Regression kriging as a workhorse in the digital soil mapper's toolbox

Appropriate scale, justifiably reliable, categorical and continuous spatial soil information is urgently needed to address environmental problems and ensure sustainability of ecosystem services at local, regional and global scales. Regression Kriging (RK) is one of the most popular, practical and ro...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 326; pp. 22 - 41
Main Authors Keskin, H., Grunwald, S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2018
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2018.04.004

Cover

Loading…
Abstract Appropriate scale, justifiably reliable, categorical and continuous spatial soil information is urgently needed to address environmental problems and ensure sustainability of ecosystem services at local, regional and global scales. Regression Kriging (RK) is one of the most popular, practical and robust hybrid spatial interpolation techniques in the digital soil mapper's toolbox that enables the modeling of soil distribution patterns at multiple scales in space and time. Several theoretical and applied aspects of RK have been discussed; however, there are no review studies, which quantify the essential factors affecting the performance of RK. Materials for this review were gathered from high-quality international soil science journals: Catena, Geoderma, and Soil Science Society of America from 2004 to 2014. A total of 142 different models from 40 different articles were examined. The following criteria were considered to evaluate their impacts on the prediction efficiency of RK: i) soil geographic region, ii) area of extent, iii) spatial resolution, iv) target soil properties and/or classes v) sampling design, vi) sampling size and density, vii) sample depth viii) soil-environmental factors as predictors, ix) methods of transformation, x) factor analysis, xi) regression type, xii) model used for variogram, xiii) nugget to total sill ratio, xiv) spatial autocorrelation range, xv) coefficient of variation of observed dataset, xvi) evaluation method (note that in previous publications the term ‘validation’ has been used extensively in publications in pedometrics) and xvii) coefficient of determination. The historical development of RK, limitations and strengths of current RK studies, research gaps, and future trends in RK are discussed. A major finding is the inverse relationship between the accuracy of RK models and the variation of soil properties in the original datasets. Novel modified RK methods are proposed for further investigation to predict soil properties and classes. •Criteria that affect the performance of soil predictions derived from regression kriging.•Comprehensive review of the weaknesses and strengths of regression kriging•Increased variation in soil-environmental inputs tends to decrease soil model accuracy.•We propose a standard-minimum set of criteria to document soil prediction models.•We present a modified version of conventional regression kriging.
AbstractList Appropriate scale, justifiably reliable, categorical and continuous spatial soil information is urgently needed to address environmental problems and ensure sustainability of ecosystem services at local, regional and global scales. Regression Kriging (RK) is one of the most popular, practical and robust hybrid spatial interpolation techniques in the digital soil mapper's toolbox that enables the modeling of soil distribution patterns at multiple scales in space and time. Several theoretical and applied aspects of RK have been discussed; however, there are no review studies, which quantify the essential factors affecting the performance of RK. Materials for this review were gathered from high-quality international soil science journals: Catena, Geoderma, and Soil Science Society of America from 2004 to 2014. A total of 142 different models from 40 different articles were examined. The following criteria were considered to evaluate their impacts on the prediction efficiency of RK: i) soil geographic region, ii) area of extent, iii) spatial resolution, iv) target soil properties and/or classes v) sampling design, vi) sampling size and density, vii) sample depth viii) soil-environmental factors as predictors, ix) methods of transformation, x) factor analysis, xi) regression type, xii) model used for variogram, xiii) nugget to total sill ratio, xiv) spatial autocorrelation range, xv) coefficient of variation of observed dataset, xvi) evaluation method (note that in previous publications the term ‘validation’ has been used extensively in publications in pedometrics) and xvii) coefficient of determination. The historical development of RK, limitations and strengths of current RK studies, research gaps, and future trends in RK are discussed. A major finding is the inverse relationship between the accuracy of RK models and the variation of soil properties in the original datasets. Novel modified RK methods are proposed for further investigation to predict soil properties and classes. •Criteria that affect the performance of soil predictions derived from regression kriging.•Comprehensive review of the weaknesses and strengths of regression kriging•Increased variation in soil-environmental inputs tends to decrease soil model accuracy.•We propose a standard-minimum set of criteria to document soil prediction models.•We present a modified version of conventional regression kriging.
Author Keskin, H.
Grunwald, S.
Author_xml – sequence: 1
  givenname: H.
  surname: Keskin
  fullname: Keskin, H.
  email: hkeskin@ormansu.gov.tr
  organization: Soil and Water Sciences Department, 2181 McCarty Hall, PO Box 110290, University of Florida, Gainesville 32611, FL, USA
– sequence: 2
  givenname: S.
  orcidid: 0000-0002-9023-1720
  surname: Grunwald
  fullname: Grunwald, S.
  email: sabgru@ufl.edu
  organization: Soil and Water Sciences Department, 2181 McCarty Hall, PO Box 110290, University of Florida, Gainesville 32611, FL, USA
BookMark eNqFkN9LwzAQx4NMcJv-C5I3n1ovaZu04IMynAoDQfQ5pOm1y9Y1Iyn--O_NmL744tNx3H2-3H1mZDK4AQm5ZJAyYOJ6k3boGvQ7nXJgZQp5CpCfkCkrJU8EL6oJmULcTCQIdkZmIWxiK4HDlCxfsPMYgnUD3Xrb2aGjOlBNP5zfrp0PSO1AxzXSJg5H3dPgbE93er9HfxXo6Fxfu89zctrqPuDFT52Tt-X96-IxWT0_PC3uVonOsmJMStNA0bCiLqXhnGnBsDVam1aXWteSM8hFlQlmEDGTZW3qAhBEJTIp8wp4Nic3x1zjXQgeW2XiUWO8fvTa9oqBOjhRG_XrRB2cKMhVdBJx8Qffe7vT_ut_8PYIYnzu3aJXwVgcDDbWoxlV4-x_Ed91soLL
CitedBy_id crossref_primary_10_1016_j_catena_2020_104539
crossref_primary_10_32604_cmes_2023_026874
crossref_primary_10_1016_j_geoderma_2022_116192
crossref_primary_10_3390_agronomy12061338
crossref_primary_10_3390_rs12162660
crossref_primary_10_3390_rs14122829
crossref_primary_10_1016_j_geoderma_2020_114175
crossref_primary_10_5194_soil_7_217_2021
crossref_primary_10_1016_j_geodrs_2023_e00611
crossref_primary_10_1007_s10661_023_12172_y
crossref_primary_10_1016_j_geoderma_2019_113907
crossref_primary_10_1016_j_ecolind_2025_113228
crossref_primary_10_1080_02626667_2020_1831694
crossref_primary_10_5194_soil_5_79_2019
crossref_primary_10_1016_j_geodrs_2022_e00578
crossref_primary_10_1007_s40808_020_01015_1
crossref_primary_10_5194_essd_13_1089_2021
crossref_primary_10_1007_s11368_022_03370_1
crossref_primary_10_5194_hess_26_4933_2022
crossref_primary_10_3390_rs15123203
crossref_primary_10_1016_j_catena_2019_104092
crossref_primary_10_1016_j_geoderma_2021_115659
crossref_primary_10_1016_j_catena_2019_104138
crossref_primary_10_1016_j_geoderma_2021_115534
crossref_primary_10_5194_hess_23_2615_2019
crossref_primary_10_1007_s10661_020_08281_7
crossref_primary_10_3390_land12081516
crossref_primary_10_1016_j_geodrs_2020_e00269
crossref_primary_10_1186_s40643_020_00359_x
crossref_primary_10_3390_app14188275
crossref_primary_10_3389_fdata_2020_528441
crossref_primary_10_1080_10106049_2024_2379842
crossref_primary_10_1016_j_catena_2019_104226
crossref_primary_10_1016_j_geoderma_2018_12_037
crossref_primary_10_1016_j_geoderma_2019_01_025
crossref_primary_10_3390_s24216855
crossref_primary_10_1016_j_catena_2021_105258
crossref_primary_10_1007_s40808_024_02127_8
crossref_primary_10_3390_app11020714
crossref_primary_10_1016_j_geoderma_2019_03_017
crossref_primary_10_1016_j_aiia_2024_12_004
crossref_primary_10_1016_j_geoderma_2023_116446
crossref_primary_10_3389_fevo_2023_1060689
crossref_primary_10_1007_s10661_021_09543_8
crossref_primary_10_1080_13658816_2023_2248502
crossref_primary_10_1016_j_geoderma_2020_114286
crossref_primary_10_3390_agriculture12071062
crossref_primary_10_3390_agronomy10071041
crossref_primary_10_1007_s10518_023_01766_z
crossref_primary_10_3390_agronomy12081858
crossref_primary_10_1371_journal_pone_0286800
crossref_primary_10_1016_j_iswcr_2024_10_002
crossref_primary_10_1016_j_cageo_2019_104392
crossref_primary_10_1016_j_catena_2023_107643
crossref_primary_10_3390_ijgi9040268
crossref_primary_10_1016_j_catena_2019_104285
crossref_primary_10_1080_00207233_2021_1932368
crossref_primary_10_1016_j_geoderma_2021_115586
crossref_primary_10_3390_w13040400
crossref_primary_10_1134_S1064229323601920
crossref_primary_10_1371_journal_pone_0202691
crossref_primary_10_1016_j_geodrs_2021_e00411
crossref_primary_10_32604_cmes_2023_023164
crossref_primary_10_1016_j_geoderma_2021_115290
crossref_primary_10_1080_00330124_2020_1812408
crossref_primary_10_1007_s00477_022_02284_1
crossref_primary_10_3390_ijgi9040276
crossref_primary_10_1016_j_envsoft_2024_106124
crossref_primary_10_1016_j_coal_2021_103869
crossref_primary_10_1007_s11442_023_2142_6
crossref_primary_10_1016_j_scitotenv_2022_159253
crossref_primary_10_29278_azd_538555
crossref_primary_10_3390_land14030545
crossref_primary_10_3390_agronomy11112266
crossref_primary_10_1007_s11104_023_06198_x
crossref_primary_10_1108_PM_06_2023_0048
crossref_primary_10_3390_rs14071639
crossref_primary_10_1016_j_geoderma_2019_05_031
crossref_primary_10_1016_j_geodrs_2021_e00400
crossref_primary_10_1016_j_jafrearsci_2024_105279
crossref_primary_10_3390_plants12071464
crossref_primary_10_1007_s40808_023_01788_1
crossref_primary_10_1016_j_ecoinf_2023_102290
crossref_primary_10_1016_j_ejrh_2024_101711
crossref_primary_10_3389_fsoil_2022_890437
crossref_primary_10_1590_2179_8087_floram_2024_0034
crossref_primary_10_3390_f14061141
crossref_primary_10_1002_saj2_20525
crossref_primary_10_1016_j_scitotenv_2023_161421
crossref_primary_10_1016_j_geoderma_2018_09_008
crossref_primary_10_3389_fsoil_2021_714323
crossref_primary_10_1016_j_eswa_2025_127192
crossref_primary_10_1016_j_geoderma_2019_113925
crossref_primary_10_1007_s11053_021_09989_0
crossref_primary_10_1016_j_geodrs_2020_e00355
crossref_primary_10_1371_journal_pone_0289286
crossref_primary_10_1007_s12517_022_10008_6
crossref_primary_10_1016_j_geodrs_2021_e00413
crossref_primary_10_3390_w12082160
crossref_primary_10_3390_rs17010089
crossref_primary_10_32441_kjps_07_02_p9
crossref_primary_10_1016_j_geoderma_2021_115356
crossref_primary_10_1016_j_geoderma_2021_115597
crossref_primary_10_1029_2022WR032336
crossref_primary_10_36783_18069657rbcs20210084
crossref_primary_10_1016_j_geoderma_2020_114761
crossref_primary_10_1016_j_geoderma_2024_116781
crossref_primary_10_1016_j_geoderma_2020_114885
crossref_primary_10_1016_j_still_2022_105346
crossref_primary_10_1080_10106049_2022_2048905
crossref_primary_10_1016_j_jenvman_2021_113357
crossref_primary_10_3390_land13030379
crossref_primary_10_1016_j_catena_2022_106217
crossref_primary_10_3389_fenvs_2022_892577
crossref_primary_10_1038_s41598_020_77059_1
crossref_primary_10_1371_journal_pone_0208823
crossref_primary_10_1016_j_catena_2020_104632
crossref_primary_10_3390_rs12244073
Cites_doi 10.1016/0016-7061(94)90063-9
10.1002/joc.1276
10.1016/j.envsoft.2011.07.004
10.1016/j.geoderma.2008.09.018
10.1016/0016-7061(94)90043-4
10.1016/j.jhydrol.2006.06.028
10.1016/S0016-7061(00)00041-0
10.1016/j.geoderma.2013.02.011
10.2136/sssaj2009.0325
10.1175/MWR2906.1
10.1016/S0016-7061(00)00043-4
10.1002/esp.1296
10.1016/j.catena.2012.01.010
10.1016/j.geoderma.2012.03.013
10.1029/WR001i004p00447
10.1016/0016-7061(94)90024-8
10.1016/j.geoderma.2013.12.013
10.1016/j.geoderma.2005.05.008
10.1016/j.geoderma.2010.03.013
10.2136/sssaj2009.0158
10.1007/BF00394172
10.1016/j.geoderma.2005.12.009
10.1016/j.geoderma.2014.08.009
10.2136/sssaj2013.07.0307
10.1016/j.geoderma.2013.09.024
10.1016/S0016-7061(00)00036-7
10.1016/j.geoderma.2010.04.006
10.1016/j.geoderma.2014.09.009
10.2136/sssaj2000.6462046x
10.1016/j.geoderma.2004.01.032
10.1016/j.catena.2009.05.005
10.1016/0016-7061(95)00011-C
10.1016/j.geoderma.2013.11.001
10.1016/j.geoderma.2005.10.009
10.1016/j.geoderma.2010.09.015
10.1214/ss/1009212519
10.1016/j.jhydrol.2006.10.002
10.1016/j.geoderma.2012.05.022
10.2134/agronj2005.0251
10.1016/j.geoderma.2014.04.033
10.1111/j.1365-2389.1980.tb02100.x
10.1023/A:1010933404324
10.1016/S0016-7061(98)00137-2
10.1016/j.geoderma.2010.03.002
10.1111/j.1365-2389.1992.tb00128.x
10.1016/0016-7061(95)00007-B
10.1071/S96110
10.1111/j.1365-2389.2005.00768.x
10.1109/TGRS.2014.2301443
10.1016/j.geoderma.2005.02.008
10.1029/WR023i009p01717
10.1016/S0016-7061(03)00223-4
10.1016/S0016-7061(99)00028-2
10.2136/sssaj2001.653869x
10.1016/j.geoderma.2008.10.006
10.1016/j.catena.2012.11.012
10.1016/j.geoderma.2009.06.003
10.1016/j.catena.2013.09.006
10.1111/j.1538-4632.1996.tb00936.x
10.1016/j.geoderma.2014.06.007
10.1016/j.geoderma.2008.09.020
10.2136/sssaj2003.1564
10.1016/j.geoderma.2011.03.007
10.1016/j.geoderma.2013.12.005
10.2136/sssaj2009.0242
10.1016/j.cageo.2005.12.009
10.1016/S1002-0160(10)60049-5
10.1016/j.geoderma.2005.07.001
10.1111/j.1475-2743.1987.tb00703.x
10.1016/j.envsoft.2014.03.004
10.1016/0016-7061(79)90026-0
10.1016/j.geoderma.2010.06.017
10.1016/j.geoderma.2014.05.004
10.1016/j.geoderma.2003.08.018
10.2136/sssaj1994.03615995005800050033x
10.1111/j.1365-2389.2004.00637.x
10.1016/j.spasta.2012.02.001
10.1016/B978-0-12-405942-9.00001-3
10.1016/j.trac.2010.05.006
10.1016/j.geoderma.2011.11.003
10.1016/S0016-7061(02)00233-1
10.1371/journal.pone.0105992
10.1016/S0378-1127(00)00393-5
10.2136/sssaj1993.03615995005700020026x
10.1007/978-1-4612-1494-6
10.1016/j.geoderma.2012.06.022
10.1016/j.ecoinf.2010.12.003
10.1016/j.geoderma.2005.11.008
10.1016/j.catena.2008.09.008
10.1016/S0341-8162(98)00116-7
10.1002/9781119115151
10.1016/j.geoderma.2011.05.004
10.1016/j.geoderma.2010.09.005
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.geoderma.2018.04.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 41
ExternalDocumentID 10_1016_j_geoderma_2018_04_004
S0016706117316567
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
ID FETCH-LOGICAL-a335t-8cd05d15b87c221a61efcaacfa8aab7210469361ceee378bcb50e069637749023
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Tue Jul 01 04:04:46 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Fri Feb 23 02:30:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Regression kriging
Accuracy
Pedometrics
Digital soil mapping
Soil spatial predictions models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a335t-8cd05d15b87c221a61efcaacfa8aab7210469361ceee378bcb50e069637749023
ORCID 0000-0002-9023-1720
PageCount 20
ParticipantIDs crossref_citationtrail_10_1016_j_geoderma_2018_04_004
crossref_primary_10_1016_j_geoderma_2018_04_004
elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_04_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-15
PublicationDateYYYYMMDD 2018-09-15
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jenny (bb0225) 1941
Kravchenko (bb0250) 2003; 67
Stein (bb0525) 1999
Vanwalleghem, Poesen, McBratney, Deckers (bb0550) 2010; 157
Flatman, Yfantis (bb0110) 1984; 4
Oliver (bb0470) 1987; 3
Zhu, Lin (bb0620) 2010; 20
Kuriakose, Devkota, Rossiter, Jetten (bb0265) 2009; 79
Odeh, McBratney (bb0445) 2000; 97
Thompson, Roecker, Grunwald, Owens (bb4010) 2012
Lark, Webster (bb0305) 2006; 31
Odgers, McBratney, Minasny (bb0465) 2015; 237–238
Basher (bb0010) 1997; 35
Umali, Oliver, Forrester, Chittleborough, Hutson, Kookana, Ostendorf (bb0545) 2012; 93
Bishop, McBratney (bb0025) 2001; vol. 103
Mishra, Lal, Liu, Van Meirvenne (bb0415) 2010; 74
Odgers, Sun, McBratney, Minasny, Clifford (bb0460) 2014; 214–215
Webster, Oliver (bb0595) 1992; 43
Hartemink, McBratney (bb0170) 2008; 148
Li, Heap (bb0330) 2011; 6
Lamsal, Grunwald, Bruland, Bliss, Comerford (bb0285) 2006; 135
Stacey, Lark, Whitmore, Milne (bb0520) 2006; 135
Levi, Rasmussen (bb0320) 2014; 219–220
Webster, Oliver (bb0600) 2007
Minasny, McBratney (bb0395) 2007; vol. 140
Bockheim, Gennadiyev (bb0035) 2010; 159
Bouma, McBratney (bb0045) 2013; 200–201
Grunwald, Mizuta, Ceddia, Pinheiro, Kay Kastner-Wilcox, Gavilan, Ross, Clingensmith (bb0155) 2016
Heuvelink, Webster (bb0210) 2001; vol. 100
de Carvalho Junior, Lagacherie, da Silva Chagas, Calderano Filho, Bhering (bb0095) 2014; 232–234
Grunwald (bb0145) 2008; 10
Ahmed, De Marsily (bb0005) 1987; 23
Goswami, O'Connor (bb0135) 2007; 334
Minasny, McBratney (bb0390) 2006; 32
Leopold, Heuvelink, Tiktak, Finke, Schoumans (bb0315) 2006; 130
Kerry, Oliver (bb0235) 2007; vol. 140
Zhang, Huang, Shen, Ye, Du (bb0615) 2012
Lagacherie, McBratney, Voltz (bb0275) 2006
Malone, Minasny, Odgers, McBratney (bb0355) 2014; 232–234
Ryan, McKenzie, O'Connell, Loughhead, Leppert, Jacquier, Ashton (bb0505) 2000; 138
Knotters, Brus, Oude Voshaar (bb0245) 1995; 67
Watt, Palmer (bb0575) 2012; 183–184
Raftery, Gneiting, Balabdaoui, Polakowski (bb0490) 2005; 133
Goovaerts (bb0130) 2001; vol. 103
Hengl, Toomanian, Reuter, Malakouti (bb0195) 2007; vol. 140
Hoeting, Madigan, Raftery, Volinsky (bb0220) 1999; 14
Wackernagel (bb0565) 2003
Boettinger (bb0040) 2010
Grunwald (bb0140) 2006
Roger, Libohova, Rossier, Joost, Maltas, Frossard, Sinaj (bb0500) 2014; 217–218
Hijmans, Cameron, Parra, Jones, Jarvis (bb0215) 2005; 25
Rivero, Grunwald, Bruland (bb0495) 2007; vol. 140
Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (bb0020) 2010; 29
Minasny, McBratney (bb0385) 2005; vol. 128
Lark (bb0290) 1999; 92
Herbst, Diekkrüger, Vereecken (bb0205) 2006; 132
McBratney, Odeh, Bishop, Dunbar, Shatar (bb0370) 2000; 97
Lark, Cullis, Welham (bb0310) 2006; 57
Wallis (bb0570) 1965; 1
Douaoui, Nicolas, Walter (bb0105) 2006; 134
Odeh, McBratney, Chittleborough (bb0450) 1994; 63
Chaplot, Lorentz, Podwojewski, Jewitt (bb0085) 2010; 157
Kim, Grunwald, Rivero (bb0240) 2014; 52
Baxter, Oliver (bb0015) 2005; vol. 128
Matheron (bb0360) 1971
Glinka (bb0120) 1927
Hengl, de Jesus, MacMillan, Batjes, Heuvelink (bb0200) 2014; 9
Lin, Wheeler, Bell, Wilding (bb0345) 2005; vol. 182
Mora-Vallejo, Claessens, Stoorvogel, Heuvelink (bb0430) 2008; 76
Breiman (bb0050) 2001; 45
Goovaerts (bb4000) 1997
Grunwald (bb0150) 2009; 152
Vasques, Grunwald, Comerford, Sickman (bb0560) 2010; 156
Oliver, Webster (bb0475) 2014; 113
Poggio, Gimona (bb0480) 2014; 232–234
Vasques, Grunwald, Sickman, Comerford (bb0555) 2010; 74
Poggio, Gimona, Brown, Castellazzi (bb0485) 2010; 160
Carré, Girard (bb0075) 2002; 110
Goovaerts (bb0125) 1999; 34
Burrough (bb0060) 1986
Chai, Shen, Yuan, Huang (bb0080) 2008; 148
Karunaratne, Bishop, Baldock, Odeh (bb0230) 2014; 219–220
Mishra, Torn, Masanet, Ogle (bb0420) 2012; 189–190
Lin, Cheng, Chu, Chang, Yu (bb0350) 2011; 163
Cambardella, Moorman, Parkin, Karlen, Novak, Turco, Konopka (bb0070) 1994; 58
Cressie (bb0090) 1993
McKenzie, Ryan (bb0380) 1999; 89
Webster, Burgess (bb0590) 1980; 31
Lark, Cullis (bb0300) 2004; 55
Odeh, McBratney, Chittleborough (bb0455) 1995; 67
Haberlandt (bb0165) 2007; 332
Hartemink, McBratney, de Lourdes Mendonça-Santos (bb0175) 2008
Biswas, Cheng Si (bb0030) 2013
Kumar, Lal, Liu (bb0260) 2012; 189–190
McBratney (bb0365) 1998
Moore, Gessler, Nielsen, Peterson (bb0425) 1993; 57
Webster (bb0585) 2000; 97
Xiong, Grunwald, Myers, Kim, Harris, Comerford (bb0610) 2014; 57
Shi, Liu, Du, Stein, Yue (bb0510) 2011; 162
Niang, Nolin, Jégo, Perron (bb0440) 2014; 78
Li, Heap, Potter, Daniell (bb0335) 2011; 26
Guo, Li, Luo, Tang, Liu, Lin (bb0160) 2015; 237–238
Lado, Hengl, Reuter (bb0270) 2008; 148
Lark (bb0295) 2012; 1
Minasny, McBratney, Malone, Wheeler (bb0410) 2013
Gessler, Chadwick, Chamran, Althouse, Holmes (bb0115) 2000; 64
McBratney, Mendonça Santos, Minasny (bb0375) 2003; 117
Lal (bb0280) 2004; 123
Hengl, Heuvelink, Rossiter (bb0190) 2007; vol. 33
Takagi, Lin (bb0535) 2012; 173–174
Wright, Wilson (bb0605) 1979; 22
Kravchenko, Robertson (bb0255) 2007; 99
Minasny, Malone, McBratney (bb0405) 2012
Simbahan, Dobermann, Goovaerts, Ping, Haddix (bb0515) 2006; 132
Hartemink, Hempel, Lagacherie, McBratney, McKenzie, MacMillan, Minasny, Montanarella, Santos, Sanchez, Walsh, Zhang (bb0180) 2010
Li (bb0325) 2010; 159
Triantafilis, Odeh, McBratney (bb0540) 2001; 65
Hengl, Heuvelink, Stein (bb0185) 2004; 120
Li, Yue, Wang, Zhang, Yu, Li, Yang, Bai (bb0340) 2013; 104
Dlugoß, Fiener, Schneider (bb0100) 2010; 74
Brunsdon, Fotheringham, Charlton (bb0055) 1996; 28
Minasny, McBratney (bb0400) 2015
Mulla, McBratney (bb0435) 2002
Burrough, Bouma, Yates (bb0065) 1994; 62
Webster (bb0580) 1994; 62
Sun, Minasny, McBratney (bb0530) 2012
Umali (10.1016/j.geoderma.2018.04.004_bb0545) 2012; 93
Vasques (10.1016/j.geoderma.2018.04.004_bb0555) 2010; 74
Poggio (10.1016/j.geoderma.2018.04.004_bb0485) 2010; 160
Hengl (10.1016/j.geoderma.2018.04.004_bb0185) 2004; 120
Hengl (10.1016/j.geoderma.2018.04.004_bb0200) 2014; 9
Jenny (10.1016/j.geoderma.2018.04.004_bb0225) 1941
Lark (10.1016/j.geoderma.2018.04.004_bb0300) 2004; 55
Rivero (10.1016/j.geoderma.2018.04.004_bb0495) 2007; vol. 140
Zhu (10.1016/j.geoderma.2018.04.004_bb0620) 2010; 20
Mulla (10.1016/j.geoderma.2018.04.004_bb0435) 2002
de Carvalho Junior (10.1016/j.geoderma.2018.04.004_bb0095) 2014; 232–234
Odeh (10.1016/j.geoderma.2018.04.004_bb0445) 2000; 97
Minasny (10.1016/j.geoderma.2018.04.004_bb0385) 2005; vol. 128
Odeh (10.1016/j.geoderma.2018.04.004_bb0455) 1995; 67
Lin (10.1016/j.geoderma.2018.04.004_bb0350) 2011; 163
Kravchenko (10.1016/j.geoderma.2018.04.004_bb0255) 2007; 99
Basher (10.1016/j.geoderma.2018.04.004_bb0010) 1997; 35
Matheron (10.1016/j.geoderma.2018.04.004_bb0360) 1971
Flatman (10.1016/j.geoderma.2018.04.004_bb0110) 1984; 4
Levi (10.1016/j.geoderma.2018.04.004_bb0320) 2014; 219–220
Webster (10.1016/j.geoderma.2018.04.004_bb0600) 2007
Li (10.1016/j.geoderma.2018.04.004_bb0340) 2013; 104
Baxter (10.1016/j.geoderma.2018.04.004_bb0015) 2005; vol. 128
Takagi (10.1016/j.geoderma.2018.04.004_bb0535) 2012; 173–174
Zhang (10.1016/j.geoderma.2018.04.004_bb0615) 2012
Webster (10.1016/j.geoderma.2018.04.004_bb0580) 1994; 62
Shi (10.1016/j.geoderma.2018.04.004_bb0510) 2011; 162
Lark (10.1016/j.geoderma.2018.04.004_bb0295) 2012; 1
Li (10.1016/j.geoderma.2018.04.004_bb0325) 2010; 159
Li (10.1016/j.geoderma.2018.04.004_bb0335) 2011; 26
Haberlandt (10.1016/j.geoderma.2018.04.004_bb0165) 2007; 332
Niang (10.1016/j.geoderma.2018.04.004_bb0440) 2014; 78
Goovaerts (10.1016/j.geoderma.2018.04.004_bb0125) 1999; 34
Hoeting (10.1016/j.geoderma.2018.04.004_bb0220) 1999; 14
Wright (10.1016/j.geoderma.2018.04.004_bb0605) 1979; 22
Mishra (10.1016/j.geoderma.2018.04.004_bb0420) 2012; 189–190
Lark (10.1016/j.geoderma.2018.04.004_bb0305) 2006; 31
Thompson (10.1016/j.geoderma.2018.04.004_bb4010) 2012
Odgers (10.1016/j.geoderma.2018.04.004_bb0460) 2014; 214–215
Hartemink (10.1016/j.geoderma.2018.04.004_bb0180) 2010
Webster (10.1016/j.geoderma.2018.04.004_bb0595) 1992; 43
Bishop (10.1016/j.geoderma.2018.04.004_bb0025) 2001; vol. 103
Minasny (10.1016/j.geoderma.2018.04.004_bb0405) 2012
Bellon-Maurel (10.1016/j.geoderma.2018.04.004_bb0020) 2010; 29
Burrough (10.1016/j.geoderma.2018.04.004_bb0060) 1986
Karunaratne (10.1016/j.geoderma.2018.04.004_bb0230) 2014; 219–220
Vanwalleghem (10.1016/j.geoderma.2018.04.004_bb0550) 2010; 157
Grunwald (10.1016/j.geoderma.2018.04.004_bb0150) 2009; 152
Lark (10.1016/j.geoderma.2018.04.004_bb0290) 1999; 92
Goswami (10.1016/j.geoderma.2018.04.004_bb0135) 2007; 334
Lagacherie (10.1016/j.geoderma.2018.04.004_bb0275) 2006
Poggio (10.1016/j.geoderma.2018.04.004_bb0480) 2014; 232–234
Cressie (10.1016/j.geoderma.2018.04.004_bb0090) 1993
Webster (10.1016/j.geoderma.2018.04.004_bb0590) 1980; 31
Sun (10.1016/j.geoderma.2018.04.004_bb0530) 2012
Leopold (10.1016/j.geoderma.2018.04.004_bb0315) 2006; 130
Breiman (10.1016/j.geoderma.2018.04.004_bb0050) 2001; 45
Boettinger (10.1016/j.geoderma.2018.04.004_bb0040) 2010
Raftery (10.1016/j.geoderma.2018.04.004_bb0490) 2005; 133
Stacey (10.1016/j.geoderma.2018.04.004_bb0520) 2006; 135
Hijmans (10.1016/j.geoderma.2018.04.004_bb0215) 2005; 25
Knotters (10.1016/j.geoderma.2018.04.004_bb0245) 1995; 67
Goovaerts (10.1016/j.geoderma.2018.04.004_bb0130) 2001; vol. 103
Hengl (10.1016/j.geoderma.2018.04.004_bb0195) 2007; vol. 140
Lal (10.1016/j.geoderma.2018.04.004_bb0280) 2004; 123
Minasny (10.1016/j.geoderma.2018.04.004_bb0390) 2006; 32
Burrough (10.1016/j.geoderma.2018.04.004_bb0065) 1994; 62
Carré (10.1016/j.geoderma.2018.04.004_bb0075) 2002; 110
Lamsal (10.1016/j.geoderma.2018.04.004_bb0285) 2006; 135
Chai (10.1016/j.geoderma.2018.04.004_bb0080) 2008; 148
Bockheim (10.1016/j.geoderma.2018.04.004_bb0035) 2010; 159
Mishra (10.1016/j.geoderma.2018.04.004_bb0415) 2010; 74
Vasques (10.1016/j.geoderma.2018.04.004_bb0560) 2010; 156
Malone (10.1016/j.geoderma.2018.04.004_bb0355) 2014; 232–234
Gessler (10.1016/j.geoderma.2018.04.004_bb0115) 2000; 64
Grunwald (10.1016/j.geoderma.2018.04.004_bb0155) 2016
Wallis (10.1016/j.geoderma.2018.04.004_bb0570) 1965; 1
McKenzie (10.1016/j.geoderma.2018.04.004_bb0380) 1999; 89
Kerry (10.1016/j.geoderma.2018.04.004_bb0235) 2007; vol. 140
Hartemink (10.1016/j.geoderma.2018.04.004_bb0170) 2008; 148
Lark (10.1016/j.geoderma.2018.04.004_bb0310) 2006; 57
Webster (10.1016/j.geoderma.2018.04.004_bb0585) 2000; 97
Minasny (10.1016/j.geoderma.2018.04.004_bb0410) 2013
Hengl (10.1016/j.geoderma.2018.04.004_bb0190) 2007; vol. 33
Wackernagel (10.1016/j.geoderma.2018.04.004_bb0565) 2003
Minasny (10.1016/j.geoderma.2018.04.004_bb0400) 2015
Guo (10.1016/j.geoderma.2018.04.004_bb0160) 2015; 237–238
Moore (10.1016/j.geoderma.2018.04.004_bb0425) 1993; 57
Grunwald (10.1016/j.geoderma.2018.04.004_bb0145) 2008; 10
Li (10.1016/j.geoderma.2018.04.004_bb0330) 2011; 6
Bouma (10.1016/j.geoderma.2018.04.004_bb0045) 2013; 200–201
Dlugoß (10.1016/j.geoderma.2018.04.004_bb0100) 2010; 74
Lado (10.1016/j.geoderma.2018.04.004_bb0270) 2008; 148
Xiong (10.1016/j.geoderma.2018.04.004_bb0610) 2014; 57
Glinka (10.1016/j.geoderma.2018.04.004_bb0120) 1927
Stein (10.1016/j.geoderma.2018.04.004_bb0525) 1999
Douaoui (10.1016/j.geoderma.2018.04.004_bb0105) 2006; 134
Herbst (10.1016/j.geoderma.2018.04.004_bb0205) 2006; 132
Oliver (10.1016/j.geoderma.2018.04.004_bb0475) 2014; 113
Ryan (10.1016/j.geoderma.2018.04.004_bb0505) 2000; 138
Cambardella (10.1016/j.geoderma.2018.04.004_bb0070) 1994; 58
Chaplot (10.1016/j.geoderma.2018.04.004_bb0085) 2010; 157
Kuriakose (10.1016/j.geoderma.2018.04.004_bb0265) 2009; 79
Minasny (10.1016/j.geoderma.2018.04.004_bb0395) 2007; vol. 140
Kravchenko (10.1016/j.geoderma.2018.04.004_bb0250) 2003; 67
Roger (10.1016/j.geoderma.2018.04.004_bb0500) 2014; 217–218
McBratney (10.1016/j.geoderma.2018.04.004_bb0370) 2000; 97
McBratney (10.1016/j.geoderma.2018.04.004_bb0365) 1998
Hartemink (10.1016/j.geoderma.2018.04.004_bb0175) 2008
Biswas (10.1016/j.geoderma.2018.04.004_bb0030) 2013
Watt (10.1016/j.geoderma.2018.04.004_bb0575) 2012; 183–184
Ahmed (10.1016/j.geoderma.2018.04.004_bb0005) 1987; 23
Kim (10.1016/j.geoderma.2018.04.004_bb0240) 2014; 52
Lin (10.1016/j.geoderma.2018.04.004_bb0345) 2005; vol. 182
Odeh (10.1016/j.geoderma.2018.04.004_bb0450) 1994; 63
Kumar (10.1016/j.geoderma.2018.04.004_bb0260) 2012; 189–190
Goovaerts (10.1016/j.geoderma.2018.04.004_bb4000) 1997
Grunwald (10.1016/j.geoderma.2018.04.004_bb0140) 2006
McBratney (10.1016/j.geoderma.2018.04.004_bb0375) 2003; 117
Triantafilis (10.1016/j.geoderma.2018.04.004_bb0540) 2001; 65
Mora-Vallejo (10.1016/j.geoderma.2018.04.004_bb0430) 2008; 76
Odgers (10.1016/j.geoderma.2018.04.004_bb0465) 2015; 237–238
Brunsdon (10.1016/j.geoderma.2018.04.004_bb0055) 1996; 28
Oliver (10.1016/j.geoderma.2018.04.004_bb0470) 1987; 3
Heuvelink (10.1016/j.geoderma.2018.04.004_bb0210) 2001; vol. 100
Simbahan (10.1016/j.geoderma.2018.04.004_bb0515) 2006; 132
References_xml – volume: 20
  start-page: 594
  year: 2010
  end-page: 606
  ident: bb0620
  article-title: Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes
  publication-title: Pedosphere
– year: 2013
  ident: bb0030
  article-title: Model averaging for semivariogram model parameters
  publication-title: Advances in Agrophysical Research
– year: 2006
  ident: bb0140
  article-title: What do we really know about the space-time continuum of soil-landscapes
  publication-title: Environmental Soil-Landscape Modeling: Geographic Information Technologies and Pedometrics
– volume: 6
  start-page: 228
  year: 2011
  end-page: 241
  ident: bb0330
  article-title: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors
  publication-title: Ecol. Inform.
– volume: 132
  start-page: 206
  year: 2006
  end-page: 221
  ident: bb0205
  article-title: Geostatistical co-regionalization of soil hydraulic properties in a micro-scale catchment using terrain attributes
  publication-title: Geoderma
– volume: 123
  start-page: 1
  year: 2004
  end-page: 22
  ident: bb0280
  article-title: Soil carbon sequestration to mitigate climate change
  publication-title: Geoderma
– volume: 31
  start-page: 862
  year: 2006
  end-page: 874
  ident: bb0305
  article-title: Geostatistical mapping of geomorphic variables in the presence of trend
  publication-title: Earth Surf. Process. Landf.
– volume: vol. 140
  start-page: 324
  year: 2007
  end-page: 336
  ident: bb0395
  article-title: Spatial prediction of soil properties using EBLUP with the Matérn covariance function
  publication-title: Geoderma, Pedometrics 2005
– year: 2007
  ident: bb0600
  article-title: Geostatistics for Environmental Scientists (Statistics in Practice)
– volume: 97
  start-page: 293
  year: 2000
  end-page: 327
  ident: bb0370
  article-title: An overview of pedometric techniques for use in soil survey
  publication-title: Geoderma
– volume: 64
  start-page: 2046
  year: 2000
  ident: bb0115
  article-title: Modeling soil–landscape and ecosystem properties using terrain attributes
  publication-title: Soil Sci. Soc. Am. J.
– volume: 78
  start-page: 673
  year: 2014
  ident: bb0440
  article-title: Digital mapping of soil texture using RADARSAT-2 polarimetric synthetic aperture radar data
  publication-title: Soil Sci. Soc. Am. J.
– volume: 28
  start-page: 281
  year: 1996
  end-page: 298
  ident: bb0055
  article-title: Geographically weighted regression: a method for exploring spatial nonstationarity
  publication-title: Geogr. Anal.
– volume: 52
  start-page: 6724
  year: 2014
  end-page: 6737
  ident: bb0240
  article-title: Soil phosphorus and nitrogen predictions across spatial escalating scales in an aquatic ecosystem using remote sensing images
  publication-title: IEEE Trans. Geoscience Remote Sensing J.
– volume: 237–238
  start-page: 190
  year: 2015
  end-page: 198
  ident: bb0465
  article-title: Digital soil property mapping and uncertainty estimation using soil class probability rasters
  publication-title: Geoderma
– volume: 134
  start-page: 217
  year: 2006
  end-page: 230
  ident: bb0105
  article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data
  publication-title: Geoderma
– volume: 31
  start-page: 505
  year: 1980
  end-page: 524
  ident: bb0590
  article-title: Optimal interpolation and isarithmic mapping of soil properties ii changing Drift and Universal Kriging
  publication-title: J. Soil Sci.
– volume: 157
  start-page: 154
  year: 2010
  end-page: 164
  ident: bb0085
  article-title: Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity
  publication-title: Geoderma
– volume: vol. 103
  start-page: 3
  year: 2001
  end-page: 26
  ident: bb0130
  article-title: Geostatistical modelling of uncertainty in soil science
  publication-title: Geoderma, Estimating Uncertainty in Soil Models
– volume: 62
  start-page: 311
  year: 1994
  end-page: 326
  ident: bb0065
  article-title: The state of the art in pedometrics
  publication-title: Geoderma
– start-page: 51
  year: 1998
  end-page: 62
  ident: bb0365
  article-title: Some considerations on methods for spatially aggregating and disaggregating soil information
  publication-title: Soil and Water Quality at Different Scales
– volume: 93
  start-page: 38
  year: 2012
  end-page: 48
  ident: bb0545
  article-title: The effect of terrain and management on the spatial variability of soil properties in an apple orchard
  publication-title: Catena
– start-page: 343
  year: 2002
  end-page: 347
  ident: bb0435
  article-title: Soil spatial variability
  publication-title: Soil Physics Companion
– volume: 217–218
  start-page: 26
  year: 2014
  end-page: 36
  ident: bb0500
  article-title: Spatial variability of soil phosphorus in the Fribourg canton, Switzerland
  publication-title: Geoderma
– volume: vol. 103
  start-page: 149
  year: 2001
  end-page: 160
  ident: bb0025
  article-title: A comparison of prediction methods for the creation of field-extent soil property maps
  publication-title: Geoderma, Estimating Uncertainty in Soil Models
– volume: 57
  start-page: 787
  year: 2006
  end-page: 799
  ident: bb0310
  article-title: On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E-BLUP) with REML
  publication-title: Eur. J. Soil Sci.
– volume: 120
  start-page: 75
  year: 2004
  end-page: 93
  ident: bb0185
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
– volume: 74
  start-page: 906
  year: 2010
  ident: bb0415
  article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 1
  year: 2013
  end-page: 47
  ident: bb0410
  article-title: Digital mapping of soil carbon
  publication-title: Advances in Agronomy
– volume: 34
  start-page: 227
  year: 1999
  end-page: 242
  ident: bb0125
  article-title: Using elevation to aid the geostatistical mapping of rainfall erosivity
  publication-title: Catena
– volume: 26
  start-page: 1647
  year: 2011
  end-page: 1659
  ident: bb0335
  article-title: Application of machine learning methods to spatial interpolation of environmental variables
  publication-title: Environ. Model. Softw.
– volume: 67
  start-page: 215
  year: 1995
  end-page: 226
  ident: bb0455
  article-title: Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging
  publication-title: Geoderma
– volume: 99
  start-page: 12
  year: 2007
  end-page: 17
  ident: bb0255
  article-title: Can topographical and yield data substantially improve total soil carbon mapping by regression kriging?
  publication-title: Agron. J.
– volume: 219–220
  start-page: 46
  year: 2014
  end-page: 57
  ident: bb0320
  article-title: Covariate selection with iterative principal component analysis for predicting physical soil properties
  publication-title: Geoderma
– volume: vol. 33
  start-page: 1301
  year: 2007
  end-page: 1315
  ident: bb0190
  article-title: About regression-kriging: from equations to case studies
  publication-title: Comput. Geosci., Spatial Analysis Spatial Analysis
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  ident: bb0215
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int. J. Climatol.
– volume: 4
  start-page: 335
  year: 1984
  end-page: 349
  ident: bb0110
  article-title: Geostatistical strategy for soil sampling: the survey and the census
  publication-title: Environ. Monit. Assess.
– volume: 67
  start-page: 1564
  year: 2003
  ident: bb0250
  article-title: Influence of spatial structure on accuracy of interpolation methods
  publication-title: Soil Sci. Soc. Am. J.
– volume: 162
  start-page: 347
  year: 2011
  end-page: 357
  ident: bb0510
  article-title: Surface modelling of soil properties based on land use information
  publication-title: Geoderma
– volume: 58
  start-page: 1501
  year: 1994
  ident: bb0070
  article-title: Field-scale variability of soil properties in Central Iowa soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 237–238
  start-page: 49
  year: 2015
  end-page: 59
  ident: bb0160
  article-title: Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach
  publication-title: Geoderma
– year: 2008
  ident: bb0175
  article-title: Digital Soil Mapping With Limited Data
– volume: 132
  start-page: 471
  year: 2006
  end-page: 489
  ident: bb0515
  article-title: Fine-resolution mapping of soil organic carbon based on multivariate secondary data
  publication-title: Geoderma
– volume: 74
  start-page: 870
  year: 2010
  ident: bb0555
  article-title: Upscaling of dynamic soil organic carbon pools in a north-central Florida watershed
  publication-title: Soil Sci. Soc. Am. J.
– volume: 159
  start-page: 243
  year: 2010
  end-page: 251
  ident: bb0035
  article-title: Soil-factorial models and earth-system science: a review
  publication-title: Geoderma
– volume: 3
  start-page: 8
  year: 1987
  end-page: 20
  ident: bb0470
  article-title: Geostatistics and its application to soil science
  publication-title: Soil Use Manag.
– volume: 135
  start-page: 107
  year: 2006
  end-page: 117
  ident: bb0520
  article-title: Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil
  publication-title: Geoderma
– start-page: 423
  year: 2010
  end-page: 428
  ident: bb0180
  article-title: GlobalSoilMap.net – a new digital soil map of the world
  publication-title: Digital Soil Mapping, Progress in Soil Science
– volume: 214–215
  start-page: 91
  year: 2014
  end-page: 100
  ident: bb0460
  article-title: Disaggregating and harmonising soil map units through resampled classification trees
  publication-title: Geoderma
– volume: 200–201
  start-page: 130
  year: 2013
  end-page: 139
  ident: bb0045
  article-title: Framing soils as an actor when dealing with wicked environmental problems
  publication-title: Geoderma
– volume: 97
  start-page: 237
  year: 2000
  end-page: 254
  ident: bb0445
  article-title: Using AVHRR images for spatial prediction of clay content in the lower Namoi Valley of eastern Australia
  publication-title: Geoderma
– volume: 113
  start-page: 56
  year: 2014
  end-page: 69
  ident: bb0475
  article-title: A tutorial guide to geostatistics: computing and modelling variograms and kriging
  publication-title: Catena
– year: 1941
  ident: bb0225
  article-title: Factors of Soil Formation
– volume: 152
  start-page: 195
  year: 2009
  end-page: 207
  ident: bb0150
  article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches
  publication-title: Geoderma
– volume: vol. 140
  start-page: 428
  year: 2007
  end-page: 443
  ident: bb0495
  article-title: Incorporation of spectral data into multivariate geostatistical models to map soil phosphorus variability in a Florida wetland
  publication-title: Geoderma, Pedometrics 2005
– volume: 334
  start-page: 125
  year: 2007
  end-page: 140
  ident: bb0135
  article-title: Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach
  publication-title: J. Hydrol.
– start-page: 16
  year: 2012
  end-page: 23
  ident: bb0530
  article-title: Analysis and prediction of soil properties using local regression-kriging
  publication-title: Geoderma, Entering the Digital Era: Special Issue of Pedometrics 2009, Beijing 171–172
– volume: 148
  start-page: 189
  year: 2008
  end-page: 199
  ident: bb0270
  article-title: Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database
  publication-title: Geoderma
– volume: 130
  start-page: 368
  year: 2006
  end-page: 386
  ident: bb0315
  article-title: Accounting for change of support in spatial accuracy assessment of modelled soil mineral phosphorous concentration
  publication-title: Geoderma
– volume: 232–234
  start-page: 284
  year: 2014
  end-page: 299
  ident: bb0480
  article-title: National scale 3D modelling of soil organic carbon stocks with uncertainty propagation — an example from Scotland
  publication-title: Geoderma
– volume: 14
  start-page: 382
  year: 1999
  end-page: 417
  ident: bb0220
  article-title: Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors)
  publication-title: Stat. Sci.
– year: 1927
  ident: bb0120
  article-title: The Great Soil Groups of the World and Their Development. Transl. From German by C.F. Marbut Edwards, Ann Arbor, MIGoovaerts, P., 1997
– volume: 332
  start-page: 144
  year: 2007
  end-page: 157
  ident: bb0165
  article-title: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event
  publication-title: J. Hydrol.
– volume: 9
  year: 2014
  ident: bb0200
  article-title: SoilGrids1km — global soil information based on automated mapping
  publication-title: PLoS ONE
– volume: vol. 140
  start-page: 417
  year: 2007
  end-page: 427
  ident: bb0195
  article-title: Methods to interpolate soil categorical variables from profile observations: lessons from Iran
  publication-title: Geoderma, Pedometrics 2005
– volume: vol. 182
  start-page: 271
  year: 2005
  end-page: 290
  ident: bb0345
  article-title: Assessment of soil spatial variability at multiple scales
  publication-title: Ecol. Model., Scaling, Fractals and Diversity in Soils and Ecohydrology
– volume: 232–234
  start-page: 34
  year: 2014
  end-page: 44
  ident: bb0355
  article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data
  publication-title: Geoderma
– volume: 160
  start-page: 175
  year: 2010
  end-page: 188
  ident: bb0485
  article-title: Soil available water capacity interpolation and spatial uncertainty modelling at multiple geographical extents
  publication-title: Geoderma
– year: 1986
  ident: bb0060
  article-title: Principles of geographical information systems for land resources assessment
  publication-title: Monographs on Soil and Resources Survey
– year: 2015
  ident: bb0400
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
– volume: 189–190
  start-page: 627
  year: 2012
  end-page: 634
  ident: bb0260
  article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock
  publication-title: Geoderma
– volume: 55
  start-page: 799
  year: 2004
  end-page: 813
  ident: bb0300
  article-title: Model-based analysis using REML for inference from systematically sampled data on soil
  publication-title: Eur. J. Soil Sci.
– volume: 110
  start-page: 241
  year: 2002
  end-page: 263
  ident: bb0075
  article-title: Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes
  publication-title: Geoderma
– volume: 1
  start-page: 92
  year: 2012
  end-page: 99
  ident: bb0295
  article-title: Towards soil geostatistics
  publication-title: Spat. Stat.
– volume: 189–190
  start-page: 288
  year: 2012
  end-page: 295
  ident: bb0420
  article-title: Improving regional soil carbon inventories: combining the IPCC carbon inventory method with regression kriging
  publication-title: Geoderma
– year: 2003
  ident: bb0565
  article-title: Multivariate Geostatistics: an Introduction With Applications
– volume: 89
  start-page: 67
  year: 1999
  end-page: 94
  ident: bb0380
  article-title: Spatial prediction of soil properties using environmental correlation
  publication-title: Geoderma
– volume: 62
  start-page: 1
  year: 1994
  end-page: 15
  ident: bb0580
  article-title: The development of pedometrics
  publication-title: Geoderma
– year: 2006
  ident: bb0275
  article-title: Digital Soil Mapping: An Introductory Perspective
– volume: 57
  start-page: 443
  year: 1993
  end-page: 452
  ident: bb0425
  article-title: Soil attribute prediction using terrain analysis
  publication-title: Soil Sci. Soc. Am. J.
– volume: 43
  start-page: 177
  year: 1992
  end-page: 192
  ident: bb0595
  article-title: Sample adequately to estimate variograms of soil properties
  publication-title: J. Soil Sci.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0050
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 10
  year: 2008
  ident: bb0145
  article-title: Reconstruction and scientific visualization of earthscapes considering trends and spatial dependence structures
  publication-title: New J. Phys.
– volume: 135
  start-page: 233
  year: 2006
  end-page: 247
  ident: bb0285
  article-title: Regional hybrid geospatial modeling of soil nitrate–nitrogen in the Santa Fe River Watershed
  publication-title: Geoderma
– year: 1993
  ident: bb0090
  article-title: Statistics for spatial data
  publication-title: Wiley Series in Probability and Mathematical Statistics
– volume: 97
  start-page: 149
  year: 2000
  end-page: 163
  ident: bb0585
  article-title: Is soil variation random?
  publication-title: Geoderma
– volume: 63
  start-page: 197
  year: 1994
  end-page: 214
  ident: bb0450
  article-title: Spatial prediction of soil properties from landform attributes derived from a digital elevation model
  publication-title: Geoderma
– volume: 1
  start-page: 447
  year: 1965
  end-page: 461
  ident: bb0570
  article-title: Multivariate statistical methods in hydrology—a comparison using data of known functional relationship
  publication-title: Water Resour. Res.
– year: 1971
  ident: bb0360
  article-title: The theory of regionalized variables and its applications
  publication-title: Les Cahiers du Centre de Morphologie Mathématique, No. 5
– volume: 57
  start-page: 202
  year: 2014
  end-page: 215
  ident: bb0610
  article-title: Holistic environmental soil-landscape modeling of soil organic carbon
  publication-title: Environ. Model. Softw.
– volume: 29
  start-page: 1073
  year: 2010
  end-page: 1081
  ident: bb0020
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends Anal. Chem.
– volume: 74
  start-page: 922
  year: 2010
  ident: bb0100
  article-title: Layer-specific analysis and spatial prediction of soil organic carbon using terrain attributes and erosion modeling
  publication-title: Soil Sci. Soc. Am. J.
– volume: 232–234
  start-page: 479
  year: 2014
  end-page: 486
  ident: bb0095
  article-title: A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment
  publication-title: Geoderma
– volume: 32
  start-page: 1378
  year: 2006
  end-page: 1388
  ident: bb0390
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
– volume: 219–220
  start-page: 14
  year: 2014
  end-page: 23
  ident: bb0230
  article-title: Catchment scale mapping of measureable soil organic carbon fractions
  publication-title: Geoderma
– volume: 157
  start-page: 37
  year: 2010
  end-page: 45
  ident: bb0550
  article-title: Spatial variability of soil horizon depth in natural loess-derived soils
  publication-title: Geoderma
– start-page: 35
  year: 2012
  end-page: 43
  ident: bb0615
  article-title: Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information
  publication-title: Geoderma, Entering the Digital Era: Special Issue of Pedometrics 2009, Beijing 171–172
– year: 1997
  ident: bb4000
  article-title: Geostatistics for natural resources evaluation
  publication-title: Applied geostatistics series
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0375
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 67
  start-page: 227
  year: 1995
  end-page: 246
  ident: bb0245
  article-title: A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations
  publication-title: Geoderma
– year: 1999
  ident: bb0525
  article-title: Interpolation of spatial data
  publication-title: Springer Series in Statistics
– volume: 159
  start-page: 63
  year: 2010
  end-page: 75
  ident: bb0325
  article-title: Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information?
  publication-title: Geoderma
– year: 2016
  ident: bb0155
  publication-title: The meta soil model: an integrative multi-model framework for soil security
– volume: 23
  start-page: 1717
  year: 1987
  end-page: 1737
  ident: bb0005
  article-title: Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity
  publication-title: Water Resour. Res.
– volume: 163
  start-page: 275
  year: 2011
  end-page: 282
  ident: bb0350
  article-title: Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods
  publication-title: Geoderma
– volume: 148
  start-page: 123
  year: 2008
  end-page: 129
  ident: bb0170
  article-title: A soil science renaissance
  publication-title: Geoderma
– volume: 79
  start-page: 27
  year: 2009
  end-page: 38
  ident: bb0265
  article-title: Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India
  publication-title: Catena
– volume: 76
  start-page: 44
  year: 2008
  end-page: 53
  ident: bb0430
  article-title: Small scale digital soil mapping in Southeastern Kenya
  publication-title: Catena
– volume: 35
  start-page: 979
  year: 1997
  end-page: 994
  ident: bb0010
  article-title: Is pedology dead and buried?
  publication-title: Aust. J. Soil Res.
– volume: 148
  start-page: 159
  year: 2008
  end-page: 166
  ident: bb0080
  article-title: Spatial prediction of soil organic matter in the presence of different external trends with REML-EBLUP
  publication-title: Geoderma
– volume: 133
  start-page: 1155
  year: 2005
  end-page: 1174
  ident: bb0490
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mon. Weather Rev.
– volume: 138
  start-page: 139
  year: 2000
  end-page: 157
  ident: bb0505
  article-title: Integrating forest soils information across scales: spatial prediction of soil properties under Australian forests
  publication-title: For. Ecol. Manag.
– volume: vol. 128
  start-page: 192
  year: 2005
  end-page: 207
  ident: bb0385
  article-title: The Matérn function as a general model for soil variograms
  publication-title: Geoderma, Pedometrics 2003
– year: 2012
  ident: bb0405
  article-title: Digital Soil Assessments and Beyond: Proceedings of the 5th Global Workshop on Digital Soil Mapping 2012, Sydney
– volume: 22
  start-page: 297
  year: 1979
  end-page: 313
  ident: bb0605
  article-title: On the analysis of soil variability, with an example from Spain
  publication-title: Geoderma
– volume: vol. 128
  start-page: 325
  year: 2005
  end-page: 339
  ident: bb0015
  article-title: The spatial prediction of soil mineral N and potentially available N using elevation
  publication-title: Geoderma, Pedometrics 2003
– start-page: 665
  year: 2012
  end-page: 709
  ident: bb4010
  article-title: Digital soil mapping
  publication-title: Hydropedology
– volume: 104
  start-page: 210
  year: 2013
  end-page: 218
  ident: bb0340
  article-title: Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach
  publication-title: Catena
– volume: 156
  start-page: 326
  year: 2010
  end-page: 336
  ident: bb0560
  article-title: Regional modelling of soil carbon at multiple depths within a subtropical watershed
  publication-title: Geoderma
– volume: 183–184
  start-page: 49
  year: 2012
  end-page: 57
  ident: bb0575
  article-title: Use of regression kriging to develop a carbon:nitrogen ratio surface for New Zealand
  publication-title: Geoderma
– volume: vol. 100
  start-page: 269
  year: 2001
  end-page: 301
  ident: bb0210
  article-title: Modelling soil variation: past, present, and future
  publication-title: Geoderma, Developments and Trends in Soil Science
– year: 2010
  ident: bb0040
  article-title: Digital Soil Mapping: Bridging Research, Environmental Application, and Operation
– volume: 65
  start-page: 869
  year: 2001
  end-page: 878
  ident: bb0540
  article-title: Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton
  publication-title: Soil Sci. Soc. Am. J.
– volume: 173–174
  start-page: 289
  year: 2012
  end-page: 302
  ident: bb0535
  article-title: Changing controls of soil moisture spatial organization in the Shale Hills Catchment
  publication-title: Geoderma
– volume: vol. 140
  start-page: 383
  year: 2007
  end-page: 396
  ident: bb0235
  article-title: Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood
  publication-title: Geoderma, Pedometrics 2005
– volume: 92
  start-page: 141
  year: 1999
  end-page: 165
  ident: bb0290
  article-title: Soil–landform relationships at within-field scales: an investigation using continuous classification
  publication-title: Geoderma
– volume: 63
  start-page: 197
  year: 1994
  ident: 10.1016/j.geoderma.2018.04.004_bb0450
  article-title: Spatial prediction of soil properties from landform attributes derived from a digital elevation model
  publication-title: Geoderma
  doi: 10.1016/0016-7061(94)90063-9
– volume: 25
  start-page: 1965
  year: 2005
  ident: 10.1016/j.geoderma.2018.04.004_bb0215
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1276
– volume: 26
  start-page: 1647
  year: 2011
  ident: 10.1016/j.geoderma.2018.04.004_bb0335
  article-title: Application of machine learning methods to spatial interpolation of environmental variables
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2011.07.004
– volume: 148
  start-page: 159
  year: 2008
  ident: 10.1016/j.geoderma.2018.04.004_bb0080
  article-title: Spatial prediction of soil organic matter in the presence of different external trends with REML-EBLUP
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.09.018
– volume: vol. 103
  start-page: 3
  year: 2001
  ident: 10.1016/j.geoderma.2018.04.004_bb0130
  article-title: Geostatistical modelling of uncertainty in soil science
– year: 2015
  ident: 10.1016/j.geoderma.2018.04.004_bb0400
  article-title: Digital soil mapping: a brief history and some lessons
  publication-title: Geoderma
– volume: 62
  start-page: 311
  year: 1994
  ident: 10.1016/j.geoderma.2018.04.004_bb0065
  article-title: The state of the art in pedometrics
  publication-title: Geoderma
  doi: 10.1016/0016-7061(94)90043-4
– volume: 332
  start-page: 144
  year: 2007
  ident: 10.1016/j.geoderma.2018.04.004_bb0165
  article-title: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.06.028
– volume: 97
  start-page: 237
  year: 2000
  ident: 10.1016/j.geoderma.2018.04.004_bb0445
  article-title: Using AVHRR images for spatial prediction of clay content in the lower Namoi Valley of eastern Australia
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(00)00041-0
– start-page: 16
  year: 2012
  ident: 10.1016/j.geoderma.2018.04.004_bb0530
  article-title: Analysis and prediction of soil properties using local regression-kriging
– volume: vol. 140
  start-page: 324
  year: 2007
  ident: 10.1016/j.geoderma.2018.04.004_bb0395
  article-title: Spatial prediction of soil properties using EBLUP with the Matérn covariance function
– volume: 200–201
  start-page: 130
  year: 2013
  ident: 10.1016/j.geoderma.2018.04.004_bb0045
  article-title: Framing soils as an actor when dealing with wicked environmental problems
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.02.011
– volume: vol. 33
  start-page: 1301
  year: 2007
  ident: 10.1016/j.geoderma.2018.04.004_bb0190
  article-title: About regression-kriging: from equations to case studies
– volume: 74
  start-page: 922
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0100
  article-title: Layer-specific analysis and spatial prediction of soil organic carbon using terrain attributes and erosion modeling
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0325
– volume: 133
  start-page: 1155
  year: 2005
  ident: 10.1016/j.geoderma.2018.04.004_bb0490
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR2906.1
– volume: 97
  start-page: 293
  year: 2000
  ident: 10.1016/j.geoderma.2018.04.004_bb0370
  article-title: An overview of pedometric techniques for use in soil survey
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(00)00043-4
– volume: 31
  start-page: 862
  year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0305
  article-title: Geostatistical mapping of geomorphic variables in the presence of trend
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.1296
– volume: 93
  start-page: 38
  year: 2012
  ident: 10.1016/j.geoderma.2018.04.004_bb0545
  article-title: The effect of terrain and management on the spatial variability of soil properties in an apple orchard
  publication-title: Catena
  doi: 10.1016/j.catena.2012.01.010
– volume: 183–184
  start-page: 49
  year: 2012
  ident: 10.1016/j.geoderma.2018.04.004_bb0575
  article-title: Use of regression kriging to develop a carbon:nitrogen ratio surface for New Zealand
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.03.013
– volume: vol. 128
  start-page: 325
  year: 2005
  ident: 10.1016/j.geoderma.2018.04.004_bb0015
  article-title: The spatial prediction of soil mineral N and potentially available N using elevation
– start-page: 51
  year: 1998
  ident: 10.1016/j.geoderma.2018.04.004_bb0365
  article-title: Some considerations on methods for spatially aggregating and disaggregating soil information
– volume: 1
  start-page: 447
  year: 1965
  ident: 10.1016/j.geoderma.2018.04.004_bb0570
  article-title: Multivariate statistical methods in hydrology—a comparison using data of known functional relationship
  publication-title: Water Resour. Res.
  doi: 10.1029/WR001i004p00447
– volume: 62
  start-page: 1
  year: 1994
  ident: 10.1016/j.geoderma.2018.04.004_bb0580
  article-title: The development of pedometrics
  publication-title: Geoderma
  doi: 10.1016/0016-7061(94)90024-8
– volume: 219–220
  start-page: 46
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0320
  article-title: Covariate selection with iterative principal component analysis for predicting physical soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.013
– volume: 132
  start-page: 206
  year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0205
  article-title: Geostatistical co-regionalization of soil hydraulic properties in a micro-scale catchment using terrain attributes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.05.008
– volume: vol. 100
  start-page: 269
  year: 2001
  ident: 10.1016/j.geoderma.2018.04.004_bb0210
  article-title: Modelling soil variation: past, present, and future
– volume: 157
  start-page: 37
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0550
  article-title: Spatial variability of soil horizon depth in natural loess-derived soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.013
– year: 2008
  ident: 10.1016/j.geoderma.2018.04.004_bb0175
– volume: 74
  start-page: 906
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0415
  article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0158
– volume: vol. 128
  start-page: 192
  year: 2005
  ident: 10.1016/j.geoderma.2018.04.004_bb0385
  article-title: The Matérn function as a general model for soil variograms
– volume: 4
  start-page: 335
  year: 1984
  ident: 10.1016/j.geoderma.2018.04.004_bb0110
  article-title: Geostatistical strategy for soil sampling: the survey and the census
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/BF00394172
– volume: 135
  start-page: 233
  year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0285
  article-title: Regional hybrid geospatial modeling of soil nitrate–nitrogen in the Santa Fe River Watershed
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.12.009
– volume: 237–238
  start-page: 49
  year: 2015
  ident: 10.1016/j.geoderma.2018.04.004_bb0160
  article-title: Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.08.009
– volume: 78
  start-page: 673
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0440
  article-title: Digital mapping of soil texture using RADARSAT-2 polarimetric synthetic aperture radar data
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.07.0307
– volume: 214–215
  start-page: 91
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0460
  article-title: Disaggregating and harmonising soil map units through resampled classification trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.024
– volume: 97
  start-page: 149
  year: 2000
  ident: 10.1016/j.geoderma.2018.04.004_bb0585
  article-title: Is soil variation random?
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(00)00036-7
– volume: 157
  start-page: 154
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0085
  article-title: Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.04.006
– year: 1971
  ident: 10.1016/j.geoderma.2018.04.004_bb0360
  article-title: The theory of regionalized variables and its applications
– volume: 237–238
  start-page: 190
  year: 2015
  ident: 10.1016/j.geoderma.2018.04.004_bb0465
  article-title: Digital soil property mapping and uncertainty estimation using soil class probability rasters
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.009
– volume: 64
  start-page: 2046
  year: 2000
  ident: 10.1016/j.geoderma.2018.04.004_bb0115
  article-title: Modeling soil–landscape and ecosystem properties using terrain attributes
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6462046x
– volume: vol. 140
  start-page: 417
  year: 2007
  ident: 10.1016/j.geoderma.2018.04.004_bb0195
  article-title: Methods to interpolate soil categorical variables from profile observations: lessons from Iran
– volume: 123
  start-page: 1
  year: 2004
  ident: 10.1016/j.geoderma.2018.04.004_bb0280
  article-title: Soil carbon sequestration to mitigate climate change
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.01.032
– volume: 79
  start-page: 27
  year: 2009
  ident: 10.1016/j.geoderma.2018.04.004_bb0265
  article-title: Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India
  publication-title: Catena
  doi: 10.1016/j.catena.2009.05.005
– volume: 67
  start-page: 227
  year: 1995
  ident: 10.1016/j.geoderma.2018.04.004_bb0245
  article-title: A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations
  publication-title: Geoderma
  doi: 10.1016/0016-7061(95)00011-C
– volume: 217–218
  start-page: 26
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0500
  article-title: Spatial variability of soil phosphorus in the Fribourg canton, Switzerland
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.11.001
– volume: 134
  start-page: 217
  year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0105
  article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.10.009
– volume: 160
  start-page: 175
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0485
  article-title: Soil available water capacity interpolation and spatial uncertainty modelling at multiple geographical extents
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.09.015
– volume: 14
  start-page: 382
  year: 1999
  ident: 10.1016/j.geoderma.2018.04.004_bb0220
  article-title: Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors)
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009212519
– volume: 334
  start-page: 125
  year: 2007
  ident: 10.1016/j.geoderma.2018.04.004_bb0135
  article-title: Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.10.002
– volume: 189–190
  start-page: 627
  year: 2012
  ident: 10.1016/j.geoderma.2018.04.004_bb0260
  article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.05.022
– volume: 99
  start-page: 12
  year: 2007
  ident: 10.1016/j.geoderma.2018.04.004_bb0255
  article-title: Can topographical and yield data substantially improve total soil carbon mapping by regression kriging?
  publication-title: Agron. J.
  doi: 10.2134/agronj2005.0251
– volume: 232–234
  start-page: 34
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0355
  article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.033
– volume: 31
  start-page: 505
  year: 1980
  ident: 10.1016/j.geoderma.2018.04.004_bb0590
  article-title: Optimal interpolation and isarithmic mapping of soil properties ii changing Drift and Universal Kriging
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1980.tb02100.x
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geoderma.2018.04.004_bb0050
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 89
  start-page: 67
  year: 1999
  ident: 10.1016/j.geoderma.2018.04.004_bb0380
  article-title: Spatial prediction of soil properties using environmental correlation
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(98)00137-2
– volume: 156
  start-page: 326
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0560
  article-title: Regional modelling of soil carbon at multiple depths within a subtropical watershed
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.002
– volume: 43
  start-page: 177
  year: 1992
  ident: 10.1016/j.geoderma.2018.04.004_bb0595
  article-title: Sample adequately to estimate variograms of soil properties
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1992.tb00128.x
– volume: 67
  start-page: 215
  year: 1995
  ident: 10.1016/j.geoderma.2018.04.004_bb0455
  article-title: Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging
  publication-title: Geoderma
  doi: 10.1016/0016-7061(95)00007-B
– volume: 35
  start-page: 979
  year: 1997
  ident: 10.1016/j.geoderma.2018.04.004_bb0010
  article-title: Is pedology dead and buried?
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/S96110
– year: 1997
  ident: 10.1016/j.geoderma.2018.04.004_bb4000
  article-title: Geostatistics for natural resources evaluation
– volume: 57
  start-page: 787
  year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0310
  article-title: On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E-BLUP) with REML
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2005.00768.x
– volume: 52
  start-page: 6724
  issue: 10
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0240
  article-title: Soil phosphorus and nitrogen predictions across spatial escalating scales in an aquatic ecosystem using remote sensing images
  publication-title: IEEE Trans. Geoscience Remote Sensing J.
  doi: 10.1109/TGRS.2014.2301443
– volume: 130
  start-page: 368
  year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0315
  article-title: Accounting for change of support in spatial accuracy assessment of modelled soil mineral phosphorous concentration
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.02.008
– year: 2007
  ident: 10.1016/j.geoderma.2018.04.004_bb0600
– volume: 23
  start-page: 1717
  year: 1987
  ident: 10.1016/j.geoderma.2018.04.004_bb0005
  article-title: Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity
  publication-title: Water Resour. Res.
  doi: 10.1029/WR023i009p01717
– year: 1941
  ident: 10.1016/j.geoderma.2018.04.004_bb0225
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.geoderma.2018.04.004_bb0375
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 92
  start-page: 141
  year: 1999
  ident: 10.1016/j.geoderma.2018.04.004_bb0290
  article-title: Soil–landform relationships at within-field scales: an investigation using continuous classification
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(99)00028-2
– volume: 65
  start-page: 869
  year: 2001
  ident: 10.1016/j.geoderma.2018.04.004_bb0540
  article-title: Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.653869x
– volume: 148
  start-page: 123
  year: 2008
  ident: 10.1016/j.geoderma.2018.04.004_bb0170
  article-title: A soil science renaissance
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.10.006
– volume: 104
  start-page: 210
  year: 2013
  ident: 10.1016/j.geoderma.2018.04.004_bb0340
  article-title: Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach
  publication-title: Catena
  doi: 10.1016/j.catena.2012.11.012
– volume: 152
  start-page: 195
  year: 2009
  ident: 10.1016/j.geoderma.2018.04.004_bb0150
  article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.06.003
– volume: 113
  start-page: 56
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0475
  article-title: A tutorial guide to geostatistics: computing and modelling variograms and kriging
  publication-title: Catena
  doi: 10.1016/j.catena.2013.09.006
– year: 2013
  ident: 10.1016/j.geoderma.2018.04.004_bb0030
  article-title: Model averaging for semivariogram model parameters
– volume: 28
  start-page: 281
  year: 1996
  ident: 10.1016/j.geoderma.2018.04.004_bb0055
  article-title: Geographically weighted regression: a method for exploring spatial nonstationarity
  publication-title: Geogr. Anal.
  doi: 10.1111/j.1538-4632.1996.tb00936.x
– start-page: 35
  year: 2012
  ident: 10.1016/j.geoderma.2018.04.004_bb0615
  article-title: Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information
– volume: 232–234
  start-page: 479
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0095
  article-title: A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.06.007
– volume: vol. 140
  start-page: 383
  year: 2007
  ident: 10.1016/j.geoderma.2018.04.004_bb0235
  article-title: Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood
– volume: 148
  start-page: 189
  year: 2008
  ident: 10.1016/j.geoderma.2018.04.004_bb0270
  article-title: Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.09.020
– volume: 67
  start-page: 1564
  year: 2003
  ident: 10.1016/j.geoderma.2018.04.004_bb0250
  article-title: Influence of spatial structure on accuracy of interpolation methods
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2003.1564
– volume: 162
  start-page: 347
  year: 2011
  ident: 10.1016/j.geoderma.2018.04.004_bb0510
  article-title: Surface modelling of soil properties based on land use information
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.03.007
– volume: vol. 182
  start-page: 271
  year: 2005
  ident: 10.1016/j.geoderma.2018.04.004_bb0345
  article-title: Assessment of soil spatial variability at multiple scales
– start-page: 343
  year: 2002
  ident: 10.1016/j.geoderma.2018.04.004_bb0435
  article-title: Soil spatial variability
– volume: 219–220
  start-page: 14
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0230
  article-title: Catchment scale mapping of measureable soil organic carbon fractions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.005
– volume: 74
  start-page: 870
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0555
  article-title: Upscaling of dynamic soil organic carbon pools in a north-central Florida watershed
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0242
– volume: 32
  start-page: 1378
  year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0390
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 20
  start-page: 594
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0620
  article-title: Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(10)60049-5
– year: 1986
  ident: 10.1016/j.geoderma.2018.04.004_bb0060
  article-title: Principles of geographical information systems for land resources assessment
– volume: 132
  start-page: 471
  year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0515
  article-title: Fine-resolution mapping of soil organic carbon based on multivariate secondary data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.07.001
– year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0275
– volume: 3
  start-page: 8
  year: 1987
  ident: 10.1016/j.geoderma.2018.04.004_bb0470
  article-title: Geostatistics and its application to soil science
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.1987.tb00703.x
– volume: 57
  start-page: 202
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0610
  article-title: Holistic environmental soil-landscape modeling of soil organic carbon
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2014.03.004
– volume: 22
  start-page: 297
  year: 1979
  ident: 10.1016/j.geoderma.2018.04.004_bb0605
  article-title: On the analysis of soil variability, with an example from Spain
  publication-title: Geoderma
  doi: 10.1016/0016-7061(79)90026-0
– volume: 159
  start-page: 63
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0325
  article-title: Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.06.017
– year: 1927
  ident: 10.1016/j.geoderma.2018.04.004_bb0120
– volume: 232–234
  start-page: 284
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0480
  article-title: National scale 3D modelling of soil organic carbon stocks with uncertainty propagation — an example from Scotland
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.05.004
– volume: 120
  start-page: 75
  year: 2004
  ident: 10.1016/j.geoderma.2018.04.004_bb0185
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.08.018
– start-page: 665
  year: 2012
  ident: 10.1016/j.geoderma.2018.04.004_bb4010
  article-title: Digital soil mapping
– volume: 58
  start-page: 1501
  year: 1994
  ident: 10.1016/j.geoderma.2018.04.004_bb0070
  article-title: Field-scale variability of soil properties in Central Iowa soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1994.03615995005800050033x
– year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0140
  article-title: What do we really know about the space-time continuum of soil-landscapes
– volume: 55
  start-page: 799
  year: 2004
  ident: 10.1016/j.geoderma.2018.04.004_bb0300
  article-title: Model-based analysis using REML for inference from systematically sampled data on soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2004.00637.x
– volume: 1
  start-page: 92
  year: 2012
  ident: 10.1016/j.geoderma.2018.04.004_bb0295
  article-title: Towards soil geostatistics
  publication-title: Spat. Stat.
  doi: 10.1016/j.spasta.2012.02.001
– start-page: 1
  year: 2013
  ident: 10.1016/j.geoderma.2018.04.004_bb0410
  article-title: Digital mapping of soil carbon
  doi: 10.1016/B978-0-12-405942-9.00001-3
– volume: 29
  start-page: 1073
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0020
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.05.006
– volume: 173–174
  start-page: 289
  year: 2012
  ident: 10.1016/j.geoderma.2018.04.004_bb0535
  article-title: Changing controls of soil moisture spatial organization in the Shale Hills Catchment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.11.003
– volume: 110
  start-page: 241
  year: 2002
  ident: 10.1016/j.geoderma.2018.04.004_bb0075
  article-title: Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00233-1
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.geoderma.2018.04.004_bb0200
  article-title: SoilGrids1km — global soil information based on automated mapping
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0105992
– volume: 138
  start-page: 139
  year: 2000
  ident: 10.1016/j.geoderma.2018.04.004_bb0505
  article-title: Integrating forest soils information across scales: spatial prediction of soil properties under Australian forests
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(00)00393-5
– start-page: 423
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0180
  article-title: GlobalSoilMap.net – a new digital soil map of the world
– volume: 57
  start-page: 443
  year: 1993
  ident: 10.1016/j.geoderma.2018.04.004_bb0425
  article-title: Soil attribute prediction using terrain analysis
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1993.03615995005700020026x
– year: 1999
  ident: 10.1016/j.geoderma.2018.04.004_bb0525
  article-title: Interpolation of spatial data
  doi: 10.1007/978-1-4612-1494-6
– volume: 189–190
  start-page: 288
  year: 2012
  ident: 10.1016/j.geoderma.2018.04.004_bb0420
  article-title: Improving regional soil carbon inventories: combining the IPCC carbon inventory method with regression kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.06.022
– volume: vol. 140
  start-page: 428
  year: 2007
  ident: 10.1016/j.geoderma.2018.04.004_bb0495
  article-title: Incorporation of spectral data into multivariate geostatistical models to map soil phosphorus variability in a Florida wetland
– volume: 6
  start-page: 228
  year: 2011
  ident: 10.1016/j.geoderma.2018.04.004_bb0330
  article-title: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2010.12.003
– volume: 135
  start-page: 107
  year: 2006
  ident: 10.1016/j.geoderma.2018.04.004_bb0520
  article-title: Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.11.008
– year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0040
– volume: 76
  start-page: 44
  year: 2008
  ident: 10.1016/j.geoderma.2018.04.004_bb0430
  article-title: Small scale digital soil mapping in Southeastern Kenya
  publication-title: Catena
  doi: 10.1016/j.catena.2008.09.008
– volume: 34
  start-page: 227
  year: 1999
  ident: 10.1016/j.geoderma.2018.04.004_bb0125
  article-title: Using elevation to aid the geostatistical mapping of rainfall erosivity
  publication-title: Catena
  doi: 10.1016/S0341-8162(98)00116-7
– year: 2016
  ident: 10.1016/j.geoderma.2018.04.004_bb0155
– year: 1993
  ident: 10.1016/j.geoderma.2018.04.004_bb0090
  article-title: Statistics for spatial data
  doi: 10.1002/9781119115151
– volume: vol. 103
  start-page: 149
  year: 2001
  ident: 10.1016/j.geoderma.2018.04.004_bb0025
  article-title: A comparison of prediction methods for the creation of field-extent soil property maps
– year: 2003
  ident: 10.1016/j.geoderma.2018.04.004_bb0565
– volume: 163
  start-page: 275
  year: 2011
  ident: 10.1016/j.geoderma.2018.04.004_bb0350
  article-title: Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.05.004
– volume: 10
  issue: 125011
  year: 2008
  ident: 10.1016/j.geoderma.2018.04.004_bb0145
  article-title: Reconstruction and scientific visualization of earthscapes considering trends and spatial dependence structures
  publication-title: New J. Phys.
– volume: 159
  start-page: 243
  year: 2010
  ident: 10.1016/j.geoderma.2018.04.004_bb0035
  article-title: Soil-factorial models and earth-system science: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.09.005
– year: 2012
  ident: 10.1016/j.geoderma.2018.04.004_bb0405
SSID ssj0017020
Score 2.5702837
SecondaryResourceType review_article
Snippet Appropriate scale, justifiably reliable, categorical and continuous spatial soil information is urgently needed to address environmental problems and ensure...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 22
SubjectTerms Accuracy
Digital soil mapping
Pedometrics
Regression kriging
Soil spatial predictions models
Title Regression kriging as a workhorse in the digital soil mapper's toolbox
URI https://dx.doi.org/10.1016/j.geoderma.2018.04.004
Volume 326
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4NAEN009aIH42esH80eTDytZYGF5dg0NlVjD8YmvZEFdiu1AimYePK3OwtLo_HQg1dgCHksM2_DzHsIXSugoMLmjETKdoirhCLC9ilhAU8cK1BU1sLzT1NvMnMf5mzeQaN2Fka3VZrc3-T0OlubIwOD5qBIUz3jSz0fyhHV5kvM0xPlrutr_fzbr02bB_UtI81IPaKv_jElvIR3pA3Hav0hymvJU2PY9qdA_Sg64wO0b9giHjYPdIg6MjtCe8PF2ihmyGM0fpaLppc1w2-1y9UCixILrDuuXvN1KXGaYaB5OIGTQLVxmacr_C6KQq5vSlzl-SrKP0_QbHz3MpoQY45AhOOwivA4sVhCWcT92Lap8KhUsRCxElyICPZ1euPreBSKoHR8HsURs6TlwfcGhC-ASn2KulmeyTOEBeeJ0sJzcEPgbzJygwTyse1L11Fu4PUQaxEJY6Mcrg0sVmHbIrYMWyRDjWRouSEg2UODTVzRaGdsjQhawMNfqyCEBL8l9vwfsRdot_lLFBDqX6Jutf6QV0A2qqhfr6Y-2hneP06m30WB1KM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b8IwELUoDG2Hqp8q_fRQqVNEnMSJMyJUBOVjqEBis5zEplCaRECl_vyeg4OoOjB0jXVR9HK5e1bO7yH0pICCCodRK1KOa3lKKEs4AbFoyBLXDhWRhfD8YOh3xt7rhE4qqFWehdFjlab2b2p6Ua3NlYZBs5HPZvqML_EDaEdEmy9RPzhANa1OBclea3Z7neH2Z0JgG3VG4ls6YOeg8Bxek_YcKySICCtUT41n258etdN32qfoxBBG3Nw80xmqyPQcHTenSyOaIS9Q-01ON-OsKf4ojK6mWKywwHro6j1briSepRiYHk5gEdg2XmWzBf4UeS6Xzyu8zrJFlH1fonH7ZdTqWMYfwRKuS9cWixObJoRGLIgdhwifSBULESvBhIhga6f3vq5PoA9KN2BRHFFb2j58csD5QmjWV6iaZqm8RlgwliitPQc3BAonIy9MoCQ7gfRc5YV-HdESER4b8XDtYbHg5ZTYnJdIco0ktz0OSNZRYxuXb-Qz9kaEJeD8VyJwqPF7Ym_-EfuIDjujQZ_3u8PeLTrSK3oshNA7VF0vv-Q9cI919GBy6weaktdS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regression+kriging+as+a+workhorse+in+the+digital+soil+mapper%27s+toolbox&rft.jtitle=Geoderma&rft.au=Keskin%2C+H.&rft.au=Grunwald%2C+S.&rft.date=2018-09-15&rft.issn=0016-7061&rft.volume=326&rft.spage=22&rft.epage=41&rft_id=info:doi/10.1016%2Fj.geoderma.2018.04.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2018_04_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon