Aligned Epitaxial SnO2 Nanowires on Sapphire: Growth and Device Applications

Semiconducting SnO2 nanowires have been used to demonstrate high-quality field-effect transistors, optically transparent devices, photodetectors, and gas sensors. However, controllable assembly of rutile SnO2 nanowires is necessary for scalable and practical device applications. Here, we demonstrate...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 14; no. 6; pp. 3014 - 3022
Main Authors Wang, Xiaoli, Aroonyadet, Noppadol, Zhang, Yuzheng, Mecklenburg, Matthew, Fang, Xin, Chen, Haitian, Goo, Edward, Zhou, Chongwu
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 11.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Semiconducting SnO2 nanowires have been used to demonstrate high-quality field-effect transistors, optically transparent devices, photodetectors, and gas sensors. However, controllable assembly of rutile SnO2 nanowires is necessary for scalable and practical device applications. Here, we demonstrate aligned, planar SnO2 nanowires grown on A-plane, M-plane, and R-plane sapphire substrates. These parallel nanowires can reach 100 μm in length with sufficient density to be patterned photolithographically for field-effect transistors and sensor devices. As proof-of-concept, we show that transistors made this way can achieve on/off current ratios on the order of 106, mobilities around 71.68 cm2/V·s, and sufficiently high currents to drive external organic light-emitting diode displays. Furthermore, the aligned SnO2 nanowire devices are shown to be photosensitive to UV light with the capability to distinguish between 254 and 365 nm wavelengths. Their alignment is advantageous for polarized UV light detection; we have measured a polarization ratio of photoconductance (σ) of 0.3. Lastly, we show that the nanowires can detect NO2 at a concentration of 0.2 ppb, making them a scalable, ultrasensitive gas sensing technology. Aligned SnO2 nanowires offer a straightforward method to fabricate scalable SnO2 nanodevices for a variety of future electronic applications.
AbstractList Semiconducting SnO2 nanowires have been used to demonstrate high-quality field-effect transistors, optically transparent devices, photodetectors, and gas sensors. However, controllable assembly of rutile SnO2 nanowires is necessary for scalable and practical device applications. Here, we demonstrate aligned, planar SnO2 nanowires grown on A-plane, M-plane, and R-plane sapphire substrates. These parallel nanowires can reach 100 μm in length with sufficient density to be patterned photolithographically for field-effect transistors and sensor devices. As proof-of-concept, we show that transistors made this way can achieve on/off current ratios on the order of 10(6), mobilities around 71.68 cm(2)/V·s, and sufficiently high currents to drive external organic light-emitting diode displays. Furthermore, the aligned SnO2 nanowire devices are shown to be photosensitive to UV light with the capability to distinguish between 254 and 365 nm wavelengths. Their alignment is advantageous for polarized UV light detection; we have measured a polarization ratio of photoconductance (σ) of 0.3. Lastly, we show that the nanowires can detect NO2 at a concentration of 0.2 ppb, making them a scalable, ultrasensitive gas sensing technology. Aligned SnO2 nanowires offer a straightforward method to fabricate scalable SnO2 nanodevices for a variety of future electronic applications.Semiconducting SnO2 nanowires have been used to demonstrate high-quality field-effect transistors, optically transparent devices, photodetectors, and gas sensors. However, controllable assembly of rutile SnO2 nanowires is necessary for scalable and practical device applications. Here, we demonstrate aligned, planar SnO2 nanowires grown on A-plane, M-plane, and R-plane sapphire substrates. These parallel nanowires can reach 100 μm in length with sufficient density to be patterned photolithographically for field-effect transistors and sensor devices. As proof-of-concept, we show that transistors made this way can achieve on/off current ratios on the order of 10(6), mobilities around 71.68 cm(2)/V·s, and sufficiently high currents to drive external organic light-emitting diode displays. Furthermore, the aligned SnO2 nanowire devices are shown to be photosensitive to UV light with the capability to distinguish between 254 and 365 nm wavelengths. Their alignment is advantageous for polarized UV light detection; we have measured a polarization ratio of photoconductance (σ) of 0.3. Lastly, we show that the nanowires can detect NO2 at a concentration of 0.2 ppb, making them a scalable, ultrasensitive gas sensing technology. Aligned SnO2 nanowires offer a straightforward method to fabricate scalable SnO2 nanodevices for a variety of future electronic applications.
Semiconducting SnO2 nanowires have been used to demonstrate high-quality field-effect transistors, optically transparent devices, photodetectors, and gas sensors. However, controllable assembly of rutile SnO2 nanowires is necessary for scalable and practical device applications. Here, we demonstrate aligned, planar SnO2 nanowires grown on A-plane, M-plane, and R-plane sapphire substrates. These parallel nanowires can reach 100 μm in length with sufficient density to be patterned photolithographically for field-effect transistors and sensor devices. As proof-of-concept, we show that transistors made this way can achieve on/off current ratios on the order of 10(6), mobilities around 71.68 cm(2)/V·s, and sufficiently high currents to drive external organic light-emitting diode displays. Furthermore, the aligned SnO2 nanowire devices are shown to be photosensitive to UV light with the capability to distinguish between 254 and 365 nm wavelengths. Their alignment is advantageous for polarized UV light detection; we have measured a polarization ratio of photoconductance (σ) of 0.3. Lastly, we show that the nanowires can detect NO2 at a concentration of 0.2 ppb, making them a scalable, ultrasensitive gas sensing technology. Aligned SnO2 nanowires offer a straightforward method to fabricate scalable SnO2 nanodevices for a variety of future electronic applications.
Semiconducting SnO2 nanowires have been used to demonstrate high-quality field-effect transistors, optically transparent devices, photodetectors, and gas sensors. However, controllable assembly of rutile SnO2 nanowires is necessary for scalable and practical device applications. Here, we demonstrate aligned, planar SnO2 nanowires grown on A-plane, M-plane, and R-plane sapphire substrates. These parallel nanowires can reach 100 μm in length with sufficient density to be patterned photolithographically for field-effect transistors and sensor devices. As proof-of-concept, we show that transistors made this way can achieve on/off current ratios on the order of 106, mobilities around 71.68 cm2/V·s, and sufficiently high currents to drive external organic light-emitting diode displays. Furthermore, the aligned SnO2 nanowire devices are shown to be photosensitive to UV light with the capability to distinguish between 254 and 365 nm wavelengths. Their alignment is advantageous for polarized UV light detection; we have measured a polarization ratio of photoconductance (σ) of 0.3. Lastly, we show that the nanowires can detect NO2 at a concentration of 0.2 ppb, making them a scalable, ultrasensitive gas sensing technology. Aligned SnO2 nanowires offer a straightforward method to fabricate scalable SnO2 nanodevices for a variety of future electronic applications.
Author Fang, Xin
Zhang, Yuzheng
Goo, Edward
Aroonyadet, Noppadol
Mecklenburg, Matthew
Wang, Xiaoli
Chen, Haitian
Zhou, Chongwu
AuthorAffiliation Department of Chemical Engineering and Material Science
University of Southern California
Center for Electron Microscopy and Microanalysis
Department of Electrical Engineering
AuthorAffiliation_xml – name: University of Southern California
– name: Department of Chemical Engineering and Material Science
– name: Department of Electrical Engineering
– name: Center for Electron Microscopy and Microanalysis
Author_xml – sequence: 1
  givenname: Xiaoli
  surname: Wang
  fullname: Wang, Xiaoli
– sequence: 2
  givenname: Noppadol
  surname: Aroonyadet
  fullname: Aroonyadet, Noppadol
– sequence: 3
  givenname: Yuzheng
  surname: Zhang
  fullname: Zhang, Yuzheng
– sequence: 4
  givenname: Matthew
  surname: Mecklenburg
  fullname: Mecklenburg, Matthew
– sequence: 5
  givenname: Xin
  surname: Fang
  fullname: Fang, Xin
– sequence: 6
  givenname: Haitian
  surname: Chen
  fullname: Chen, Haitian
– sequence: 7
  givenname: Edward
  surname: Goo
  fullname: Goo, Edward
– sequence: 8
  givenname: Chongwu
  surname: Zhou
  fullname: Zhou, Chongwu
  email: chongwuz@usc.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28606806$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24837617$$D View this record in MEDLINE/PubMed
BookMark eNpFkc9PwjAUxxuDEVAP_gOmFxMv6Gu7tZ03gogmRA7oeem6TkpGO9dN1L_eGRFO773kk5fvjyHqOe8MQhcEbghQcuvKCCIqk-8jNCAxgxFPEtrb7zLqo2EIawBIWAwnqE8jyQQnYoDm49K-OZPjaWUb9WlViZduQfGzcn5raxOwd3ipqmrVHXd4Vvtts8LK5fjefFht8LiqSqtVY70LZ-i4UGUw57t5il4fpi-Tx9F8MXuajOcjxZhoOkWUCUGokVmnmyRRFAsAHgvO85jIArKCZCQRlFNgOWgplFZcG5MkIKgEdoqu__5WtX9vTWjSjQ3alKVyxrch7XzHFCSlrEMvd2ibbUyeVrXdqPor_U-gA652gApalUWtnLbhwEkOXAI_cEqHdO3b2nUOUwLpbwPpvgH2A2e-dCI
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: 2015 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/nl404289z
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1530-6992
EndPage 3022
ExternalDocumentID 24837617
28606806
c875821590
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
53G
6P2
AAHBH
AAYOK
ABJNI
ABQRX
ACBEA
ADHLV
AFFNX
AHGAQ
CUPRZ
GGK
IQODW
ABBLG
ABLBI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a337t-69237712e8b4041944570065766d518f0bf1b19726203d0c87aca6cee99072803
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 14:08:48 EDT 2025
Mon Jul 21 06:04:09 EDT 2025
Wed Apr 02 07:37:50 EDT 2025
Fri Feb 05 20:53:47 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords tin oxide
Nanowire
epitaxy
guided growth
Epitaxial layers
Field effect transistors
Epitaxy
Light emitting diodes
Photodetectors
Nanoelectronics
Nanowire device
High field
Organic light emitting diodes
Nanowires
Nitrogen dioxide
Photoconductivity
Gas sensors
Nanostructured materials
Gas detector
Nanomaterial synthesis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a337t-69237712e8b4041944570065766d518f0bf1b19726203d0c87aca6cee99072803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24837617
PQID 1535208223
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1535208223
pubmed_primary_24837617
pascalfrancis_primary_28606806
acs_journals_10_1021_nl404289z
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2014-06-11
PublicationDateYYYYMMDD 2014-06-11
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-11
  day: 11
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0009350
Score 2.4180026
Snippet Semiconducting SnO2 nanowires have been used to demonstrate high-quality field-effect transistors, optically transparent devices, photodetectors, and gas...
SourceID proquest
pubmed
pascalfrancis
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 3014
SubjectTerms Aluminum Oxide - chemistry
Applied sciences
Cross-disciplinary physics: materials science; rheology
Electronics
Exact sciences and technology
Materials science
Methods of nanofabrication
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanowires - chemistry
Nanowires - ultrastructure
Nitric Oxide - analysis
Physics
Quantum wires
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Tin Compounds - chemistry
Transistors
Title Aligned Epitaxial SnO2 Nanowires on Sapphire: Growth and Device Applications
URI http://dx.doi.org/10.1021/nl404289z
https://www.ncbi.nlm.nih.gov/pubmed/24837617
https://www.proquest.com/docview/1535208223
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoED-1KWygiuLbGTOgm3qgsVYjmUSr1FTuIAokoqkkqoX89M0tIiVLjHsWOPZ95k7PcArjBIhgiE_Vpg2z4mKCpAP0gsoj7dk-ShG2i6nPzwKHsD627YGJbgckUFX_DreGQRrnena7AuJG5ewj-t_oJZ18xlWHHnYh7kOtacPmi5KYWeIKVzjyrFT48KzYrVoDIPLt1taM-v6BRnSt7rk8yvB9PfjI1_jXsHtmbgkjULa9iFko73YHOJcnAf7pujtxd0raxDciGfaH2sHz8Jhl42IdrilCUx66vxmH5a37BbzNKzV6bikLU1ORXWXKp4H8Cg23lu9WozRYWaMk07w_kRpm1zoR0fB8ddyyJ6e4k5hwwb3IkMP-I-CZFJYZihETi2CpTEOIoxK9exOoRynMT6GJhGoMXDKHIcTLjc0FYuGoMMEFEpRJDaqEAVp9yb7YjUy4vdgnvf04IP_FgNb1zQa3jCkSQIIitwMV8eD22eChkq1skE30WcNERVb1bgqFi3RWuiyEdYdvJf_6ewgeDHomNfnJ9BOfuY6HMEGJlfzQ3sC2uIx14
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHtSD7wc-cE28gt22bFtvDYKogAcg4dZst1s1kpbYkhh-vTNtETQxeu-2k9nZmW-6u99HyBUUyQCAsF-VluVDgyIk5EFkEfXxniQLHKnwcnK3x9tD82FUHxU0OXgXBoxI4E1Jtom_YBdg19HYRHjvzFbJGoAQHaPZbfQXBLtGpsYKCxjaIcc25yxCy0OxAskEjz-KBDwQ5tIVv2PLrMa0tnOxosy67GjJW22a-jU5-0Hc-D_zd8hWATWpm8fGLllR0R7ZXCIg3Ccdd_z6DImWNlE85ANikfajJ51Czo2RxDihcUT7YjLBX9g39A569vSFiiigtwpTDHWX9r8PyLDVHDTa1UJfoSoMw0rBTbphWUxXtg_GMcc0keyeQwfCgzqzQ80PmY-yZFzXjECTtiWk4FBVoYJlqlaHpBTFkTomVAHsYkEY2ja0X05gCQdCg0vAVwLwpNLKpAJe8Yr1kXjZ1rfOvC-3wAPfJsWb5GQbnm5zlAfhZXI5nyUPVgBua4hIxVN4FzLUIHG9USZH-fQtRiNhPoC0k7--f0HW24Nux-vc9x5PyQbAIhMPhDF2Rkrp-1SdA_RI_UoWc59dV8-_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT4NAEJ5oTYw-eB_1qGviaysLlMO3podVa2tSm_SNLLCosYFGaGL6650Bemhi9J1dltk5vmF2vwG4wiDpIxB2y55pupigCA_9ILGIunRPkvu2J-ly8mPXaA_0-2F1mCeKdBcGFxHjTHFaxCerHvtBzjDAr8ORThDfnq7CGpXrSKNr9f6CZFdLO7KiEWNKZFv6jEloeShFIS-mI5AiRikEWfuK3_FlGmda29CbrzA9XvJemSRuxZv-IG_8_yfswFYOOVkt05FdWJHhHmwuERHuQ6c2entBh8ua1ETkE3WS9cOeytD3RkRmHLMoZH0xHtOv7Bt2i7l78spE6LOGJFfDakt18AMYtJrP9XY577NQFppmJigqVTNNrkrLxcVxW9eJ9J7ka_hVbgWKG3CX2pMZqqL5imeZwhMGRleMZGl3q0MohFEoj4FJhF_cDwLLwjTM9k1ho4oYHuIsgbhSKkUooWSc3E5iJy2Bq9yZiwUf-LYxzjgj3XBUy6A2IUYRLmc75aAlUHlDhDKa4FzEVEME9loRjrItXIwm4nwEayd_vf8C1p8aLadz1304hQ1ERzqdC-P8DArJx0SeIwJJ3FKqdl9bTtJC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aligned+Epitaxial+SnO2+Nanowires+on+Sapphire%3A+Growth+and+Device+Applications&rft.jtitle=Nano+letters&rft.au=Wang%2C+Xiaoli&rft.au=Aroonyadet%2C+Noppadol&rft.au=Zhang%2C+Yuzheng&rft.au=Mecklenburg%2C+Matthew&rft.date=2014-06-11&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=14&rft.issue=6&rft.spage=3014&rft.epage=3022&rft_id=info:doi/10.1021%2Fnl404289z&rft.externalDocID=c875821590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon