Iterative Gaussian mixture model and multi‐channel attributes for arrival picking in extremely noisy environments

ABSTRACT Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking results are prone to large errors. As commonly used arrival‐picking strategies, conventional clustering methods, such as K‐means, suffer from insuf...

Full description

Saved in:
Bibliographic Details
Published inGeophysical Prospecting Vol. 70; no. 2; pp. 343 - 361
Main Authors Wang, Hang, Chen, Yangkang
Format Journal Article
LanguageEnglish
Published Houten Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking results are prone to large errors. As commonly used arrival‐picking strategies, conventional clustering methods, such as K‐means, suffer from insufficient flexibility, for example the clustering boundaries are fixed given a set of attribute vectors. In order to overcome this drawback, we propose a new strategy which can provide flexible clustering results (i.e. the variable clustering boundaries) based on an iterative Gaussian mixture model and utilize the local correlation among adjacent traces to enhance the anti‐noise ability. First, we use local principal component analysis to roughly distinguish the areas of signal waveforms. Then, two multi‐channel attributes are calculated and input to the iterative Gaussian mixture model. These two attributes can correctly identify the arrivals and avoid redundant computation caused by the high‐dimensional attribute vectors. The final step is to establish an optimized Gaussian mixture model and to iteratively select the proper boundaries for each trace. Although the iterative Gaussian mixture model takes a longer calculation time, the synthetic and real data tests have shown superior results over conventional methods even in situations of extremely low signal‐to‐noise ratios.
AbstractList Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking results are prone to large errors. As commonly used arrival‐picking strategies, conventional clustering methods, such as K‐means, suffer from insufficient flexibility, for example the clustering boundaries are fixed given a set of attribute vectors. In order to overcome this drawback, we propose a new strategy which can provide flexible clustering results (i.e. the variable clustering boundaries) based on an iterative Gaussian mixture model and utilize the local correlation among adjacent traces to enhance the anti‐noise ability. First, we use local principal component analysis to roughly distinguish the areas of signal waveforms. Then, two multi‐channel attributes are calculated and input to the iterative Gaussian mixture model. These two attributes can correctly identify the arrivals and avoid redundant computation caused by the high‐dimensional attribute vectors. The final step is to establish an optimized Gaussian mixture model and to iteratively select the proper boundaries for each trace. Although the iterative Gaussian mixture model takes a longer calculation time, the synthetic and real data tests have shown superior results over conventional methods even in situations of extremely low signal‐to‐noise ratios.
ABSTRACT Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking results are prone to large errors. As commonly used arrival‐picking strategies, conventional clustering methods, such as K‐means, suffer from insufficient flexibility, for example the clustering boundaries are fixed given a set of attribute vectors. In order to overcome this drawback, we propose a new strategy which can provide flexible clustering results (i.e. the variable clustering boundaries) based on an iterative Gaussian mixture model and utilize the local correlation among adjacent traces to enhance the anti‐noise ability. First, we use local principal component analysis to roughly distinguish the areas of signal waveforms. Then, two multi‐channel attributes are calculated and input to the iterative Gaussian mixture model. These two attributes can correctly identify the arrivals and avoid redundant computation caused by the high‐dimensional attribute vectors. The final step is to establish an optimized Gaussian mixture model and to iteratively select the proper boundaries for each trace. Although the iterative Gaussian mixture model takes a longer calculation time, the synthetic and real data tests have shown superior results over conventional methods even in situations of extremely low signal‐to‐noise ratios.
Author Chen, Yangkang
Wang, Hang
Author_xml – sequence: 1
  givenname: Hang
  orcidid: 0000-0003-0908-8478
  surname: Wang
  fullname: Wang, Hang
  organization: Zhejiang University
– sequence: 2
  givenname: Yangkang
  orcidid: 0000-0001-6429-4261
  surname: Chen
  fullname: Chen, Yangkang
  email: chenyk2016@gmail.com
  organization: The University of Texas at Austin
BookMark eNqFkL1OwzAURi0EEm1hZrXEnNaO8-OMqIJSqRIIwWw5yQ24JHaxndJsPALPyJOQUMTA0rtc6dN37pXOGB1rowGhC0qmtJ8ZZUkchFHKp5TRJDpCo7_kGI0IoUnASRiforFza0IYieNohNzSg5VebQEvZOuckho3audbC7gxJdRY6hI3be3V18dn8SK1HjLvrcpbDw5XxmJprdrKGm9U8ar0M1Yaw85baKDusDbKdRj0VlmjG9DenaGTStYOzn_3BD3dXD_Ob4PV3WI5v1oFkjEeBbIkJSUZzZOqDBnnKS9YyRJJM5AVydOcc85SysOISgACnEeSUCA042XOSmATdLm_u7HmrQXnxdq0VvcvRZjQLI5ZmvC-Ndu3Cmucs1CJjVWNtJ2gRAxmxeBRDB7Fj9meiP8RhfK9Q6O9lao-zL2rGrpDb8Ti_mHPfQMrMZCH
CitedBy_id crossref_primary_10_3390_s22249976
crossref_primary_10_3390_s22249924
crossref_primary_10_1111_1365_2478_13390
crossref_primary_10_1016_j_enggeo_2024_107839
Cites_doi 10.1190/geo2015-0333.1
10.15446/esrj.v18n2.35887
10.1190/geo2012-0026.1
10.1785/BSSA0680051521
10.1029/2020JB021473
10.1190/geo2015-0598.1
10.1029/2018EA000466
10.1029/2019JB017536
10.1190/geo2015-0213.1
10.1109/TGRS.2013.2282422
10.1038/s41598-019-45748-1
10.1029/1999GL005374
10.1109/TIP.2011.2176743
10.1190/1.2435967
10.1190/geo2019-0597.1
10.1016/j.jappgeo.2017.02.019
10.1190/geo2019-0792.1
10.1002/nsg.12014
10.1111/j.1365-2478.2011.01014.x
10.1190/geo2019-0422.1
10.1093/gji/ggy348
10.1190/geo2019-0267.1
10.1785/0220180308
10.1016/j.jappgeo.2017.03.005
10.1190/1.1487094
10.1190/geo2018-0389.1
10.1190/geo2018-0688.1
10.1190/geo2019-0437.1
10.1093/gji/ggx487
10.1190/1.1443352
10.1190/geo2010-0322.1
10.1190/geo2014-0561.1
10.1785/0120140203
10.1190/geo2010-0331.1
10.1785/0220180312
10.1109/LGRS.2013.2260720
10.1109/TGRS.2014.2386255
10.1093/gji/ggx238
10.1190/1.3463703
10.1111/j.2517-6161.1977.tb01600.x
10.1093/gji/ggv419
10.1093/gji/ggaa193
10.1093/gji/ggaa186
10.1016/j.patcog.2005.10.028
10.1109/JSTARS.2018.2868899
10.1109/TGRS.2017.2758162
10.1190/geo2020-0185.1
ContentType Journal Article
Copyright 2021 European Association of Geoscientists & Engineers
2022 European Association of Geoscientists & Engineers
Copyright_xml – notice: 2021 European Association of Geoscientists & Engineers
– notice: 2022 European Association of Geoscientists & Engineers
DBID AAYXX
CITATION
8FD
F1W
FR3
H96
KR7
L.G
DOI 10.1111/1365-2478.13164
DatabaseName CrossRef
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1365-2478
EndPage 361
ExternalDocumentID 10_1111_1365_2478_13164
GPR13164
Genre article
GroupedDBID -~X
1OB
1OC
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BRZYM
DDYGU
FZ0
AAYXX
CITATION
PALCI
8FD
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-a3384-ad0d1091b6fd238878c3d36a19eaf0b7b8883718241aee0e884a01e0198db3de3
IEDL.DBID DR2
ISSN 0016-8025
IngestDate Mon Jun 30 08:37:06 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 01:43:27 EDT 2025
Sat Aug 24 00:58:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3384-ad0d1091b6fd238878c3d36a19eaf0b7b8883718241aee0e884a01e0198db3de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0908-8478
0000-0001-6429-4261
PQID 2619553768
PQPubID 1066348
PageCount 19
ParticipantIDs proquest_journals_2619553768
crossref_primary_10_1111_1365_2478_13164
crossref_citationtrail_10_1111_1365_2478_13164
wiley_primary_10_1111_1365_2478_13164_GPR13164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Houten
PublicationPlace_xml – name: Houten
PublicationTitle Geophysical Prospecting
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 60
2019; 90
2019; 9
2010; 75
2021; 86
2019; 6
2020; 85
2015; 105
2015; 203
2021; 126
2015; 53
2006; 39
1999; 26
2019; 124
2011; 76
2020; 222
2007; 72
2015; 80
2001; 66
2017; 210
2012; 77
2017; 139
1993; 58
2019; 84
2013; 10
2018; 215
1977; 39
2013; 78
2018; 212
2017; 140
2016; 81
2014; 18
1978; 68
2018; 56
2014; 52
2018; 11
2018; 16
2012; 21
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 6
  start-page: 1244
  issue: 7
  year: 2019
  end-page: 1261
  article-title: Automatic waveform classification and arrival picking based on convolutional neural network
  publication-title: Earth and Space Science
– volume: 58
  start-page: 67
  issue: 1
  year: 1993
  end-page: 78
  article-title: First‐break refraction event picking and seismic data trace editing using neural networks
  publication-title: Geophysics
– volume: 53
  start-page: 3870
  issue: 7
  year: 2015
  end-page: 3884
  article-title: Automatic seismic signal detection via record segmentation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 84
  start-page: V143
  issue: 3
  year: 2019
  end-page: V155
  article-title: Semiautomatic first‐arrival picking of microseismic events by using the pixel‐wise convolutional image segmentation method
  publication-title: Geophysics
– volume: 203
  start-page: 1896
  issue: 3
  year: 2015
  end-page: 1908
  article-title: Comparison of the STA/LTA and power spectral density methods for microseismic event detection
  publication-title: Geophysical Journal International
– volume: 212
  start-page: 1389
  issue: 2
  year: 2018
  end-page: 1397
  article-title: An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks
  publication-title: Geophysical Journal International
– volume: 85
  start-page: U109
  issue: 5
  year: 2020
  end-page: U119
  article-title: A robust first‐arrival picking workflow using convolutional and recurrent neural networks
  publication-title: Geophysics
– volume: 85
  start-page: U87
  issue: 4
  year: 2020
  end-page: U98
  article-title: SC‐PSNET: A deep neural network for automatic P‐ and S‐phase detection and arrival‐time picker using 1C recordings
  publication-title: Geophysics
– volume: 85
  start-page: WA227
  issue: 4
  year: 2020
  end-page: WA240
  article-title: Convolutional neural networks for microseismic waveform classification and arrival picking
  publication-title: Geophysics
– volume: 16
  start-page: 507
  issue: 5
  year: 2018
  end-page: 526
  article-title: Development of an adaptive multi‐method algorithm for automatic picking of first arrival times: application to near surface seismic data
  publication-title: Near Surface Geophysics
– volume: 11
  start-page: 3918
  issue: 10
  year: 2018
  end-page: 3924
  article-title: UDWT domain: A verified replacement for time domain implementation of the robust P phase Picker algorithm
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 85
  start-page: V415
  issue: 5
  year: 2020
  end-page: V423
  article-title: Automated arrival‐time picking using a pixel‐level network
  publication-title: Geophysics
– volume: 80
  start-page: WC25
  issue: 6
  year: 2015
  end-page: WC38
  article-title: Fast and automatic microseismic phase‐arrival detection and denoising by pattern recognition and reduced‐rank filtering
  publication-title: Geophysics
– volume: 52
  start-page: 4558
  issue: 8
  year: 2014
  end-page: 4563
  article-title: The use of wavelet‐based denoising techniques to enhance the first‐arrival picking on seismic traces
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 215
  start-page: 1185
  issue: 2
  year: 2018
  end-page: 1199
  article-title: Fast waveform detection for microseismic imaging using unsupervised machine learning
  publication-title: Geophysical Journal International
– volume: 81
  start-page: V341
  issue: 4
  year: 2016
  end-page: V355
  article-title: Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform
  publication-title: Geophysics
– volume: 56
  start-page: 1017
  issue: 2
  year: 2018
  end-page: 1029
  article-title: A clustering approach for the detection of acoustic/seismic signals of unknown structure
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 81
  start-page: KS93
  issue: 2
  year: 2016
  end-page: KS111
  article-title: Improved methods for detection and arrival picking of microseismic events with low signal‐to‐noise ratios
  publication-title: Geophysics
– volume: 77
  start-page: V101
  issue: 3
  year: 2012
  end-page: V111
  article-title: Enhancement of first arrivals using the tau‐p transform on energy‐ratio seismic shot records
  publication-title: Geophysics
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 22
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 26
  start-page: 3249
  issue: 21
  year: 1999
  end-page: 3252
  article-title: First breaks ‐ automatic phase pickings of P‐ and S‐onsets in seismic records
  publication-title: Geophysical Research Letters
– volume: 124
  start-page: 6612
  issue: 7
  year: 2019
  end-page: 6624
  article-title: Deep learning for picking seismic arrival times
  publication-title: Journal of Geophysical Research‐Solid Earth
– volume: 90
  start-page: 481
  issue: 2, A
  year: 2019
  end-page: 490
  article-title: Seismic event and phase detection using time‐frequency representation and convolutional neural networks
  publication-title: Seismological Research Letters
– volume: 66
  start-page: 1488
  issue: 5
  year: 2001
  end-page: 1496
  article-title: Automatic event picking in prestack migrated gathers using a probabilistic neural network
  publication-title: Geophysics
– volume: 85
  start-page: WA269
  issue: 4
  year: 2020
  end-page: WA277
  article-title: Multitrace first‐break picking using an integrated seismic and machine learning method
  publication-title: Geophysics
– volume: 210
  start-page: 1394
  issue: 3
  year: 2017
  end-page: 1409
  article-title: Supervised machine learning on a network scale: application to seismic event classification and detection
  publication-title: Geophysical Journal International
– volume: 86
  start-page: R685
  issue: 5
  year: 2021
  end-page: R699
  article-title: Poststack seismic inversion using a patch‐based Gaussian mixture model
  publication-title: Geophysics
– volume: 105
  start-page: 1606
  issue: 3
  year: 2015
  end-page: 1618
  article-title: Adaptive STA‐LTA with outlier statistics
  publication-title: Bulletin of the Seismological Society of America
– volume: 18
  start-page: 107
  issue: 2
  year: 2014
  end-page: 113
  article-title: A semi‐automatic approach to identify first arrival time: the cross‐correlation technique (CCT)
  publication-title: Earth Sciences Research Journal
– volume: 60
  start-page: 1024
  issue: 6
  year: 2012
  end-page: 1029
  article-title: ptimization approach to automatic first arrival picking for three‐component three‐dimensional vertical seismic profiling data
  publication-title: Geophysical Prospecting
– volume: 9
  issue: 1
  year: 2019
  article-title: CRED: a deep residual network of convolutional and recurrent units for earthquake signal detection
  publication-title: Scientific Reports
– volume: 222
  start-page: 1881
  year: 2020
  end-page: 1895
  article-title: Automatic high‐resolution microseismic event detection via supervised machine learning
  publication-title: Geophysical Journal International
– volume: 78
  start-page: T53
  issue: 2
  year: 2013
  end-page: T58
  article-title: Automatic traveltime picking using instantaneous traveltime
  publication-title: Geophysics
– volume: 68
  start-page: 1521
  issue: 5
  year: 1978
  end-page: 1532
  article-title: Automatic earthquake recognition and timing from single traces
  publication-title: Bulletin of the Seismological Society of America
– volume: 10
  start-page: 1488
  issue: 6
  year: 2013
  end-page: 1492
  article-title: An automatic P‐phase picking algorithm based on adaptive multiband processing
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 39
  start-page: 695
  issue: 4
  year: 2006
  end-page: 706
  article-title: A study of Gaussian mixture models of color and texture features for image classification and segmentation
  publication-title: Pattern Recognition
– volume: 90
  start-page: 491
  issue: 2, A
  year: 2019
  end-page: 502
  article-title: Convolutional neural network for seismic phase classification, performance demonstration over a local seismic network
  publication-title: Seismological Research Letters
– volume: 139
  start-page: 117
  year: 2017
  end-page: 130
  article-title: Improved modified energy ratio method using a multi‐window approach for accurate arrival picking
  publication-title: Journal of Applied Geophysics
– volume: 75
  start-page: V67
  issue: 4
  year: 2010
  end-page: V76
  article-title: Automatic first‐breaks picking: new strategies and algorithms
  publication-title: Geophysics
– volume: 140
  start-page: 52
  year: 2017
  end-page: 61
  article-title: Iterative interferometry‐based method for picking microseismic events
  publication-title: Journal of Applied Geophysics
– volume: 21
  start-page: 2481
  issue: 5
  year: 2012
  end-page: 2499
  article-title: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity
  publication-title: IEEE Transactions on Image Processing
– volume: 81
  start-page: V141
  issue: 2
  year: 2016
  end-page: V150
  article-title: Automated phase attribute‐based picking applied to reflection seismics
  publication-title: Geophysics
– volume: 84
  start-page: U45
  issue: 6
  year: 2019
  end-page: U57
  article-title: First‐arrival picking with a U‐net convolutional network
  publication-title: Geophysics
– volume: 76
  start-page: V79
  issue: 5
  year: 2011
  end-page: V89
  article-title: A new technique for first‐arrival picking of refracted seismic data based on digital image segmentation
  publication-title: Geophysics
– volume: 126
  issue: 4
  year: 2021
  article-title: SCALODEEP: a highly generalized deep learning framework for real‐time earthquake detection
  publication-title: Journal of Geophysical Research ‐ Solid Earth
– volume: 222
  start-page: 1750
  issue: 3
  year: 2020
  end-page: 1764
  article-title: Automatic microseismic event picking via unsupervised machine learning
  publication-title: Geophysical Journal International
– volume: 72
  start-page: V59
  issue: 2
  year: 2007
  end-page: V65
  article-title: Local singular value decomposition for signal enhancement of seismic data
  publication-title: Geophysics
– ident: e_1_2_7_14_1
  doi: 10.1190/geo2015-0333.1
– ident: e_1_2_7_36_1
  doi: 10.15446/esrj.v18n2.35887
– ident: e_1_2_7_35_1
  doi: 10.1190/geo2012-0026.1
– ident: e_1_2_7_2_1
  doi: 10.1785/BSSA0680051521
– ident: e_1_2_7_33_1
  doi: 10.1029/2020JB021473
– ident: e_1_2_7_27_1
  doi: 10.1190/geo2015-0598.1
– ident: e_1_2_7_8_1
  doi: 10.1029/2018EA000466
– ident: e_1_2_7_40_1
  doi: 10.1029/2019JB017536
– ident: e_1_2_7_37_1
  doi: 10.1190/geo2015-0213.1
– ident: e_1_2_7_15_1
  doi: 10.1109/TGRS.2013.2282422
– ident: e_1_2_7_28_1
  doi: 10.1038/s41598-019-45748-1
– ident: e_1_2_7_13_1
  doi: 10.1029/1999GL005374
– ident: e_1_2_7_44_1
  doi: 10.1109/TIP.2011.2176743
– ident: e_1_2_7_4_1
  doi: 10.1190/1.2435967
– ident: e_1_2_7_47_1
  doi: 10.1190/geo2019-0597.1
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jappgeo.2017.02.019
– ident: e_1_2_7_23_1
  doi: 10.1190/geo2019-0792.1
– ident: e_1_2_7_21_1
  doi: 10.1002/nsg.12014
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1365-2478.2011.01014.x
– ident: e_1_2_7_12_1
  doi: 10.1190/geo2019-0422.1
– ident: e_1_2_7_6_1
  doi: 10.1093/gji/ggy348
– ident: e_1_2_7_46_1
  doi: 10.1190/geo2019-0267.1
– ident: e_1_2_7_11_1
  doi: 10.1785/0220180308
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jappgeo.2017.03.005
– ident: e_1_2_7_16_1
  doi: 10.1190/1.1487094
– ident: e_1_2_7_43_1
  doi: 10.1190/geo2018-0389.1
– ident: e_1_2_7_17_1
  doi: 10.1190/geo2018-0688.1
– ident: e_1_2_7_45_1
  doi: 10.1190/geo2019-0437.1
– ident: e_1_2_7_48_1
  doi: 10.1093/gji/ggx487
– ident: e_1_2_7_24_1
  doi: 10.1190/1.1443352
– ident: e_1_2_7_26_1
  doi: 10.1190/geo2010-0322.1
– ident: e_1_2_7_39_1
  doi: 10.1190/geo2014-0561.1
– ident: e_1_2_7_19_1
  doi: 10.1785/0120140203
– ident: e_1_2_7_25_1
  doi: 10.1190/geo2010-0331.1
– ident: e_1_2_7_42_1
  doi: 10.1785/0220180312
– ident: e_1_2_7_3_1
  doi: 10.1109/LGRS.2013.2260720
– ident: e_1_2_7_30_1
  doi: 10.1109/TGRS.2014.2386255
– ident: e_1_2_7_32_1
  doi: 10.1093/gji/ggx238
– ident: e_1_2_7_34_1
  doi: 10.1190/1.3463703
– ident: e_1_2_7_9_1
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_7_38_1
  doi: 10.1093/gji/ggv419
– ident: e_1_2_7_31_1
  doi: 10.1093/gji/ggaa193
– ident: e_1_2_7_7_1
  doi: 10.1093/gji/ggaa186
– ident: e_1_2_7_29_1
  doi: 10.1016/j.patcog.2005.10.028
– ident: e_1_2_7_20_1
  doi: 10.1109/JSTARS.2018.2868899
– ident: e_1_2_7_10_1
  doi: 10.1109/TGRS.2017.2758162
– ident: e_1_2_7_41_1
  doi: 10.1190/geo2020-0185.1
SSID ssj0030554
ssj0017384
Score 2.3181949
Snippet ABSTRACT Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking...
Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking results are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 343
SubjectTerms Boundaries
Clustering
Computation
Data processing
Iterative methods
Noise
Picking
Principal components analysis
Probabilistic models
Seismic data
Seismic exploration
Signal processing
Vectors
Waveforms
Title Iterative Gaussian mixture model and multi‐channel attributes for arrival picking in extremely noisy environments
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.13164
https://www.proquest.com/docview/2619553768
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF6kIOjBn6pYrbIHD14Skua3RxHbKihSLHgLu9kNBGtamhSsJx_BZ_RJnNlNaiyIiLckZDfJ7szON5uZbwg5E2AXcD_fiJlvGa6IhcFiDxWPgX4EthQq2v32zh-M3JtHr4omxFwYzQ-x3HBDzVDrNSo443lNyXV8lhuEpu0A5odVGK8gLBouCaTswME0TH2C3FaalNlGDt6OVzL9YGDPSmffjdQX8qzjV2WAetuEV6-u406ezHnBzfh1hdXxX9-2Q7ZKeEovtDztkjWZNclmjbSwSdb7qhjwYo_k14qSGdZL2mfzHNMx6XP6gv8kqKqwQ1kmqApZ_Hh7xxTjDK8VusiWzCkAZspmsxSknU7TGHftaZpRsBe4azle0GyS5gtaT8bbJ6Pe1cPlwCiLOBgMvF_XYMISSD7K_UQAPAiDMHaE4zO7K1li8YCDC-6AgQQkwaS0ZBi6zLIlIM9QcEdI54A0skkmDwkFXxAESHR4koATG9i86ySwpsi4g00Sv0XMataiuGQ4x0Ib46jydHBcIxzXSI1ri5wvG0w1ucfPt7YrMYhKLc8j9D495MMJ4dFqPn_rJurfD9XB0V8bHJONDmZeqIDxNmkUs7k8ATxU8FMl8p9FiP4m
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5ojVEPPqrG-tyDBy80UCjg0fhoq7Yxxia9kWV3SYgVTWkT68mf4G_0lziz0IomxhhvQFgey8zON8PMNwCHEu0CxfMNwV3TcKSQBhd1UjyO-uFZSups93bHbXady169V6iFyfghpgE30gy9XpOCU0C6oOVZgpbj-VXLRtA_C3PU15v4889upxRSlmdTIWa2Q-xWGS2zRSy8tXrO9UOpPd-u9tVMfWLPIoLVJuhiBcTk4bPMk_vqaBhWxcs3Xsf_vd0qLOcIlZ1kIrUGMyopw1KBt7AM8w3dD3i8DmlLszLjkskafJRSRSZ7iJ_ptwTTTXYYTyTTWYvvr29UZZzQsWHWZ0ulDDEz44NBjALPnmJBgXsWJwxNBgUu-2OWPMbpmBXr8Tage3F-d9o08j4OBkcH2DG4NCXxj4ZuJBEh-J4vbGm73DpWPDJDL0Qv3EYbiWCCK2Uq33e4aSkEn74MbansTSglj4naAobuIMqQrIVRhH6sZ4XHdoTLihI1GhK5FahOPlsgcpJz6rXRDybODs1rQPMa6HmtwNF0wFPG7_HzqbsTOQhyRU8DckDrRInj4631B_3tMkHj5lZvbP91wAEsNO_a18F1q3O1A4s1KsTQ-eO7UBoORmoP4dEw3Nfy_wE2PAJR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ74iEYPvo31uQcPXmigUKBHY-3DV4yxiTeyyy4JsWJT2sR68if4G_0lzixQaxNjjDcg7AK7MzvfLDPfABxLtAu0n2-E3DUNR4bS4GGVFI-jfniWkjra_frGbXWci4dqEU1IuTAZP8R4w400Q6_XpOA9GU0oeRaf5Xh-2bIR88_CvOOaNareUL8bM0hZnk15mNkJkVtlrMwWkfBWqjnVD0X2TPX23Up9Qc9JAKstUGMVRPHuWeDJY3k4EOXwdYrW8V8ftwYrOT5lp5lArcOMSjZgeYK1cAMWmroa8GgT0rbmZMYFkzX5MKV8TPYUv9BPCaZL7DCeSKZjFj_e3inHOKFrg6zKlkoZImbG-_0YxZ314pC27VmcMDQYtG3ZHbHkOU5HbDIbbws6jfP7s5aRV3EwOLq_jsGlKYl9VLiRRHzge35oS9vlVk3xyBSeQB_cRguJUIIrZSrfd7hpKYSevhS2VPY2zCXPidoBhs4gSpCsiChCL9azRM2OcFFRYYWaRG4JysWsBWFOcU6VNrpB4erQuAY0roEe1xKcjBv0MnaPn2_dL8QgyNU8Dcj9rBIhjo-P1vP5WzdB8_ZOH-z-tcERLN7WG8FV--ZyD5YqlIWhg8f3YW7QH6oDxEYDcail_xMi5QEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+Gaussian+mixture+model+and+multi%E2%80%90channel+attributes+for+arrival+picking+in+extremely+noisy+environments&rft.jtitle=Geophysical+Prospecting&rft.au=Wang%2C+Hang&rft.au=Chen%2C+Yangkang&rft.date=2022-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=70&rft.issue=2&rft.spage=343&rft.epage=361&rft_id=info:doi/10.1111%2F1365-2478.13164&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon