel – start-page: 1 year: 2018 end-page: 12 ident: bib21 article-title: Source analysis of quartz from the Upper Ordovician and Lower Silurian black shale and its effects on shale gas reservoir in the southern Sichuan Basin and its periphery, China publication-title: Geol. J. – volume: 111 start-page: 681 year: 2017 end-page: 688 ident: bib3 article-title: Clustering of water molecules in ultramicroporous carbon: in-situ small-angle neutron scattering publication-title: Carbon – volume: 159 start-page: 135 year: 2016 end-page: 154 ident: bib26 article-title: Water distribution characteristic and effect on methane adsorption capacity in shale clay publication-title: Int. J. Coal Geol. – volume: 68 start-page: 1786 year: 2017 end-page: 1793 ident: bib33 article-title: Non-equilibrium molecular dynamics simulation of water flow inside nano-slit publication-title: CIE J. – volume: 91 start-page: 523 year: 2007 end-page: 533 ident: bib5 article-title: Barnett shale gas production, Fort Worth basin: issues and discussion publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull. – volume: 31 start-page: 9232 year: 2017 end-page: 9239 ident: bib60 article-title: Comparisons of SEM, low-field NMR, and mercury intrusion capillary pressure in characterization of the pore size distribution of lacustrine shale: a case study on the dongying depression, bohai bay basin, China publication-title: Energy Fuels – volume: 37 start-page: 612 year: 2016 end-page: 616 ident: bib62 article-title: NMR research of movable fluid and T publication-title: Oil Gas Geol. – volume: 18 start-page: 36 year: 2006 end-page: 49 ident: bib6 article-title: Producing gas from its source publication-title: Oilfield Rev. – volume: 89 start-page: 775 year: 2018 end-page: 785 ident: bib61 article-title: Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR) publication-title: Mar. Petrol. Geol. – volume: 344 start-page: 460 year: 2010 end-page: 467 ident: bib10 article-title: Water sorption on coals publication-title: J. Colloid Interface Sci. – volume: 55 start-page: 1285 year: 2015 end-page: 1299 ident: bib44 article-title: Impact of shale gas development on water resources: a case study in northern Poland publication-title: Environ. Manag. – volume: 22 start-page: 530 year: 2015 end-page: 539 ident: bib52 article-title: Experimental study on the porestructure characteristics of the upper ordovician Wufeng Formation shale in the southwest portion of the Sichuan basin, China publication-title: J. Nat. Gas Sci. Eng. – volume: 382 start-page: 10 year: 2014 end-page: 20 ident: bib23 article-title: Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations publication-title: Fluid Phase Equilib. – volume: 174 start-page: 1 year: 2017 end-page: 12 ident: bib59 article-title: An analytical model for relative permeability in water-wet nanoporous media publication-title: Chem. Eng. Sci. – volume: 19 start-page: 793 year: 2014 end-page: 802 ident: bib49 article-title: Optic imaging of two phase-flow behavior in 1D nanoscale channels publication-title: SPE J. – volume: 47 start-page: 1466 year: 2009 ident: 10.1016/j.marpetgeo.2019.01.012_bib14 article-title: A new adsorption-desorption model for water adsorption publication-title: Carbon doi: 10.1016/j.carbon.2009.01.039 – volume: 34 start-page: 541 year: 2016 ident: 10.1016/j.marpetgeo.2019.01.012_bib17 article-title: Initial water saturation and imbibition fluid affect spontaneous imbibition into Barnett shale samples publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.07.038 – volume: 11 year: 2014 ident: 10.1016/j.marpetgeo.2019.01.012_bib12 article-title: Dynamic elastic properties of the Wufeng–Longmaxi formation shale in the southeast margin of the Sichuan Basin publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/11/3/035004 – volume: 70 start-page: 46 year: 2016 ident: 10.1016/j.marpetgeo.2019.01.012_bib27 article-title: Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: a case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, South China publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2015.11.004 – volume: 35 start-page: 1121 year: 2016 ident: 10.1016/j.marpetgeo.2019.01.012_bib36 article-title: Water imbibition of shale and its potential influence on shale gas recovery-a comparative study of marine and continental shale formations publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.09.053 – volume: 95 start-page: 2017 year: 2011 ident: 10.1016/j.marpetgeo.2019.01.012_bib38 article-title: Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull. – volume: 17 start-page: 273 year: 1921 ident: 10.1016/j.marpetgeo.2019.01.012_bib48 article-title: The dynamics of capillary flow publication-title: Phys. Rev. doi: 10.1103/PhysRev.17.273 – volume: 19 start-page: 91 year: 2013 ident: 10.1016/j.marpetgeo.2019.01.012_bib7 article-title: The petrophysics of shale gas reservoirs: technical challenges and pragmatic solutions publication-title: Petrol. Geosci. doi: 10.1144/petgeo2012-031 – volume: 68 start-page: 1786 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib33 article-title: Non-equilibrium molecular dynamics simulation of water flow inside nano-slit publication-title: CIE J. – volume: 33 start-page: 689 year: 2015 ident: 10.1016/j.marpetgeo.2019.01.012_bib25 article-title: Comparative analysis on water movability in pores of different reservoir rocks by nuclear magnetic resonance publication-title: Energy Explor. Exploit. doi: 10.1260/0144-5987.33.5.689 – volume: 382 start-page: 10 year: 2014 ident: 10.1016/j.marpetgeo.2019.01.012_bib23 article-title: Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2014.07.035 – volume: 7 start-page: 33 year: 2014 ident: 10.1016/j.marpetgeo.2019.01.012_bib15 article-title: The fate of residual treatment water in gas shale publication-title: Journal of Unconventional Oil & Gas Resources doi: 10.1016/j.juogr.2014.03.002 – volume: 73 start-page: 373 year: 1951 ident: 10.1016/j.marpetgeo.2019.01.012_bib4 article-title: The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01145a126 – volume: 542 start-page: 487 year: 2016 ident: 10.1016/j.marpetgeo.2019.01.012_bib45 article-title: The effect of moisture on the methane adsorption capacity of shales: a study case in the eastern Qaidam Basin in China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.09.018 – volume: 179 start-page: 253 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib28 article-title: Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2017.06.008 – volume: 32 start-page: 12247 year: 2018 ident: 10.1016/j.marpetgeo.2019.01.012_bib30 article-title: Adsorbed and free oil in lacustrine nanoporous shale: a theoretical model and a case study publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b02953 – volume: 31 start-page: 9232 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib60 article-title: Comparisons of SEM, low-field NMR, and mercury intrusion capillary pressure in characterization of the pore size distribution of lacustrine shale: a case study on the dongying depression, bohai bay basin, China publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b01625 – volume: 96 start-page: 371 year: 2018 ident: 10.1016/j.marpetgeo.2019.01.012_bib18 article-title: Water saturation-driven evolution of helium permeability in Carboniferous shale from Qaidam Basin, China: an experimental study publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2018.05.028 – volume: 117 start-page: 509 year: 2014 ident: 10.1016/j.marpetgeo.2019.01.012_bib57 article-title: Experimental study and modelling of methane adsorption and diffusion in shale publication-title: Fuel doi: 10.1016/j.fuel.2013.09.046 – volume: 149 start-page: 497 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib43 article-title: Determination of NMR T2 cut-off for clay bound water in shales: a case study of Carynginia Formation, Perth Basin, Western Australia publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2016.10.066 – volume: 64 start-page: 2251 year: 2018 ident: 10.1016/j.marpetgeo.2019.01.012_bib56 article-title: Simulation of shale gas transport and production with complex fractures using embedded discrete fracture model publication-title: AIChE J. doi: 10.1002/aic.16060 – volume: 67 start-page: 144 year: 2015 ident: 10.1016/j.marpetgeo.2019.01.012_bib47 article-title: Fractal characteristics of upper cretaceous lacustrine shale from the songliao basin, NE China publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2015.05.011 – start-page: 1 year: 2018 ident: 10.1016/j.marpetgeo.2019.01.012_bib21 article-title: Source analysis of quartz from the Upper Ordovician and Lower Silurian black shale and its effects on shale gas reservoir in the southern Sichuan Basin and its periphery, China publication-title: Geol. J. – volume: 57 start-page: 1749 year: 2014 ident: 10.1016/j.marpetgeo.2019.01.012_bib50 article-title: Molecular simulation of the CH4/CO2/H2O adsorption onto the molecular structure of coal publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-014-4849-9 – volume: 225 start-page: 331 year: 2016 ident: 10.1016/j.marpetgeo.2019.01.012_bib24 article-title: Adsorption of carbon dioxide, methane, and their mixture by montmorillonite in the presence of water publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2016.01.010 – volume: 22 start-page: 530 year: 2015 ident: 10.1016/j.marpetgeo.2019.01.012_bib52 article-title: Experimental study on the porestructure characteristics of the upper ordovician Wufeng Formation shale in the southwest portion of the Sichuan basin, China publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.01.004 – volume: 194 start-page: 11 year: 2018 ident: 10.1016/j.marpetgeo.2019.01.012_bib58 article-title: Pore characterization and clay bound water assessment in shale with a combination of NMR and low-pressure nitrogen gas adsorption publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2018.05.003 – volume: 122 start-page: 234712 year: 2005 ident: 10.1016/j.marpetgeo.2019.01.012_bib40 article-title: Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation publication-title: J. Chem. Phys. doi: 10.1063/1.1924697 – volume: 55 start-page: 1285 year: 2015 ident: 10.1016/j.marpetgeo.2019.01.012_bib44 article-title: Impact of shale gas development on water resources: a case study in northern Poland publication-title: Environ. Manag. doi: 10.1007/s00267-015-0454-8 – volume: 126 start-page: 64 year: 2014 ident: 10.1016/j.marpetgeo.2019.01.012_bib35 article-title: An overview of Canadian shale gas production and environmental concerns publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2013.12.004 – volume: 231 start-page: 352 year: 2018 ident: 10.1016/j.marpetgeo.2019.01.012_bib16 article-title: Three stages of methane adsorption capacity affected by moisture content publication-title: Fuel doi: 10.1016/j.fuel.2018.05.120 – volume: 174 start-page: 1 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib59 article-title: An analytical model for relative permeability in water-wet nanoporous media publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.08.023 – volume: 34 start-page: 751 year: 2016 ident: 10.1016/j.marpetgeo.2019.01.012_bib37 article-title: A critical review of water uptake by shales publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.07.003 – volume: 73 start-page: 27 year: 2008 ident: 10.1016/j.marpetgeo.2019.01.012_bib54 article-title: Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2007.07.003 – volume: 82 start-page: 661 year: 2003 ident: 10.1016/j.marpetgeo.2019.01.012_bib2 article-title: The characterisation of different forms of water in low rank coals and some hydrothermally dried products publication-title: Fuel doi: 10.1016/S0016-2361(02)00339-3 – volume: 108 start-page: 292 year: 2013 ident: 10.1016/j.marpetgeo.2019.01.012_bib8 article-title: Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance publication-title: Fuel doi: 10.1016/j.fuel.2013.02.031 – volume: 82 start-page: 1 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib53 article-title: Two effective methods for calculating water saturations in shale-gas reservoirs publication-title: Geophysics doi: 10.1190/geo2016-0462.1 – volume: 7 start-page: 151 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib31 article-title: Vertical heterogeneity of the shale reservoir in the lower silurian Longmaxi formation: analogy between the southeastern and northeastern Sichuan basin, SW China publication-title: Minerals doi: 10.3390/min7080151 – volume: 89 start-page: 775 year: 2018 ident: 10.1016/j.marpetgeo.2019.01.012_bib61 article-title: Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR) publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2017.11.015 – volume: 179 start-page: 130 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib63 article-title: Water sorption behaviour of gas shales: I. Role of clays publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2017.05.008 – volume: 31 start-page: 13120 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib11 article-title: Water distribution in overmature organic-rich shales: implications from water adsorption experiments publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b01531 – volume: 123 start-page: 34 year: 2014 ident: 10.1016/j.marpetgeo.2019.01.012_bib20 article-title: Geological controls on the methane storage capacity in organic-rich shales publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2013.06.010 – volume: 31 start-page: 578 year: 1972 ident: 10.1016/j.marpetgeo.2019.01.012_bib22 article-title: Manual of symbols and terminology publication-title: Pure Appl. Chem. – volume: 70 start-page: 223 year: 2007 ident: 10.1016/j.marpetgeo.2019.01.012_bib9 article-title: The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2006.05.001 – volume: 19 start-page: 793 year: 2014 ident: 10.1016/j.marpetgeo.2019.01.012_bib49 article-title: Optic imaging of two phase-flow behavior in 1D nanoscale channels publication-title: SPE J. doi: 10.2118/164549-PA – volume: 91 start-page: 523 year: 2007 ident: 10.1016/j.marpetgeo.2019.01.012_bib5 article-title: Barnett shale gas production, Fort Worth basin: issues and discussion publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull. – volume: 108 start-page: 40 year: 2013 ident: 10.1016/j.marpetgeo.2019.01.012_bib51 article-title: Estimation of water saturation from nuclear magnetic resonance (NMR) and conventional logs in low permeability sandstone reservoirs publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2013.05.009 – year: 2012 ident: 10.1016/j.marpetgeo.2019.01.012_bib41 article-title: An NMR study of shale wettability and effective surface relaxivity – volume: 111 start-page: 681 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib3 article-title: Clustering of water molecules in ultramicroporous carbon: in-situ small-angle neutron scattering publication-title: Carbon doi: 10.1016/j.carbon.2016.10.040 – start-page: 102 year: 1991 ident: 10.1016/j.marpetgeo.2019.01.012_bib1 article-title: The water in Brown coal – volume: 17 start-page: 7026 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib29 article-title: Microstructural characterization of the clay-rich oil shales by nuclear magnetic resonance (NMR) publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2017.14440 – volume: 209 start-page: 606 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib42 article-title: Water vapor sorption on Marcellus shale: measurement, modeling and thermodynamic analysis publication-title: Fuel doi: 10.1016/j.fuel.2017.07.062 – volume: 159 start-page: 135 year: 2016 ident: 10.1016/j.marpetgeo.2019.01.012_bib26 article-title: Water distribution characteristic and effect on methane adsorption capacity in shale clay publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2016.03.012 – volume: 18 start-page: 36 year: 2006 ident: 10.1016/j.marpetgeo.2019.01.012_bib6 article-title: Producing gas from its source publication-title: Oilfield Rev. – year: 2011 ident: 10.1016/j.marpetgeo.2019.01.012_bib34 article-title: NMR study of shale wettability – volume: 37 start-page: 612 year: 2016 ident: 10.1016/j.marpetgeo.2019.01.012_bib62 article-title: NMR research of movable fluid and T2 cutoff of marine shale in South China publication-title: Oil Gas Geol. – volume: 46 start-page: 120 year: 2016 ident: 10.1016/j.marpetgeo.2019.01.012_bib39 article-title: The flow characteristics of shale gas through shale rock matrix in nano-scale and water imbibition on shale sheets publication-title: Scientia Sinica Technologica doi: 10.1360/N092016-00011 – volume: 8 start-page: 203 year: 2015 ident: 10.1016/j.marpetgeo.2019.01.012_bib55 article-title: Shale gas productivity predicting model and analysis of influence factors publication-title: Open Petrol. Eng. J. doi: 10.2174/1874834101508010203 – volume: 344 start-page: 460 year: 2010 ident: 10.1016/j.marpetgeo.2019.01.012_bib10 article-title: Water sorption on coals publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.11.064 – volume: 38 start-page: 767 year: 2000 ident: 10.1016/j.marpetgeo.2019.01.012_bib13 article-title: A model for water adsorption in activated carbon publication-title: Carbon doi: 10.1016/S0008-6223(99)00159-1 – volume: 96 start-page: 1071 year: 2012 ident: 10.1016/j.marpetgeo.2019.01.012_bib32 article-title: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores publication-title: AAPG (Am. Assoc. Pet. Geol.) Bull. – volume: 40 start-page: 819 year: 2013 ident: 10.1016/j.marpetgeo.2019.01.012_bib46 article-title: Evolution of overmature marine shale porosity and implication to the free gas volume publication-title: Petrol. Explor. Dev. doi: 10.1016/S1876-3804(13)60111-1 – volume: 179 start-page: 187 year: 2017 ident: 10.1016/j.marpetgeo.2019.01.012_bib64 article-title: Water sorption behaviour of gas shales: II. Pore size distribution publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2017.05.009 |
SSID | ssj0007901 |
Score | 2.530556 |
Snippet | Multiphase (adsorbed and free) liquid water that is accumulated in shale matrix pores (i.e., pore water) substantially affects the storage and transport of gas... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 496 |
SubjectTerms | Adsorbed and free amounts Microdistribution Mobile ratio Mobility Shale gas Water |
Title | Microdistribution and mobility of water in gas shale: A theoretical and experimental study |
URI | https://dx.doi.org/10.1016/j.marpetgeo.2019.01.012 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jIuhBdCrOX-TgNa5Ns6bZbQznVLaLDoaXkqTpnLhubBXZxb_dJG1nB8IOQi8tedC-hve9137vewDcUI_FXkBjhAlViAQKIxYJgbjEfuArzlxuPg30B35vSB5HzVEFdIpeGEOrzGN_FtNttM6vNHJvNuaTSePZMeQsU8EwzyqTmQ52Qs0uv_3-pXlQZkcgm8XIrN7geE3NP450bLsAXWb1O138N0KVUKd7CA7ydBG2szs6AhWV1MB-SUSwBnbv7XDe1TF47Rt2XWSkcPMpVpAnEZzOLAF2BWcx_NKp5QJOEjjmS7h80-jQgm1Y6ma0FmXZf2gFaE_AsHv30umhfHYC4rroTBFxFdWZnS59mzqASZ9IoUsXTHEUSAdLjoV-YupJqmLiRhq3GReUOizgkXCUhrNTUE1miToDUCreFILRSMa6diKYxyqKTWe_IEIGvlsHfuGvUObC4ma-xUdYMMjew7WjQ-Po0HH1gevAWRvOM22N7Sat4oWEG9sk1Aiwzfj8P8YXYM-cZaSdS1BNF5_qSucjqbi2G-4a7LQfnnqDHwA74fo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5EEfUgWhXrcw96jE2222xW8FB81Ue9qCBe4u5mUys2FVuRXvxT_kFnt2mtIHiQQk4JA8vsZB7Jt98HsMPLIi1HPPUo48ZjkaGeSJTypKZhFBopAmk_DdSvwtotO7-r3E3A5-AsjIVV5rm_n9Ndts7vlHJvll6azdK1b8FZdoIRZcdMliMrL0zvHee2zsHZEW7yLqUnxzeHNS-XFvAkzmRdjwWGY-ODk2EF328dMq2ws6ecJpH2qZZUYWHkZc1NyoIEy5qQinNfRDJRvgks2wHm_SmG6cLKJux9fONKuHCay3Z1nl3eD1BZy_5U6TbcscNAOMLQgP5eEkfK3MkCzOf9Kan2XbAIEyYrwNwIa2EBpk-dGnBvCe7rFs6XWO7dXDaLyCwhrbZD3PZIOyXv2Mu-kmZGGrJDOo9YjvZJlYwcn3QWozoDxDHeLsPtWDy6ApNZOzOrQLSRFaUET3SKwxqjMjVJaqkEFFM6CoMihAN_xTpnMreCGs_xALL2FA8dHVtHx36AFy2CPzR86ZN5_G2yP9iQ-Edcxlhy_jJe-4_xNszUbuqX8eXZ1cU6zNonfcTQBkx2X9_MJjZDXbXlgo_Aw7ij_Qu9aRyb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microdistribution+and+mobility+of+water+in+gas+shale%3A+A+theoretical+and+experimental+study&rft.jtitle=Marine+and+petroleum+geology&rft.au=Li%2C+Junqian&rft.au=Wang%2C+Siyuan&rft.au=Lu%2C+Shuangfang&rft.au=Zhang%2C+Pengfei&rft.date=2019-04-01&rft.issn=0264-8172&rft.volume=102&rft.spage=496&rft.epage=507&rft_id=info:doi/10.1016%2Fj.marpetgeo.2019.01.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_marpetgeo_2019_01_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-8172&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-8172&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-8172&client=summon |