Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System
Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a huge impact on the efficiency of the renewable energy system. The addition of a small amount of high thermal conductivity solid nanoparticles...
Saved in:
Published in | Energy & fuels Vol. 36; no. 13; pp. 6626 - 6658 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
07.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a huge impact on the efficiency of the renewable energy system. The addition of a small amount of high thermal conductivity solid nanoparticles to a base fluid improves heat transfer. Even though a large amount of research data is available in the literature, some results are contradictory. Many influencing factors, as well as nonlinearity and refutations, make nanofluid research highly challenging and obstruct its potentially valuable uses. On the other hand, data-driven machine learning techniques would be very useful in nanofluid research for forecasting thermophysical features and heat transfer rate, identifying the most influential factors, and assessing the efficiencies of different renewable energy systems. The primary aim of this review study is to look at the features and applications of different machine learning techniques employed in the nanofluid-based renewable energy system, as well as to reveal new developments in machine learning research. A variety of modern machine learning algorithms for nanofluid-based heat transfer studies in renewable and sustainable energy systems are examined, along with their advantages and disadvantages. Artificial neural networks-based model prediction using contemporary commercial software is simple to develop and the most popular. The prognostic capacity may be further improved by combining a marine predator algorithm, genetic algorithm, swarm intelligence optimization, and other intelligent optimization approaches. In addition to the well-known neural networks and fuzzy- and gene-based machine learning techniques, newer ensemble machine learning techniques such as Boosted regression techniques, K-means, K-nearest neighbor (KNN), CatBoost, and XGBoost are gaining popularity due to their improved architectures and adaptabilities to diverse data types. The regularly used neural networks and fuzzy-based algorithms are mostly black-box methods, with the user having little or no understanding of how they function. This is the reason for concern, and ethical artificial intelligence is required. |
---|---|
AbstractList | Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a huge impact on the efficiency of the renewable energy system. The addition of a small amount of high thermal conductivity solid nanoparticles to a base fluid improves heat transfer. Even though a large amount of research data is available in the literature, some results are contradictory. Many influencing factors, as well as nonlinearity and refutations, make nanofluid research highly challenging and obstruct its potentially valuable uses. On the other hand, data-driven machine learning techniques would be very useful in nanofluid research for forecasting thermophysical features and heat transfer rate, identifying the most influential factors, and assessing the efficiencies of different renewable energy systems. The primary aim of this review study is to look at the features and applications of different machine learning techniques employed in the nanofluid-based renewable energy system, as well as to reveal new developments in machine learning research. A variety of modern machine learning algorithms for nanofluid-based heat transfer studies in renewable and sustainable energy systems are examined, along with their advantages and disadvantages. Artificial neural networks-based model prediction using contemporary commercial software is simple to develop and the most popular. The prognostic capacity may be further improved by combining a marine predator algorithm, genetic algorithm, swarm intelligence optimization, and other intelligent optimization approaches. In addition to the well-known neural networks and fuzzy- and gene-based machine learning techniques, newer ensemble machine learning techniques such as Boosted regression techniques, K-means, K-nearest neighbor (KNN), CatBoost, and XGBoost are gaining popularity due to their improved architectures and adaptabilities to diverse data types. The regularly used neural networks and fuzzy-based algorithms are mostly black-box methods, with the user having little or no understanding of how they function. This is the reason for concern, and ethical artificial intelligence is required. |
Author | Li, Changhe Le, Anh Tuan Hoang, Anh Tuan Said, Zafar Kumar, Anurag Tran, Viet Dung Nižetić, Sandro Nguyen, Xuan Phuong Pandey, Ashok Afzal, Asif Sharma, Prabhakar Huang, Zuohua |
AuthorAffiliation | PATET Research Group U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E) HUTECH University Centre for Energy and Environmental Sustainability Department of Sustainable and Renewable Energy Engineering National University of Sciences and Technology (NUST) School of Mechanical Engineering School of Engineering Sciences Sustainability Cluster, School of Engineering State Key Laboratory of Multiphase Flow in Power Engineering University of Petroleum and Energy Studies University of Split, FESB Institute of Engineering Department of Mechanical Engineering School of Mechanical and Automotive Engineering Delhi Skill and Entrepreneurship University Centre for Innovation and Translational Research |
AuthorAffiliation_xml | – name: Centre for Innovation and Translational Research – name: University of Petroleum and Energy Studies – name: School of Mechanical and Automotive Engineering – name: HUTECH University – name: Delhi Skill and Entrepreneurship University – name: PATET Research Group – name: State Key Laboratory of Multiphase Flow in Power Engineering – name: University of Split, FESB – name: Department of Mechanical Engineering – name: School of Mechanical Engineering – name: Department of Sustainable and Renewable Energy Engineering – name: School of Engineering Sciences – name: Institute of Engineering – name: National University of Sciences and Technology (NUST) – name: U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E) – name: Sustainability Cluster, School of Engineering – name: Centre for Energy and Environmental Sustainability |
Author_xml | – sequence: 1 givenname: Prabhakar orcidid: 0000-0002-7585-6693 surname: Sharma fullname: Sharma, Prabhakar email: psharmahal@gmail.com organization: Delhi Skill and Entrepreneurship University – sequence: 2 givenname: Zafar surname: Said fullname: Said, Zafar email: zsaid@sharjah.ac.ae organization: National University of Sciences and Technology (NUST) – sequence: 3 givenname: Anurag surname: Kumar fullname: Kumar, Anurag organization: Delhi Skill and Entrepreneurship University – sequence: 4 givenname: Sandro surname: Nižetić fullname: Nižetić, Sandro organization: University of Split, FESB – sequence: 5 givenname: Ashok orcidid: 0000-0003-1626-3529 surname: Pandey fullname: Pandey, Ashok organization: Centre for Energy and Environmental Sustainability – sequence: 6 givenname: Anh Tuan orcidid: 0000-0002-1767-8040 surname: Hoang fullname: Hoang, Anh Tuan email: hatuan@hutech.edu.vn organization: HUTECH University – sequence: 7 givenname: Zuohua surname: Huang fullname: Huang, Zuohua organization: State Key Laboratory of Multiphase Flow in Power Engineering – sequence: 8 givenname: Asif surname: Afzal fullname: Afzal, Asif organization: Department of Mechanical Engineering – sequence: 9 givenname: Changhe surname: Li fullname: Li, Changhe organization: School of Mechanical and Automotive Engineering – sequence: 10 givenname: Anh Tuan orcidid: 0000-0003-4609-0382 surname: Le fullname: Le, Anh Tuan organization: School of Mechanical Engineering – sequence: 11 givenname: Xuan Phuong surname: Nguyen fullname: Nguyen, Xuan Phuong email: phuong@ut.edu.vn organization: PATET Research Group – sequence: 12 givenname: Viet Dung surname: Tran fullname: Tran, Viet Dung organization: PATET Research Group |
BookMark | eNqNkLlOxDAQQC0EEsvxDbikyTJ2DicFBSAuaQFpgToa2xMwyjpgJ6D9e7IsBaKBaqZ4bzR6O2zTd54YOxAwFSDFEZo4JU_hadkM1MapNCAAig02EbmEJAdZbbIJlKVKoJDZNtuJ8QVGIi3zCXNzMuR7fmLf0RuK3Hl-g-bZeeIzwuCdf-JziuNqnnnTBX6LvmvawdnkFCNZfkXY84eAPjYUVvp8_OYDdUv8_Ostfr-MPS322FaDbaT977nLHi_OH86uktnd5fXZySzBNM36pMlKKapcW6WLXFFTWZVZqywUGrRUtgI0RVkIU1SVRgCtdS5tmlubGcIK0l12uL77Grq3gWJfL1w01LboqRtiLZUoZSWFSkf0eI2a0MUYqKmN67F3ne8DurYWUK8S12Pi-kfi-jvx6Ktf_mtwCwzLf5jp2lwBL90Q_JjkT-sTBfucow |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2023_03_029 crossref_primary_10_1021_acs_energyfuels_3c04835 crossref_primary_10_3390_fluids8070212 crossref_primary_10_1016_j_jechem_2023_04_001 crossref_primary_10_1016_j_seta_2023_103097 crossref_primary_10_1080_15567036_2023_2223154 crossref_primary_10_1021_acsomega_3c00487 crossref_primary_10_1007_s11356_024_32687_2 crossref_primary_10_1016_j_tsep_2023_102241 crossref_primary_10_1016_j_engappai_2024_108158 crossref_primary_10_1016_j_jclepro_2023_139843 crossref_primary_10_1007_s10973_023_12604_4 crossref_primary_10_3390_nano12203581 crossref_primary_10_1080_00986445_2022_2147833 crossref_primary_10_1016_j_psep_2023_01_002 crossref_primary_10_3390_app122111073 crossref_primary_10_1007_s00521_024_10201_6 crossref_primary_10_1002_zamm_202300733 crossref_primary_10_1016_j_egyai_2024_100453 crossref_primary_10_1016_j_seta_2022_102708 crossref_primary_10_1016_j_heliyon_2023_e23394 crossref_primary_10_1007_s10973_024_13249_7 crossref_primary_10_1155_2022_1996637 crossref_primary_10_1186_s42269_024_01254_7 crossref_primary_10_1515_cppm_2023_0034 crossref_primary_10_1016_j_csite_2023_103320 crossref_primary_10_1177_23977914241248558 crossref_primary_10_1080_15325008_2023_2281630 crossref_primary_10_1016_j_jtice_2023_104780 crossref_primary_10_1016_j_applthermaleng_2024_123560 crossref_primary_10_1016_j_ecmx_2024_100835 crossref_primary_10_1007_s10973_024_13639_x crossref_primary_10_14710_ijred_2023_49368 crossref_primary_10_1007_s40997_023_00599_0 crossref_primary_10_2166_wrd_2023_071 crossref_primary_10_1038_s41598_024_81183_7 crossref_primary_10_1016_j_triboint_2022_108196 crossref_primary_10_1021_acs_energyfuels_4c02062 crossref_primary_10_61435_ijred_2024_60724 crossref_primary_10_61435_ijred_2025_60707 crossref_primary_10_1016_j_fuel_2023_129019 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126684 crossref_primary_10_1016_j_fuel_2022_124987 crossref_primary_10_3390_w15101923 crossref_primary_10_1115_1_4056331 crossref_primary_10_1016_j_heliyon_2023_e14303 crossref_primary_10_1007_s43621_024_00446_5 crossref_primary_10_1016_j_est_2022_106548 crossref_primary_10_1016_j_isci_2023_108174 crossref_primary_10_1155_2023_6809569 crossref_primary_10_3390_en15196957 crossref_primary_10_1016_j_energy_2025_134576 crossref_primary_10_3390_agronomy14030492 crossref_primary_10_1016_j_solmat_2023_112207 crossref_primary_10_1016_j_energy_2024_130814 crossref_primary_10_32604_fdmp_2023_027299 crossref_primary_10_3390_en16083441 crossref_primary_10_3390_w15061095 crossref_primary_10_1080_15325008_2023_2243458 crossref_primary_10_1108_AEAT_03_2024_0076 crossref_primary_10_1080_10407782_2024_2321524 crossref_primary_10_1038_s41598_022_24294_3 crossref_primary_10_1016_j_ijhydene_2023_07_114 crossref_primary_10_1016_j_csite_2025_105969 crossref_primary_10_1016_j_rineng_2024_103002 crossref_primary_10_1007_s13762_025_06355_y crossref_primary_10_1007_s42452_024_06045_3 crossref_primary_10_1016_j_tsep_2023_101808 crossref_primary_10_3390_en16052095 crossref_primary_10_1016_j_jclepro_2024_143220 crossref_primary_10_1063_5_0157303 crossref_primary_10_3390_app13105824 crossref_primary_10_1016_j_mtcomm_2023_106903 crossref_primary_10_1016_j_wasman_2023_08_004 crossref_primary_10_1016_j_jclepro_2023_137736 crossref_primary_10_1177_0958305X231206507 crossref_primary_10_1016_j_molliq_2022_120615 crossref_primary_10_61435_ijred_2024_60387 crossref_primary_10_1016_j_jtice_2023_104818 crossref_primary_10_1063_5_0181743 crossref_primary_10_1177_0958305X241253772 crossref_primary_10_1080_01430750_2023_2198534 crossref_primary_10_1016_j_icheatmasstransfer_2025_108659 crossref_primary_10_1007_s00170_022_10767_2 crossref_primary_10_1016_j_ijhydene_2023_03_361 crossref_primary_10_1080_15567036_2023_2232322 crossref_primary_10_1016_j_csite_2024_104819 crossref_primary_10_1016_j_ijthermalsci_2023_108825 crossref_primary_10_1007_s40735_024_00863_z crossref_primary_10_1080_02726351_2022_2124472 crossref_primary_10_1016_j_jtice_2023_104907 crossref_primary_10_5004_dwt_2023_29194 crossref_primary_10_1016_j_seta_2023_103088 crossref_primary_10_1063_5_0160372 crossref_primary_10_1016_j_ijhydene_2023_08_259 crossref_primary_10_3390_lubricants11020065 crossref_primary_10_3390_en16196974 crossref_primary_10_1016_j_partic_2023_06_021 crossref_primary_10_1016_j_renene_2023_02_033 crossref_primary_10_1021_acs_energyfuels_3c03360 crossref_primary_10_3390_app13116603 crossref_primary_10_1021_acs_energyfuels_2c01754 crossref_primary_10_1007_s40997_022_00565_2 crossref_primary_10_1088_2631_7990_acf4d4 crossref_primary_10_1016_j_energy_2023_129862 crossref_primary_10_61435_ijred_2024_60119 crossref_primary_10_1016_j_heliyon_2022_e11969 crossref_primary_10_1007_s00231_024_03493_w crossref_primary_10_1016_j_tsep_2023_101679 crossref_primary_10_1080_10407782_2023_2291125 crossref_primary_10_1016_j_csite_2022_102376 crossref_primary_10_1016_j_csite_2024_105645 crossref_primary_10_1016_j_enconman_2022_116242 crossref_primary_10_1016_j_icheatmasstransfer_2025_108624 crossref_primary_10_1016_j_envc_2023_100729 crossref_primary_10_1016_j_fuel_2023_127575 crossref_primary_10_3390_en15186659 crossref_primary_10_1016_j_enganabound_2023_01_024 crossref_primary_10_1016_j_est_2023_106663 crossref_primary_10_1016_j_heliyon_2023_e18402 crossref_primary_10_1007_s11630_023_1760_8 crossref_primary_10_1049_mna2_12154 crossref_primary_10_1016_j_corsci_2025_112875 crossref_primary_10_3390_en16062841 crossref_primary_10_1016_j_corsci_2023_111222 crossref_primary_10_1016_j_est_2024_111766 crossref_primary_10_3390_pr11041202 crossref_primary_10_1186_s40537_024_00920_x crossref_primary_10_3390_fermentation9070598 crossref_primary_10_1007_s11356_022_25071_5 crossref_primary_10_3390_batteries9010013 crossref_primary_10_3390_ma15248944 crossref_primary_10_1016_j_ijhydene_2023_03_452 crossref_primary_10_1016_j_seta_2022_102570 crossref_primary_10_1515_ntrev_2023_0147 crossref_primary_10_1016_j_jestch_2024_101919 crossref_primary_10_1016_j_prime_2024_100493 crossref_primary_10_1002_zamm_202200190 crossref_primary_10_3390_s23136021 crossref_primary_10_3390_ma15175811 crossref_primary_10_1007_s11356_023_30656_9 crossref_primary_10_1016_j_apenergy_2024_122634 crossref_primary_10_1016_j_flatc_2023_100501 crossref_primary_10_1016_j_ijhydene_2022_11_067 crossref_primary_10_3390_app121910057 crossref_primary_10_1007_s10973_024_13473_1 crossref_primary_10_1021_acsomega_3c04005 crossref_primary_10_1177_0958305X251315408 crossref_primary_10_1016_j_csite_2022_102571 crossref_primary_10_1080_01430750_2023_2231467 crossref_primary_10_3390_en16217432 crossref_primary_10_1155_2023_3456536 crossref_primary_10_1155_2023_9208703 crossref_primary_10_1016_j_ijhydene_2023_01_340 crossref_primary_10_1016_j_seta_2025_104261 crossref_primary_10_1016_j_jclepro_2023_136137 crossref_primary_10_1108_DTS_06_2023_0041 crossref_primary_10_1108_HFF_11_2023_0703 crossref_primary_10_1016_j_est_2023_107049 crossref_primary_10_1016_j_envres_2023_118047 crossref_primary_10_1016_j_ijhydene_2022_11_076 crossref_primary_10_1016_j_seta_2024_104097 crossref_primary_10_1016_j_est_2024_112929 crossref_primary_10_3390_pr10122745 crossref_primary_10_1177_0958305X241260793 crossref_primary_10_1016_j_seta_2022_102991 crossref_primary_10_1016_j_fluid_2023_114016 crossref_primary_10_1155_2022_7506237 crossref_primary_10_1016_j_csite_2022_102448 crossref_primary_10_1016_j_fuel_2022_126502 crossref_primary_10_1016_j_ijhydene_2022_09_133 crossref_primary_10_3390_sym16070804 crossref_primary_10_1016_j_enganabound_2022_12_014 crossref_primary_10_1016_j_flatc_2023_100606 crossref_primary_10_1016_j_wasman_2022_10_003 crossref_primary_10_3390_ma15228180 crossref_primary_10_3390_app13116428 crossref_primary_10_1016_j_est_2022_105718 crossref_primary_10_2139_ssrn_4838761 crossref_primary_10_1016_j_asej_2023_102122 crossref_primary_10_3390_su14159273 crossref_primary_10_1080_15567036_2023_2193558 crossref_primary_10_3390_fluids9010020 crossref_primary_10_61435_ijred_2025_60632 crossref_primary_10_1016_j_fuel_2022_127364 crossref_primary_10_1038_s41598_023_46955_7 crossref_primary_10_1016_j_aej_2022_10_006 crossref_primary_10_1016_j_fuel_2022_127126 crossref_primary_10_3390_ma15196520 crossref_primary_10_35534_ism_2024_10003 crossref_primary_10_1016_j_jgsce_2025_205602 crossref_primary_10_1007_s10973_023_12100_9 crossref_primary_10_1155_2022_6730963 crossref_primary_10_1016_j_apenergy_2022_120607 crossref_primary_10_1016_j_ijbiomac_2022_12_041 crossref_primary_10_1080_10407790_2023_2280208 crossref_primary_10_1002_er_8739 crossref_primary_10_1007_s11356_024_33785_x crossref_primary_10_1016_j_rser_2023_113421 crossref_primary_10_1016_j_biortech_2023_128952 crossref_primary_10_3390_ma15175974 crossref_primary_10_1016_j_renene_2024_121683 crossref_primary_10_1021_acsomega_2c04937 crossref_primary_10_1016_j_fuel_2023_128405 crossref_primary_10_1016_j_ijhydene_2023_06_032 crossref_primary_10_1016_j_csite_2025_105912 crossref_primary_10_1155_2024_2329261 |
Cites_doi | 10.1016/j.ijhydene.2022.04.093 10.1007/s00521-022-07038-2 10.1016/j.energy.2021.120546 10.4028/www.scientific.net/KEM.801.193 10.1016/j.euromechflu.2020.02.004 10.1016/j.icheatmasstransfer.2019.104389 10.48550/arXiv.1811.12808 10.1016/j.molliq.2018.04.012 10.1080/15567036.2022.2066739 10.1016/j.ijheatmasstransfer.2018.03.103 10.1080/08916152.2019.1625469 10.1016/j.chaos.2020.110055 10.1016/j.colsurfa.2021.126562 10.2298/TSCI130316116D 10.1021/acs.energyfuels.1c01439 10.1016/j.molliq.2020.115217 10.1016/j.bjbas.2017.10.001 10.1115/1.4007777 10.1016/j.fuel.2022.123618 10.1007/s10973-020-10491-7 10.1016/j.applthermaleng.2016.07.196 10.1016/j.egyr.2020.04.035 10.2298/TSCI151110097U 10.1016/j.applthermaleng.2017.04.083 10.1016/j.solener.2020.07.009 10.1016/j.pecs.2020.100898 10.1016/j.solener.2019.12.067 10.1016/j.powtec.2012.11.030 10.1007/s10973-020-09998-w 10.3390/s21072269 10.1016/j.rser.2017.08.060 10.1080/15567036.2021.1966139 10.1016/j.icheatmasstransfer.2019.104408 10.1016/j.renene.2021.02.086 10.1016/j.jclepro.2020.120696 10.1049/iet-rpg.2018.5649 10.1016/j.molliq.2020.114843 10.1016/j.powtec.2021.04.069 10.1016/j.asoc.2019.105979 10.1016/j.cis.2020.102199 10.1080/01430750.2021.1873856 10.1016/j.molliq.2020.114020 10.1016/j.enconman.2020.112582 10.1080/15567036.2021.1892883 10.17775/CSEEJPES.2018.01010 10.1080/15567036.2022.2067268 10.1115/1.4052237 10.1016/j.rser.2019.05.058 10.1016/j.fuel.2019.04.169 10.1016/j.nanoen.2021.106069 10.1021/acs.energyfuels.1c01990 10.1016/j.icheatmasstransfer.2017.12.012 10.1080/10407780490250391 10.1038/s41560-017-0036-5 10.14710/ijred.2021.33917 10.1016/j.biombioe.2017.01.029 10.1016/j.physa.2019.122142 10.1016/j.enpol.2021.112322 10.1080/15567036.2022.2044412 10.1080/17597269.2018.1472980 10.1002/htj.22138 10.1007/s10973-018-7974-4 10.1016/j.powtec.2020.09.011 10.1016/j.powtec.2020.07.020 10.1002/er.8010 10.1016/j.energy.2020.117086 10.1080/15567036.2022.2049930 10.1016/j.solener.2021.01.022 10.1016/j.cep.2021.108447 10.1016/j.enconman.2017.04.076 10.1016/j.rser.2020.109899 10.1016/j.applthermaleng.2017.05.090 10.14710/ijred.2022.39298 10.14710/ijred.2022.42545 10.1016/j.eiar.2020.106508 10.1155/2019/4145353 10.1021/acs.energyfuels.0c01034 10.1016/j.ijheatmasstransfer.2018.04.142 10.1063/1.5115925 10.1016/j.neucom.2018.04.045 10.1016/j.rser.2019.109422 10.1016/j.rser.2019.109661 10.1016/j.molliq.2019.110923 10.1016/j.molliq.2018.01.061 10.1016/j.colsurfa.2022.128389 10.1016/j.powtec.2020.01.015 10.1016/j.ast.2019.105527 10.1016/j.icheatmasstransfer.2016.08.015 10.14710/ijred.2022.40359 10.1016/j.enconman.2021.114450 10.1016/j.physe.2017.08.019 10.1016/j.rser.2016.04.024 10.1007/s10973-020-09541-x 10.1016/j.icheatmasstransfer.2021.105217 10.1080/15567036.2020.1829204 10.1016/j.desal.2019.114244 10.1021/acs.energyfuels.0c01491 10.1021/acsaem.0c01556 10.4028/www.scientific.net/MSF.928.83 10.1016/j.envsci.2021.03.015 10.1016/j.renene.2017.10.029 10.14710/ijred.2021.32657 10.1016/j.rser.2021.111025 10.1016/j.jclepro.2018.09.242 10.1016/j.est.2021.103778 10.1016/j.powtec.2020.02.010 10.1080/24701556.2019.1606827 10.1016/j.rser.2016.11.256 10.1016/j.pecs.2021.100904 10.1016/j.rser.2014.01.035 10.1016/j.nanoso.2018.12.001 10.1016/j.renene.2019.07.104 10.1016/j.apt.2014.05.014 10.1016/j.psep.2022.02.061 10.1115/1.4051340 10.1016/j.enconman.2020.113619 10.1016/j.rser.2017.07.049 10.1016/j.molliq.2020.112987 10.1016/j.rser.2020.110287 10.1016/j.icheatmasstransfer.2013.10.002 10.1016/j.rser.2020.110494 10.1016/j.seta.2021.101416 10.1016/j.colsurfa.2020.125968 10.1016/j.renene.2010.07.022 10.1080/15567036.2021.1965264 10.1080/15567036.2018.1549167 10.1016/j.enconman.2007.11.002 10.1016/j.renene.2008.05.002 10.1007/s10973-020-09373-9 10.1021/acs.energyfuels.2c00178 10.1016/j.ijthermalsci.2021.106935 10.1007/s10973-020-09695-8 10.1016/j.jclepro.2021.125834 10.1016/j.csite.2022.101817 10.1007/s10973-018-7305-9 10.1016/j.enbenv.2019.11.003 10.1016/j.rser.2021.111341 10.1016/j.rser.2019.04.058 10.1016/j.seta.2019.100559 10.1016/j.apenergy.2021.117567 10.1016/j.icheatmasstransfer.2013.06.003 10.1016/j.chemolab.2015.10.001 10.1016/j.molliq.2021.115659 10.1016/j.fuel.2020.119337 10.1016/j.ijheatmasstransfer.2020.119993 10.1007/s13399-019-00442-0 10.1007/s10973-018-7496-0 10.1016/j.jclepro.2022.132194 10.1016/j.fuel.2020.117304 10.1016/j.ijheatmasstransfer.2018.11.069 10.1016/j.renene.2017.12.005 10.1016/j.physa.2019.123946 10.4028/www.scientific.net/MSF.928.106 10.1016/j.seta.2021.101341 10.1016/j.applthermaleng.2016.03.051 10.1016/j.jmp.2020.102474 10.1016/j.apenergy.2005.01.007 10.1016/j.renene.2017.11.011 10.1016/j.expthermflusci.2015.03.028 10.1016/j.icheatmasstransfer.2011.10.002 10.1016/j.rser.2018.11.017 10.1016/j.erss.2021.102199 10.1007/s10973-020-09372-w 10.3390/en11061398 10.1016/j.molliq.2020.113058 10.1166/jnn.2014.8467 10.1016/j.jclepro.2020.122353 10.3390/nano10091767 10.14710/ijred.9.2.303-310 10.1016/j.renene.2014.12.035 10.1080/01457632.2018.1546770 10.1007/s10973-020-09760-2 10.1016/j.enconman.2020.113206 10.1080/19942060.2019.1620130 10.1016/j.rser.2015.12.292 10.1007/s11814-008-0156-5 10.1016/j.energy.2018.09.131 10.1016/j.ijthermalsci.2008.11.001 10.1016/j.expthermflusci.2015.11.004 10.1016/j.cjche.2016.10.016 10.1080/02726351.2021.1929610 10.1016/j.seta.2021.101861 10.1016/j.jclepro.2021.127161 10.1080/15567036.2020.1811810 10.1080/15567036.2022.2056269 10.1016/j.rser.2021.111506 10.1007/s10973-019-08838-w 10.1007/s10311-021-01288-7 10.1016/j.applthermaleng.2013.03.047 10.1016/j.est.2022.104186 10.1016/j.molliq.2021.116434 10.1016/j.oceaneng.2020.107651 10.1016/j.ijthermalsci.2021.106861 10.1016/j.rser.2020.110114 10.1016/j.expthermflusci.2016.03.005 10.1016/j.nanoen.2021.106834 10.1016/j.ces.2006.07.029 10.1016/j.rser.2020.109792 10.1021/acs.energyfuels.1c01409 10.1115/1.4032941 10.1007/s10462-021-09975-1 10.1007/s10973-019-09138-z 10.1016/j.icheatmasstransfer.2012.05.017 10.1016/j.icheatmasstransfer.2020.104930 10.1109/MTS.2021.3056294 10.1162/neco.1991.3.2.246 10.1016/j.seta.2021.101715 10.1080/19942060.2018.1542345 10.1016/j.applthermaleng.2018.01.062 10.1007/BF00994018 10.1016/j.est.2020.102067 10.1016/j.physa.2019.124127 10.1007/s10973-018-6978-4 10.1016/j.ijhydene.2022.04.152 10.1016/j.ces.2017.08.034 10.1016/j.powtec.2019.05.036 10.1016/j.applthermaleng.2020.116533 10.1093/ijlct/ctz030 10.1016/j.egyr.2021.11.252 10.1016/j.powtec.2021.03.001 10.1016/j.cma.2020.112989 10.1080/15567036.2020.1814453 10.1016/j.icheatmasstransfer.2016.12.019 10.14710/ijred.2022.41116 10.1016/j.renene.2016.12.095 10.1016/j.expthermflusci.2016.12.004 10.1016/j.physa.2019.124015 10.1016/j.ijheatmasstransfer.2008.10.036 10.1080/15567036.2021.1879969 10.1016/j.ijheatmasstransfer.2021.121159 10.1016/j.rser.2017.03.113 10.1007/s10462-017-9610-2 10.1016/j.enconman.2020.112766 10.1016/j.jmmm.2015.11.039 10.1016/j.apenergy.2020.115415 10.1016/j.icheatmasstransfer.2016.12.002 10.1016/j.solmat.2021.111423 10.1016/j.molliq.2019.02.106 10.1016/j.jclepro.2020.120408 10.1016/j.renene.2018.06.023 10.1016/j.ijft.2021.100084 10.1162/neco.1997.9.8.1735 10.1016/j.jtice.2017.03.002 10.1016/j.eswa.2019.112842 10.1016/j.rser.2010.07.006 10.3390/nano9020267 10.1016/j.matpr.2017.11.182 10.1016/j.rser.2019.109345 10.1016/j.expthermflusci.2015.11.009 10.1016/j.seta.2021.101732 10.14710/ijred.2021.34931 10.1016/j.jclepro.2022.131946 10.1016/j.icheatmasstransfer.2015.05.002 10.1016/j.energy.2020.118800 10.1016/j.apenergy.2018.09.022 10.1016/j.enconman.2016.06.079 10.1016/j.nanoso.2019.100386 10.1016/j.rser.2021.111434 10.14710/ijred.2022.41971 10.1016/j.icheatmasstransfer.2016.09.010 10.1016/j.seta.2018.12.020 10.1016/j.applthermaleng.2016.09.027 10.1016/j.ijthermalsci.2020.106763 10.1016/j.renene.2017.02.008 10.1016/j.molliq.2020.114287 10.1016/j.biortech.2022.126920 10.1016/j.icheatmasstransfer.2012.07.023 10.1016/j.powtec.2018.03.058 10.1016/j.jclepro.2017.07.007 10.1016/j.apenergy.2018.05.075 10.1016/j.molliq.2019.01.073 10.1016/j.powtec.2017.10.038 10.1016/j.rser.2017.05.039 10.1016/j.ijheatmasstransfer.2007.03.043 10.1063/1.4976233 10.1016/j.geothermics.2013.11.001 10.3390/en14185968 10.1016/j.adapen.2021.100063 10.1016/j.expthermflusci.2011.12.013 10.1007/s00231-018-2335-1 10.1016/j.seta.2021.101434 10.4028/www.scientific.net/AMR.984-985.784 10.1007/s10973-020-10047-9 10.1016/j.measurement.2021.110524 10.1016/j.powtec.2020.02.026 10.1016/j.apt.2017.11.013 10.1016/j.expthermflusci.2013.09.018 10.1016/j.solener.2021.09.022 10.1016/j.enconman.2016.03.086 10.1007/s00231-016-1906-2 10.1016/j.expthermflusci.2011.11.007 10.1016/j.energy.2019.116541 10.1007/s11814-021-1057-0 10.1021/acs.energyfuels.0c01533 10.1016/j.ijhydene.2021.11.091 10.1007/s11630-006-0257-6 10.1080/01457632.2018.1528051 10.1016/j.nucengdes.2011.04.045 10.1016/j.ijrefrig.2021.05.016 10.1016/j.applthermaleng.2006.07.036 10.1016/j.powtec.2022.117190 10.1007/s10973-020-10183-2 10.3390/en12071301 10.1016/j.molliq.2021.116890 10.1016/j.powtec.2020.07.115 10.1016/j.geothermics.2017.11.005 10.1016/j.ces.2020.116140 10.1016/j.icheatmasstransfer.2017.03.003 10.1016/j.rser.2019.109485 10.1007/s10973-021-10775-6 10.1016/j.jclepro.2021.126031 10.1016/j.amc.2019.124710 10.1016/j.icheatmasstransfer.2012.10.023 10.1016/j.fuel.2022.124131 10.1615/JEnhHeatTransf.2018026042 10.1016/j.fuproc.2021.106997 10.1016/j.rser.2018.06.029 10.1016/j.applthermaleng.2016.01.125 10.1016/j.joei.2015.02.012 10.1007/s10973-021-10705-6 10.1016/j.seta.2021.101646 10.1016/j.jclepro.2021.129525 10.1016/j.diii.2020.10.001 10.1016/j.solmat.2021.111504 10.1016/j.powtec.2021.09.039 10.1016/j.enconman.2022.115209 10.1016/j.apenergy.2021.116665 10.1016/j.renene.2020.10.020 10.1021/acs.energyfuels.0c04339 10.1016/j.est.2021.102947 10.1016/j.chemolab.2020.104010 10.1016/j.jclepro.2022.131772 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.energyfuels.2c01006 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5029 |
EndPage | 6658 |
ExternalDocumentID | 10_1021_acs_energyfuels_2c01006 a569949721 |
GroupedDBID | 02 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABUCX ACGFO ACGFS ACJ ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DC DU5 EBS ED F5P GGK GNL IH9 JG LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F X ZCA -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV BAANH CITATION CUPRZ ED~ JG~ ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a334t-f482195bd7b657ef9d74dd7d06b0b27d90ac6861c699ba00bbb52d35dd4cea903 |
IEDL.DBID | ACS |
ISSN | 0887-0624 1520-5029 |
IngestDate | Fri Jul 11 09:28:52 EDT 2025 Tue Jul 01 02:27:48 EDT 2025 Thu Apr 24 22:58:52 EDT 2025 Sat Jul 09 03:33:25 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a334t-f482195bd7b657ef9d74dd7d06b0b27d90ac6861c699ba00bbb52d35dd4cea903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7585-6693 0000-0003-4609-0382 0000-0002-1767-8040 0000-0003-1626-3529 |
PQID | 2718292173 |
PQPubID | 24069 |
PageCount | 33 |
ParticipantIDs | proquest_miscellaneous_2718292173 crossref_citationtrail_10_1021_acs_energyfuels_2c01006 crossref_primary_10_1021_acs_energyfuels_2c01006 acs_journals_10_1021_acs_energyfuels_2c01006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-07 |
PublicationDateYYYYMMDD | 2022-07-07 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Energy & fuels |
PublicationTitleAlternate | Energy Fuels |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref330/cit330 ref332/cit332 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref259/cit259 ref187/cit187 ref181/cit181 ref327/cit327 ref111/cit111 ref255/cit255 ref329/cit329 ref113/cit113 ref183/cit183 ref257/cit257 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref251/cit251 ref325/cit325 ref253/cit253 ref42/cit42 ref321/cit321 ref323/cit323 ref120/cit120 ref178/cit178 ref122/cit122 ref248/cit248 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref240/cit240 ref137/cit137 ref310/cit310 ref318/cit318 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref314/cit314 ref86/cit86 ref170/cit170 ref244/cit244 ref271/cit271 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref279/cit279 ref203/cit203 ref275/cit275 ref233/cit233 ref148/cit148 ref307/cit307 ref55/cit55 ref144/cit144 ref303/cit303 ref218/cit218 ref167/cit167 ref163/cit163 ref237/cit237 ref66/cit66 ref264/cit264 ref338/cit338 ref22/cit22 ref260/cit260 ref334/cit334 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref210/cit210 ref268/cit268 ref153/cit153 ref297/cit297 ref227/cit227 ref222/cit222 ref150/cit150 ref294/cit294 ref63/cit63 ref224/cit224 ref295/cit295 ref56/cit56 ref155/cit155 ref229/cit229 ref156/cit156 ref158/cit158 Dickson M. H. (ref280/cit280) 2003 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref221/cit221 ref292/cit292 ref60/cit60 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref232/cit232 ref306/cit306 ref230/cit230 ref145/cit145 ref304/cit304 ref238/cit238 ref21/cit21 ref166/cit166 ref164/cit164 ref213/cit213 ref284/cit284 ref286/cit286 (ref4/cit4) 2022 ref78/cit78 ref211/cit211 ref312/cit312 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref246/cit246 ref243/cit243 ref317/cit317 ref270/cit270 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref278/cit278 ref134/cit134 ref208/cit208 ref40/cit40 ref273/cit273 ref131/cit131 ref205/cit205 ref161/cit161 ref320/cit320 ref142/cit142 ref216/cit216 ref301/cit301 ref289/cit289 ref15/cit15 ref180/cit180 ref235/cit235 ref309/cit309 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref262/cit262 ref177/cit177 ref336/cit336 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref281/cit281 ref7/cit7 ref45/cit45 ref331/cit331 ref333/cit333 ref52/cit52 ref184/cit184 ref114/cit114 ref258/cit258 ref186/cit186 ref116/cit116 ref110/cit110 ref254/cit254 ref182/cit182 ref328/cit328 ref2/cit2 ref112/cit112 ref256/cit256 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref337/cit337 ref191/cit191 ref265/cit265 ref109/cit109 ref339/cit339 ref13/cit13 ref193/cit193 Ferreira C. (ref94/cit94) 2001; 13 ref105/cit105 ref261/cit261 ref335/cit335 ref263/cit263 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref267/cit267 ref195/cit195 ref269/cit269 ref64/cit64 ref311/cit311 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref245/cit245 ref319/cit319 ref241/cit241 ref315/cit315 ref76/cit76 ref32/cit32 ref39/cit39 ref272/cit272 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref276/cit276 ref91/cit91 ref287/cit287 ref252/cit252 ref12/cit12 ref326/cit326 ref322/cit322 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref249/cit249 ref283/cit283 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref225/cit225 ref296/cit296 ref226/cit226 ref154/cit154 ref298/cit298 ref27/cit27 ref228/cit228 ref299/cit299 ref293/cit293 ref223/cit223 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref31/cit31 ref290/cit290 ref220/cit220 ref291/cit291 ref88/cit88 ref160/cit160 ref234/cit234 ref143/cit143 ref302/cit302 ref217/cit217 ref288/cit288 ref53/cit53 ref149/cit149 ref162/cit162 ref308/cit308 ref46/cit46 ref236/cit236 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref300/cit300 ref215/cit215 ref50/cit50 ref282/cit282 ref313/cit313 ref209/cit209 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref247/cit247 ref72/cit72 ref242/cit242 ref316/cit316 ref201/cit201 Sharma P. (ref73/cit73) 2021; 11 ref340/cit340 ref51/cit51 ref277/cit277 ref135/cit135 ref68/cit68 ref130/cit130 ref274/cit274 ref204/cit204 ref146/cit146 ref305/cit305 ref26/cit26 ref231/cit231 ref69/cit69 ref165/cit165 ref324/cit324 ref239/cit239 ref250/cit250 ref95/cit95 ref108/cit108 ref192/cit192 ref266/cit266 ref30/cit30 ref212/cit212 ref47/cit47 ref127/cit127 ref285/cit285 |
References_xml | – ident: ref90/cit90 doi: 10.1016/j.ijhydene.2022.04.093 – ident: ref154/cit154 doi: 10.1007/s00521-022-07038-2 – ident: ref252/cit252 doi: 10.1016/j.energy.2021.120546 – ident: ref188/cit188 doi: 10.4028/www.scientific.net/KEM.801.193 – ident: ref203/cit203 doi: 10.1016/j.euromechflu.2020.02.004 – ident: ref33/cit33 doi: 10.1016/j.icheatmasstransfer.2019.104389 – ident: ref112/cit112 doi: 10.48550/arXiv.1811.12808 – ident: ref169/cit169 doi: 10.1016/j.molliq.2018.04.012 – ident: ref10/cit10 doi: 10.1080/15567036.2022.2066739 – ident: ref34/cit34 doi: 10.1016/j.ijheatmasstransfer.2018.03.103 – ident: ref224/cit224 doi: 10.1080/08916152.2019.1625469 – ident: ref109/cit109 doi: 10.1016/j.chaos.2020.110055 – ident: ref42/cit42 doi: 10.1016/j.colsurfa.2021.126562 – ident: ref299/cit299 doi: 10.2298/TSCI130316116D – ident: ref26/cit26 doi: 10.1021/acs.energyfuels.1c01439 – ident: ref140/cit140 doi: 10.1016/j.molliq.2020.115217 – ident: ref206/cit206 doi: 10.1016/j.bjbas.2017.10.001 – ident: ref215/cit215 doi: 10.1115/1.4007777 – ident: ref309/cit309 doi: 10.1016/j.fuel.2022.123618 – ident: ref166/cit166 doi: 10.1007/s10973-020-10491-7 – ident: ref217/cit217 doi: 10.1016/j.applthermaleng.2016.07.196 – ident: ref57/cit57 doi: 10.1016/j.egyr.2020.04.035 – ident: ref213/cit213 doi: 10.2298/TSCI151110097U – ident: ref229/cit229 doi: 10.1016/j.applthermaleng.2017.04.083 – ident: ref29/cit29 doi: 10.1016/j.solener.2020.07.009 – volume-title: Transport Energy Strategies year: 2022 ident: ref4/cit4 – ident: ref168/cit168 doi: 10.1016/j.pecs.2020.100898 – ident: ref141/cit141 doi: 10.1016/j.solener.2019.12.067 – ident: ref216/cit216 doi: 10.1016/j.powtec.2012.11.030 – ident: ref16/cit16 doi: 10.1007/s10973-020-09998-w – ident: ref88/cit88 doi: 10.3390/s21072269 – ident: ref204/cit204 doi: 10.1016/j.rser.2017.08.060 – ident: ref254/cit254 doi: 10.1080/15567036.2021.1966139 – ident: ref124/cit124 doi: 10.1016/j.icheatmasstransfer.2019.104408 – ident: ref178/cit178 doi: 10.1016/j.renene.2021.02.086 – ident: ref51/cit51 doi: 10.1016/j.jclepro.2020.120696 – ident: ref54/cit54 doi: 10.1049/iet-rpg.2018.5649 – ident: ref68/cit68 doi: 10.1016/j.molliq.2020.114843 – ident: ref171/cit171 doi: 10.1016/j.powtec.2021.04.069 – ident: ref325/cit325 doi: 10.1016/j.asoc.2019.105979 – ident: ref18/cit18 doi: 10.1016/j.cis.2020.102199 – ident: ref91/cit91 doi: 10.1080/01430750.2021.1873856 – ident: ref144/cit144 doi: 10.1016/j.molliq.2020.114020 – ident: ref269/cit269 doi: 10.1016/j.enconman.2020.112582 – ident: ref304/cit304 doi: 10.1080/15567036.2021.1892883 – ident: ref327/cit327 doi: 10.17775/CSEEJPES.2018.01010 – ident: ref106/cit106 doi: 10.1080/15567036.2022.2067268 – ident: ref335/cit335 doi: 10.1115/1.4052237 – ident: ref279/cit279 doi: 10.1016/j.rser.2019.05.058 – ident: ref322/cit322 doi: 10.1016/j.fuel.2019.04.169 – ident: ref11/cit11 doi: 10.1016/j.nanoen.2021.106069 – ident: ref17/cit17 doi: 10.1021/acs.energyfuels.1c01990 – ident: ref165/cit165 doi: 10.1016/j.icheatmasstransfer.2017.12.012 – ident: ref200/cit200 doi: 10.1080/10407780490250391 – ident: ref46/cit46 doi: 10.1038/s41560-017-0036-5 – ident: ref256/cit256 doi: 10.14710/ijred.2021.33917 – ident: ref320/cit320 doi: 10.1016/j.biombioe.2017.01.029 – ident: ref156/cit156 doi: 10.1016/j.physa.2019.122142 – ident: ref8/cit8 doi: 10.1016/j.enpol.2021.112322 – ident: ref313/cit313 doi: 10.1080/15567036.2022.2044412 – ident: ref92/cit92 doi: 10.1080/17597269.2018.1472980 – ident: ref316/cit316 doi: 10.1002/htj.22138 – ident: ref31/cit31 doi: 10.1007/s10973-018-7974-4 – ident: ref81/cit81 doi: 10.1016/j.powtec.2020.09.011 – ident: ref118/cit118 doi: 10.1016/j.powtec.2020.07.020 – ident: ref167/cit167 doi: 10.1002/er.8010 – volume: 13 start-page: 87 year: 2001 ident: ref94/cit94 publication-title: Complex Systems – ident: ref121/cit121 doi: 10.1016/j.energy.2020.117086 – ident: ref296/cit296 doi: 10.1080/15567036.2022.2049930 – ident: ref183/cit183 doi: 10.1016/j.solener.2021.01.022 – ident: ref28/cit28 doi: 10.1016/j.cep.2021.108447 – ident: ref194/cit194 doi: 10.1016/j.enconman.2017.04.076 – ident: ref59/cit59 doi: 10.1016/j.rser.2020.109899 – ident: ref248/cit248 doi: 10.1016/j.applthermaleng.2017.05.090 – ident: ref303/cit303 doi: 10.14710/ijred.2022.39298 – ident: ref281/cit281 doi: 10.14710/ijred.2022.42545 – ident: ref44/cit44 doi: 10.1016/j.eiar.2020.106508 – ident: ref97/cit97 doi: 10.1155/2019/4145353 – ident: ref76/cit76 doi: 10.1021/acs.energyfuels.0c01034 – ident: ref134/cit134 doi: 10.1016/j.ijheatmasstransfer.2018.04.142 – ident: ref239/cit239 doi: 10.1063/1.5115925 – ident: ref101/cit101 doi: 10.1016/j.neucom.2018.04.045 – ident: ref295/cit295 doi: 10.1016/j.rser.2019.109422 – ident: ref278/cit278 doi: 10.1016/j.rser.2019.109661 – ident: ref162/cit162 doi: 10.1016/j.molliq.2019.110923 – ident: ref152/cit152 doi: 10.1016/j.molliq.2018.01.061 – ident: ref175/cit175 doi: 10.1016/j.colsurfa.2022.128389 – ident: ref32/cit32 doi: 10.1016/j.powtec.2020.01.015 – ident: ref105/cit105 doi: 10.1016/j.ast.2019.105527 – ident: ref291/cit291 doi: 10.1016/j.icheatmasstransfer.2016.08.015 – ident: ref331/cit331 doi: 10.14710/ijred.2022.40359 – ident: ref35/cit35 doi: 10.1016/j.enconman.2021.114450 – ident: ref161/cit161 doi: 10.1016/j.physe.2017.08.019 – ident: ref260/cit260 doi: 10.1016/j.rser.2016.04.024 – ident: ref133/cit133 doi: 10.1007/s10973-020-09541-x – ident: ref63/cit63 doi: 10.1016/j.icheatmasstransfer.2021.105217 – ident: ref317/cit317 doi: 10.1080/15567036.2020.1829204 – ident: ref25/cit25 doi: 10.1016/j.desal.2019.114244 – ident: ref53/cit53 doi: 10.1021/acs.energyfuels.0c01491 – ident: ref139/cit139 doi: 10.1021/acsaem.0c01556 – ident: ref185/cit185 doi: 10.4028/www.scientific.net/MSF.928.83 – ident: ref45/cit45 doi: 10.1016/j.envsci.2021.03.015 – ident: ref283/cit283 doi: 10.1016/j.renene.2017.10.029 – ident: ref257/cit257 doi: 10.14710/ijred.2021.32657 – ident: ref36/cit36 doi: 10.1016/j.rser.2021.111025 – ident: ref50/cit50 doi: 10.1016/j.jclepro.2018.09.242 – ident: ref324/cit324 doi: 10.1016/j.est.2021.103778 – ident: ref150/cit150 doi: 10.1016/j.powtec.2020.02.010 – ident: ref236/cit236 doi: 10.1080/24701556.2019.1606827 – ident: ref293/cit293 doi: 10.1016/j.rser.2016.11.256 – ident: ref64/cit64 doi: 10.1016/j.pecs.2021.100904 – ident: ref337/cit337 doi: 10.1016/j.rser.2014.01.035 – ident: ref145/cit145 doi: 10.1016/j.nanoso.2018.12.001 – ident: ref268/cit268 doi: 10.1016/j.renene.2019.07.104 – ident: ref249/cit249 doi: 10.1016/j.apt.2014.05.014 – ident: ref314/cit314 doi: 10.1016/j.psep.2022.02.061 – ident: ref340/cit340 doi: 10.1115/1.4051340 – ident: ref22/cit22 doi: 10.1016/j.enconman.2020.113619 – ident: ref87/cit87 doi: 10.1016/j.rser.2017.07.049 – ident: ref120/cit120 doi: 10.1016/j.molliq.2020.112987 – ident: ref60/cit60 doi: 10.1016/j.rser.2020.110287 – ident: ref218/cit218 doi: 10.1016/j.icheatmasstransfer.2013.10.002 – ident: ref62/cit62 doi: 10.1016/j.rser.2020.110494 – ident: ref65/cit65 doi: 10.1016/j.seta.2021.101416 – ident: ref122/cit122 doi: 10.1016/j.colsurfa.2020.125968 – ident: ref334/cit334 doi: 10.1016/j.renene.2010.07.022 – ident: ref332/cit332 doi: 10.1080/15567036.2021.1965264 – ident: ref9/cit9 doi: 10.1080/15567036.2018.1549167 – ident: ref198/cit198 doi: 10.1016/j.enconman.2007.11.002 – ident: ref275/cit275 doi: 10.1016/j.renene.2008.05.002 – ident: ref130/cit130 doi: 10.1007/s10973-020-09373-9 – ident: ref41/cit41 doi: 10.1016/j.rser.2020.110494 – ident: ref43/cit43 doi: 10.1021/acs.energyfuels.2c00178 – ident: ref119/cit119 doi: 10.1016/j.ijthermalsci.2021.106935 – ident: ref27/cit27 doi: 10.1007/s10973-020-09695-8 – ident: ref61/cit61 doi: 10.1016/j.jclepro.2021.125834 – ident: ref71/cit71 doi: 10.1016/j.csite.2022.101817 – ident: ref138/cit138 doi: 10.1007/s10973-018-7305-9 – volume-title: Geothermal Energy: Utilization and Technology year: 2003 ident: ref280/cit280 – ident: ref329/cit329 doi: 10.1016/j.enbenv.2019.11.003 – ident: ref146/cit146 doi: 10.1016/j.rser.2021.111341 – ident: ref285/cit285 doi: 10.1016/j.rser.2019.04.058 – ident: ref273/cit273 doi: 10.1016/j.seta.2019.100559 – ident: ref321/cit321 doi: 10.1016/j.apenergy.2021.117567 – ident: ref190/cit190 doi: 10.1016/j.icheatmasstransfer.2013.06.003 – ident: ref96/cit96 doi: 10.1016/j.chemolab.2015.10.001 – ident: ref128/cit128 doi: 10.1016/j.molliq.2021.115659 – ident: ref307/cit307 doi: 10.1016/j.fuel.2020.119337 – ident: ref21/cit21 doi: 10.1016/j.ijheatmasstransfer.2020.119993 – ident: ref315/cit315 doi: 10.1007/s13399-019-00442-0 – ident: ref12/cit12 doi: 10.1007/s10973-018-7496-0 – ident: ref242/cit242 doi: 10.1016/j.jclepro.2022.132194 – ident: ref70/cit70 doi: 10.1016/j.fuel.2020.117304 – volume: 11 start-page: 701 issue: 2 year: 2021 ident: ref73/cit73 publication-title: Int. J. Renew. Energy Resour. – ident: ref164/cit164 doi: 10.1016/j.ijheatmasstransfer.2018.11.069 – ident: ref265/cit265 doi: 10.1016/j.renene.2017.12.005 – ident: ref158/cit158 doi: 10.1016/j.physa.2019.123946 – ident: ref187/cit187 doi: 10.4028/www.scientific.net/MSF.928.106 – ident: ref14/cit14 doi: 10.1016/j.seta.2021.101341 – ident: ref228/cit228 doi: 10.1016/j.applthermaleng.2016.03.051 – ident: ref115/cit115 doi: 10.1016/j.jmp.2020.102474 – ident: ref199/cit199 doi: 10.1016/j.apenergy.2005.01.007 – ident: ref267/cit267 doi: 10.1016/j.renene.2017.11.011 – ident: ref193/cit193 doi: 10.1016/j.expthermflusci.2015.03.028 – ident: ref241/cit241 doi: 10.1016/j.icheatmasstransfer.2011.10.002 – ident: ref210/cit210 doi: 10.1016/j.rser.2018.11.017 – ident: ref48/cit48 doi: 10.1016/j.erss.2021.102199 – ident: ref176/cit176 doi: 10.1007/s10973-020-09372-w – ident: ref205/cit205 doi: 10.3390/en11061398 – ident: ref163/cit163 doi: 10.1016/j.molliq.2020.113058 – ident: ref232/cit232 doi: 10.1166/jnn.2014.8467 – ident: ref264/cit264 doi: 10.1016/j.jclepro.2020.122353 – ident: ref58/cit58 doi: 10.3390/nano10091767 – ident: ref255/cit255 doi: 10.14710/ijred.9.2.303-310 – ident: ref277/cit277 doi: 10.1016/j.renene.2014.12.035 – ident: ref234/cit234 doi: 10.1080/01457632.2018.1546770 – ident: ref15/cit15 doi: 10.1007/s10973-020-09760-2 – ident: ref330/cit330 doi: 10.1016/j.enconman.2020.113206 – ident: ref135/cit135 doi: 10.1080/19942060.2019.1620130 – ident: ref220/cit220 doi: 10.1016/j.rser.2015.12.292 – ident: ref189/cit189 doi: 10.1007/s11814-008-0156-5 – ident: ref319/cit319 doi: 10.1016/j.energy.2018.09.131 – ident: ref202/cit202 doi: 10.1016/j.ijthermalsci.2008.11.001 – ident: ref221/cit221 doi: 10.1016/j.expthermflusci.2015.11.004 – ident: ref174/cit174 doi: 10.1016/j.cjche.2016.10.016 – ident: ref125/cit125 doi: 10.1080/02726351.2021.1929610 – ident: ref24/cit24 doi: 10.1016/j.seta.2021.101861 – ident: ref7/cit7 doi: 10.1016/j.jclepro.2021.127161 – ident: ref294/cit294 doi: 10.1080/15567036.2020.1811810 – ident: ref302/cit302 doi: 10.1080/15567036.2022.2056269 – ident: ref333/cit333 doi: 10.1016/j.rser.2021.111506 – ident: ref131/cit131 doi: 10.1007/s10973-019-08838-w – ident: ref177/cit177 doi: 10.1007/s10311-021-01288-7 – ident: ref214/cit214 doi: 10.1016/j.applthermaleng.2013.03.047 – ident: ref38/cit38 doi: 10.1016/j.est.2022.104186 – ident: ref143/cit143 doi: 10.1016/j.molliq.2021.116434 – ident: ref336/cit336 doi: 10.1016/j.oceaneng.2020.107651 – ident: ref292/cit292 doi: 10.1016/j.ijthermalsci.2021.106861 – ident: ref263/cit263 doi: 10.1016/j.rser.2020.110114 – ident: ref223/cit223 doi: 10.1016/j.expthermflusci.2016.03.005 – ident: ref30/cit30 doi: 10.1016/j.nanoen.2021.106834 – ident: ref201/cit201 doi: 10.1016/j.ces.2006.07.029 – ident: ref113/cit113 doi: 10.1016/j.rser.2020.109792 – ident: ref78/cit78 doi: 10.1021/acs.energyfuels.1c01409 – ident: ref95/cit95 doi: 10.1115/1.4032941 – ident: ref107/cit107 doi: 10.1007/s10462-021-09975-1 – ident: ref173/cit173 doi: 10.1007/s10973-019-09138-z – ident: ref89/cit89 doi: 10.1016/j.icheatmasstransfer.2012.05.017 – ident: ref155/cit155 doi: 10.1016/j.icheatmasstransfer.2020.104930 – ident: ref339/cit339 doi: 10.1109/MTS.2021.3056294 – ident: ref102/cit102 doi: 10.1162/neco.1991.3.2.246 – ident: ref170/cit170 doi: 10.1016/j.seta.2021.101715 – ident: ref108/cit108 doi: 10.1007/s10462-021-09975-1 – ident: ref160/cit160 doi: 10.1080/19942060.2018.1542345 – ident: ref207/cit207 doi: 10.1016/j.applthermaleng.2018.01.062 – ident: ref77/cit77 doi: 10.1007/BF00994018 – ident: ref147/cit147 doi: 10.1016/j.est.2020.102067 – ident: ref123/cit123 doi: 10.1016/j.physa.2019.124127 – ident: ref172/cit172 doi: 10.1007/s10973-018-6978-4 – ident: ref85/cit85 doi: 10.1016/j.ijhydene.2022.04.152 – ident: ref151/cit151 doi: 10.1016/j.ces.2017.08.034 – ident: ref137/cit137 doi: 10.1016/j.powtec.2019.05.036 – ident: ref209/cit209 doi: 10.1016/j.applthermaleng.2020.116533 – ident: ref290/cit290 doi: 10.1093/ijlct/ctz030 – ident: ref270/cit270 doi: 10.1016/j.egyr.2021.11.252 – ident: ref274/cit274 doi: 10.1016/j.powtec.2021.03.001 – ident: ref104/cit104 doi: 10.1016/j.cma.2020.112989 – ident: ref312/cit312 doi: 10.1080/15567036.2020.1814453 – ident: ref195/cit195 doi: 10.1016/j.icheatmasstransfer.2016.12.019 – ident: ref253/cit253 doi: 10.14710/ijred.2022.41116 – ident: ref262/cit262 doi: 10.1016/j.renene.2016.12.095 – ident: ref240/cit240 doi: 10.1016/j.expthermflusci.2016.12.004 – ident: ref80/cit80 doi: 10.1016/j.physa.2019.124015 – ident: ref245/cit245 doi: 10.1016/j.ijheatmasstransfer.2008.10.036 – ident: ref2/cit2 doi: 10.1080/15567036.2021.1879969 – ident: ref126/cit126 doi: 10.1016/j.ijheatmasstransfer.2021.121159 – ident: ref149/cit149 doi: 10.1016/j.rser.2017.03.113 – ident: ref93/cit93 doi: 10.1007/s10462-017-9610-2 – ident: ref98/cit98 doi: 10.1016/j.enconman.2020.112766 – ident: ref196/cit196 doi: 10.1016/j.jmmm.2015.11.039 – ident: ref49/cit49 doi: 10.1016/j.apenergy.2020.115415 – ident: ref287/cit287 doi: 10.1016/j.icheatmasstransfer.2016.12.002 – ident: ref75/cit75 doi: 10.1016/j.solmat.2021.111423 – ident: ref148/cit148 doi: 10.1016/j.molliq.2019.02.106 – ident: ref13/cit13 doi: 10.1016/j.jclepro.2020.120408 – ident: ref272/cit272 doi: 10.1016/j.renene.2018.06.023 – ident: ref69/cit69 doi: 10.1016/j.ijft.2021.100084 – ident: ref100/cit100 doi: 10.1162/neco.1997.9.8.1735 – ident: ref227/cit227 doi: 10.1016/j.jtice.2017.03.002 – ident: ref99/cit99 doi: 10.1016/j.eswa.2019.112842 – ident: ref284/cit284 doi: 10.1016/j.rser.2010.07.006 – ident: ref300/cit300 doi: 10.3390/nano9020267 – ident: ref238/cit238 doi: 10.1016/j.matpr.2017.11.182 – ident: ref86/cit86 doi: 10.1016/j.rser.2019.109345 – ident: ref233/cit233 doi: 10.1016/j.expthermflusci.2015.11.009 – ident: ref261/cit261 doi: 10.1016/j.seta.2021.101732 – ident: ref258/cit258 doi: 10.14710/ijred.2021.34931 – ident: ref3/cit3 doi: 10.1016/j.jclepro.2022.131946 – ident: ref222/cit222 doi: 10.1016/j.icheatmasstransfer.2015.05.002 – ident: ref318/cit318 doi: 10.1016/j.energy.2020.118800 – ident: ref179/cit179 doi: 10.1016/j.apenergy.2018.09.022 – ident: ref289/cit289 doi: 10.1016/j.enconman.2016.06.079 – ident: ref5/cit5 doi: 10.1016/j.nanoso.2019.100386 – ident: ref66/cit66 doi: 10.1016/j.rser.2021.111434 – ident: ref306/cit306 doi: 10.14710/ijred.2022.41971 – ident: ref111/cit111 doi: 10.1016/j.icheatmasstransfer.2016.09.010 – ident: ref237/cit237 doi: 10.1016/j.seta.2018.12.020 – ident: ref181/cit181 doi: 10.1016/j.applthermaleng.2016.09.027 – ident: ref208/cit208 doi: 10.1016/j.ijthermalsci.2020.106763 – ident: ref305/cit305 doi: 10.1016/j.renene.2017.02.008 – ident: ref19/cit19 doi: 10.1016/j.molliq.2020.114287 – ident: ref6/cit6 doi: 10.1016/j.biortech.2022.126920 – ident: ref219/cit219 doi: 10.1016/j.icheatmasstransfer.2012.07.023 – ident: ref226/cit226 doi: 10.1016/j.powtec.2018.03.058 – ident: ref326/cit326 doi: 10.1016/j.jclepro.2017.07.007 – ident: ref328/cit328 doi: 10.1016/j.apenergy.2018.05.075 – ident: ref159/cit159 doi: 10.1016/j.molliq.2019.01.073 – ident: ref84/cit84 doi: 10.1016/j.powtec.2017.10.038 – ident: ref276/cit276 doi: 10.1016/j.rser.2017.05.039 – ident: ref250/cit250 doi: 10.1016/j.ijheatmasstransfer.2007.03.043 – ident: ref186/cit186 doi: 10.1063/1.4976233 – ident: ref282/cit282 doi: 10.1016/j.geothermics.2013.11.001 – ident: ref52/cit52 doi: 10.1002/er.8010 – ident: ref114/cit114 doi: 10.3390/en14185968 – ident: ref338/cit338 doi: 10.1016/j.adapen.2021.100063 – ident: ref211/cit211 doi: 10.1016/j.expthermflusci.2011.12.013 – ident: ref225/cit225 doi: 10.1007/s00231-018-2335-1 – ident: ref259/cit259 doi: 10.1016/j.seta.2021.101434 – ident: ref298/cit298 doi: 10.4028/www.scientific.net/AMR.984-985.784 – ident: ref129/cit129 doi: 10.1007/s10973-020-10047-9 – ident: ref74/cit74 doi: 10.1016/j.measurement.2021.110524 – ident: ref56/cit56 doi: 10.1016/j.rser.2019.109345 – ident: ref136/cit136 doi: 10.1016/j.powtec.2020.02.026 – ident: ref184/cit184 doi: 10.1016/j.apt.2017.11.013 – ident: ref212/cit212 doi: 10.1016/j.expthermflusci.2013.09.018 – ident: ref271/cit271 doi: 10.1016/j.solener.2021.09.022 – ident: ref230/cit230 doi: 10.1016/j.enconman.2016.03.086 – ident: ref247/cit247 doi: 10.1007/s00231-016-1906-2 – ident: ref231/cit231 doi: 10.1016/j.expthermflusci.2011.11.007 – ident: ref323/cit323 doi: 10.1016/j.energy.2019.116541 – ident: ref116/cit116 doi: 10.1007/s11814-021-1057-0 – ident: ref83/cit83 doi: 10.1021/acs.energyfuels.0c01533 – ident: ref308/cit308 doi: 10.1016/j.ijhydene.2021.11.091 – ident: ref244/cit244 doi: 10.1007/s11630-006-0257-6 – ident: ref191/cit191 doi: 10.1080/01457632.2018.1528051 – ident: ref251/cit251 doi: 10.1016/j.nucengdes.2011.04.045 – ident: ref180/cit180 doi: 10.1016/j.ijrefrig.2021.05.016 – ident: ref243/cit243 doi: 10.1016/j.applthermaleng.2006.07.036 – ident: ref79/cit79 doi: 10.1016/j.powtec.2022.117190 – ident: ref132/cit132 doi: 10.1007/s10973-020-10183-2 – ident: ref55/cit55 doi: 10.3390/en12071301 – ident: ref67/cit67 doi: 10.1016/j.molliq.2021.116890 – ident: ref117/cit117 doi: 10.1016/j.powtec.2020.07.115 – ident: ref288/cit288 doi: 10.1016/j.geothermics.2017.11.005 – ident: ref142/cit142 doi: 10.1016/j.ces.2020.116140 – ident: ref157/cit157 doi: 10.1016/j.icheatmasstransfer.2017.03.003 – ident: ref311/cit311 doi: 10.1016/j.rser.2019.109485 – ident: ref127/cit127 doi: 10.1007/s10973-021-10775-6 – ident: ref37/cit37 doi: 10.1016/j.jclepro.2021.126031 – ident: ref246/cit246 doi: 10.1016/j.amc.2019.124710 – ident: ref182/cit182 doi: 10.1016/j.icheatmasstransfer.2012.10.023 – ident: ref82/cit82 doi: 10.1016/j.fuel.2022.124131 – ident: ref235/cit235 doi: 10.1615/JEnhHeatTransf.2018026042 – ident: ref310/cit310 doi: 10.1016/j.fuproc.2021.106997 – ident: ref266/cit266 doi: 10.1016/j.rser.2018.06.029 – ident: ref192/cit192 doi: 10.1016/j.applthermaleng.2016.01.125 – ident: ref197/cit197 doi: 10.1016/j.joei.2015.02.012 – ident: ref23/cit23 doi: 10.1007/s10973-021-10705-6 – ident: ref286/cit286 doi: 10.1016/j.seta.2021.101646 – ident: ref39/cit39 doi: 10.1016/j.jclepro.2021.129525 – ident: ref110/cit110 doi: 10.1016/j.diii.2020.10.001 – ident: ref72/cit72 doi: 10.1016/j.solmat.2021.111504 – ident: ref301/cit301 doi: 10.1016/j.powtec.2021.09.039 – ident: ref297/cit297 doi: 10.1016/j.enconman.2022.115209 – ident: ref47/cit47 doi: 10.1016/j.apenergy.2021.116665 – ident: ref103/cit103 doi: 10.1016/j.renene.2020.10.020 – ident: ref20/cit20 doi: 10.1021/acs.energyfuels.0c04339 – ident: ref40/cit40 doi: 10.1016/j.est.2021.102947 – ident: ref153/cit153 doi: 10.1016/j.chemolab.2020.104010 – ident: ref1/cit1 doi: 10.1016/j.jclepro.2022.131772 |
SSID | ssj0006385 |
Score | 2.6897893 |
SecondaryResourceType | review_article |
Snippet | Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6626 |
SubjectTerms | algorithms artificial intelligence computer software energy ethics heat transfer nanofluids prediction swarms thermal conductivity |
Title | Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System |
URI | http://dx.doi.org/10.1021/acs.energyfuels.2c01006 https://www.proquest.com/docview/2718292173 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KPagH32J9sYJHUzebzSZ7rKWlCPXgA7yFfUpRUrENgr_e2TyKIlK9hZAJm9nJfDO7M98idG64kABbLjCM6IDJlAfCX_E0dqHUUaqdX4cc3_DRA7t-jB9bKPxlB5-Gl1LPurbsg3MFwEWXakghPMn2CuVp4vOtXv9u4XzBnOKG3JNwypqSrt9f5GFJz77D0nevXELNcBPdNg07VYXJc7eYq67--Mnf-Pev2EIbdeCJe5WlbKOWzXfQar85720HrX-hJtxFE4gnAY9wr6oRmOFJjsdl4aXFNSfrE27K9jBEvhj89NS9FBMTXAEyGjwCL49LKHT2zYvfwsjefacWHpRDxBVb-h56GA7u-6OgPpYhkFHE5oFjKbi5WJlE8TixTpiEGZMYwhVRNDGCSM1THmouhJKEKKViaqLYGKatFCTaR-18mtsDhCMtYkuYSyiYhGBWSKqMDpWGJFODa-mgC1BcVv9Ws6zcMadh5m9-0WZWa7ODeDOJma4pzv1JGy_LBclC8LVi-VguctZYSQYT5bdZZG6nBTwAcE8FpHrR4f-Gf4TWqG-uKBePj1F7_lbYEwh55uq0NPJPgpwBsA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hOEAPLaWtCgXqShybreM4TnzcrkDbluVAQYJT5E-0KspWZCMkfj1jb7KFSgi1t8jKWBN7Mm9szzwDHFghFcKWTyynJuGqFIkMT6LMfapMVhof9iEnJ2J8zr9f5BcrUPa1MKhEgz018RD_D7tA-iW0uVgO51tEjQEzuJIIXNtrGJKwsOwajn4ufTBaVd5zfFLBeJ_Z9XRHAZ1M8xidHjvniDhHr-ByqWtMNPk1aOd6YO7-onH8n4_ZhJddGEqGC7t5DSuu3oL1UX_72xa8eEBU-AamGF0iOpHhImOgIdOaTGIapiMdQ-sV6ZP4CMbBBL32zF-3U5t8RZy0ZIw-n0Rg9O4miJ-iZrehboscRhXJgjv9LZwfHZ6Nxkl3SUOisozPE89LdHq5toUWeeG8tAW3trBUaKpZYSVVRpQiNUJKrSjVWufMZrm13DglafYOVutZ7d4DyYzMHeW-YGggkjupmLYm1QaXnAYdzTZ8xoGrup-sqeL5OUur0PhgNKtuNLdB9HNZmY7wPNy7cf28IF0K_l5wfjwv8qk3lgonKhy6qNrNWnwBwZ9JXPhlO_-m_kdYH59Njqvjbyc_PsAGC2UXcVt5F1bnN63bw2Borvej3d8DVfAKEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KBasPVlvF1qor9NGcm81mk4W-XM8e12qLqIW-lLCfcrTkSnOh0L_e2b3kaAUp-hZCZpnszs7HzsxvAXatkArNlk8spybhqhSJDE-izH2qTFYaH84hj0_E5JQfneVnK7DX98IgEw2O1MQkftjVV9Z3CAPpp_DexZY436LlGDCD0UTA234Uknch9BqOfiz1MEpW3uN8UsF4X93194GChTLNfQt1X0FHqzNeh_Mlv7HY5GLQzvXA3P4B5fi_P_QcnnXuKBku5OcFrLh6A9ZG_S1wG_D0DmDhJkzRy0QrRYaLyoGGTGtyHMsxHemQWn-RvpiPoD9MUHvP_GU7tck-2ktLJqj7STSQ3l0H8u_I2U3o3yIHkUWywFB_Cafjg5-jSdJd1pCoLOPzxPMSlV-ubaFxLZyXtuDWFpYKTTUrrKTKiFKkRkipFaVa65zZLLeWG6ckzV7Baj2r3WsgmZG5o9wXDAVFcicV09ak2mDoaVDhbMFHnLiq22xNFfPoLK3CyzuzWXWzuQWiX8_KdMDn4f6Ny4cJ6ZLwaoH98TDJh15gKlyokHxRtZu1-AE6AUxiAJht_xv77-Hxt8_j6uvhyZc38ISF7ot4urwDq_Pr1r1Fn2iu30XR_w3DPgyU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Machine+Learning+Research+for+Nanofluid-Based+Heat+Transfer+in+Renewable+Energy+System&rft.jtitle=Energy+%26+fuels&rft.au=Sharma%2C+Prabhakar&rft.au=Said%2C+Zafar&rft.au=Kumar%2C+Anurag&rft.au=Ni%C5%BEeti%C4%87%2C+Sandro&rft.date=2022-07-07&rft.issn=1520-5029&rft.volume=36&rft.issue=13+p.6626-6658&rft.spage=6626&rft.epage=6658&rft_id=info:doi/10.1021%2Facs.energyfuels.2c01006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |