Spatially Resolved Headspace Extractions of Trace-Level Volatiles from Planar Surfaces for High-Throughput Quantitation and Mass Spectral Imaging
The use of headspace thin-film microextraction devices (SPMESH) for parallel extraction of trace-level volatiles prior to direct analysis in real-time mass spectrometry (DART-MS) has been reported previously, in which volatiles were extracted from samples in multi-well plates. In this report, we dem...
Saved in:
Published in | Journal of agricultural and food chemistry Vol. 67; no. 50; pp. 13840 - 13847 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of headspace thin-film microextraction devices (SPMESH) for parallel extraction of trace-level volatiles prior to direct analysis in real-time mass spectrometry (DART-MS) has been reported previously, in which volatiles were extracted from samples in multi-well plates. In this report, we demonstrate that headspace extraction of volatiles by SPMESH sheets can be performed directly from planar surfaces. When coupled with DART-MS, this approach yields volatile mass spectral images with at least 4 mm resolution. When samples were spotted onto general-purpose silica gel thin-layer chromatography (TLC) plates, the SPMESH extraction could reach equilibrium within 2–4 min and 48 samples could be extracted and analyzed in 14 min. Because volatilization of analytes from TLC plates was very rapid, SPMESH extraction was delayed by the addition of 5% polyethylene glycol. Good linearity was achieved in the microgram per liter to milligram per liter range for four odorants (3-isobutyl-2-methoxypyrazine, linalool, methyl anthranilate, and o-aminoacetophenone) in several matrices (water, 10% ethanol, juice, and grape macerate) using 5 μL sample sizes. Detection limits as low as 50 pg/spot (10 μg/L in grape macerate) could be achieved. In contrast to many reports on headspace solid-phase microextraction, negligible matrix effects were observed for ethanol and grape macerates compared to water. SPMESH can preserve volatile images from planar surfaces, and SPMESH–DART-MS from TLC plates is well-suited for rapid trace volatile analysis, especially with small sample sizes. |
---|---|
AbstractList | The use of headspace thin-film microextraction devices (SPMESH) for parallel extraction of trace-level volatiles prior to direct analysis in real-time mass spectrometry (DART-MS) has been reported previously, in which volatiles were extracted from samples in multi-well plates. In this report, we demonstrate that headspace extraction of volatiles by SPMESH sheets can be performed directly from planar surfaces. When coupled with DART-MS, this approach yields volatile mass spectral images with at least 4 mm resolution. When samples were spotted onto general-purpose silica gel thin-layer chromatography (TLC) plates, the SPMESH extraction could reach equilibrium within 2-4 min and 48 samples could be extracted and analyzed in 14 min. Because volatilization of analytes from TLC plates was very rapid, SPMESH extraction was delayed by the addition of 5% polyethylene glycol. Good linearity was achieved in the microgram per liter to milligram per liter range for four odorants (3-isobutyl-2-methoxypyrazine, linalool, methyl anthranilate, and
-aminoacetophenone) in several matrices (water, 10% ethanol, juice, and grape macerate) using 5 μL sample sizes. Detection limits as low as 50 pg/spot (10 μg/L in grape macerate) could be achieved. In contrast to many reports on headspace solid-phase microextraction, negligible matrix effects were observed for ethanol and grape macerates compared to water. SPMESH can preserve volatile images from planar surfaces, and SPMESH-DART-MS from TLC plates is well-suited for rapid trace volatile analysis, especially with small sample sizes. The use of headspace thin-film microextraction devices (SPMESH) for parallel extraction of trace-level volatiles prior to direct analysis in real-time mass spectrometry (DART-MS) has been reported previously, in which volatiles were extracted from samples in multi-well plates. In this report, we demonstrate that headspace extraction of volatiles by SPMESH sheets can be performed directly from planar surfaces. When coupled with DART-MS, this approach yields volatile mass spectral images with at least 4 mm resolution. When samples were spotted onto general-purpose silica gel thin-layer chromatography (TLC) plates, the SPMESH extraction could reach equilibrium within 2–4 min and 48 samples could be extracted and analyzed in 14 min. Because volatilization of analytes from TLC plates was very rapid, SPMESH extraction was delayed by the addition of 5% polyethylene glycol. Good linearity was achieved in the microgram per liter to milligram per liter range for four odorants (3-isobutyl-2-methoxypyrazine, linalool, methyl anthranilate, and o-aminoacetophenone) in several matrices (water, 10% ethanol, juice, and grape macerate) using 5 μL sample sizes. Detection limits as low as 50 pg/spot (10 μg/L in grape macerate) could be achieved. In contrast to many reports on headspace solid-phase microextraction, negligible matrix effects were observed for ethanol and grape macerates compared to water. SPMESH can preserve volatile images from planar surfaces, and SPMESH–DART-MS from TLC plates is well-suited for rapid trace volatile analysis, especially with small sample sizes. |
Author | Rafson, Jessica P Sacks, Gavin L Bee, Madeleine Y |
AuthorAffiliation | Department of Food Science |
AuthorAffiliation_xml | – name: Department of Food Science |
Author_xml | – sequence: 1 givenname: Jessica P surname: Rafson fullname: Rafson, Jessica P – sequence: 2 givenname: Madeleine Y surname: Bee fullname: Bee, Madeleine Y – sequence: 3 givenname: Gavin L orcidid: 0000-0002-1403-0505 surname: Sacks fullname: Sacks, Gavin L email: gls9@cornell.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30945545$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFP20AQhVeIqgTonVO1xx5wOmt7N_YRISBIqWhJ2qs1Wc8mRmuv2bUR_Iz-426alFtPoxl9741m3ik77lxHjF0ImApIxVfUYfqERk_LNQgoxRGbCJlCIoUojtkEIpMUUokTdhrCEwAUcgYf2UkGZS5lLifs97LHoUFr3_gjBWdfqOZzwjr0qInfvA4e9dC4LnBn-Co2lCzohSz_5WwUWgrceNfy7xY79Hw5ehOZOHSez5vNNlltvRs3234c-I8Ru6EZcOfHsav5NwyBL3vScYvl9y1umm5zzj4YtIE-HeoZ-3l7s7qeJ4uHu_vrq0WCWaaGROUoMSszjAWEKckgqFrkZiaKQhXxHQqxgBQLzGeq1LUCTXW-XotalVRSdsa-7H17755HCkPVNkGTjYeQG0OVppCJTEklIwp7VHsXgidT9b5p0b9VAqpdEFUMotoFUR2CiJLPB_dx3VL9Lvj3-Qhc7oG_Ujf6Lh77f78_x5qYoA |
CitedBy_id | crossref_primary_10_1021_acs_jafc_9b04188 crossref_primary_10_1002_mas_21712 crossref_primary_10_1021_acs_jafc_1c04197 crossref_primary_10_3390_separations7010012 crossref_primary_10_1002_jms_4665 crossref_primary_10_1093_icb_icab090 crossref_primary_10_2174_1573411018666220107145321 crossref_primary_10_1021_acs_jafc_1c06006 crossref_primary_10_1016_j_trac_2023_117167 |
Cites_doi | 10.1021/ac026162q 10.1021/ac00062a008 10.1016/j.chroma.2018.07.002 10.1021/jf60166a061 10.1021/acs.analchem.5b03389 10.1007/s00216-013-6993-z 10.1021/jf00091a074 10.1016/j.chroma.2006.12.056 10.1002/pmic.201500256 10.1016/j.aca.2018.06.056 10.1021/acs.analchem.8b04465 10.1016/j.ebiom.2016.03.033 10.5344/ajev.2002.53.4.285 10.1111/j.1365-2621.1977.tb01217.x 10.1016/j.chroma.2014.10.037 10.1021/jf950727k 10.1021/acs.jafc.7b03638 10.1021/jf9019695 10.3390/foods5020035 10.1039/C7AY02275A 10.5194/acp-15-4399-2015 10.1002/9781118730720 10.1002/9780470622834.ch33 10.1016/j.chroma.2015.06.058 10.1007/s00216-009-2632-0 10.1016/j.chroma.2010.01.033 10.1021/acs.analchem.7b04502 10.1021/jf051202n 10.1021/acs.analchem.6b01787 10.1016/S0021-9673(03)00448-5 10.1021/acs.analchem.7b04733 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acs.jafc.9b01091 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1520-5118 |
EndPage | 13847 |
ExternalDocumentID | 10_1021_acs_jafc_9b01091 30945545 b135604260 |
Genre | Evaluation Study Journal Article |
GroupedDBID | - 55A 5GY 7~N 85S AABXI ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL GX1 IH9 JG JG~ LG6 P2P ROL TWZ UI2 VF5 VG9 W1F WH7 X --- -~X .K2 4.4 5VS AAHBH ABJNI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CGR CUPRZ CUY CVF ECM EIF GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a336t-64a5a393aa5a01f9efa06d14f7188680106aa802a8a4769cd60ced4bb1d69e9e3 |
IEDL.DBID | ACS |
ISSN | 0021-8561 |
IngestDate | Sat Aug 17 01:10:07 EDT 2024 Fri Aug 23 02:43:00 EDT 2024 Sat Sep 28 08:32:21 EDT 2024 Thu Aug 27 13:44:03 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | DART volatile analysis ambient ionization mass spectral imaging high-throughput |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a336t-64a5a393aa5a01f9efa06d14f7188680106aa802a8a4769cd60ced4bb1d69e9e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0002-1403-0505 |
PMID | 30945545 |
PQID | 2203136565 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2203136565 crossref_primary_10_1021_acs_jafc_9b01091 pubmed_primary_30945545 acs_journals_10_1021_acs_jafc_9b01091 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20191218 2019-Dec-18 2019-12-18 |
PublicationDateYYYYMMDD | 2019-12-18 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191218 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of agricultural and food chemistry |
PublicationTitleAlternate | J. Agric. Food Chem |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 Hartmann P. J. (ref24/cit24) 2002; 53 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref19/cit19 doi: 10.1021/ac026162q – ident: ref18/cit18 doi: 10.1021/ac00062a008 – ident: ref10/cit10 doi: 10.1016/j.chroma.2018.07.002 – ident: ref29/cit29 doi: 10.1021/jf60166a061 – ident: ref14/cit14 doi: 10.1021/acs.analchem.5b03389 – ident: ref26/cit26 – ident: ref3/cit3 doi: 10.1007/s00216-013-6993-z – ident: ref30/cit30 doi: 10.1021/jf00091a074 – ident: ref11/cit11 doi: 10.1016/j.chroma.2006.12.056 – ident: ref13/cit13 doi: 10.1002/pmic.201500256 – ident: ref8/cit8 doi: 10.1016/j.aca.2018.06.056 – ident: ref6/cit6 doi: 10.1021/acs.analchem.8b04465 – ident: ref15/cit15 doi: 10.1016/j.ebiom.2016.03.033 – volume: 53 start-page: 285 issue: 4 year: 2002 ident: ref24/cit24 publication-title: Am. J. Enol. Vitic. doi: 10.5344/ajev.2002.53.4.285 contributor: fullname: Hartmann P. J. – ident: ref33/cit33 doi: 10.1111/j.1365-2621.1977.tb01217.x – ident: ref9/cit9 doi: 10.1016/j.chroma.2014.10.037 – ident: ref17/cit17 doi: 10.1021/jf950727k – ident: ref5/cit5 doi: 10.1021/acs.jafc.7b03638 – ident: ref22/cit22 doi: 10.1021/jf9019695 – ident: ref31/cit31 doi: 10.3390/foods5020035 – ident: ref21/cit21 doi: 10.1039/C7AY02275A – ident: ref28/cit28 doi: 10.5194/acp-15-4399-2015 – ident: ref32/cit32 doi: 10.1002/9781118730720 – ident: ref1/cit1 doi: 10.1002/9780470622834.ch33 – ident: ref23/cit23 doi: 10.1016/j.chroma.2015.06.058 – ident: ref25/cit25 doi: 10.1007/s00216-009-2632-0 – ident: ref16/cit16 doi: 10.1016/j.chroma.2010.01.033 – ident: ref27/cit27 – ident: ref2/cit2 doi: 10.1021/acs.analchem.7b04502 – ident: ref20/cit20 doi: 10.1021/jf051202n – ident: ref4/cit4 doi: 10.1021/acs.analchem.6b01787 – ident: ref7/cit7 doi: 10.1016/S0021-9673(03)00448-5 – ident: ref12/cit12 doi: 10.1021/acs.analchem.7b04733 |
SSID | ssj0008570 |
Score | 2.4108698 |
Snippet | The use of headspace thin-film microextraction devices (SPMESH) for parallel extraction of trace-level volatiles prior to direct analysis in real-time mass... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 13840 |
SubjectTerms | Chromatography, Thin Layer - methods Mass Spectrometry - methods Solid Phase Microextraction - methods Vitis - chemistry Volatile Organic Compounds - chemistry Volatile Organic Compounds - isolation & purification |
Title | Spatially Resolved Headspace Extractions of Trace-Level Volatiles from Planar Surfaces for High-Throughput Quantitation and Mass Spectral Imaging |
URI | http://dx.doi.org/10.1021/acs.jafc.9b01091 https://www.ncbi.nlm.nih.gov/pubmed/30945545 https://search.proquest.com/docview/2203136565 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9VAEN4QfNEHxTuCZkz0wYc99rLd030kBHIkYGIOGN6a6V5I9NhDejHCv_AfM9MWiKiEpyZNs213ZzvfdGa-T4h3SBjZ6MRJigVSqXJuVg5WyeCNygyrW_fE8wef9exI7R1nx9c0OTcz-En8EW0z-YbBTkzJaRyKdO4lU9obDIO251dfXSZqH8o5YpkTKBhTkv8agR2Rbf50RP9Bl72X2X00yBU1PTkhF5d8n3RtObHnf1M33uEF1sTDEWzC1mAdj8WKr56IB1sn9Ui44Z-K36xJTDa4OAP-k7_46R3MaN3pQ2M97Pxq66HzoYFlAHJs1st9rjOCr0uuolv4BrhDBVj8CGuYd3XgIi8gLAxcQyIPByGg066FLx1W7cgJDlg5OCDkDnPu9azpMT_96BWTnomj3Z3D7ZkcZRokpqlupVaYYWpSpEMUB-MDRtrFKpDby3XOQSdiHiWYo5pqY52OrHeqLGOnjTc-fS5Wq2XlXwpwmmyKe329QRVCbGwIUwo4rU9cpMtsXbyn2SzGbdYUfQY9iYv-JE1xMU7xuvhwubbF6cDaccu1by8Xv6CtxfkSrPyya4okYWJLArx03xeDVVyNllJYTEgse3XHJ9oQ9wlq9coTcb4pVtu6868JzrTlm96OLwBjK_Dv |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcqAceD8KFIxEDxy8xInjjY9V1WoLu5Vgt1VvkeNHpbJkqzxQy7_gHzPjZLdqVRCcIlmRM3HGnm8yM98Q8l4DRlYytgx8gYSJDIuVvRHMOyVShd2tA_H85FCOjsSnk_RkjfBlLQwIUcNMdQjiX7EL8I84dqa9GagCozng8NxJh2AvEQ3tTleHL_K1d1kdnGWADfrI5G0zoD0y9XV79AeQGYzN_gPydSVmyDH5NmibYmB-3mBw_K_3eEju99CT7nS68oisufIxubdzWvX0G-4J-YUdikEj55cU_-vPfzhLR6AFcOwYR_cumqqrg6jpwlMwc8axMWYd0eMF5tTNXU2xXoViKyRd0WlbeUz5ooCMKWaUsFnXFui8beiXVpdNzxBOdWnpBHA8nWLlZwViHnwP_ZOekqP9vdnuiPVNG5hOEtkwKXSqE5VouETcK-d1JC0XHoxgJjN0QbXOolhnWgylMlZGxllRFNxK5ZRLnpH1clG6F4RaCRqGlb9OaeE9V8b7IbifxsU2kkW6SbZhNfN-09V5iKfHPA-DsMR5v8Sb5MPyE-fnHYfHX-59t9SBHDYaRk906RZtnccx0lwC_IXnPu-UYzVbAk4y4LL05T9K9JbcHc0m43x8cPj5FdkAEBZ6UvDsNVlvqtZtAdBpijdBtX8Dmd75VA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkJwaHm3BYqR4MDB2zhxvPFxVbraQluBtq16ixw_kGCbXeWBgH_BP2bGya5ERVE5RbIiZ-KMPd9kZr4h5LUGjKxkbBn4AgkTGRYreyOYd0qkCrtbB-L5k1M5ORfvL9PLNZIua2FAiBpmqkMQH3f1wvqeYYDv4_gX7c1AFRjRAadnIx3yEJ0dHUxXBzBytneZHZxlgA_66OTfZkCbZOo_bdINQDMYnPEWuViJGvJMvg7aphiYn9dYHP_7Xe6TzR6C0lGnMw_Imisfknujz1VPw-EekV_YqRg0c_aD4v_92Tdn6QS0AY4f4-jh96bq6iFqOvcUzJ1x7Bizj-jFHHPrZq6mWLdCsSWSrui0rTymflFAyBQzS9hZ1x5o0Tb0U6vLpmcKp7q09ATwPJ1iBWgFYh5dhT5Kj8n5-PDsYML65g1MJ4lsmBQ61YlKNFwi7pXzOpKWCw_GMJMZuqJaZ1GsMy2GUhkrI-OsKApupXLKJU_Iejkv3TahVoKmYQWwU1p4z5XxfghuqHGxjWSR7pA3sJp5v_nqPMTVY56HQVjivF_iHfJ2-ZnzRcfl8Y97Xy31IIcNh1EUXbp5W-dxjHSXAIPhuU87BVnNloCzDPgs3b2lRC_JnY_vxvnx0emHZ-QuYLHQmoJnz8l6U7XuBeCdptgL2v0bhq37zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Resolved+Headspace+Extractions+of+Trace-Level+Volatiles+from+Planar+Surfaces+for+High-Throughput+Quantitation+and+Mass+Spectral+Imaging&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Rafson%2C+Jessica+P&rft.au=Bee%2C+Madeleine+Y&rft.au=Sacks%2C+Gavin+L&rft.date=2019-12-18&rft.eissn=1520-5118&rft.volume=67&rft.issue=50&rft.spage=13840&rft.epage=13847&rft_id=info:doi/10.1021%2Facs.jafc.9b01091&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon |