Deciphering the Impact of Helium Tagging on Flexible Molecules: Probing Microsolvation Effects of Protonated Acetylene by Quantum Configurational Entropy

Helium, the lightest and most weakly interacting noble gas, is well-known for its unsurpassed chemical inertness. In many applications of helium in experimental techniques, such as tagging, messenger, or nanodroplet isolation action spectroscopy of molecules or complexes, it is assumed that the inte...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 127; no. 11; pp. 2460 - 2471
Main Authors Beckmann, Richard, Topolnicki, Rafal, Marx, Dominik
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Helium, the lightest and most weakly interacting noble gas, is well-known for its unsurpassed chemical inertness. In many applications of helium in experimental techniques, such as tagging, messenger, or nanodroplet isolation action spectroscopy of molecules or complexes, it is assumed that the interaction of helium with the respective species, and thus the resulting interaction-induced perturbation, is small enough not to affect their structure and dynamics. Here, we probe the impact of one up to many attached helium atoms on protonated acetylenean important nonclassical carbocation subject to three-center two-electron bonding in its ground state structureusing highly accurate interaction potentials in conjunction with entropy-based higher-order nonlinear correlation analysis. In particular, using neural network potentials at CCSD­(T) accuracy, we disclose the specific structural perturbations due to the tagging of C2H3 + with up to 20 He atoms at a temperature of 1 K. Analysis reveals that microsolvation by helium influences the structure of C2H3 + noticeably, while our investigation of the quantum configurational information entropy additionally shows that correlations between individual orientational degrees of freedom are affected as a function of cluster size. In particular, it is found that the most probable bridge-like structure of the ro-vibrational quantum ground state of C2H3 +, which is nonplanar and trans-bent in contrast to the perfectly planar equilibrium structure, becomes increasingly more localized upon adding helium atoms. The remarkably nonlinear behavior of the angular correlations as a function of cluster size is traced back to the buildup of the quantum microsolvation shell that enhances anisotropy up to N He = 6 while more and more isotropic solvation takes over beyond six. Our approach is general and thus sets the stage to investigate the salient effects on the structure of flexible molecules due to tagging beyond the specific case.
AbstractList Helium, the lightest and most weakly interacting noble gas, is well-known for its unsurpassed chemical inertness. In many applications of helium in experimental techniques, such as tagging, messenger, or nanodroplet isolation action spectroscopy of molecules or complexes, it is assumed that the interaction of helium with the respective species, and thus the resulting interaction-induced perturbation, is small enough not to affect their structure and dynamics. Here, we probe the impact of one up to many attached helium atoms on protonated acetylenean important nonclassical carbocation subject to three-center two-electron bonding in its ground state structureusing highly accurate interaction potentials in conjunction with entropy-based higher-order nonlinear correlation analysis. In particular, using neural network potentials at CCSD­(T) accuracy, we disclose the specific structural perturbations due to the tagging of C2H3 + with up to 20 He atoms at a temperature of 1 K. Analysis reveals that microsolvation by helium influences the structure of C2H3 + noticeably, while our investigation of the quantum configurational information entropy additionally shows that correlations between individual orientational degrees of freedom are affected as a function of cluster size. In particular, it is found that the most probable bridge-like structure of the ro-vibrational quantum ground state of C2H3 +, which is nonplanar and trans-bent in contrast to the perfectly planar equilibrium structure, becomes increasingly more localized upon adding helium atoms. The remarkably nonlinear behavior of the angular correlations as a function of cluster size is traced back to the buildup of the quantum microsolvation shell that enhances anisotropy up to N He = 6 while more and more isotropic solvation takes over beyond six. Our approach is general and thus sets the stage to investigate the salient effects on the structure of flexible molecules due to tagging beyond the specific case.
Helium, the lightest and most weakly interacting noble gas, is well-known for its unsurpassed chemical inertness. In many applications of helium in experimental techniques, such as tagging, messenger, or nanodroplet isolation action spectroscopy of molecules or complexes, it is assumed that the interaction of helium with the respective species, and thus the resulting interaction-induced perturbation, is small enough not to affect their structure and dynamics. Here, we probe the impact of one up to many attached helium atoms on protonated acetylene─an important nonclassical carbocation subject to three-center two-electron bonding in its ground state structure─using highly accurate interaction potentials in conjunction with entropy-based higher-order nonlinear correlation analysis. In particular, using neural network potentials at CCSD(T) accuracy, we disclose the specific structural perturbations due to the tagging of C H with up to 20 He atoms at a temperature of 1 K. Analysis reveals that microsolvation by helium influences the structure of C H noticeably, while our investigation of the quantum configurational information entropy additionally shows that correlations between individual orientational degrees of freedom are affected as a function of cluster size. In particular, it is found that the most probable bridge-like structure of the ro-vibrational quantum ground state of C H , which is nonplanar and trans-bent in contrast to the perfectly planar equilibrium structure, becomes increasingly more localized upon adding helium atoms. The remarkably nonlinear behavior of the angular correlations as a function of cluster size is traced back to the buildup of the quantum microsolvation shell that enhances anisotropy up to = 6 while more and more isotropic solvation takes over beyond six. Our approach is general and thus sets the stage to investigate the salient effects on the structure of flexible molecules due to tagging beyond the specific case.
Helium, the lightest and most weakly interacting noble gas, is well-known for its unsurpassed chemical inertness. In many applications of helium in experimental techniques, such as tagging, messenger, or nanodroplet isolation action spectroscopy of molecules or complexes, it is assumed that the interaction of helium with the respective species, and thus the resulting interaction-induced perturbation, is small enough not to affect their structure and dynamics. Here, we probe the impact of one up to many attached helium atoms on protonated acetylene─an important nonclassical carbocation subject to three-center two-electron bonding in its ground state structure─using highly accurate interaction potentials in conjunction with entropy-based higher-order nonlinear correlation analysis. In particular, using neural network potentials at CCSD(T) accuracy, we disclose the specific structural perturbations due to the tagging of C2H3+ with up to 20 He atoms at a temperature of 1 K. Analysis reveals that microsolvation by helium influences the structure of C2H3+ noticeably, while our investigation of the quantum configurational information entropy additionally shows that correlations between individual orientational degrees of freedom are affected as a function of cluster size. In particular, it is found that the most probable bridge-like structure of the ro-vibrational quantum ground state of C2H3+, which is nonplanar and trans-bent in contrast to the perfectly planar equilibrium structure, becomes increasingly more localized upon adding helium atoms. The remarkably nonlinear behavior of the angular correlations as a function of cluster size is traced back to the buildup of the quantum microsolvation shell that enhances anisotropy up to NHe = 6 while more and more isotropic solvation takes over beyond six. Our approach is general and thus sets the stage to investigate the salient effects on the structure of flexible molecules due to tagging beyond the specific case.Helium, the lightest and most weakly interacting noble gas, is well-known for its unsurpassed chemical inertness. In many applications of helium in experimental techniques, such as tagging, messenger, or nanodroplet isolation action spectroscopy of molecules or complexes, it is assumed that the interaction of helium with the respective species, and thus the resulting interaction-induced perturbation, is small enough not to affect their structure and dynamics. Here, we probe the impact of one up to many attached helium atoms on protonated acetylene─an important nonclassical carbocation subject to three-center two-electron bonding in its ground state structure─using highly accurate interaction potentials in conjunction with entropy-based higher-order nonlinear correlation analysis. In particular, using neural network potentials at CCSD(T) accuracy, we disclose the specific structural perturbations due to the tagging of C2H3+ with up to 20 He atoms at a temperature of 1 K. Analysis reveals that microsolvation by helium influences the structure of C2H3+ noticeably, while our investigation of the quantum configurational information entropy additionally shows that correlations between individual orientational degrees of freedom are affected as a function of cluster size. In particular, it is found that the most probable bridge-like structure of the ro-vibrational quantum ground state of C2H3+, which is nonplanar and trans-bent in contrast to the perfectly planar equilibrium structure, becomes increasingly more localized upon adding helium atoms. The remarkably nonlinear behavior of the angular correlations as a function of cluster size is traced back to the buildup of the quantum microsolvation shell that enhances anisotropy up to NHe = 6 while more and more isotropic solvation takes over beyond six. Our approach is general and thus sets the stage to investigate the salient effects on the structure of flexible molecules due to tagging beyond the specific case.
Author Beckmann, Richard
Topolnicki, Rafal
Marx, Dominik
AuthorAffiliation Dioscuri Center in Topological Data Analysis, Institute of Mathematics
Lehrstuhl für Theoretische Chemie
Polish Academy of Sciences
Institute of Experimental Physics
AuthorAffiliation_xml – name: Institute of Experimental Physics
– name: Lehrstuhl für Theoretische Chemie
– name: Polish Academy of Sciences
– name: Dioscuri Center in Topological Data Analysis, Institute of Mathematics
Author_xml – sequence: 1
  givenname: Richard
  orcidid: 0000-0002-4575-7299
  surname: Beckmann
  fullname: Beckmann, Richard
  email: richard.beckmann@rub.de
  organization: Lehrstuhl für Theoretische Chemie
– sequence: 2
  givenname: Rafal
  orcidid: 0000-0003-4445-4736
  surname: Topolnicki
  fullname: Topolnicki, Rafal
  email: rafal.topolnicki@uwr.edu.pl
  organization: Institute of Experimental Physics
– sequence: 3
  givenname: Dominik
  surname: Marx
  fullname: Marx, Dominik
  organization: Lehrstuhl für Theoretische Chemie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36917575$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS0URB7QUyGXFMzixzzpomVDIiUCpFBbHs_1xpHHHmxPxP4U_i2e3U2DBJUtn-_cK59zjk6cd4DQW0pWlDD6Uaq4epyUXDFF2q5uXqAzWjFSVIxWJ_meH4uq5t0pOo_xkRBCOStfoVNed7SpmuoM_f4MykwPEIzb4vQA-GacpErYa3wN1swjvpfb7SJ6h68s_DK9BXznLajZQvyEvwXfL_KdUcFHb59kMhndaA0qxWVOJpJ3MsGALxWknQUHuN_h77N0KS9Ye6fNdg57o7R441Lw0-41eqmljfDmeF6gH1eb-_V1cfv1y8368raQnNepULRpNNdMt7xVUjMCHS_bntdlPbCh4ZCDahXretLJZmjLtlZEqp5TVpaD5AO_QO8Pc6fgf84QkxhNVGCtdODnKFjT1i1lrCUZfXdE536EQUzBjDLsxHOcGagPwJJFDKCFMmn_rxSksYISsfQmcm9i6U0ce8tG8pfxefZ_LB8Olr3i55Czi__G_wBPya6I
CitedBy_id crossref_primary_10_1002_ange_202306744
crossref_primary_10_1002_wcms_1691
crossref_primary_10_1002_anie_202306744
Cites_doi 10.1002/anie.201703114
10.1103/PhysRevLett.101.233401
10.1021/acs.chemrev.0c00868
10.1146/annurev.physchem.49.1.1
10.1063/1.481011
10.1016/j.cpc.2013.12.011
10.1002/wcms.1159
10.1126/science.271.5246.179
10.1021/acs.jpca.5b03114
10.1103/PhysRevA.67.022506
10.1063/1.2357604
10.1103/PhysRevLett.75.1566
10.1103/PhysRevLett.97.183401
10.1126/science.1073718
10.1021/acs.accounts.5b00489
10.3390/e12051125
10.1021/acs.jpca.0c05897
10.1103/PhysRevLett.74.1586
10.1142/9781848162105_0006
10.1063/5.0008309
10.1103/RevModPhys.67.279
10.1021/acs.jpclett.9b00767
10.1126/science.279.5359.2083
10.1021/acs.jctc.8b00705
10.1063/1.1418746
10.1021/jp070618w
10.1039/C7CP00652G
10.1021/acs.jctc.0c00642
10.1063/5.0062171
10.1103/PhysRevLett.71.4319
10.1002/jccs.201800122
10.1080/0144235031000112878
10.1063/1.4996819
10.1103/PhysRevE.62.3096
10.1080/01442350600625092
10.1039/D1CP03138D
10.1021/acs.jctc.5b01146
10.1002/anie.200300611
10.1080/01966324.2003.10737616
10.1103/PhysRevLett.96.070601
10.1002/jcc.20589
10.1002/anie.201808531
10.1021/ar400125a
10.1063/1.4880475
10.1063/1.5124137
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.jpca.2c08967
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 2471
ExternalDocumentID 36917575
10_1021_acs_jpca_2c08967
a07315918
Genre Journal Article
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
55A
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
~02
53G
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
CITATION
CUPRZ
NPM
7X8
ID FETCH-LOGICAL-a336t-c177f3f2f838caf20e9348b3646d2d73e1028c29b09a7d8486c0acb31244da3d3
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Fri Jul 11 12:36:41 EDT 2025
Thu Apr 03 07:01:42 EDT 2025
Tue Jul 01 01:51:41 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Sun Mar 26 06:05:05 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a336t-c177f3f2f838caf20e9348b3646d2d73e1028c29b09a7d8486c0acb31244da3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4445-4736
0000-0002-4575-7299
PMID 36917575
PQID 2786812280
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2786812280
pubmed_primary_36917575
crossref_citationtrail_10_1021_acs_jpca_2c08967
crossref_primary_10_1021_acs_jpca_2c08967
acs_journals_10_1021_acs_jpca_2c08967
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230323
2023-03-23
2023-Mar-23
PublicationDateYYYYMMDD 2023-03-23
PublicationDate_xml – month: 03
  year: 2023
  text: 20230323
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
Kozachenko L. F. (ref44/cit44) 1987; 23
ref32/cit32
ref39/cit39
ref14/cit14
Cover T. M. (ref48/cit48) 2006
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1002/anie.201703114
– ident: ref17/cit17
  doi: 10.1103/PhysRevLett.101.233401
– ident: ref37/cit37
  doi: 10.1021/acs.chemrev.0c00868
– ident: ref6/cit6
  doi: 10.1146/annurev.physchem.49.1.1
– ident: ref13/cit13
  doi: 10.1063/1.481011
– ident: ref31/cit31
  doi: 10.1016/j.cpc.2013.12.011
– ident: ref42/cit42
  doi: 10.1002/wcms.1159
– ident: ref40/cit40
– ident: ref27/cit27
  doi: 10.1126/science.271.5246.179
– ident: ref19/cit19
  doi: 10.1021/acs.jpca.5b03114
– ident: ref28/cit28
  doi: 10.1103/PhysRevA.67.022506
– ident: ref15/cit15
  doi: 10.1063/1.2357604
– ident: ref10/cit10
  doi: 10.1103/PhysRevLett.75.1566
– ident: ref14/cit14
  doi: 10.1103/PhysRevLett.97.183401
– ident: ref12/cit12
  doi: 10.1126/science.1073718
– ident: ref3/cit3
  doi: 10.1021/acs.accounts.5b00489
– ident: ref47/cit47
  doi: 10.3390/e12051125
– ident: ref22/cit22
  doi: 10.1021/acs.jpca.0c05897
– ident: ref38/cit38
  doi: 10.1103/PhysRevLett.74.1586
– ident: ref5/cit5
  doi: 10.1142/9781848162105_0006
– ident: ref30/cit30
  doi: 10.1063/5.0008309
– ident: ref32/cit32
  doi: 10.1103/RevModPhys.67.279
– ident: ref20/cit20
  doi: 10.1021/acs.jpclett.9b00767
– ident: ref11/cit11
  doi: 10.1126/science.279.5359.2083
– ident: ref35/cit35
  doi: 10.1021/acs.jctc.8b00705
– ident: ref43/cit43
– ident: ref7/cit7
  doi: 10.1063/1.1418746
– ident: ref16/cit16
  doi: 10.1021/jp070618w
– ident: ref41/cit41
  doi: 10.1039/C7CP00652G
– ident: ref29/cit29
  doi: 10.1021/acs.jctc.0c00642
– ident: ref24/cit24
  doi: 10.1063/5.0062171
– volume-title: Elements of Information Theory
  year: 2006
  ident: ref48/cit48
– volume: 23
  start-page: 95
  year: 1987
  ident: ref44/cit44
  publication-title: Probl. Inf. Transm.
– ident: ref26/cit26
  doi: 10.1103/PhysRevLett.71.4319
– ident: ref4/cit4
  doi: 10.1002/jccs.201800122
– ident: ref1/cit1
  doi: 10.1080/0144235031000112878
– ident: ref39/cit39
  doi: 10.1063/1.4996819
– ident: ref49/cit49
  doi: 10.1103/PhysRevE.62.3096
– ident: ref9/cit9
  doi: 10.1080/01442350600625092
– ident: ref23/cit23
  doi: 10.1039/D1CP03138D
– ident: ref34/cit34
  doi: 10.1021/acs.jctc.5b01146
– ident: ref8/cit8
  doi: 10.1002/anie.200300611
– ident: ref45/cit45
  doi: 10.1080/01966324.2003.10737616
– ident: ref33/cit33
  doi: 10.1103/PhysRevLett.96.070601
– ident: ref46/cit46
  doi: 10.1002/jcc.20589
– ident: ref25/cit25
  doi: 10.1002/anie.201808531
– ident: ref2/cit2
  doi: 10.1021/ar400125a
– ident: ref18/cit18
  doi: 10.1063/1.4880475
– ident: ref21/cit21
  doi: 10.1063/1.5124137
SSID ssj0001324
Score 2.4238048
Snippet Helium, the lightest and most weakly interacting noble gas, is well-known for its unsurpassed chemical inertness. In many applications of helium in...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2460
SubjectTerms A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters
Title Deciphering the Impact of Helium Tagging on Flexible Molecules: Probing Microsolvation Effects of Protonated Acetylene by Quantum Configurational Entropy
URI http://dx.doi.org/10.1021/acs.jpca.2c08967
https://www.ncbi.nlm.nih.gov/pubmed/36917575
https://www.proquest.com/docview/2786812280
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoHNoLhb7Y0iJXag89ZMnawXF6QwsrqLRVq4LELfJjvNoC2RVJDtt_0n_LTJLdqg8Q1_gR2R57Po9nvmHsvUQhkCpRESRG4QUliMiA15HxivK_eRmAApzHX9TJefL54uDiN03O3y_4YrBvXNn_McfrvXCxzlT6iG0IhXuYYNDw--rUxVtV0jrTZ9EBqt3uSfJ_PZAicuWfiugOdNlomdHTNl1R2ZATknPJZb-ubN_9_Je68QED2GKbHdjkh610bLM1KJ6xx8Nljrfn7NcRuOm8CQGccISC_LQJmuSzwFEfTetrfmbIJD3hs4KPiDvTXgEftyl1ofzEvxKNExaPya8Pxbg18PKWE7mkfrBGRRZ68PzQQbVALQfcLvi3GtcUf0Ahh9NJfdMZJfkxuc7PFy_Y-ej4bHgSdckaIiOlqiI3SNMggwhaameCiCGTibYkB174VAIhGScyG2cm9TrRysXGWUn4whvp5Uu2XswK2GE8EyobYBnYEBLhhMUzR1tQCrylVFs99gHnNO82W5k37-hikDcfcaLzbqJ7bH-5wrnrGM8p8cbVPS0-rlrMW7aPe-q-WwpNjqtG7yymgFld5iLVxOomdNxjr1ppWvUmcWgpQuTXDxzDLntCCe7J603IN2y9uqnhLcKgyu418n8L68kFUw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9NAFB6VcigXyk5KgUGCAwe39ow7HvcWhUYpNBVLKvVmzfIchbZOVNuH8E_4t7xnO0EgqODqWTzLm3nfvJWx1xKJQKpYBRAbhQ-UXAQGvA6MV5T_zcscyMF5fKpGZ_H784PzDRatfGFwECX2VDZK_J_RBaJ9-vZ1ga984UKdquQWu41YRBBR9wdf1pcvPq7i1qY-DQ6Q-3aayT_1QPzIlb_yo7-AzIbZDLfZ5_UwGxuTi726snvu228RHP9rHvfY3Q568n5LK_fZBhQP2NZglfHtIfv-Dtxs0TgETjkCQ37cuFDyec6RO83qKz4xJKCe8nnBhxRJ014CH7cJdqE85B8pqBMWj8nKD4m6FffyNkJySf1gjYrk9eB530G1RJ4H3C75pxp3GH9ADoizaX3diSj5ERnSL5aP2NnwaDIYBV3qhsBIqarARUmSy1zkWmpnchFCKmNtiSq88IkEwjVOpDZMTeJ1rJULjbOS0IY30svHbLOYF_CU8VSoNMIysHkeCycs3kDaglLgLSXe6rE3uKZZd_TKrNGqiyhrPuJCZ91C99j-aqMz18U_pzQclze0eLtusWhjf9xQ99WKdjLcNdK6mALmdZmJRFOMN6HDHnvSEtW6N4lTSxAw7_zjHF6yrdFkfJKdHJ9-eMbuCARcZA8n5C7brK5reI4AqbIvmiPxA02ODbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9NAFH4qRQIu7EtYBwkOHNw6M854zC1KG7VAqiJa1Js1axQojlXbh_BP-Le8ZzuRQFDB1bN4ljfzvnkrwCuBRCBkIiOfaIkPlMAj7Z2KtJOU_82J4MnBeXYkD06Td2ejsy0YrX1hcBAV9lS1Snw61aULfYSB4S59_1LiS5_bWGUyvQJXSWtHhD2efNpcwPjASjq7-iwaIQfutZN_6oF4kq1-5Ul_AZotw5negs-bobZ2Jl93mtrs2O-_RXH877nchps9BGXjjmbuwJYv7sL1yTrz2z34seftomwdA-cMASI7bF0p2TIw5FKL5hs70SSonrNlwaYUUdOcezbrEu366i07puBOWDwjaz8k7k7sy7pIyRX1gzVqktt7x8bW1yvkfZ6ZFfvY4E7jD8gRcTFvLnpRJdsng_pydR9Op_snk4OoT-EQaSFkHdlhmgYReFBCWR147DORKEPU4bhLhSd8Y3lm4kynTiVK2lhbIwh1OC2ceADbxbLwj4BlXGZDLPMmhIRbbvAmUsZL6Z2hBFwDeI1rmvdHsMpb7Tof5u1HXOi8X-gB7K43O7d9HHRKx3F-SYs3mxZlFwPkkrov1_ST466R9kUXftlUOU8VxXrjKh7Aw46wNr0JnFqKwPnxP87hBVw73pvmHw6P3j-BGxxxF5nFcfEUtuuLxj9DnFSb5-2p-Anp-BA3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+the+Impact+of+Helium+Tagging+on+Flexible+Molecules%3A+Probing+Microsolvation+Effects+of+Protonated+Acetylene+by+Quantum+Configurational+Entropy&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Beckmann%2C+Richard&rft.au=Topolnicki%2C+Rafal&rft.au=Marx%2C+Dominik&rft.date=2023-03-23&rft.eissn=1520-5215&rft.volume=127&rft.issue=11&rft.spage=2460&rft_id=info:doi/10.1021%2Facs.jpca.2c08967&rft_id=info%3Apmid%2F36917575&rft.externalDocID=36917575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon