Regression kriging as a workhorse in the digital soil mapper's toolbox
Appropriate scale, justifiably reliable, categorical and continuous spatial soil information is urgently needed to address environmental problems and ensure sustainability of ecosystem services at local, regional and global scales. Regression Kriging (RK) is one of the most popular, practical and ro...
Saved in:
Published in | Geoderma Vol. 326; pp. 22 - 41 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2018.04.004 |
Cover
Loading…
Abstract | Appropriate scale, justifiably reliable, categorical and continuous spatial soil information is urgently needed to address environmental problems and ensure sustainability of ecosystem services at local, regional and global scales. Regression Kriging (RK) is one of the most popular, practical and robust hybrid spatial interpolation techniques in the digital soil mapper's toolbox that enables the modeling of soil distribution patterns at multiple scales in space and time. Several theoretical and applied aspects of RK have been discussed; however, there are no review studies, which quantify the essential factors affecting the performance of RK. Materials for this review were gathered from high-quality international soil science journals: Catena, Geoderma, and Soil Science Society of America from 2004 to 2014. A total of 142 different models from 40 different articles were examined. The following criteria were considered to evaluate their impacts on the prediction efficiency of RK: i) soil geographic region, ii) area of extent, iii) spatial resolution, iv) target soil properties and/or classes v) sampling design, vi) sampling size and density, vii) sample depth viii) soil-environmental factors as predictors, ix) methods of transformation, x) factor analysis, xi) regression type, xii) model used for variogram, xiii) nugget to total sill ratio, xiv) spatial autocorrelation range, xv) coefficient of variation of observed dataset, xvi) evaluation method (note that in previous publications the term ‘validation’ has been used extensively in publications in pedometrics) and xvii) coefficient of determination. The historical development of RK, limitations and strengths of current RK studies, research gaps, and future trends in RK are discussed. A major finding is the inverse relationship between the accuracy of RK models and the variation of soil properties in the original datasets. Novel modified RK methods are proposed for further investigation to predict soil properties and classes.
•Criteria that affect the performance of soil predictions derived from regression kriging.•Comprehensive review of the weaknesses and strengths of regression kriging•Increased variation in soil-environmental inputs tends to decrease soil model accuracy.•We propose a standard-minimum set of criteria to document soil prediction models.•We present a modified version of conventional regression kriging. |
---|---|
AbstractList | Appropriate scale, justifiably reliable, categorical and continuous spatial soil information is urgently needed to address environmental problems and ensure sustainability of ecosystem services at local, regional and global scales. Regression Kriging (RK) is one of the most popular, practical and robust hybrid spatial interpolation techniques in the digital soil mapper's toolbox that enables the modeling of soil distribution patterns at multiple scales in space and time. Several theoretical and applied aspects of RK have been discussed; however, there are no review studies, which quantify the essential factors affecting the performance of RK. Materials for this review were gathered from high-quality international soil science journals: Catena, Geoderma, and Soil Science Society of America from 2004 to 2014. A total of 142 different models from 40 different articles were examined. The following criteria were considered to evaluate their impacts on the prediction efficiency of RK: i) soil geographic region, ii) area of extent, iii) spatial resolution, iv) target soil properties and/or classes v) sampling design, vi) sampling size and density, vii) sample depth viii) soil-environmental factors as predictors, ix) methods of transformation, x) factor analysis, xi) regression type, xii) model used for variogram, xiii) nugget to total sill ratio, xiv) spatial autocorrelation range, xv) coefficient of variation of observed dataset, xvi) evaluation method (note that in previous publications the term ‘validation’ has been used extensively in publications in pedometrics) and xvii) coefficient of determination. The historical development of RK, limitations and strengths of current RK studies, research gaps, and future trends in RK are discussed. A major finding is the inverse relationship between the accuracy of RK models and the variation of soil properties in the original datasets. Novel modified RK methods are proposed for further investigation to predict soil properties and classes.
•Criteria that affect the performance of soil predictions derived from regression kriging.•Comprehensive review of the weaknesses and strengths of regression kriging•Increased variation in soil-environmental inputs tends to decrease soil model accuracy.•We propose a standard-minimum set of criteria to document soil prediction models.•We present a modified version of conventional regression kriging. |
Author | Keskin, H. Grunwald, S. |
Author_xml | – sequence: 1 givenname: H. surname: Keskin fullname: Keskin, H. email: hkeskin@ormansu.gov.tr organization: Soil and Water Sciences Department, 2181 McCarty Hall, PO Box 110290, University of Florida, Gainesville 32611, FL, USA – sequence: 2 givenname: S. orcidid: 0000-0002-9023-1720 surname: Grunwald fullname: Grunwald, S. email: sabgru@ufl.edu organization: Soil and Water Sciences Department, 2181 McCarty Hall, PO Box 110290, University of Florida, Gainesville 32611, FL, USA |
BookMark | eNqFkN9LwzAQx4NMcJv-C5I3n1ovaZu04IMynAoDQfQ5pOm1y9Y1Iyn--O_NmL744tNx3H2-3H1mZDK4AQm5ZJAyYOJ6k3boGvQ7nXJgZQp5CpCfkCkrJU8EL6oJmULcTCQIdkZmIWxiK4HDlCxfsPMYgnUD3Xrb2aGjOlBNP5zfrp0PSO1AxzXSJg5H3dPgbE93er9HfxXo6Fxfu89zctrqPuDFT52Tt-X96-IxWT0_PC3uVonOsmJMStNA0bCiLqXhnGnBsDVam1aXWteSM8hFlQlmEDGTZW3qAhBEJTIp8wp4Nic3x1zjXQgeW2XiUWO8fvTa9oqBOjhRG_XrRB2cKMhVdBJx8Qffe7vT_ut_8PYIYnzu3aJXwVgcDDbWoxlV4-x_Ed91soLL |
CitedBy_id | crossref_primary_10_1016_j_catena_2020_104539 crossref_primary_10_32604_cmes_2023_026874 crossref_primary_10_1016_j_geoderma_2022_116192 crossref_primary_10_3390_agronomy12061338 crossref_primary_10_3390_rs12162660 crossref_primary_10_3390_rs14122829 crossref_primary_10_1016_j_geoderma_2020_114175 crossref_primary_10_5194_soil_7_217_2021 crossref_primary_10_1016_j_geodrs_2023_e00611 crossref_primary_10_1007_s10661_023_12172_y crossref_primary_10_1016_j_geoderma_2019_113907 crossref_primary_10_1016_j_ecolind_2025_113228 crossref_primary_10_1080_02626667_2020_1831694 crossref_primary_10_5194_soil_5_79_2019 crossref_primary_10_1016_j_geodrs_2022_e00578 crossref_primary_10_1007_s40808_020_01015_1 crossref_primary_10_5194_essd_13_1089_2021 crossref_primary_10_1007_s11368_022_03370_1 crossref_primary_10_5194_hess_26_4933_2022 crossref_primary_10_3390_rs15123203 crossref_primary_10_1016_j_catena_2019_104092 crossref_primary_10_1016_j_geoderma_2021_115659 crossref_primary_10_1016_j_catena_2019_104138 crossref_primary_10_1016_j_geoderma_2021_115534 crossref_primary_10_5194_hess_23_2615_2019 crossref_primary_10_1007_s10661_020_08281_7 crossref_primary_10_3390_land12081516 crossref_primary_10_1016_j_geodrs_2020_e00269 crossref_primary_10_1186_s40643_020_00359_x crossref_primary_10_3390_app14188275 crossref_primary_10_3389_fdata_2020_528441 crossref_primary_10_1080_10106049_2024_2379842 crossref_primary_10_1016_j_catena_2019_104226 crossref_primary_10_1016_j_geoderma_2018_12_037 crossref_primary_10_1016_j_geoderma_2019_01_025 crossref_primary_10_3390_s24216855 crossref_primary_10_1016_j_catena_2021_105258 crossref_primary_10_1007_s40808_024_02127_8 crossref_primary_10_3390_app11020714 crossref_primary_10_1016_j_geoderma_2019_03_017 crossref_primary_10_1016_j_aiia_2024_12_004 crossref_primary_10_1016_j_geoderma_2023_116446 crossref_primary_10_3389_fevo_2023_1060689 crossref_primary_10_1007_s10661_021_09543_8 crossref_primary_10_1080_13658816_2023_2248502 crossref_primary_10_1016_j_geoderma_2020_114286 crossref_primary_10_3390_agriculture12071062 crossref_primary_10_3390_agronomy10071041 crossref_primary_10_1007_s10518_023_01766_z crossref_primary_10_3390_agronomy12081858 crossref_primary_10_1371_journal_pone_0286800 crossref_primary_10_1016_j_iswcr_2024_10_002 crossref_primary_10_1016_j_cageo_2019_104392 crossref_primary_10_1016_j_catena_2023_107643 crossref_primary_10_3390_ijgi9040268 crossref_primary_10_1016_j_catena_2019_104285 crossref_primary_10_1080_00207233_2021_1932368 crossref_primary_10_1016_j_geoderma_2021_115586 crossref_primary_10_3390_w13040400 crossref_primary_10_1134_S1064229323601920 crossref_primary_10_1371_journal_pone_0202691 crossref_primary_10_1016_j_geodrs_2021_e00411 crossref_primary_10_32604_cmes_2023_023164 crossref_primary_10_1016_j_geoderma_2021_115290 crossref_primary_10_1080_00330124_2020_1812408 crossref_primary_10_1007_s00477_022_02284_1 crossref_primary_10_3390_ijgi9040276 crossref_primary_10_1016_j_envsoft_2024_106124 crossref_primary_10_1016_j_coal_2021_103869 crossref_primary_10_1007_s11442_023_2142_6 crossref_primary_10_1016_j_scitotenv_2022_159253 crossref_primary_10_29278_azd_538555 crossref_primary_10_3390_land14030545 crossref_primary_10_3390_agronomy11112266 crossref_primary_10_1007_s11104_023_06198_x crossref_primary_10_1108_PM_06_2023_0048 crossref_primary_10_3390_rs14071639 crossref_primary_10_1016_j_geoderma_2019_05_031 crossref_primary_10_1016_j_geodrs_2021_e00400 crossref_primary_10_1016_j_jafrearsci_2024_105279 crossref_primary_10_3390_plants12071464 crossref_primary_10_1007_s40808_023_01788_1 crossref_primary_10_1016_j_ecoinf_2023_102290 crossref_primary_10_1016_j_ejrh_2024_101711 crossref_primary_10_3389_fsoil_2022_890437 crossref_primary_10_1590_2179_8087_floram_2024_0034 crossref_primary_10_3390_f14061141 crossref_primary_10_1002_saj2_20525 crossref_primary_10_1016_j_scitotenv_2023_161421 crossref_primary_10_1016_j_geoderma_2018_09_008 crossref_primary_10_3389_fsoil_2021_714323 crossref_primary_10_1016_j_eswa_2025_127192 crossref_primary_10_1016_j_geoderma_2019_113925 crossref_primary_10_1007_s11053_021_09989_0 crossref_primary_10_1016_j_geodrs_2020_e00355 crossref_primary_10_1371_journal_pone_0289286 crossref_primary_10_1007_s12517_022_10008_6 crossref_primary_10_1016_j_geodrs_2021_e00413 crossref_primary_10_3390_w12082160 crossref_primary_10_3390_rs17010089 crossref_primary_10_32441_kjps_07_02_p9 crossref_primary_10_1016_j_geoderma_2021_115356 crossref_primary_10_1016_j_geoderma_2021_115597 crossref_primary_10_1029_2022WR032336 crossref_primary_10_36783_18069657rbcs20210084 crossref_primary_10_1016_j_geoderma_2020_114761 crossref_primary_10_1016_j_geoderma_2024_116781 crossref_primary_10_1016_j_geoderma_2020_114885 crossref_primary_10_1016_j_still_2022_105346 crossref_primary_10_1080_10106049_2022_2048905 crossref_primary_10_1016_j_jenvman_2021_113357 crossref_primary_10_3390_land13030379 crossref_primary_10_1016_j_catena_2022_106217 crossref_primary_10_3389_fenvs_2022_892577 crossref_primary_10_1038_s41598_020_77059_1 crossref_primary_10_1371_journal_pone_0208823 crossref_primary_10_1016_j_catena_2020_104632 crossref_primary_10_3390_rs12244073 |
Cites_doi | 10.1016/0016-7061(94)90063-9 10.1002/joc.1276 10.1016/j.envsoft.2011.07.004 10.1016/j.geoderma.2008.09.018 10.1016/0016-7061(94)90043-4 10.1016/j.jhydrol.2006.06.028 10.1016/S0016-7061(00)00041-0 10.1016/j.geoderma.2013.02.011 10.2136/sssaj2009.0325 10.1175/MWR2906.1 10.1016/S0016-7061(00)00043-4 10.1002/esp.1296 10.1016/j.catena.2012.01.010 10.1016/j.geoderma.2012.03.013 10.1029/WR001i004p00447 10.1016/0016-7061(94)90024-8 10.1016/j.geoderma.2013.12.013 10.1016/j.geoderma.2005.05.008 10.1016/j.geoderma.2010.03.013 10.2136/sssaj2009.0158 10.1007/BF00394172 10.1016/j.geoderma.2005.12.009 10.1016/j.geoderma.2014.08.009 10.2136/sssaj2013.07.0307 10.1016/j.geoderma.2013.09.024 10.1016/S0016-7061(00)00036-7 10.1016/j.geoderma.2010.04.006 10.1016/j.geoderma.2014.09.009 10.2136/sssaj2000.6462046x 10.1016/j.geoderma.2004.01.032 10.1016/j.catena.2009.05.005 10.1016/0016-7061(95)00011-C 10.1016/j.geoderma.2013.11.001 10.1016/j.geoderma.2005.10.009 10.1016/j.geoderma.2010.09.015 10.1214/ss/1009212519 10.1016/j.jhydrol.2006.10.002 10.1016/j.geoderma.2012.05.022 10.2134/agronj2005.0251 10.1016/j.geoderma.2014.04.033 10.1111/j.1365-2389.1980.tb02100.x 10.1023/A:1010933404324 10.1016/S0016-7061(98)00137-2 10.1016/j.geoderma.2010.03.002 10.1111/j.1365-2389.1992.tb00128.x 10.1016/0016-7061(95)00007-B 10.1071/S96110 10.1111/j.1365-2389.2005.00768.x 10.1109/TGRS.2014.2301443 10.1016/j.geoderma.2005.02.008 10.1029/WR023i009p01717 10.1016/S0016-7061(03)00223-4 10.1016/S0016-7061(99)00028-2 10.2136/sssaj2001.653869x 10.1016/j.geoderma.2008.10.006 10.1016/j.catena.2012.11.012 10.1016/j.geoderma.2009.06.003 10.1016/j.catena.2013.09.006 10.1111/j.1538-4632.1996.tb00936.x 10.1016/j.geoderma.2014.06.007 10.1016/j.geoderma.2008.09.020 10.2136/sssaj2003.1564 10.1016/j.geoderma.2011.03.007 10.1016/j.geoderma.2013.12.005 10.2136/sssaj2009.0242 10.1016/j.cageo.2005.12.009 10.1016/S1002-0160(10)60049-5 10.1016/j.geoderma.2005.07.001 10.1111/j.1475-2743.1987.tb00703.x 10.1016/j.envsoft.2014.03.004 10.1016/0016-7061(79)90026-0 10.1016/j.geoderma.2010.06.017 10.1016/j.geoderma.2014.05.004 10.1016/j.geoderma.2003.08.018 10.2136/sssaj1994.03615995005800050033x 10.1111/j.1365-2389.2004.00637.x 10.1016/j.spasta.2012.02.001 10.1016/B978-0-12-405942-9.00001-3 10.1016/j.trac.2010.05.006 10.1016/j.geoderma.2011.11.003 10.1016/S0016-7061(02)00233-1 10.1371/journal.pone.0105992 10.1016/S0378-1127(00)00393-5 10.2136/sssaj1993.03615995005700020026x 10.1007/978-1-4612-1494-6 10.1016/j.geoderma.2012.06.022 10.1016/j.ecoinf.2010.12.003 10.1016/j.geoderma.2005.11.008 10.1016/j.catena.2008.09.008 10.1016/S0341-8162(98)00116-7 10.1002/9781119115151 10.1016/j.geoderma.2011.05.004 10.1016/j.geoderma.2010.09.005 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.geoderma.2018.04.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 41 |
ExternalDocumentID | 10_1016_j_geoderma_2018_04_004 S0016706117316567 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT |
ID | FETCH-LOGICAL-a335t-8cd05d15b87c221a61efcaacfa8aab7210469361ceee378bcb50e069637749023 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Tue Jul 01 04:04:46 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Fri Feb 23 02:30:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regression kriging Accuracy Pedometrics Digital soil mapping Soil spatial predictions models |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a335t-8cd05d15b87c221a61efcaacfa8aab7210469361ceee378bcb50e069637749023 |
ORCID | 0000-0002-9023-1720 |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1016_j_geoderma_2018_04_004 crossref_primary_10_1016_j_geoderma_2018_04_004 elsevier_sciencedirect_doi_10_1016_j_geoderma_2018_04_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-15 |
PublicationDateYYYYMMDD | 2018-09-15 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jenny (bb0225) 1941 Kravchenko (bb0250) 2003; 67 Stein (bb0525) 1999 Vanwalleghem, Poesen, McBratney, Deckers (bb0550) 2010; 157 Flatman, Yfantis (bb0110) 1984; 4 Oliver (bb0470) 1987; 3 Zhu, Lin (bb0620) 2010; 20 Kuriakose, Devkota, Rossiter, Jetten (bb0265) 2009; 79 Odeh, McBratney (bb0445) 2000; 97 Thompson, Roecker, Grunwald, Owens (bb4010) 2012 Lark, Webster (bb0305) 2006; 31 Odgers, McBratney, Minasny (bb0465) 2015; 237–238 Basher (bb0010) 1997; 35 Umali, Oliver, Forrester, Chittleborough, Hutson, Kookana, Ostendorf (bb0545) 2012; 93 Bishop, McBratney (bb0025) 2001; vol. 103 Mishra, Lal, Liu, Van Meirvenne (bb0415) 2010; 74 Odgers, Sun, McBratney, Minasny, Clifford (bb0460) 2014; 214–215 Webster, Oliver (bb0595) 1992; 43 Hartemink, McBratney (bb0170) 2008; 148 Li, Heap (bb0330) 2011; 6 Lamsal, Grunwald, Bruland, Bliss, Comerford (bb0285) 2006; 135 Stacey, Lark, Whitmore, Milne (bb0520) 2006; 135 Levi, Rasmussen (bb0320) 2014; 219–220 Webster, Oliver (bb0600) 2007 Minasny, McBratney (bb0395) 2007; vol. 140 Bockheim, Gennadiyev (bb0035) 2010; 159 Bouma, McBratney (bb0045) 2013; 200–201 Grunwald, Mizuta, Ceddia, Pinheiro, Kay Kastner-Wilcox, Gavilan, Ross, Clingensmith (bb0155) 2016 Heuvelink, Webster (bb0210) 2001; vol. 100 de Carvalho Junior, Lagacherie, da Silva Chagas, Calderano Filho, Bhering (bb0095) 2014; 232–234 Grunwald (bb0145) 2008; 10 Ahmed, De Marsily (bb0005) 1987; 23 Goswami, O'Connor (bb0135) 2007; 334 Minasny, McBratney (bb0390) 2006; 32 Leopold, Heuvelink, Tiktak, Finke, Schoumans (bb0315) 2006; 130 Kerry, Oliver (bb0235) 2007; vol. 140 Zhang, Huang, Shen, Ye, Du (bb0615) 2012 Lagacherie, McBratney, Voltz (bb0275) 2006 Malone, Minasny, Odgers, McBratney (bb0355) 2014; 232–234 Ryan, McKenzie, O'Connell, Loughhead, Leppert, Jacquier, Ashton (bb0505) 2000; 138 Knotters, Brus, Oude Voshaar (bb0245) 1995; 67 Watt, Palmer (bb0575) 2012; 183–184 Raftery, Gneiting, Balabdaoui, Polakowski (bb0490) 2005; 133 Goovaerts (bb0130) 2001; vol. 103 Hengl, Toomanian, Reuter, Malakouti (bb0195) 2007; vol. 140 Hoeting, Madigan, Raftery, Volinsky (bb0220) 1999; 14 Wackernagel (bb0565) 2003 Boettinger (bb0040) 2010 Grunwald (bb0140) 2006 Roger, Libohova, Rossier, Joost, Maltas, Frossard, Sinaj (bb0500) 2014; 217–218 Hijmans, Cameron, Parra, Jones, Jarvis (bb0215) 2005; 25 Rivero, Grunwald, Bruland (bb0495) 2007; vol. 140 Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (bb0020) 2010; 29 Minasny, McBratney (bb0385) 2005; vol. 128 Lark (bb0290) 1999; 92 Herbst, Diekkrüger, Vereecken (bb0205) 2006; 132 McBratney, Odeh, Bishop, Dunbar, Shatar (bb0370) 2000; 97 Lark, Cullis, Welham (bb0310) 2006; 57 Wallis (bb0570) 1965; 1 Douaoui, Nicolas, Walter (bb0105) 2006; 134 Odeh, McBratney, Chittleborough (bb0450) 1994; 63 Chaplot, Lorentz, Podwojewski, Jewitt (bb0085) 2010; 157 Kim, Grunwald, Rivero (bb0240) 2014; 52 Baxter, Oliver (bb0015) 2005; vol. 128 Matheron (bb0360) 1971 Glinka (bb0120) 1927 Hengl, de Jesus, MacMillan, Batjes, Heuvelink (bb0200) 2014; 9 Lin, Wheeler, Bell, Wilding (bb0345) 2005; vol. 182 Mora-Vallejo, Claessens, Stoorvogel, Heuvelink (bb0430) 2008; 76 Breiman (bb0050) 2001; 45 Goovaerts (bb4000) 1997 Grunwald (bb0150) 2009; 152 Vasques, Grunwald, Comerford, Sickman (bb0560) 2010; 156 Oliver, Webster (bb0475) 2014; 113 Poggio, Gimona (bb0480) 2014; 232–234 Vasques, Grunwald, Sickman, Comerford (bb0555) 2010; 74 Poggio, Gimona, Brown, Castellazzi (bb0485) 2010; 160 Carré, Girard (bb0075) 2002; 110 Goovaerts (bb0125) 1999; 34 Burrough (bb0060) 1986 Chai, Shen, Yuan, Huang (bb0080) 2008; 148 Karunaratne, Bishop, Baldock, Odeh (bb0230) 2014; 219–220 Mishra, Torn, Masanet, Ogle (bb0420) 2012; 189–190 Lin, Cheng, Chu, Chang, Yu (bb0350) 2011; 163 Cambardella, Moorman, Parkin, Karlen, Novak, Turco, Konopka (bb0070) 1994; 58 Cressie (bb0090) 1993 McKenzie, Ryan (bb0380) 1999; 89 Webster, Burgess (bb0590) 1980; 31 Lark, Cullis (bb0300) 2004; 55 Odeh, McBratney, Chittleborough (bb0455) 1995; 67 Haberlandt (bb0165) 2007; 332 Hartemink, McBratney, de Lourdes Mendonça-Santos (bb0175) 2008 Biswas, Cheng Si (bb0030) 2013 Kumar, Lal, Liu (bb0260) 2012; 189–190 McBratney (bb0365) 1998 Moore, Gessler, Nielsen, Peterson (bb0425) 1993; 57 Webster (bb0585) 2000; 97 Xiong, Grunwald, Myers, Kim, Harris, Comerford (bb0610) 2014; 57 Shi, Liu, Du, Stein, Yue (bb0510) 2011; 162 Niang, Nolin, Jégo, Perron (bb0440) 2014; 78 Li, Heap, Potter, Daniell (bb0335) 2011; 26 Guo, Li, Luo, Tang, Liu, Lin (bb0160) 2015; 237–238 Lado, Hengl, Reuter (bb0270) 2008; 148 Lark (bb0295) 2012; 1 Minasny, McBratney, Malone, Wheeler (bb0410) 2013 Gessler, Chadwick, Chamran, Althouse, Holmes (bb0115) 2000; 64 McBratney, Mendonça Santos, Minasny (bb0375) 2003; 117 Lal (bb0280) 2004; 123 Hengl, Heuvelink, Rossiter (bb0190) 2007; vol. 33 Takagi, Lin (bb0535) 2012; 173–174 Wright, Wilson (bb0605) 1979; 22 Kravchenko, Robertson (bb0255) 2007; 99 Minasny, Malone, McBratney (bb0405) 2012 Simbahan, Dobermann, Goovaerts, Ping, Haddix (bb0515) 2006; 132 Hartemink, Hempel, Lagacherie, McBratney, McKenzie, MacMillan, Minasny, Montanarella, Santos, Sanchez, Walsh, Zhang (bb0180) 2010 Li (bb0325) 2010; 159 Triantafilis, Odeh, McBratney (bb0540) 2001; 65 Hengl, Heuvelink, Stein (bb0185) 2004; 120 Li, Yue, Wang, Zhang, Yu, Li, Yang, Bai (bb0340) 2013; 104 Dlugoß, Fiener, Schneider (bb0100) 2010; 74 Brunsdon, Fotheringham, Charlton (bb0055) 1996; 28 Minasny, McBratney (bb0400) 2015 Mulla, McBratney (bb0435) 2002 Burrough, Bouma, Yates (bb0065) 1994; 62 Webster (bb0580) 1994; 62 Sun, Minasny, McBratney (bb0530) 2012 Umali (10.1016/j.geoderma.2018.04.004_bb0545) 2012; 93 Vasques (10.1016/j.geoderma.2018.04.004_bb0555) 2010; 74 Poggio (10.1016/j.geoderma.2018.04.004_bb0485) 2010; 160 Hengl (10.1016/j.geoderma.2018.04.004_bb0185) 2004; 120 Hengl (10.1016/j.geoderma.2018.04.004_bb0200) 2014; 9 Jenny (10.1016/j.geoderma.2018.04.004_bb0225) 1941 Lark (10.1016/j.geoderma.2018.04.004_bb0300) 2004; 55 Rivero (10.1016/j.geoderma.2018.04.004_bb0495) 2007; vol. 140 Zhu (10.1016/j.geoderma.2018.04.004_bb0620) 2010; 20 Mulla (10.1016/j.geoderma.2018.04.004_bb0435) 2002 de Carvalho Junior (10.1016/j.geoderma.2018.04.004_bb0095) 2014; 232–234 Odeh (10.1016/j.geoderma.2018.04.004_bb0445) 2000; 97 Minasny (10.1016/j.geoderma.2018.04.004_bb0385) 2005; vol. 128 Odeh (10.1016/j.geoderma.2018.04.004_bb0455) 1995; 67 Lin (10.1016/j.geoderma.2018.04.004_bb0350) 2011; 163 Kravchenko (10.1016/j.geoderma.2018.04.004_bb0255) 2007; 99 Basher (10.1016/j.geoderma.2018.04.004_bb0010) 1997; 35 Matheron (10.1016/j.geoderma.2018.04.004_bb0360) 1971 Flatman (10.1016/j.geoderma.2018.04.004_bb0110) 1984; 4 Levi (10.1016/j.geoderma.2018.04.004_bb0320) 2014; 219–220 Webster (10.1016/j.geoderma.2018.04.004_bb0600) 2007 Li (10.1016/j.geoderma.2018.04.004_bb0340) 2013; 104 Baxter (10.1016/j.geoderma.2018.04.004_bb0015) 2005; vol. 128 Takagi (10.1016/j.geoderma.2018.04.004_bb0535) 2012; 173–174 Zhang (10.1016/j.geoderma.2018.04.004_bb0615) 2012 Webster (10.1016/j.geoderma.2018.04.004_bb0580) 1994; 62 Shi (10.1016/j.geoderma.2018.04.004_bb0510) 2011; 162 Lark (10.1016/j.geoderma.2018.04.004_bb0295) 2012; 1 Li (10.1016/j.geoderma.2018.04.004_bb0325) 2010; 159 Li (10.1016/j.geoderma.2018.04.004_bb0335) 2011; 26 Haberlandt (10.1016/j.geoderma.2018.04.004_bb0165) 2007; 332 Niang (10.1016/j.geoderma.2018.04.004_bb0440) 2014; 78 Goovaerts (10.1016/j.geoderma.2018.04.004_bb0125) 1999; 34 Hoeting (10.1016/j.geoderma.2018.04.004_bb0220) 1999; 14 Wright (10.1016/j.geoderma.2018.04.004_bb0605) 1979; 22 Mishra (10.1016/j.geoderma.2018.04.004_bb0420) 2012; 189–190 Lark (10.1016/j.geoderma.2018.04.004_bb0305) 2006; 31 Thompson (10.1016/j.geoderma.2018.04.004_bb4010) 2012 Odgers (10.1016/j.geoderma.2018.04.004_bb0460) 2014; 214–215 Hartemink (10.1016/j.geoderma.2018.04.004_bb0180) 2010 Webster (10.1016/j.geoderma.2018.04.004_bb0595) 1992; 43 Bishop (10.1016/j.geoderma.2018.04.004_bb0025) 2001; vol. 103 Minasny (10.1016/j.geoderma.2018.04.004_bb0405) 2012 Bellon-Maurel (10.1016/j.geoderma.2018.04.004_bb0020) 2010; 29 Burrough (10.1016/j.geoderma.2018.04.004_bb0060) 1986 Karunaratne (10.1016/j.geoderma.2018.04.004_bb0230) 2014; 219–220 Vanwalleghem (10.1016/j.geoderma.2018.04.004_bb0550) 2010; 157 Grunwald (10.1016/j.geoderma.2018.04.004_bb0150) 2009; 152 Lark (10.1016/j.geoderma.2018.04.004_bb0290) 1999; 92 Goswami (10.1016/j.geoderma.2018.04.004_bb0135) 2007; 334 Lagacherie (10.1016/j.geoderma.2018.04.004_bb0275) 2006 Poggio (10.1016/j.geoderma.2018.04.004_bb0480) 2014; 232–234 Cressie (10.1016/j.geoderma.2018.04.004_bb0090) 1993 Webster (10.1016/j.geoderma.2018.04.004_bb0590) 1980; 31 Sun (10.1016/j.geoderma.2018.04.004_bb0530) 2012 Leopold (10.1016/j.geoderma.2018.04.004_bb0315) 2006; 130 Breiman (10.1016/j.geoderma.2018.04.004_bb0050) 2001; 45 Boettinger (10.1016/j.geoderma.2018.04.004_bb0040) 2010 Raftery (10.1016/j.geoderma.2018.04.004_bb0490) 2005; 133 Stacey (10.1016/j.geoderma.2018.04.004_bb0520) 2006; 135 Hijmans (10.1016/j.geoderma.2018.04.004_bb0215) 2005; 25 Knotters (10.1016/j.geoderma.2018.04.004_bb0245) 1995; 67 Goovaerts (10.1016/j.geoderma.2018.04.004_bb0130) 2001; vol. 103 Hengl (10.1016/j.geoderma.2018.04.004_bb0195) 2007; vol. 140 Lal (10.1016/j.geoderma.2018.04.004_bb0280) 2004; 123 Minasny (10.1016/j.geoderma.2018.04.004_bb0390) 2006; 32 Burrough (10.1016/j.geoderma.2018.04.004_bb0065) 1994; 62 Carré (10.1016/j.geoderma.2018.04.004_bb0075) 2002; 110 Lamsal (10.1016/j.geoderma.2018.04.004_bb0285) 2006; 135 Chai (10.1016/j.geoderma.2018.04.004_bb0080) 2008; 148 Bockheim (10.1016/j.geoderma.2018.04.004_bb0035) 2010; 159 Mishra (10.1016/j.geoderma.2018.04.004_bb0415) 2010; 74 Vasques (10.1016/j.geoderma.2018.04.004_bb0560) 2010; 156 Malone (10.1016/j.geoderma.2018.04.004_bb0355) 2014; 232–234 Gessler (10.1016/j.geoderma.2018.04.004_bb0115) 2000; 64 Grunwald (10.1016/j.geoderma.2018.04.004_bb0155) 2016 Wallis (10.1016/j.geoderma.2018.04.004_bb0570) 1965; 1 McKenzie (10.1016/j.geoderma.2018.04.004_bb0380) 1999; 89 Kerry (10.1016/j.geoderma.2018.04.004_bb0235) 2007; vol. 140 Hartemink (10.1016/j.geoderma.2018.04.004_bb0170) 2008; 148 Lark (10.1016/j.geoderma.2018.04.004_bb0310) 2006; 57 Webster (10.1016/j.geoderma.2018.04.004_bb0585) 2000; 97 Minasny (10.1016/j.geoderma.2018.04.004_bb0410) 2013 Hengl (10.1016/j.geoderma.2018.04.004_bb0190) 2007; vol. 33 Wackernagel (10.1016/j.geoderma.2018.04.004_bb0565) 2003 Minasny (10.1016/j.geoderma.2018.04.004_bb0400) 2015 Guo (10.1016/j.geoderma.2018.04.004_bb0160) 2015; 237–238 Moore (10.1016/j.geoderma.2018.04.004_bb0425) 1993; 57 Grunwald (10.1016/j.geoderma.2018.04.004_bb0145) 2008; 10 Li (10.1016/j.geoderma.2018.04.004_bb0330) 2011; 6 Bouma (10.1016/j.geoderma.2018.04.004_bb0045) 2013; 200–201 Dlugoß (10.1016/j.geoderma.2018.04.004_bb0100) 2010; 74 Lado (10.1016/j.geoderma.2018.04.004_bb0270) 2008; 148 Xiong (10.1016/j.geoderma.2018.04.004_bb0610) 2014; 57 Glinka (10.1016/j.geoderma.2018.04.004_bb0120) 1927 Stein (10.1016/j.geoderma.2018.04.004_bb0525) 1999 Douaoui (10.1016/j.geoderma.2018.04.004_bb0105) 2006; 134 Herbst (10.1016/j.geoderma.2018.04.004_bb0205) 2006; 132 Oliver (10.1016/j.geoderma.2018.04.004_bb0475) 2014; 113 Ryan (10.1016/j.geoderma.2018.04.004_bb0505) 2000; 138 Cambardella (10.1016/j.geoderma.2018.04.004_bb0070) 1994; 58 Chaplot (10.1016/j.geoderma.2018.04.004_bb0085) 2010; 157 Kuriakose (10.1016/j.geoderma.2018.04.004_bb0265) 2009; 79 Minasny (10.1016/j.geoderma.2018.04.004_bb0395) 2007; vol. 140 Kravchenko (10.1016/j.geoderma.2018.04.004_bb0250) 2003; 67 Roger (10.1016/j.geoderma.2018.04.004_bb0500) 2014; 217–218 McBratney (10.1016/j.geoderma.2018.04.004_bb0370) 2000; 97 McBratney (10.1016/j.geoderma.2018.04.004_bb0365) 1998 Hartemink (10.1016/j.geoderma.2018.04.004_bb0175) 2008 Biswas (10.1016/j.geoderma.2018.04.004_bb0030) 2013 Watt (10.1016/j.geoderma.2018.04.004_bb0575) 2012; 183–184 Ahmed (10.1016/j.geoderma.2018.04.004_bb0005) 1987; 23 Kim (10.1016/j.geoderma.2018.04.004_bb0240) 2014; 52 Lin (10.1016/j.geoderma.2018.04.004_bb0345) 2005; vol. 182 Odeh (10.1016/j.geoderma.2018.04.004_bb0450) 1994; 63 Kumar (10.1016/j.geoderma.2018.04.004_bb0260) 2012; 189–190 Goovaerts (10.1016/j.geoderma.2018.04.004_bb4000) 1997 Grunwald (10.1016/j.geoderma.2018.04.004_bb0140) 2006 McBratney (10.1016/j.geoderma.2018.04.004_bb0375) 2003; 117 Triantafilis (10.1016/j.geoderma.2018.04.004_bb0540) 2001; 65 Mora-Vallejo (10.1016/j.geoderma.2018.04.004_bb0430) 2008; 76 Odgers (10.1016/j.geoderma.2018.04.004_bb0465) 2015; 237–238 Brunsdon (10.1016/j.geoderma.2018.04.004_bb0055) 1996; 28 Oliver (10.1016/j.geoderma.2018.04.004_bb0470) 1987; 3 Heuvelink (10.1016/j.geoderma.2018.04.004_bb0210) 2001; vol. 100 Simbahan (10.1016/j.geoderma.2018.04.004_bb0515) 2006; 132 |
References_xml | – volume: 20 start-page: 594 year: 2010 end-page: 606 ident: bb0620 article-title: Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes publication-title: Pedosphere – year: 2013 ident: bb0030 article-title: Model averaging for semivariogram model parameters publication-title: Advances in Agrophysical Research – year: 2006 ident: bb0140 article-title: What do we really know about the space-time continuum of soil-landscapes publication-title: Environmental Soil-Landscape Modeling: Geographic Information Technologies and Pedometrics – volume: 6 start-page: 228 year: 2011 end-page: 241 ident: bb0330 article-title: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors publication-title: Ecol. Inform. – volume: 132 start-page: 206 year: 2006 end-page: 221 ident: bb0205 article-title: Geostatistical co-regionalization of soil hydraulic properties in a micro-scale catchment using terrain attributes publication-title: Geoderma – volume: 123 start-page: 1 year: 2004 end-page: 22 ident: bb0280 article-title: Soil carbon sequestration to mitigate climate change publication-title: Geoderma – volume: 31 start-page: 862 year: 2006 end-page: 874 ident: bb0305 article-title: Geostatistical mapping of geomorphic variables in the presence of trend publication-title: Earth Surf. Process. Landf. – volume: vol. 140 start-page: 324 year: 2007 end-page: 336 ident: bb0395 article-title: Spatial prediction of soil properties using EBLUP with the Matérn covariance function publication-title: Geoderma, Pedometrics 2005 – year: 2007 ident: bb0600 article-title: Geostatistics for Environmental Scientists (Statistics in Practice) – volume: 97 start-page: 293 year: 2000 end-page: 327 ident: bb0370 article-title: An overview of pedometric techniques for use in soil survey publication-title: Geoderma – volume: 64 start-page: 2046 year: 2000 ident: bb0115 article-title: Modeling soil–landscape and ecosystem properties using terrain attributes publication-title: Soil Sci. Soc. Am. J. – volume: 78 start-page: 673 year: 2014 ident: bb0440 article-title: Digital mapping of soil texture using RADARSAT-2 polarimetric synthetic aperture radar data publication-title: Soil Sci. Soc. Am. J. – volume: 28 start-page: 281 year: 1996 end-page: 298 ident: bb0055 article-title: Geographically weighted regression: a method for exploring spatial nonstationarity publication-title: Geogr. Anal. – volume: 52 start-page: 6724 year: 2014 end-page: 6737 ident: bb0240 article-title: Soil phosphorus and nitrogen predictions across spatial escalating scales in an aquatic ecosystem using remote sensing images publication-title: IEEE Trans. Geoscience Remote Sensing J. – volume: 237–238 start-page: 190 year: 2015 end-page: 198 ident: bb0465 article-title: Digital soil property mapping and uncertainty estimation using soil class probability rasters publication-title: Geoderma – volume: 134 start-page: 217 year: 2006 end-page: 230 ident: bb0105 article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data publication-title: Geoderma – volume: 31 start-page: 505 year: 1980 end-page: 524 ident: bb0590 article-title: Optimal interpolation and isarithmic mapping of soil properties ii changing Drift and Universal Kriging publication-title: J. Soil Sci. – volume: 157 start-page: 154 year: 2010 end-page: 164 ident: bb0085 article-title: Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity publication-title: Geoderma – volume: vol. 103 start-page: 3 year: 2001 end-page: 26 ident: bb0130 article-title: Geostatistical modelling of uncertainty in soil science publication-title: Geoderma, Estimating Uncertainty in Soil Models – volume: 62 start-page: 311 year: 1994 end-page: 326 ident: bb0065 article-title: The state of the art in pedometrics publication-title: Geoderma – start-page: 51 year: 1998 end-page: 62 ident: bb0365 article-title: Some considerations on methods for spatially aggregating and disaggregating soil information publication-title: Soil and Water Quality at Different Scales – volume: 93 start-page: 38 year: 2012 end-page: 48 ident: bb0545 article-title: The effect of terrain and management on the spatial variability of soil properties in an apple orchard publication-title: Catena – start-page: 343 year: 2002 end-page: 347 ident: bb0435 article-title: Soil spatial variability publication-title: Soil Physics Companion – volume: 217–218 start-page: 26 year: 2014 end-page: 36 ident: bb0500 article-title: Spatial variability of soil phosphorus in the Fribourg canton, Switzerland publication-title: Geoderma – volume: vol. 103 start-page: 149 year: 2001 end-page: 160 ident: bb0025 article-title: A comparison of prediction methods for the creation of field-extent soil property maps publication-title: Geoderma, Estimating Uncertainty in Soil Models – volume: 57 start-page: 787 year: 2006 end-page: 799 ident: bb0310 article-title: On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E-BLUP) with REML publication-title: Eur. J. Soil Sci. – volume: 120 start-page: 75 year: 2004 end-page: 93 ident: bb0185 article-title: A generic framework for spatial prediction of soil variables based on regression-kriging publication-title: Geoderma – volume: 74 start-page: 906 year: 2010 ident: bb0415 article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale publication-title: Soil Sci. Soc. Am. J. – start-page: 1 year: 2013 end-page: 47 ident: bb0410 article-title: Digital mapping of soil carbon publication-title: Advances in Agronomy – volume: 34 start-page: 227 year: 1999 end-page: 242 ident: bb0125 article-title: Using elevation to aid the geostatistical mapping of rainfall erosivity publication-title: Catena – volume: 26 start-page: 1647 year: 2011 end-page: 1659 ident: bb0335 article-title: Application of machine learning methods to spatial interpolation of environmental variables publication-title: Environ. Model. Softw. – volume: 67 start-page: 215 year: 1995 end-page: 226 ident: bb0455 article-title: Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging publication-title: Geoderma – volume: 99 start-page: 12 year: 2007 end-page: 17 ident: bb0255 article-title: Can topographical and yield data substantially improve total soil carbon mapping by regression kriging? publication-title: Agron. J. – volume: 219–220 start-page: 46 year: 2014 end-page: 57 ident: bb0320 article-title: Covariate selection with iterative principal component analysis for predicting physical soil properties publication-title: Geoderma – volume: vol. 33 start-page: 1301 year: 2007 end-page: 1315 ident: bb0190 article-title: About regression-kriging: from equations to case studies publication-title: Comput. Geosci., Spatial Analysis Spatial Analysis – volume: 25 start-page: 1965 year: 2005 end-page: 1978 ident: bb0215 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. – volume: 4 start-page: 335 year: 1984 end-page: 349 ident: bb0110 article-title: Geostatistical strategy for soil sampling: the survey and the census publication-title: Environ. Monit. Assess. – volume: 67 start-page: 1564 year: 2003 ident: bb0250 article-title: Influence of spatial structure on accuracy of interpolation methods publication-title: Soil Sci. Soc. Am. J. – volume: 162 start-page: 347 year: 2011 end-page: 357 ident: bb0510 article-title: Surface modelling of soil properties based on land use information publication-title: Geoderma – volume: 58 start-page: 1501 year: 1994 ident: bb0070 article-title: Field-scale variability of soil properties in Central Iowa soils publication-title: Soil Sci. Soc. Am. J. – volume: 237–238 start-page: 49 year: 2015 end-page: 59 ident: bb0160 article-title: Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach publication-title: Geoderma – year: 2008 ident: bb0175 article-title: Digital Soil Mapping With Limited Data – volume: 132 start-page: 471 year: 2006 end-page: 489 ident: bb0515 article-title: Fine-resolution mapping of soil organic carbon based on multivariate secondary data publication-title: Geoderma – volume: 74 start-page: 870 year: 2010 ident: bb0555 article-title: Upscaling of dynamic soil organic carbon pools in a north-central Florida watershed publication-title: Soil Sci. Soc. Am. J. – volume: 159 start-page: 243 year: 2010 end-page: 251 ident: bb0035 article-title: Soil-factorial models and earth-system science: a review publication-title: Geoderma – volume: 3 start-page: 8 year: 1987 end-page: 20 ident: bb0470 article-title: Geostatistics and its application to soil science publication-title: Soil Use Manag. – volume: 135 start-page: 107 year: 2006 end-page: 117 ident: bb0520 article-title: Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil publication-title: Geoderma – start-page: 423 year: 2010 end-page: 428 ident: bb0180 article-title: GlobalSoilMap.net – a new digital soil map of the world publication-title: Digital Soil Mapping, Progress in Soil Science – volume: 214–215 start-page: 91 year: 2014 end-page: 100 ident: bb0460 article-title: Disaggregating and harmonising soil map units through resampled classification trees publication-title: Geoderma – volume: 200–201 start-page: 130 year: 2013 end-page: 139 ident: bb0045 article-title: Framing soils as an actor when dealing with wicked environmental problems publication-title: Geoderma – volume: 97 start-page: 237 year: 2000 end-page: 254 ident: bb0445 article-title: Using AVHRR images for spatial prediction of clay content in the lower Namoi Valley of eastern Australia publication-title: Geoderma – volume: 113 start-page: 56 year: 2014 end-page: 69 ident: bb0475 article-title: A tutorial guide to geostatistics: computing and modelling variograms and kriging publication-title: Catena – year: 1941 ident: bb0225 article-title: Factors of Soil Formation – volume: 152 start-page: 195 year: 2009 end-page: 207 ident: bb0150 article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches publication-title: Geoderma – volume: vol. 140 start-page: 428 year: 2007 end-page: 443 ident: bb0495 article-title: Incorporation of spectral data into multivariate geostatistical models to map soil phosphorus variability in a Florida wetland publication-title: Geoderma, Pedometrics 2005 – volume: 334 start-page: 125 year: 2007 end-page: 140 ident: bb0135 article-title: Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach publication-title: J. Hydrol. – start-page: 16 year: 2012 end-page: 23 ident: bb0530 article-title: Analysis and prediction of soil properties using local regression-kriging publication-title: Geoderma, Entering the Digital Era: Special Issue of Pedometrics 2009, Beijing 171–172 – volume: 148 start-page: 189 year: 2008 end-page: 199 ident: bb0270 article-title: Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database publication-title: Geoderma – volume: 130 start-page: 368 year: 2006 end-page: 386 ident: bb0315 article-title: Accounting for change of support in spatial accuracy assessment of modelled soil mineral phosphorous concentration publication-title: Geoderma – volume: 232–234 start-page: 284 year: 2014 end-page: 299 ident: bb0480 article-title: National scale 3D modelling of soil organic carbon stocks with uncertainty propagation — an example from Scotland publication-title: Geoderma – volume: 14 start-page: 382 year: 1999 end-page: 417 ident: bb0220 article-title: Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors) publication-title: Stat. Sci. – year: 1927 ident: bb0120 article-title: The Great Soil Groups of the World and Their Development. Transl. From German by C.F. Marbut Edwards, Ann Arbor, MIGoovaerts, P., 1997 – volume: 332 start-page: 144 year: 2007 end-page: 157 ident: bb0165 article-title: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event publication-title: J. Hydrol. – volume: 9 year: 2014 ident: bb0200 article-title: SoilGrids1km — global soil information based on automated mapping publication-title: PLoS ONE – volume: vol. 140 start-page: 417 year: 2007 end-page: 427 ident: bb0195 article-title: Methods to interpolate soil categorical variables from profile observations: lessons from Iran publication-title: Geoderma, Pedometrics 2005 – volume: vol. 182 start-page: 271 year: 2005 end-page: 290 ident: bb0345 article-title: Assessment of soil spatial variability at multiple scales publication-title: Ecol. Model., Scaling, Fractals and Diversity in Soils and Ecohydrology – volume: 232–234 start-page: 34 year: 2014 end-page: 44 ident: bb0355 article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data publication-title: Geoderma – volume: 160 start-page: 175 year: 2010 end-page: 188 ident: bb0485 article-title: Soil available water capacity interpolation and spatial uncertainty modelling at multiple geographical extents publication-title: Geoderma – year: 1986 ident: bb0060 article-title: Principles of geographical information systems for land resources assessment publication-title: Monographs on Soil and Resources Survey – year: 2015 ident: bb0400 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma – volume: 189–190 start-page: 627 year: 2012 end-page: 634 ident: bb0260 article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock publication-title: Geoderma – volume: 55 start-page: 799 year: 2004 end-page: 813 ident: bb0300 article-title: Model-based analysis using REML for inference from systematically sampled data on soil publication-title: Eur. J. Soil Sci. – volume: 110 start-page: 241 year: 2002 end-page: 263 ident: bb0075 article-title: Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes publication-title: Geoderma – volume: 1 start-page: 92 year: 2012 end-page: 99 ident: bb0295 article-title: Towards soil geostatistics publication-title: Spat. Stat. – volume: 189–190 start-page: 288 year: 2012 end-page: 295 ident: bb0420 article-title: Improving regional soil carbon inventories: combining the IPCC carbon inventory method with regression kriging publication-title: Geoderma – year: 2003 ident: bb0565 article-title: Multivariate Geostatistics: an Introduction With Applications – volume: 89 start-page: 67 year: 1999 end-page: 94 ident: bb0380 article-title: Spatial prediction of soil properties using environmental correlation publication-title: Geoderma – volume: 62 start-page: 1 year: 1994 end-page: 15 ident: bb0580 article-title: The development of pedometrics publication-title: Geoderma – year: 2006 ident: bb0275 article-title: Digital Soil Mapping: An Introductory Perspective – volume: 57 start-page: 443 year: 1993 end-page: 452 ident: bb0425 article-title: Soil attribute prediction using terrain analysis publication-title: Soil Sci. Soc. Am. J. – volume: 43 start-page: 177 year: 1992 end-page: 192 ident: bb0595 article-title: Sample adequately to estimate variograms of soil properties publication-title: J. Soil Sci. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0050 article-title: Random forests publication-title: Mach. Learn. – volume: 10 year: 2008 ident: bb0145 article-title: Reconstruction and scientific visualization of earthscapes considering trends and spatial dependence structures publication-title: New J. Phys. – volume: 135 start-page: 233 year: 2006 end-page: 247 ident: bb0285 article-title: Regional hybrid geospatial modeling of soil nitrate–nitrogen in the Santa Fe River Watershed publication-title: Geoderma – year: 1993 ident: bb0090 article-title: Statistics for spatial data publication-title: Wiley Series in Probability and Mathematical Statistics – volume: 97 start-page: 149 year: 2000 end-page: 163 ident: bb0585 article-title: Is soil variation random? publication-title: Geoderma – volume: 63 start-page: 197 year: 1994 end-page: 214 ident: bb0450 article-title: Spatial prediction of soil properties from landform attributes derived from a digital elevation model publication-title: Geoderma – volume: 1 start-page: 447 year: 1965 end-page: 461 ident: bb0570 article-title: Multivariate statistical methods in hydrology—a comparison using data of known functional relationship publication-title: Water Resour. Res. – year: 1971 ident: bb0360 article-title: The theory of regionalized variables and its applications publication-title: Les Cahiers du Centre de Morphologie Mathématique, No. 5 – volume: 57 start-page: 202 year: 2014 end-page: 215 ident: bb0610 article-title: Holistic environmental soil-landscape modeling of soil organic carbon publication-title: Environ. Model. Softw. – volume: 29 start-page: 1073 year: 2010 end-page: 1081 ident: bb0020 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends Anal. Chem. – volume: 74 start-page: 922 year: 2010 ident: bb0100 article-title: Layer-specific analysis and spatial prediction of soil organic carbon using terrain attributes and erosion modeling publication-title: Soil Sci. Soc. Am. J. – volume: 232–234 start-page: 479 year: 2014 end-page: 486 ident: bb0095 article-title: A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment publication-title: Geoderma – volume: 32 start-page: 1378 year: 2006 end-page: 1388 ident: bb0390 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. – volume: 219–220 start-page: 14 year: 2014 end-page: 23 ident: bb0230 article-title: Catchment scale mapping of measureable soil organic carbon fractions publication-title: Geoderma – volume: 157 start-page: 37 year: 2010 end-page: 45 ident: bb0550 article-title: Spatial variability of soil horizon depth in natural loess-derived soils publication-title: Geoderma – start-page: 35 year: 2012 end-page: 43 ident: bb0615 article-title: Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information publication-title: Geoderma, Entering the Digital Era: Special Issue of Pedometrics 2009, Beijing 171–172 – year: 1997 ident: bb4000 article-title: Geostatistics for natural resources evaluation publication-title: Applied geostatistics series – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bb0375 article-title: On digital soil mapping publication-title: Geoderma – volume: 67 start-page: 227 year: 1995 end-page: 246 ident: bb0245 article-title: A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations publication-title: Geoderma – year: 1999 ident: bb0525 article-title: Interpolation of spatial data publication-title: Springer Series in Statistics – volume: 159 start-page: 63 year: 2010 end-page: 75 ident: bb0325 article-title: Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information? publication-title: Geoderma – year: 2016 ident: bb0155 publication-title: The meta soil model: an integrative multi-model framework for soil security – volume: 23 start-page: 1717 year: 1987 end-page: 1737 ident: bb0005 article-title: Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity publication-title: Water Resour. Res. – volume: 163 start-page: 275 year: 2011 end-page: 282 ident: bb0350 article-title: Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods publication-title: Geoderma – volume: 148 start-page: 123 year: 2008 end-page: 129 ident: bb0170 article-title: A soil science renaissance publication-title: Geoderma – volume: 79 start-page: 27 year: 2009 end-page: 38 ident: bb0265 article-title: Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India publication-title: Catena – volume: 76 start-page: 44 year: 2008 end-page: 53 ident: bb0430 article-title: Small scale digital soil mapping in Southeastern Kenya publication-title: Catena – volume: 35 start-page: 979 year: 1997 end-page: 994 ident: bb0010 article-title: Is pedology dead and buried? publication-title: Aust. J. Soil Res. – volume: 148 start-page: 159 year: 2008 end-page: 166 ident: bb0080 article-title: Spatial prediction of soil organic matter in the presence of different external trends with REML-EBLUP publication-title: Geoderma – volume: 133 start-page: 1155 year: 2005 end-page: 1174 ident: bb0490 article-title: Using Bayesian model averaging to calibrate forecast ensembles publication-title: Mon. Weather Rev. – volume: 138 start-page: 139 year: 2000 end-page: 157 ident: bb0505 article-title: Integrating forest soils information across scales: spatial prediction of soil properties under Australian forests publication-title: For. Ecol. Manag. – volume: vol. 128 start-page: 192 year: 2005 end-page: 207 ident: bb0385 article-title: The Matérn function as a general model for soil variograms publication-title: Geoderma, Pedometrics 2003 – year: 2012 ident: bb0405 article-title: Digital Soil Assessments and Beyond: Proceedings of the 5th Global Workshop on Digital Soil Mapping 2012, Sydney – volume: 22 start-page: 297 year: 1979 end-page: 313 ident: bb0605 article-title: On the analysis of soil variability, with an example from Spain publication-title: Geoderma – volume: vol. 128 start-page: 325 year: 2005 end-page: 339 ident: bb0015 article-title: The spatial prediction of soil mineral N and potentially available N using elevation publication-title: Geoderma, Pedometrics 2003 – start-page: 665 year: 2012 end-page: 709 ident: bb4010 article-title: Digital soil mapping publication-title: Hydropedology – volume: 104 start-page: 210 year: 2013 end-page: 218 ident: bb0340 article-title: Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach publication-title: Catena – volume: 156 start-page: 326 year: 2010 end-page: 336 ident: bb0560 article-title: Regional modelling of soil carbon at multiple depths within a subtropical watershed publication-title: Geoderma – volume: 183–184 start-page: 49 year: 2012 end-page: 57 ident: bb0575 article-title: Use of regression kriging to develop a carbon:nitrogen ratio surface for New Zealand publication-title: Geoderma – volume: vol. 100 start-page: 269 year: 2001 end-page: 301 ident: bb0210 article-title: Modelling soil variation: past, present, and future publication-title: Geoderma, Developments and Trends in Soil Science – year: 2010 ident: bb0040 article-title: Digital Soil Mapping: Bridging Research, Environmental Application, and Operation – volume: 65 start-page: 869 year: 2001 end-page: 878 ident: bb0540 article-title: Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton publication-title: Soil Sci. Soc. Am. J. – volume: 173–174 start-page: 289 year: 2012 end-page: 302 ident: bb0535 article-title: Changing controls of soil moisture spatial organization in the Shale Hills Catchment publication-title: Geoderma – volume: vol. 140 start-page: 383 year: 2007 end-page: 396 ident: bb0235 article-title: Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood publication-title: Geoderma, Pedometrics 2005 – volume: 92 start-page: 141 year: 1999 end-page: 165 ident: bb0290 article-title: Soil–landform relationships at within-field scales: an investigation using continuous classification publication-title: Geoderma – volume: 63 start-page: 197 year: 1994 ident: 10.1016/j.geoderma.2018.04.004_bb0450 article-title: Spatial prediction of soil properties from landform attributes derived from a digital elevation model publication-title: Geoderma doi: 10.1016/0016-7061(94)90063-9 – volume: 25 start-page: 1965 year: 2005 ident: 10.1016/j.geoderma.2018.04.004_bb0215 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.1276 – volume: 26 start-page: 1647 year: 2011 ident: 10.1016/j.geoderma.2018.04.004_bb0335 article-title: Application of machine learning methods to spatial interpolation of environmental variables publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2011.07.004 – volume: 148 start-page: 159 year: 2008 ident: 10.1016/j.geoderma.2018.04.004_bb0080 article-title: Spatial prediction of soil organic matter in the presence of different external trends with REML-EBLUP publication-title: Geoderma doi: 10.1016/j.geoderma.2008.09.018 – volume: vol. 103 start-page: 3 year: 2001 ident: 10.1016/j.geoderma.2018.04.004_bb0130 article-title: Geostatistical modelling of uncertainty in soil science – year: 2015 ident: 10.1016/j.geoderma.2018.04.004_bb0400 article-title: Digital soil mapping: a brief history and some lessons publication-title: Geoderma – volume: 62 start-page: 311 year: 1994 ident: 10.1016/j.geoderma.2018.04.004_bb0065 article-title: The state of the art in pedometrics publication-title: Geoderma doi: 10.1016/0016-7061(94)90043-4 – volume: 332 start-page: 144 year: 2007 ident: 10.1016/j.geoderma.2018.04.004_bb0165 article-title: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.06.028 – volume: 97 start-page: 237 year: 2000 ident: 10.1016/j.geoderma.2018.04.004_bb0445 article-title: Using AVHRR images for spatial prediction of clay content in the lower Namoi Valley of eastern Australia publication-title: Geoderma doi: 10.1016/S0016-7061(00)00041-0 – start-page: 16 year: 2012 ident: 10.1016/j.geoderma.2018.04.004_bb0530 article-title: Analysis and prediction of soil properties using local regression-kriging – volume: vol. 140 start-page: 324 year: 2007 ident: 10.1016/j.geoderma.2018.04.004_bb0395 article-title: Spatial prediction of soil properties using EBLUP with the Matérn covariance function – volume: 200–201 start-page: 130 year: 2013 ident: 10.1016/j.geoderma.2018.04.004_bb0045 article-title: Framing soils as an actor when dealing with wicked environmental problems publication-title: Geoderma doi: 10.1016/j.geoderma.2013.02.011 – volume: vol. 33 start-page: 1301 year: 2007 ident: 10.1016/j.geoderma.2018.04.004_bb0190 article-title: About regression-kriging: from equations to case studies – volume: 74 start-page: 922 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0100 article-title: Layer-specific analysis and spatial prediction of soil organic carbon using terrain attributes and erosion modeling publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0325 – volume: 133 start-page: 1155 year: 2005 ident: 10.1016/j.geoderma.2018.04.004_bb0490 article-title: Using Bayesian model averaging to calibrate forecast ensembles publication-title: Mon. Weather Rev. doi: 10.1175/MWR2906.1 – volume: 97 start-page: 293 year: 2000 ident: 10.1016/j.geoderma.2018.04.004_bb0370 article-title: An overview of pedometric techniques for use in soil survey publication-title: Geoderma doi: 10.1016/S0016-7061(00)00043-4 – volume: 31 start-page: 862 year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0305 article-title: Geostatistical mapping of geomorphic variables in the presence of trend publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.1296 – volume: 93 start-page: 38 year: 2012 ident: 10.1016/j.geoderma.2018.04.004_bb0545 article-title: The effect of terrain and management on the spatial variability of soil properties in an apple orchard publication-title: Catena doi: 10.1016/j.catena.2012.01.010 – volume: 183–184 start-page: 49 year: 2012 ident: 10.1016/j.geoderma.2018.04.004_bb0575 article-title: Use of regression kriging to develop a carbon:nitrogen ratio surface for New Zealand publication-title: Geoderma doi: 10.1016/j.geoderma.2012.03.013 – volume: vol. 128 start-page: 325 year: 2005 ident: 10.1016/j.geoderma.2018.04.004_bb0015 article-title: The spatial prediction of soil mineral N and potentially available N using elevation – start-page: 51 year: 1998 ident: 10.1016/j.geoderma.2018.04.004_bb0365 article-title: Some considerations on methods for spatially aggregating and disaggregating soil information – volume: 1 start-page: 447 year: 1965 ident: 10.1016/j.geoderma.2018.04.004_bb0570 article-title: Multivariate statistical methods in hydrology—a comparison using data of known functional relationship publication-title: Water Resour. Res. doi: 10.1029/WR001i004p00447 – volume: 62 start-page: 1 year: 1994 ident: 10.1016/j.geoderma.2018.04.004_bb0580 article-title: The development of pedometrics publication-title: Geoderma doi: 10.1016/0016-7061(94)90024-8 – volume: 219–220 start-page: 46 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0320 article-title: Covariate selection with iterative principal component analysis for predicting physical soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.013 – volume: 132 start-page: 206 year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0205 article-title: Geostatistical co-regionalization of soil hydraulic properties in a micro-scale catchment using terrain attributes publication-title: Geoderma doi: 10.1016/j.geoderma.2005.05.008 – volume: vol. 100 start-page: 269 year: 2001 ident: 10.1016/j.geoderma.2018.04.004_bb0210 article-title: Modelling soil variation: past, present, and future – volume: 157 start-page: 37 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0550 article-title: Spatial variability of soil horizon depth in natural loess-derived soils publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.013 – year: 2008 ident: 10.1016/j.geoderma.2018.04.004_bb0175 – volume: 74 start-page: 906 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0415 article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0158 – volume: vol. 128 start-page: 192 year: 2005 ident: 10.1016/j.geoderma.2018.04.004_bb0385 article-title: The Matérn function as a general model for soil variograms – volume: 4 start-page: 335 year: 1984 ident: 10.1016/j.geoderma.2018.04.004_bb0110 article-title: Geostatistical strategy for soil sampling: the survey and the census publication-title: Environ. Monit. Assess. doi: 10.1007/BF00394172 – volume: 135 start-page: 233 year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0285 article-title: Regional hybrid geospatial modeling of soil nitrate–nitrogen in the Santa Fe River Watershed publication-title: Geoderma doi: 10.1016/j.geoderma.2005.12.009 – volume: 237–238 start-page: 49 year: 2015 ident: 10.1016/j.geoderma.2018.04.004_bb0160 article-title: Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach publication-title: Geoderma doi: 10.1016/j.geoderma.2014.08.009 – volume: 78 start-page: 673 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0440 article-title: Digital mapping of soil texture using RADARSAT-2 polarimetric synthetic aperture radar data publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.07.0307 – volume: 214–215 start-page: 91 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0460 article-title: Disaggregating and harmonising soil map units through resampled classification trees publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.024 – volume: 97 start-page: 149 year: 2000 ident: 10.1016/j.geoderma.2018.04.004_bb0585 article-title: Is soil variation random? publication-title: Geoderma doi: 10.1016/S0016-7061(00)00036-7 – volume: 157 start-page: 154 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0085 article-title: Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity publication-title: Geoderma doi: 10.1016/j.geoderma.2010.04.006 – year: 1971 ident: 10.1016/j.geoderma.2018.04.004_bb0360 article-title: The theory of regionalized variables and its applications – volume: 237–238 start-page: 190 year: 2015 ident: 10.1016/j.geoderma.2018.04.004_bb0465 article-title: Digital soil property mapping and uncertainty estimation using soil class probability rasters publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.009 – volume: 64 start-page: 2046 year: 2000 ident: 10.1016/j.geoderma.2018.04.004_bb0115 article-title: Modeling soil–landscape and ecosystem properties using terrain attributes publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.6462046x – volume: vol. 140 start-page: 417 year: 2007 ident: 10.1016/j.geoderma.2018.04.004_bb0195 article-title: Methods to interpolate soil categorical variables from profile observations: lessons from Iran – volume: 123 start-page: 1 year: 2004 ident: 10.1016/j.geoderma.2018.04.004_bb0280 article-title: Soil carbon sequestration to mitigate climate change publication-title: Geoderma doi: 10.1016/j.geoderma.2004.01.032 – volume: 79 start-page: 27 year: 2009 ident: 10.1016/j.geoderma.2018.04.004_bb0265 article-title: Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India publication-title: Catena doi: 10.1016/j.catena.2009.05.005 – volume: 67 start-page: 227 year: 1995 ident: 10.1016/j.geoderma.2018.04.004_bb0245 article-title: A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations publication-title: Geoderma doi: 10.1016/0016-7061(95)00011-C – volume: 217–218 start-page: 26 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0500 article-title: Spatial variability of soil phosphorus in the Fribourg canton, Switzerland publication-title: Geoderma doi: 10.1016/j.geoderma.2013.11.001 – volume: 134 start-page: 217 year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0105 article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data publication-title: Geoderma doi: 10.1016/j.geoderma.2005.10.009 – volume: 160 start-page: 175 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0485 article-title: Soil available water capacity interpolation and spatial uncertainty modelling at multiple geographical extents publication-title: Geoderma doi: 10.1016/j.geoderma.2010.09.015 – volume: 14 start-page: 382 year: 1999 ident: 10.1016/j.geoderma.2018.04.004_bb0220 article-title: Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors) publication-title: Stat. Sci. doi: 10.1214/ss/1009212519 – volume: 334 start-page: 125 year: 2007 ident: 10.1016/j.geoderma.2018.04.004_bb0135 article-title: Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.10.002 – volume: 189–190 start-page: 627 year: 2012 ident: 10.1016/j.geoderma.2018.04.004_bb0260 article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.022 – volume: 99 start-page: 12 year: 2007 ident: 10.1016/j.geoderma.2018.04.004_bb0255 article-title: Can topographical and yield data substantially improve total soil carbon mapping by regression kriging? publication-title: Agron. J. doi: 10.2134/agronj2005.0251 – volume: 232–234 start-page: 34 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0355 article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.033 – volume: 31 start-page: 505 year: 1980 ident: 10.1016/j.geoderma.2018.04.004_bb0590 article-title: Optimal interpolation and isarithmic mapping of soil properties ii changing Drift and Universal Kriging publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1980.tb02100.x – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geoderma.2018.04.004_bb0050 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 89 start-page: 67 year: 1999 ident: 10.1016/j.geoderma.2018.04.004_bb0380 article-title: Spatial prediction of soil properties using environmental correlation publication-title: Geoderma doi: 10.1016/S0016-7061(98)00137-2 – volume: 156 start-page: 326 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0560 article-title: Regional modelling of soil carbon at multiple depths within a subtropical watershed publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.002 – volume: 43 start-page: 177 year: 1992 ident: 10.1016/j.geoderma.2018.04.004_bb0595 article-title: Sample adequately to estimate variograms of soil properties publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1992.tb00128.x – volume: 67 start-page: 215 year: 1995 ident: 10.1016/j.geoderma.2018.04.004_bb0455 article-title: Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging publication-title: Geoderma doi: 10.1016/0016-7061(95)00007-B – volume: 35 start-page: 979 year: 1997 ident: 10.1016/j.geoderma.2018.04.004_bb0010 article-title: Is pedology dead and buried? publication-title: Aust. J. Soil Res. doi: 10.1071/S96110 – year: 1997 ident: 10.1016/j.geoderma.2018.04.004_bb4000 article-title: Geostatistics for natural resources evaluation – volume: 57 start-page: 787 year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0310 article-title: On spatial prediction of soil properties in the presence of a spatial trend: the empirical best linear unbiased predictor (E-BLUP) with REML publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2005.00768.x – volume: 52 start-page: 6724 issue: 10 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0240 article-title: Soil phosphorus and nitrogen predictions across spatial escalating scales in an aquatic ecosystem using remote sensing images publication-title: IEEE Trans. Geoscience Remote Sensing J. doi: 10.1109/TGRS.2014.2301443 – volume: 130 start-page: 368 year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0315 article-title: Accounting for change of support in spatial accuracy assessment of modelled soil mineral phosphorous concentration publication-title: Geoderma doi: 10.1016/j.geoderma.2005.02.008 – year: 2007 ident: 10.1016/j.geoderma.2018.04.004_bb0600 – volume: 23 start-page: 1717 year: 1987 ident: 10.1016/j.geoderma.2018.04.004_bb0005 article-title: Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity publication-title: Water Resour. Res. doi: 10.1029/WR023i009p01717 – year: 1941 ident: 10.1016/j.geoderma.2018.04.004_bb0225 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.geoderma.2018.04.004_bb0375 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 92 start-page: 141 year: 1999 ident: 10.1016/j.geoderma.2018.04.004_bb0290 article-title: Soil–landform relationships at within-field scales: an investigation using continuous classification publication-title: Geoderma doi: 10.1016/S0016-7061(99)00028-2 – volume: 65 start-page: 869 year: 2001 ident: 10.1016/j.geoderma.2018.04.004_bb0540 article-title: Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.653869x – volume: 148 start-page: 123 year: 2008 ident: 10.1016/j.geoderma.2018.04.004_bb0170 article-title: A soil science renaissance publication-title: Geoderma doi: 10.1016/j.geoderma.2008.10.006 – volume: 104 start-page: 210 year: 2013 ident: 10.1016/j.geoderma.2018.04.004_bb0340 article-title: Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach publication-title: Catena doi: 10.1016/j.catena.2012.11.012 – volume: 152 start-page: 195 year: 2009 ident: 10.1016/j.geoderma.2018.04.004_bb0150 article-title: Multi-criteria characterization of recent digital soil mapping and modeling approaches publication-title: Geoderma doi: 10.1016/j.geoderma.2009.06.003 – volume: 113 start-page: 56 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0475 article-title: A tutorial guide to geostatistics: computing and modelling variograms and kriging publication-title: Catena doi: 10.1016/j.catena.2013.09.006 – year: 2013 ident: 10.1016/j.geoderma.2018.04.004_bb0030 article-title: Model averaging for semivariogram model parameters – volume: 28 start-page: 281 year: 1996 ident: 10.1016/j.geoderma.2018.04.004_bb0055 article-title: Geographically weighted regression: a method for exploring spatial nonstationarity publication-title: Geogr. Anal. doi: 10.1111/j.1538-4632.1996.tb00936.x – start-page: 35 year: 2012 ident: 10.1016/j.geoderma.2018.04.004_bb0615 article-title: Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information – volume: 232–234 start-page: 479 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0095 article-title: A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment publication-title: Geoderma doi: 10.1016/j.geoderma.2014.06.007 – volume: vol. 140 start-page: 383 year: 2007 ident: 10.1016/j.geoderma.2018.04.004_bb0235 article-title: Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood – volume: 148 start-page: 189 year: 2008 ident: 10.1016/j.geoderma.2018.04.004_bb0270 article-title: Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database publication-title: Geoderma doi: 10.1016/j.geoderma.2008.09.020 – volume: 67 start-page: 1564 year: 2003 ident: 10.1016/j.geoderma.2018.04.004_bb0250 article-title: Influence of spatial structure on accuracy of interpolation methods publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2003.1564 – volume: 162 start-page: 347 year: 2011 ident: 10.1016/j.geoderma.2018.04.004_bb0510 article-title: Surface modelling of soil properties based on land use information publication-title: Geoderma doi: 10.1016/j.geoderma.2011.03.007 – volume: vol. 182 start-page: 271 year: 2005 ident: 10.1016/j.geoderma.2018.04.004_bb0345 article-title: Assessment of soil spatial variability at multiple scales – start-page: 343 year: 2002 ident: 10.1016/j.geoderma.2018.04.004_bb0435 article-title: Soil spatial variability – volume: 219–220 start-page: 14 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0230 article-title: Catchment scale mapping of measureable soil organic carbon fractions publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.005 – volume: 74 start-page: 870 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0555 article-title: Upscaling of dynamic soil organic carbon pools in a north-central Florida watershed publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0242 – volume: 32 start-page: 1378 year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0390 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 20 start-page: 594 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0620 article-title: Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes publication-title: Pedosphere doi: 10.1016/S1002-0160(10)60049-5 – year: 1986 ident: 10.1016/j.geoderma.2018.04.004_bb0060 article-title: Principles of geographical information systems for land resources assessment – volume: 132 start-page: 471 year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0515 article-title: Fine-resolution mapping of soil organic carbon based on multivariate secondary data publication-title: Geoderma doi: 10.1016/j.geoderma.2005.07.001 – year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0275 – volume: 3 start-page: 8 year: 1987 ident: 10.1016/j.geoderma.2018.04.004_bb0470 article-title: Geostatistics and its application to soil science publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.1987.tb00703.x – volume: 57 start-page: 202 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0610 article-title: Holistic environmental soil-landscape modeling of soil organic carbon publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.03.004 – volume: 22 start-page: 297 year: 1979 ident: 10.1016/j.geoderma.2018.04.004_bb0605 article-title: On the analysis of soil variability, with an example from Spain publication-title: Geoderma doi: 10.1016/0016-7061(79)90026-0 – volume: 159 start-page: 63 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0325 article-title: Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information? publication-title: Geoderma doi: 10.1016/j.geoderma.2010.06.017 – year: 1927 ident: 10.1016/j.geoderma.2018.04.004_bb0120 – volume: 232–234 start-page: 284 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0480 article-title: National scale 3D modelling of soil organic carbon stocks with uncertainty propagation — an example from Scotland publication-title: Geoderma doi: 10.1016/j.geoderma.2014.05.004 – volume: 120 start-page: 75 year: 2004 ident: 10.1016/j.geoderma.2018.04.004_bb0185 article-title: A generic framework for spatial prediction of soil variables based on regression-kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2003.08.018 – start-page: 665 year: 2012 ident: 10.1016/j.geoderma.2018.04.004_bb4010 article-title: Digital soil mapping – volume: 58 start-page: 1501 year: 1994 ident: 10.1016/j.geoderma.2018.04.004_bb0070 article-title: Field-scale variability of soil properties in Central Iowa soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1994.03615995005800050033x – year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0140 article-title: What do we really know about the space-time continuum of soil-landscapes – volume: 55 start-page: 799 year: 2004 ident: 10.1016/j.geoderma.2018.04.004_bb0300 article-title: Model-based analysis using REML for inference from systematically sampled data on soil publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2004.00637.x – volume: 1 start-page: 92 year: 2012 ident: 10.1016/j.geoderma.2018.04.004_bb0295 article-title: Towards soil geostatistics publication-title: Spat. Stat. doi: 10.1016/j.spasta.2012.02.001 – start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2018.04.004_bb0410 article-title: Digital mapping of soil carbon doi: 10.1016/B978-0-12-405942-9.00001-3 – volume: 29 start-page: 1073 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0020 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2010.05.006 – volume: 173–174 start-page: 289 year: 2012 ident: 10.1016/j.geoderma.2018.04.004_bb0535 article-title: Changing controls of soil moisture spatial organization in the Shale Hills Catchment publication-title: Geoderma doi: 10.1016/j.geoderma.2011.11.003 – volume: 110 start-page: 241 year: 2002 ident: 10.1016/j.geoderma.2018.04.004_bb0075 article-title: Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes publication-title: Geoderma doi: 10.1016/S0016-7061(02)00233-1 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.geoderma.2018.04.004_bb0200 article-title: SoilGrids1km — global soil information based on automated mapping publication-title: PLoS ONE doi: 10.1371/journal.pone.0105992 – volume: 138 start-page: 139 year: 2000 ident: 10.1016/j.geoderma.2018.04.004_bb0505 article-title: Integrating forest soils information across scales: spatial prediction of soil properties under Australian forests publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(00)00393-5 – start-page: 423 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0180 article-title: GlobalSoilMap.net – a new digital soil map of the world – volume: 57 start-page: 443 year: 1993 ident: 10.1016/j.geoderma.2018.04.004_bb0425 article-title: Soil attribute prediction using terrain analysis publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1993.03615995005700020026x – year: 1999 ident: 10.1016/j.geoderma.2018.04.004_bb0525 article-title: Interpolation of spatial data doi: 10.1007/978-1-4612-1494-6 – volume: 189–190 start-page: 288 year: 2012 ident: 10.1016/j.geoderma.2018.04.004_bb0420 article-title: Improving regional soil carbon inventories: combining the IPCC carbon inventory method with regression kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2012.06.022 – volume: vol. 140 start-page: 428 year: 2007 ident: 10.1016/j.geoderma.2018.04.004_bb0495 article-title: Incorporation of spectral data into multivariate geostatistical models to map soil phosphorus variability in a Florida wetland – volume: 6 start-page: 228 year: 2011 ident: 10.1016/j.geoderma.2018.04.004_bb0330 article-title: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2010.12.003 – volume: 135 start-page: 107 year: 2006 ident: 10.1016/j.geoderma.2018.04.004_bb0520 article-title: Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil publication-title: Geoderma doi: 10.1016/j.geoderma.2005.11.008 – year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0040 – volume: 76 start-page: 44 year: 2008 ident: 10.1016/j.geoderma.2018.04.004_bb0430 article-title: Small scale digital soil mapping in Southeastern Kenya publication-title: Catena doi: 10.1016/j.catena.2008.09.008 – volume: 34 start-page: 227 year: 1999 ident: 10.1016/j.geoderma.2018.04.004_bb0125 article-title: Using elevation to aid the geostatistical mapping of rainfall erosivity publication-title: Catena doi: 10.1016/S0341-8162(98)00116-7 – year: 2016 ident: 10.1016/j.geoderma.2018.04.004_bb0155 – year: 1993 ident: 10.1016/j.geoderma.2018.04.004_bb0090 article-title: Statistics for spatial data doi: 10.1002/9781119115151 – volume: vol. 103 start-page: 149 year: 2001 ident: 10.1016/j.geoderma.2018.04.004_bb0025 article-title: A comparison of prediction methods for the creation of field-extent soil property maps – year: 2003 ident: 10.1016/j.geoderma.2018.04.004_bb0565 – volume: 163 start-page: 275 year: 2011 ident: 10.1016/j.geoderma.2018.04.004_bb0350 article-title: Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods publication-title: Geoderma doi: 10.1016/j.geoderma.2011.05.004 – volume: 10 issue: 125011 year: 2008 ident: 10.1016/j.geoderma.2018.04.004_bb0145 article-title: Reconstruction and scientific visualization of earthscapes considering trends and spatial dependence structures publication-title: New J. Phys. – volume: 159 start-page: 243 year: 2010 ident: 10.1016/j.geoderma.2018.04.004_bb0035 article-title: Soil-factorial models and earth-system science: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2010.09.005 – year: 2012 ident: 10.1016/j.geoderma.2018.04.004_bb0405 |
SSID | ssj0017020 |
Score | 2.5702837 |
SecondaryResourceType | review_article |
Snippet | Appropriate scale, justifiably reliable, categorical and continuous spatial soil information is urgently needed to address environmental problems and ensure... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 22 |
SubjectTerms | Accuracy Digital soil mapping Pedometrics Regression kriging Soil spatial predictions models |
Title | Regression kriging as a workhorse in the digital soil mapper's toolbox |
URI | https://dx.doi.org/10.1016/j.geoderma.2018.04.004 |
Volume | 326 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4NAEN009aIH42esH80eTDytZYGF5dg0NlVjD8YmvZEFdiu1AimYePK3OwtLo_HQg1dgCHksM2_DzHsIXSugoMLmjETKdoirhCLC9ilhAU8cK1BU1sLzT1NvMnMf5mzeQaN2Fka3VZrc3-T0OlubIwOD5qBIUz3jSz0fyhHV5kvM0xPlrutr_fzbr02bB_UtI81IPaKv_jElvIR3pA3Hav0hymvJU2PY9qdA_Sg64wO0b9giHjYPdIg6MjtCe8PF2ihmyGM0fpaLppc1w2-1y9UCixILrDuuXvN1KXGaYaB5OIGTQLVxmacr_C6KQq5vSlzl-SrKP0_QbHz3MpoQY45AhOOwivA4sVhCWcT92Lap8KhUsRCxElyICPZ1euPreBSKoHR8HsURs6TlwfcGhC-ASn2KulmeyTOEBeeJ0sJzcEPgbzJygwTyse1L11Fu4PUQaxEJY6Mcrg0sVmHbIrYMWyRDjWRouSEg2UODTVzRaGdsjQhawMNfqyCEBL8l9vwfsRdot_lLFBDqX6Jutf6QV0A2qqhfr6Y-2hneP06m30WB1KM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b8IwELUoDG2Hqp8q_fRQqVNEnMSJMyJUBOVjqEBis5zEplCaRECl_vyeg4OoOjB0jXVR9HK5e1bO7yH0pICCCodRK1KOa3lKKEs4AbFoyBLXDhWRhfD8YOh3xt7rhE4qqFWehdFjlab2b2p6Ua3NlYZBs5HPZvqML_EDaEdEmy9RPzhANa1OBclea3Z7neH2Z0JgG3VG4ls6YOeg8Bxek_YcKySICCtUT41n258etdN32qfoxBBG3Nw80xmqyPQcHTenSyOaIS9Q-01ON-OsKf4ojK6mWKywwHro6j1briSepRiYHk5gEdg2XmWzBf4UeS6Xzyu8zrJFlH1fonH7ZdTqWMYfwRKuS9cWixObJoRGLIgdhwifSBULESvBhIhga6f3vq5PoA9KN2BRHFFb2j58csD5QmjWV6iaZqm8RlgwliitPQc3BAonIy9MoCQ7gfRc5YV-HdESER4b8XDtYbHg5ZTYnJdIco0ktz0OSNZRYxuXb-Qz9kaEJeD8VyJwqPF7Ym_-EfuIDjujQZ_3u8PeLTrSK3oshNA7VF0vv-Q9cI919GBy6weaktdS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regression+kriging+as+a+workhorse+in+the+digital+soil+mapper%27s+toolbox&rft.jtitle=Geoderma&rft.au=Keskin%2C+H.&rft.au=Grunwald%2C+S.&rft.date=2018-09-15&rft.issn=0016-7061&rft.volume=326&rft.spage=22&rft.epage=41&rft_id=info:doi/10.1016%2Fj.geoderma.2018.04.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2018_04_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |