Iterative Gaussian mixture model and multi‐channel attributes for arrival picking in extremely noisy environments
ABSTRACT Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking results are prone to large errors. As commonly used arrival‐picking strategies, conventional clustering methods, such as K‐means, suffer from insuf...
Saved in:
Published in | Geophysical Prospecting Vol. 70; no. 2; pp. 343 - 361 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Houten
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking results are prone to large errors. As commonly used arrival‐picking strategies, conventional clustering methods, such as K‐means, suffer from insufficient flexibility, for example the clustering boundaries are fixed given a set of attribute vectors. In order to overcome this drawback, we propose a new strategy which can provide flexible clustering results (i.e. the variable clustering boundaries) based on an iterative Gaussian mixture model and utilize the local correlation among adjacent traces to enhance the anti‐noise ability. First, we use local principal component analysis to roughly distinguish the areas of signal waveforms. Then, two multi‐channel attributes are calculated and input to the iterative Gaussian mixture model. These two attributes can correctly identify the arrivals and avoid redundant computation caused by the high‐dimensional attribute vectors. The final step is to establish an optimized Gaussian mixture model and to iteratively select the proper boundaries for each trace. Although the iterative Gaussian mixture model takes a longer calculation time, the synthetic and real data tests have shown superior results over conventional methods even in situations of extremely low signal‐to‐noise ratios. |
---|---|
AbstractList | Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking results are prone to large errors. As commonly used arrival‐picking strategies, conventional clustering methods, such as K‐means, suffer from insufficient flexibility, for example the clustering boundaries are fixed given a set of attribute vectors. In order to overcome this drawback, we propose a new strategy which can provide flexible clustering results (i.e. the variable clustering boundaries) based on an iterative Gaussian mixture model and utilize the local correlation among adjacent traces to enhance the anti‐noise ability. First, we use local principal component analysis to roughly distinguish the areas of signal waveforms. Then, two multi‐channel attributes are calculated and input to the iterative Gaussian mixture model. These two attributes can correctly identify the arrivals and avoid redundant computation caused by the high‐dimensional attribute vectors. The final step is to establish an optimized Gaussian mixture model and to iteratively select the proper boundaries for each trace. Although the iterative Gaussian mixture model takes a longer calculation time, the synthetic and real data tests have shown superior results over conventional methods even in situations of extremely low signal‐to‐noise ratios. ABSTRACT Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking results are prone to large errors. As commonly used arrival‐picking strategies, conventional clustering methods, such as K‐means, suffer from insufficient flexibility, for example the clustering boundaries are fixed given a set of attribute vectors. In order to overcome this drawback, we propose a new strategy which can provide flexible clustering results (i.e. the variable clustering boundaries) based on an iterative Gaussian mixture model and utilize the local correlation among adjacent traces to enhance the anti‐noise ability. First, we use local principal component analysis to roughly distinguish the areas of signal waveforms. Then, two multi‐channel attributes are calculated and input to the iterative Gaussian mixture model. These two attributes can correctly identify the arrivals and avoid redundant computation caused by the high‐dimensional attribute vectors. The final step is to establish an optimized Gaussian mixture model and to iteratively select the proper boundaries for each trace. Although the iterative Gaussian mixture model takes a longer calculation time, the synthetic and real data tests have shown superior results over conventional methods even in situations of extremely low signal‐to‐noise ratios. |
Author | Chen, Yangkang Wang, Hang |
Author_xml | – sequence: 1 givenname: Hang orcidid: 0000-0003-0908-8478 surname: Wang fullname: Wang, Hang organization: Zhejiang University – sequence: 2 givenname: Yangkang orcidid: 0000-0001-6429-4261 surname: Chen fullname: Chen, Yangkang email: chenyk2016@gmail.com organization: The University of Texas at Austin |
BookMark | eNqFkL1OwzAURi0EEm1hZrXEnNaO8-OMqIJSqRIIwWw5yQ24JHaxndJsPALPyJOQUMTA0rtc6dN37pXOGB1rowGhC0qmtJ8ZZUkchFHKp5TRJDpCo7_kGI0IoUnASRiforFza0IYieNohNzSg5VebQEvZOuckho3audbC7gxJdRY6hI3be3V18dn8SK1HjLvrcpbDw5XxmJprdrKGm9U8ar0M1Yaw85baKDusDbKdRj0VlmjG9DenaGTStYOzn_3BD3dXD_Ob4PV3WI5v1oFkjEeBbIkJSUZzZOqDBnnKS9YyRJJM5AVydOcc85SysOISgACnEeSUCA042XOSmATdLm_u7HmrQXnxdq0VvcvRZjQLI5ZmvC-Ndu3Cmucs1CJjVWNtJ2gRAxmxeBRDB7Fj9meiP8RhfK9Q6O9lao-zL2rGrpDb8Ti_mHPfQMrMZCH |
CitedBy_id | crossref_primary_10_3390_s22249976 crossref_primary_10_3390_s22249924 crossref_primary_10_1111_1365_2478_13390 crossref_primary_10_1016_j_enggeo_2024_107839 |
Cites_doi | 10.1190/geo2015-0333.1 10.15446/esrj.v18n2.35887 10.1190/geo2012-0026.1 10.1785/BSSA0680051521 10.1029/2020JB021473 10.1190/geo2015-0598.1 10.1029/2018EA000466 10.1029/2019JB017536 10.1190/geo2015-0213.1 10.1109/TGRS.2013.2282422 10.1038/s41598-019-45748-1 10.1029/1999GL005374 10.1109/TIP.2011.2176743 10.1190/1.2435967 10.1190/geo2019-0597.1 10.1016/j.jappgeo.2017.02.019 10.1190/geo2019-0792.1 10.1002/nsg.12014 10.1111/j.1365-2478.2011.01014.x 10.1190/geo2019-0422.1 10.1093/gji/ggy348 10.1190/geo2019-0267.1 10.1785/0220180308 10.1016/j.jappgeo.2017.03.005 10.1190/1.1487094 10.1190/geo2018-0389.1 10.1190/geo2018-0688.1 10.1190/geo2019-0437.1 10.1093/gji/ggx487 10.1190/1.1443352 10.1190/geo2010-0322.1 10.1190/geo2014-0561.1 10.1785/0120140203 10.1190/geo2010-0331.1 10.1785/0220180312 10.1109/LGRS.2013.2260720 10.1109/TGRS.2014.2386255 10.1093/gji/ggx238 10.1190/1.3463703 10.1111/j.2517-6161.1977.tb01600.x 10.1093/gji/ggv419 10.1093/gji/ggaa193 10.1093/gji/ggaa186 10.1016/j.patcog.2005.10.028 10.1109/JSTARS.2018.2868899 10.1109/TGRS.2017.2758162 10.1190/geo2020-0185.1 |
ContentType | Journal Article |
Copyright | 2021 European Association of Geoscientists & Engineers 2022 European Association of Geoscientists & Engineers |
Copyright_xml | – notice: 2021 European Association of Geoscientists & Engineers – notice: 2022 European Association of Geoscientists & Engineers |
DBID | AAYXX CITATION 8FD F1W FR3 H96 KR7 L.G |
DOI | 10.1111/1365-2478.13164 |
DatabaseName | CrossRef Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1365-2478 |
EndPage | 361 |
ExternalDocumentID | 10_1111_1365_2478_13164 GPR13164 |
Genre | article |
GroupedDBID | -~X 1OB 1OC ALMA_UNASSIGNED_HOLDINGS BDRZF BRZYM DDYGU FZ0 AAYXX CITATION PALCI 8FD F1W FR3 H96 KR7 L.G |
ID | FETCH-LOGICAL-a3384-ad0d1091b6fd238878c3d36a19eaf0b7b8883718241aee0e884a01e0198db3de3 |
IEDL.DBID | DR2 |
ISSN | 0016-8025 |
IngestDate | Mon Jun 30 08:37:06 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 01:43:27 EDT 2025 Sat Aug 24 00:58:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3384-ad0d1091b6fd238878c3d36a19eaf0b7b8883718241aee0e884a01e0198db3de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0908-8478 0000-0001-6429-4261 |
PQID | 2619553768 |
PQPubID | 1066348 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2619553768 crossref_primary_10_1111_1365_2478_13164 crossref_citationtrail_10_1111_1365_2478_13164 wiley_primary_10_1111_1365_2478_13164_GPR13164 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | Houten |
PublicationPlace_xml | – name: Houten |
PublicationTitle | Geophysical Prospecting |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 60 2019; 90 2019; 9 2010; 75 2021; 86 2019; 6 2020; 85 2015; 105 2015; 203 2021; 126 2015; 53 2006; 39 1999; 26 2019; 124 2011; 76 2020; 222 2007; 72 2015; 80 2001; 66 2017; 210 2012; 77 2017; 139 1993; 58 2019; 84 2013; 10 2018; 215 1977; 39 2013; 78 2018; 212 2017; 140 2016; 81 2014; 18 1978; 68 2018; 56 2014; 52 2018; 11 2018; 16 2012; 21 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 6 start-page: 1244 issue: 7 year: 2019 end-page: 1261 article-title: Automatic waveform classification and arrival picking based on convolutional neural network publication-title: Earth and Space Science – volume: 58 start-page: 67 issue: 1 year: 1993 end-page: 78 article-title: First‐break refraction event picking and seismic data trace editing using neural networks publication-title: Geophysics – volume: 53 start-page: 3870 issue: 7 year: 2015 end-page: 3884 article-title: Automatic seismic signal detection via record segmentation publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 84 start-page: V143 issue: 3 year: 2019 end-page: V155 article-title: Semiautomatic first‐arrival picking of microseismic events by using the pixel‐wise convolutional image segmentation method publication-title: Geophysics – volume: 203 start-page: 1896 issue: 3 year: 2015 end-page: 1908 article-title: Comparison of the STA/LTA and power spectral density methods for microseismic event detection publication-title: Geophysical Journal International – volume: 212 start-page: 1389 issue: 2 year: 2018 end-page: 1397 article-title: An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks publication-title: Geophysical Journal International – volume: 85 start-page: U109 issue: 5 year: 2020 end-page: U119 article-title: A robust first‐arrival picking workflow using convolutional and recurrent neural networks publication-title: Geophysics – volume: 85 start-page: U87 issue: 4 year: 2020 end-page: U98 article-title: SC‐PSNET: A deep neural network for automatic P‐ and S‐phase detection and arrival‐time picker using 1C recordings publication-title: Geophysics – volume: 85 start-page: WA227 issue: 4 year: 2020 end-page: WA240 article-title: Convolutional neural networks for microseismic waveform classification and arrival picking publication-title: Geophysics – volume: 16 start-page: 507 issue: 5 year: 2018 end-page: 526 article-title: Development of an adaptive multi‐method algorithm for automatic picking of first arrival times: application to near surface seismic data publication-title: Near Surface Geophysics – volume: 11 start-page: 3918 issue: 10 year: 2018 end-page: 3924 article-title: UDWT domain: A verified replacement for time domain implementation of the robust P phase Picker algorithm publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 85 start-page: V415 issue: 5 year: 2020 end-page: V423 article-title: Automated arrival‐time picking using a pixel‐level network publication-title: Geophysics – volume: 80 start-page: WC25 issue: 6 year: 2015 end-page: WC38 article-title: Fast and automatic microseismic phase‐arrival detection and denoising by pattern recognition and reduced‐rank filtering publication-title: Geophysics – volume: 52 start-page: 4558 issue: 8 year: 2014 end-page: 4563 article-title: The use of wavelet‐based denoising techniques to enhance the first‐arrival picking on seismic traces publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 215 start-page: 1185 issue: 2 year: 2018 end-page: 1199 article-title: Fast waveform detection for microseismic imaging using unsupervised machine learning publication-title: Geophysical Journal International – volume: 81 start-page: V341 issue: 4 year: 2016 end-page: V355 article-title: Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform publication-title: Geophysics – volume: 56 start-page: 1017 issue: 2 year: 2018 end-page: 1029 article-title: A clustering approach for the detection of acoustic/seismic signals of unknown structure publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 81 start-page: KS93 issue: 2 year: 2016 end-page: KS111 article-title: Improved methods for detection and arrival picking of microseismic events with low signal‐to‐noise ratios publication-title: Geophysics – volume: 77 start-page: V101 issue: 3 year: 2012 end-page: V111 article-title: Enhancement of first arrivals using the tau‐p transform on energy‐ratio seismic shot records publication-title: Geophysics – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 22 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – volume: 26 start-page: 3249 issue: 21 year: 1999 end-page: 3252 article-title: First breaks ‐ automatic phase pickings of P‐ and S‐onsets in seismic records publication-title: Geophysical Research Letters – volume: 124 start-page: 6612 issue: 7 year: 2019 end-page: 6624 article-title: Deep learning for picking seismic arrival times publication-title: Journal of Geophysical Research‐Solid Earth – volume: 90 start-page: 481 issue: 2, A year: 2019 end-page: 490 article-title: Seismic event and phase detection using time‐frequency representation and convolutional neural networks publication-title: Seismological Research Letters – volume: 66 start-page: 1488 issue: 5 year: 2001 end-page: 1496 article-title: Automatic event picking in prestack migrated gathers using a probabilistic neural network publication-title: Geophysics – volume: 85 start-page: WA269 issue: 4 year: 2020 end-page: WA277 article-title: Multitrace first‐break picking using an integrated seismic and machine learning method publication-title: Geophysics – volume: 210 start-page: 1394 issue: 3 year: 2017 end-page: 1409 article-title: Supervised machine learning on a network scale: application to seismic event classification and detection publication-title: Geophysical Journal International – volume: 86 start-page: R685 issue: 5 year: 2021 end-page: R699 article-title: Poststack seismic inversion using a patch‐based Gaussian mixture model publication-title: Geophysics – volume: 105 start-page: 1606 issue: 3 year: 2015 end-page: 1618 article-title: Adaptive STA‐LTA with outlier statistics publication-title: Bulletin of the Seismological Society of America – volume: 18 start-page: 107 issue: 2 year: 2014 end-page: 113 article-title: A semi‐automatic approach to identify first arrival time: the cross‐correlation technique (CCT) publication-title: Earth Sciences Research Journal – volume: 60 start-page: 1024 issue: 6 year: 2012 end-page: 1029 article-title: ptimization approach to automatic first arrival picking for three‐component three‐dimensional vertical seismic profiling data publication-title: Geophysical Prospecting – volume: 9 issue: 1 year: 2019 article-title: CRED: a deep residual network of convolutional and recurrent units for earthquake signal detection publication-title: Scientific Reports – volume: 222 start-page: 1881 year: 2020 end-page: 1895 article-title: Automatic high‐resolution microseismic event detection via supervised machine learning publication-title: Geophysical Journal International – volume: 78 start-page: T53 issue: 2 year: 2013 end-page: T58 article-title: Automatic traveltime picking using instantaneous traveltime publication-title: Geophysics – volume: 68 start-page: 1521 issue: 5 year: 1978 end-page: 1532 article-title: Automatic earthquake recognition and timing from single traces publication-title: Bulletin of the Seismological Society of America – volume: 10 start-page: 1488 issue: 6 year: 2013 end-page: 1492 article-title: An automatic P‐phase picking algorithm based on adaptive multiband processing publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 39 start-page: 695 issue: 4 year: 2006 end-page: 706 article-title: A study of Gaussian mixture models of color and texture features for image classification and segmentation publication-title: Pattern Recognition – volume: 90 start-page: 491 issue: 2, A year: 2019 end-page: 502 article-title: Convolutional neural network for seismic phase classification, performance demonstration over a local seismic network publication-title: Seismological Research Letters – volume: 139 start-page: 117 year: 2017 end-page: 130 article-title: Improved modified energy ratio method using a multi‐window approach for accurate arrival picking publication-title: Journal of Applied Geophysics – volume: 75 start-page: V67 issue: 4 year: 2010 end-page: V76 article-title: Automatic first‐breaks picking: new strategies and algorithms publication-title: Geophysics – volume: 140 start-page: 52 year: 2017 end-page: 61 article-title: Iterative interferometry‐based method for picking microseismic events publication-title: Journal of Applied Geophysics – volume: 21 start-page: 2481 issue: 5 year: 2012 end-page: 2499 article-title: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity publication-title: IEEE Transactions on Image Processing – volume: 81 start-page: V141 issue: 2 year: 2016 end-page: V150 article-title: Automated phase attribute‐based picking applied to reflection seismics publication-title: Geophysics – volume: 84 start-page: U45 issue: 6 year: 2019 end-page: U57 article-title: First‐arrival picking with a U‐net convolutional network publication-title: Geophysics – volume: 76 start-page: V79 issue: 5 year: 2011 end-page: V89 article-title: A new technique for first‐arrival picking of refracted seismic data based on digital image segmentation publication-title: Geophysics – volume: 126 issue: 4 year: 2021 article-title: SCALODEEP: a highly generalized deep learning framework for real‐time earthquake detection publication-title: Journal of Geophysical Research ‐ Solid Earth – volume: 222 start-page: 1750 issue: 3 year: 2020 end-page: 1764 article-title: Automatic microseismic event picking via unsupervised machine learning publication-title: Geophysical Journal International – volume: 72 start-page: V59 issue: 2 year: 2007 end-page: V65 article-title: Local singular value decomposition for signal enhancement of seismic data publication-title: Geophysics – ident: e_1_2_7_14_1 doi: 10.1190/geo2015-0333.1 – ident: e_1_2_7_36_1 doi: 10.15446/esrj.v18n2.35887 – ident: e_1_2_7_35_1 doi: 10.1190/geo2012-0026.1 – ident: e_1_2_7_2_1 doi: 10.1785/BSSA0680051521 – ident: e_1_2_7_33_1 doi: 10.1029/2020JB021473 – ident: e_1_2_7_27_1 doi: 10.1190/geo2015-0598.1 – ident: e_1_2_7_8_1 doi: 10.1029/2018EA000466 – ident: e_1_2_7_40_1 doi: 10.1029/2019JB017536 – ident: e_1_2_7_37_1 doi: 10.1190/geo2015-0213.1 – ident: e_1_2_7_15_1 doi: 10.1109/TGRS.2013.2282422 – ident: e_1_2_7_28_1 doi: 10.1038/s41598-019-45748-1 – ident: e_1_2_7_13_1 doi: 10.1029/1999GL005374 – ident: e_1_2_7_44_1 doi: 10.1109/TIP.2011.2176743 – ident: e_1_2_7_4_1 doi: 10.1190/1.2435967 – ident: e_1_2_7_47_1 doi: 10.1190/geo2019-0597.1 – ident: e_1_2_7_22_1 doi: 10.1016/j.jappgeo.2017.02.019 – ident: e_1_2_7_23_1 doi: 10.1190/geo2019-0792.1 – ident: e_1_2_7_21_1 doi: 10.1002/nsg.12014 – ident: e_1_2_7_5_1 doi: 10.1111/j.1365-2478.2011.01014.x – ident: e_1_2_7_12_1 doi: 10.1190/geo2019-0422.1 – ident: e_1_2_7_6_1 doi: 10.1093/gji/ggy348 – ident: e_1_2_7_46_1 doi: 10.1190/geo2019-0267.1 – ident: e_1_2_7_11_1 doi: 10.1785/0220180308 – ident: e_1_2_7_18_1 doi: 10.1016/j.jappgeo.2017.03.005 – ident: e_1_2_7_16_1 doi: 10.1190/1.1487094 – ident: e_1_2_7_43_1 doi: 10.1190/geo2018-0389.1 – ident: e_1_2_7_17_1 doi: 10.1190/geo2018-0688.1 – ident: e_1_2_7_45_1 doi: 10.1190/geo2019-0437.1 – ident: e_1_2_7_48_1 doi: 10.1093/gji/ggx487 – ident: e_1_2_7_24_1 doi: 10.1190/1.1443352 – ident: e_1_2_7_26_1 doi: 10.1190/geo2010-0322.1 – ident: e_1_2_7_39_1 doi: 10.1190/geo2014-0561.1 – ident: e_1_2_7_19_1 doi: 10.1785/0120140203 – ident: e_1_2_7_25_1 doi: 10.1190/geo2010-0331.1 – ident: e_1_2_7_42_1 doi: 10.1785/0220180312 – ident: e_1_2_7_3_1 doi: 10.1109/LGRS.2013.2260720 – ident: e_1_2_7_30_1 doi: 10.1109/TGRS.2014.2386255 – ident: e_1_2_7_32_1 doi: 10.1093/gji/ggx238 – ident: e_1_2_7_34_1 doi: 10.1190/1.3463703 – ident: e_1_2_7_9_1 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_7_38_1 doi: 10.1093/gji/ggv419 – ident: e_1_2_7_31_1 doi: 10.1093/gji/ggaa193 – ident: e_1_2_7_7_1 doi: 10.1093/gji/ggaa186 – ident: e_1_2_7_29_1 doi: 10.1016/j.patcog.2005.10.028 – ident: e_1_2_7_20_1 doi: 10.1109/JSTARS.2018.2868899 – ident: e_1_2_7_10_1 doi: 10.1109/TGRS.2017.2758162 – ident: e_1_2_7_41_1 doi: 10.1190/geo2020-0185.1 |
SSID | ssj0030554 ssj0017384 |
Score | 2.3181949 |
Snippet | ABSTRACT
Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking... Arrival picking is a traditional and important topic in the field of seismic exploration. Depending on the quality of seismic data, the picking results are... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 343 |
SubjectTerms | Boundaries Clustering Computation Data processing Iterative methods Noise Picking Principal components analysis Probabilistic models Seismic data Seismic exploration Signal processing Vectors Waveforms |
Title | Iterative Gaussian mixture model and multi‐channel attributes for arrival picking in extremely noisy environments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.13164 https://www.proquest.com/docview/2619553768 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF6kIOjBn6pYrbIHD14Skua3RxHbKihSLHgLu9kNBGtamhSsJx_BZ_RJnNlNaiyIiLckZDfJ7szON5uZbwg5E2AXcD_fiJlvGa6IhcFiDxWPgX4EthQq2v32zh-M3JtHr4omxFwYzQ-x3HBDzVDrNSo443lNyXV8lhuEpu0A5odVGK8gLBouCaTswME0TH2C3FaalNlGDt6OVzL9YGDPSmffjdQX8qzjV2WAetuEV6-u406ezHnBzfh1hdXxX9-2Q7ZKeEovtDztkjWZNclmjbSwSdb7qhjwYo_k14qSGdZL2mfzHNMx6XP6gv8kqKqwQ1kmqApZ_Hh7xxTjDK8VusiWzCkAZspmsxSknU7TGHftaZpRsBe4azle0GyS5gtaT8bbJ6Pe1cPlwCiLOBgMvF_XYMISSD7K_UQAPAiDMHaE4zO7K1li8YCDC-6AgQQkwaS0ZBi6zLIlIM9QcEdI54A0skkmDwkFXxAESHR4koATG9i86ySwpsi4g00Sv0XMataiuGQ4x0Ib46jydHBcIxzXSI1ri5wvG0w1ucfPt7YrMYhKLc8j9D495MMJ4dFqPn_rJurfD9XB0V8bHJONDmZeqIDxNmkUs7k8ATxU8FMl8p9FiP4m |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5ojVEPPqrG-tyDBy80UCjg0fhoq7Yxxia9kWV3SYgVTWkT68mf4G_0lziz0IomxhhvQFgey8zON8PMNwCHEu0CxfMNwV3TcKSQBhd1UjyO-uFZSups93bHbXady169V6iFyfghpgE30gy9XpOCU0C6oOVZgpbj-VXLRtA_C3PU15v4889upxRSlmdTIWa2Q-xWGS2zRSy8tXrO9UOpPd-u9tVMfWLPIoLVJuhiBcTk4bPMk_vqaBhWxcs3Xsf_vd0qLOcIlZ1kIrUGMyopw1KBt7AM8w3dD3i8DmlLszLjkskafJRSRSZ7iJ_ptwTTTXYYTyTTWYvvr29UZZzQsWHWZ0ulDDEz44NBjALPnmJBgXsWJwxNBgUu-2OWPMbpmBXr8Tage3F-d9o08j4OBkcH2DG4NCXxj4ZuJBEh-J4vbGm73DpWPDJDL0Qv3EYbiWCCK2Uq33e4aSkEn74MbansTSglj4naAobuIMqQrIVRhH6sZ4XHdoTLihI1GhK5FahOPlsgcpJz6rXRDybODs1rQPMa6HmtwNF0wFPG7_HzqbsTOQhyRU8DckDrRInj4631B_3tMkHj5lZvbP91wAEsNO_a18F1q3O1A4s1KsTQ-eO7UBoORmoP4dEw3Nfy_wE2PAJR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ74iEYPvo31uQcPXmigUKBHY-3DV4yxiTeyyy4JsWJT2sR68if4G_0lzixQaxNjjDcg7AK7MzvfLDPfABxLtAu0n2-E3DUNR4bS4GGVFI-jfniWkjra_frGbXWci4dqEU1IuTAZP8R4w400Q6_XpOA9GU0oeRaf5Xh-2bIR88_CvOOaNareUL8bM0hZnk15mNkJkVtlrMwWkfBWqjnVD0X2TPX23Up9Qc9JAKstUGMVRPHuWeDJY3k4EOXwdYrW8V8ftwYrOT5lp5lArcOMSjZgeYK1cAMWmroa8GgT0rbmZMYFkzX5MKV8TPYUv9BPCaZL7DCeSKZjFj_e3inHOKFrg6zKlkoZImbG-_0YxZ314pC27VmcMDQYtG3ZHbHkOU5HbDIbbws6jfP7s5aRV3EwOLq_jsGlKYl9VLiRRHzge35oS9vlVk3xyBSeQB_cRguJUIIrZSrfd7hpKYSevhS2VPY2zCXPidoBhs4gSpCsiChCL9azRM2OcFFRYYWaRG4JysWsBWFOcU6VNrpB4erQuAY0roEe1xKcjBv0MnaPn2_dL8QgyNU8Dcj9rBIhjo-P1vP5WzdB8_ZOH-z-tcERLN7WG8FV--ZyD5YqlIWhg8f3YW7QH6oDxEYDcail_xMi5QEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+Gaussian+mixture+model+and+multi%E2%80%90channel+attributes+for+arrival+picking+in+extremely+noisy+environments&rft.jtitle=Geophysical+Prospecting&rft.au=Wang%2C+Hang&rft.au=Chen%2C+Yangkang&rft.date=2022-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=70&rft.issue=2&rft.spage=343&rft.epage=361&rft_id=info:doi/10.1111%2F1365-2478.13164&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon |