X-Machines for Agent-Based Modeling FLAME Perspectives
From the Foreword: "This book exemplifies one of the most successful approaches to modeling and simulating [the] new generation of complex systems. FLAME was designed to make the building of large scale complex systems models straightforward and the simulation code that it generates is highly e...
Saved in:
Main Author | |
---|---|
Format | eBook |
Language | English |
Published |
Milton
CRC Press
2017
Knowledge Unlatched GmbH Taylor & Francis CRC Press LLC Chapman & Hall |
Edition | 1 |
Series | Chapman & Hall/CRC Computer and Information Science Series |
Subjects | |
Online Access | Get full text |
ISBN | 1498723853 9781498723855 0367573156 9780367573157 9781315334523 131535358X 9781315370729 9781498723879 1315334526 149872387X 9781315353586 1315370727 |
DOI | 10.1201/9781315370729 |
Cover
Table of Contents:
- 4.8.1 Constant Variables -- 4.8.2 Time Rules -- Chapter 5 Agents in Social Science -- 5.1 Sugarscape Model -- 5.1.1 Evolution from Bottom-Up -- 5.1.2 Distribution of Wealth -- 5.1.3 Location Is Important -- 5.1.4 Find Agents around Me -- 5.1.5 Handle Multiple 'Eaten' Requests -- 5.1.6 Change Starting Conditions -- 5.2 Modeling Social Networks -- 5.2.1 Set Up a Recurring Function -- 5.2.2 Assigning Conditions with Functions -- 5.2.3 Using Dynamic Arrays and Data Structures -- 5.2.4 Creating Local Dynamic Arrays -- 5.3 Modeling Pedestrians in Crowds -- 5.3.1 Calculate Movement toward Other Agents -- 5.3.2 Entering and Exiting Agents -- Chapter 6 Agents in Economic Markets and Games -- 6.1 Perfect Rationality versus Bounded Rationality -- 6.2 Modeling Multiple Shopper Behaviors -- 6.3 Learning Firms in a Cournot Model -- 6.3.1 Genetic Programming with Agents -- 6.3.2 Filtering Messages in Advance -- 6.3.3 Comparing Two Data Structures -- 6.4 A Virtual Mall Model: Labor and Goods Market Combined -- 6.5 Programming Games -- 6.5.1 Nash Equilibrium -- 6.5.2 Evolutionary Game Theory -- 6.5.3 Evolutionary Stable State -- 6.5.4 Game Theory versus Evolutionary Game Theory -- 6.5.5 Continuous Strategies -- 6.5.6 Red Queen and Equilibrium -- 6.6 Learning in an Iterated Prisoner's Dilemma Game -- 6.7 Multi-Agent Systems and Games -- Chapter 7 Agents in Biology -- 7.1 Example Models -- 7.1.1 Molecular Systems Models -- 7.1.2 Tissue and Organ Models -- 7.1.3 Ecological Models -- 7.1.4 Industrial Applications of Agent-Based Modeling with FLAME -- 7.2 Modeling Epithelial Tissue -- 7.2.1 Merging with Other Toolkits -- 7.3 Modeling Drosophila Embryo Development -- 7.3.1 Stochastic Modeling -- 7.3.2 Converting to an Agent-Based Model -- 7.3.3 Find Optimum Model Settings -- 7.4 Output Files for Analysis -- 7.5 Modeling Pharaoh's Ants (Monomorium pharaonis
- Cover -- Half Title -- PUBLISHED TITLES -- Title -- Copyright -- Dedication -- Contents -- Foreword -- Preface -- List of Figures -- List of Tables -- FLAME Contributors -- Chapter 1 Setting the Stage: Complex Systems, Emergence and Evolution -- 1.1 Complex and Adaptive Systems -- 1.2 What Is Chaos -- 1.3 Constructing Artificial Systems -- 1.4 Importance of Emergence -- 1.5 Dynamic Systems -- 1.6 Is There Evolution at Work -- 1.6.1 Adaptation -- 1.7 Distributing Intelligence -- 1.8 Modeling and Simulation -- 1.8.1 Research Examples -- Chapter 2 Artificial Agents -- 2.1 Intelligent Agents -- 2.1.1 "Can Machines Think -- 2.2 Engineering Self-Organizing Systems -- 2.2.1 Bring in the Agents -- 2.2.2 Characteristics of Agent-Based Models -- 2.3 Agent-Based Modeling Frameworks -- 2.4 Adaptive Agent Design -- 2.5 Mathematical Foundations -- 2.6 Objects or Agents -- 2.7 Influence of Other Research Areas on ABM -- Chapter 3 Designing X-Agents Using FLAME -- 3.1 FLAME and Its X-Machine Methodology -- 3.1.1 Transition Functions -- 3.1.2 Memory and States -- 3.2 Using Agile Methods to Design Agents -- 3.2.1 Extension to Extreme Programming -- 3.3 Overview: FLAME Version 1.0 -- 3.4 Libmboard (FLAME message board library -- 3.4.1 Compiling and Installing Libmboard -- 3.4.2 FLAME's Synchronization Points -- 3.5 FLAME's Missing Functionality -- Chapter 4 Getting Started with FLAME -- 4.1 Setting Up FLAME -- 4.1.1 MinGW -- 4.1.2 GDB GNU Debugger -- 4.1.3 Dotty as an Extra Installation -- 4.2 Messaging Library: Libmboard -- 4.3 How to Run a Model -- 4.4 Implementation Details -- 4.5 Using Grids -- 4.6 Integrating with More Libraries -- 4.7 Writing a Model - Fox and Rabbit Predator Model -- 4.7.1 Adding Complexity to Models -- 4.7.2 XML Model Description File -- 4.7.3 C Function -- 4.7.4 Additional Files -- 4.7.5 0.xml File -- 4.8 Enhancing the Environment
- 7.6 Model Drug Delivery for Cancer Treatment -- 7.6.1 Using Multiple Outputs -- Chapter 8 Testing Agent Behavior -- 8.1 Unit and System Testing -- 8.2 Statistical Testing of Data -- 8.3 Statistics Testing on Code -- 8.4 Testing Simulation Durations -- Chapter 9 FLAME's Future -- 9.1 FLAME to FLAME GPU -- 9.1.1 Visualizing Is Easy in FLAME GPU -- 9.1.2 Utilizing Vector Calculations -- 9.2 Commercial Applications of FLAME -- Bibliography -- Index