Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System

Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a huge impact on the efficiency of the renewable energy system. The addition of a small amount of high thermal conductivity solid nanoparticles...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 36; no. 13; pp. 6626 - 6658
Main Authors Sharma, Prabhakar, Said, Zafar, Kumar, Anurag, Nižetić, Sandro, Pandey, Ashok, Hoang, Anh Tuan, Huang, Zuohua, Afzal, Asif, Li, Changhe, Le, Anh Tuan, Nguyen, Xuan Phuong, Tran, Viet Dung
Format Journal Article
LanguageEnglish
Published American Chemical Society 07.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a huge impact on the efficiency of the renewable energy system. The addition of a small amount of high thermal conductivity solid nanoparticles to a base fluid improves heat transfer. Even though a large amount of research data is available in the literature, some results are contradictory. Many influencing factors, as well as nonlinearity and refutations, make nanofluid research highly challenging and obstruct its potentially valuable uses. On the other hand, data-driven machine learning techniques would be very useful in nanofluid research for forecasting thermophysical features and heat transfer rate, identifying the most influential factors, and assessing the efficiencies of different renewable energy systems. The primary aim of this review study is to look at the features and applications of different machine learning techniques employed in the nanofluid-based renewable energy system, as well as to reveal new developments in machine learning research. A variety of modern machine learning algorithms for nanofluid-based heat transfer studies in renewable and sustainable energy systems are examined, along with their advantages and disadvantages. Artificial neural networks-based model prediction using contemporary commercial software is simple to develop and the most popular. The prognostic capacity may be further improved by combining a marine predator algorithm, genetic algorithm, swarm intelligence optimization, and other intelligent optimization approaches. In addition to the well-known neural networks and fuzzy- and gene-based machine learning techniques, newer ensemble machine learning techniques such as Boosted regression techniques, K-means, K-nearest neighbor (KNN), CatBoost, and XGBoost are gaining popularity due to their improved architectures and adaptabilities to diverse data types. The regularly used neural networks and fuzzy-based algorithms are mostly black-box methods, with the user having little or no understanding of how they function. This is the reason for concern, and ethical artificial intelligence is required.
AbstractList Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a huge impact on the efficiency of the renewable energy system. The addition of a small amount of high thermal conductivity solid nanoparticles to a base fluid improves heat transfer. Even though a large amount of research data is available in the literature, some results are contradictory. Many influencing factors, as well as nonlinearity and refutations, make nanofluid research highly challenging and obstruct its potentially valuable uses. On the other hand, data-driven machine learning techniques would be very useful in nanofluid research for forecasting thermophysical features and heat transfer rate, identifying the most influential factors, and assessing the efficiencies of different renewable energy systems. The primary aim of this review study is to look at the features and applications of different machine learning techniques employed in the nanofluid-based renewable energy system, as well as to reveal new developments in machine learning research. A variety of modern machine learning algorithms for nanofluid-based heat transfer studies in renewable and sustainable energy systems are examined, along with their advantages and disadvantages. Artificial neural networks-based model prediction using contemporary commercial software is simple to develop and the most popular. The prognostic capacity may be further improved by combining a marine predator algorithm, genetic algorithm, swarm intelligence optimization, and other intelligent optimization approaches. In addition to the well-known neural networks and fuzzy- and gene-based machine learning techniques, newer ensemble machine learning techniques such as Boosted regression techniques, K-means, K-nearest neighbor (KNN), CatBoost, and XGBoost are gaining popularity due to their improved architectures and adaptabilities to diverse data types. The regularly used neural networks and fuzzy-based algorithms are mostly black-box methods, with the user having little or no understanding of how they function. This is the reason for concern, and ethical artificial intelligence is required.
Author Li, Changhe
Le, Anh Tuan
Hoang, Anh Tuan
Said, Zafar
Kumar, Anurag
Tran, Viet Dung
Nižetić, Sandro
Nguyen, Xuan Phuong
Pandey, Ashok
Afzal, Asif
Sharma, Prabhakar
Huang, Zuohua
AuthorAffiliation PATET Research Group
U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E)
HUTECH University
Centre for Energy and Environmental Sustainability
Department of Sustainable and Renewable Energy Engineering
National University of Sciences and Technology (NUST)
School of Mechanical Engineering
School of Engineering Sciences
Sustainability Cluster, School of Engineering
State Key Laboratory of Multiphase Flow in Power Engineering
University of Petroleum and Energy Studies
University of Split, FESB
Institute of Engineering
Department of Mechanical Engineering
School of Mechanical and Automotive Engineering
Delhi Skill and Entrepreneurship University
Centre for Innovation and Translational Research
AuthorAffiliation_xml – name: Centre for Innovation and Translational Research
– name: University of Petroleum and Energy Studies
– name: School of Mechanical and Automotive Engineering
– name: HUTECH University
– name: Delhi Skill and Entrepreneurship University
– name: PATET Research Group
– name: State Key Laboratory of Multiphase Flow in Power Engineering
– name: University of Split, FESB
– name: Department of Mechanical Engineering
– name: School of Mechanical Engineering
– name: Department of Sustainable and Renewable Energy Engineering
– name: School of Engineering Sciences
– name: Institute of Engineering
– name: National University of Sciences and Technology (NUST)
– name: U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E)
– name: Sustainability Cluster, School of Engineering
– name: Centre for Energy and Environmental Sustainability
Author_xml – sequence: 1
  givenname: Prabhakar
  orcidid: 0000-0002-7585-6693
  surname: Sharma
  fullname: Sharma, Prabhakar
  email: psharmahal@gmail.com
  organization: Delhi Skill and Entrepreneurship University
– sequence: 2
  givenname: Zafar
  surname: Said
  fullname: Said, Zafar
  email: zsaid@sharjah.ac.ae
  organization: National University of Sciences and Technology (NUST)
– sequence: 3
  givenname: Anurag
  surname: Kumar
  fullname: Kumar, Anurag
  organization: Delhi Skill and Entrepreneurship University
– sequence: 4
  givenname: Sandro
  surname: Nižetić
  fullname: Nižetić, Sandro
  organization: University of Split, FESB
– sequence: 5
  givenname: Ashok
  orcidid: 0000-0003-1626-3529
  surname: Pandey
  fullname: Pandey, Ashok
  organization: Centre for Energy and Environmental Sustainability
– sequence: 6
  givenname: Anh Tuan
  orcidid: 0000-0002-1767-8040
  surname: Hoang
  fullname: Hoang, Anh Tuan
  email: hatuan@hutech.edu.vn
  organization: HUTECH University
– sequence: 7
  givenname: Zuohua
  surname: Huang
  fullname: Huang, Zuohua
  organization: State Key Laboratory of Multiphase Flow in Power Engineering
– sequence: 8
  givenname: Asif
  surname: Afzal
  fullname: Afzal, Asif
  organization: Department of Mechanical Engineering
– sequence: 9
  givenname: Changhe
  surname: Li
  fullname: Li, Changhe
  organization: School of Mechanical and Automotive Engineering
– sequence: 10
  givenname: Anh Tuan
  orcidid: 0000-0003-4609-0382
  surname: Le
  fullname: Le, Anh Tuan
  organization: School of Mechanical Engineering
– sequence: 11
  givenname: Xuan Phuong
  surname: Nguyen
  fullname: Nguyen, Xuan Phuong
  email: phuong@ut.edu.vn
  organization: PATET Research Group
– sequence: 12
  givenname: Viet Dung
  surname: Tran
  fullname: Tran, Viet Dung
  organization: PATET Research Group
BookMark eNqNkLlOxDAQQC0EEsvxDbikyTJ2DicFBSAuaQFpgToa2xMwyjpgJ6D9e7IsBaKBaqZ4bzR6O2zTd54YOxAwFSDFEZo4JU_hadkM1MapNCAAig02EbmEJAdZbbIJlKVKoJDZNtuJ8QVGIi3zCXNzMuR7fmLf0RuK3Hl-g-bZeeIzwuCdf-JziuNqnnnTBX6LvmvawdnkFCNZfkXY84eAPjYUVvp8_OYDdUv8_Ostfr-MPS322FaDbaT977nLHi_OH86uktnd5fXZySzBNM36pMlKKapcW6WLXFFTWZVZqywUGrRUtgI0RVkIU1SVRgCtdS5tmlubGcIK0l12uL77Grq3gWJfL1w01LboqRtiLZUoZSWFSkf0eI2a0MUYqKmN67F3ne8DurYWUK8S12Pi-kfi-jvx6Ktf_mtwCwzLf5jp2lwBL90Q_JjkT-sTBfucow
CitedBy_id crossref_primary_10_1016_j_ijhydene_2023_03_029
crossref_primary_10_1021_acs_energyfuels_3c04835
crossref_primary_10_3390_fluids8070212
crossref_primary_10_1016_j_jechem_2023_04_001
crossref_primary_10_1016_j_seta_2023_103097
crossref_primary_10_1080_15567036_2023_2223154
crossref_primary_10_1021_acsomega_3c00487
crossref_primary_10_1007_s11356_024_32687_2
crossref_primary_10_1016_j_tsep_2023_102241
crossref_primary_10_1016_j_engappai_2024_108158
crossref_primary_10_1016_j_jclepro_2023_139843
crossref_primary_10_1007_s10973_023_12604_4
crossref_primary_10_3390_nano12203581
crossref_primary_10_1080_00986445_2022_2147833
crossref_primary_10_1016_j_psep_2023_01_002
crossref_primary_10_3390_app122111073
crossref_primary_10_1007_s00521_024_10201_6
crossref_primary_10_1002_zamm_202300733
crossref_primary_10_1016_j_egyai_2024_100453
crossref_primary_10_1016_j_seta_2022_102708
crossref_primary_10_1016_j_heliyon_2023_e23394
crossref_primary_10_1007_s10973_024_13249_7
crossref_primary_10_1155_2022_1996637
crossref_primary_10_1186_s42269_024_01254_7
crossref_primary_10_1515_cppm_2023_0034
crossref_primary_10_1016_j_csite_2023_103320
crossref_primary_10_1177_23977914241248558
crossref_primary_10_1080_15325008_2023_2281630
crossref_primary_10_1016_j_jtice_2023_104780
crossref_primary_10_1016_j_applthermaleng_2024_123560
crossref_primary_10_1016_j_ecmx_2024_100835
crossref_primary_10_1007_s10973_024_13639_x
crossref_primary_10_14710_ijred_2023_49368
crossref_primary_10_1007_s40997_023_00599_0
crossref_primary_10_2166_wrd_2023_071
crossref_primary_10_1038_s41598_024_81183_7
crossref_primary_10_1016_j_triboint_2022_108196
crossref_primary_10_1021_acs_energyfuels_4c02062
crossref_primary_10_61435_ijred_2024_60724
crossref_primary_10_61435_ijred_2025_60707
crossref_primary_10_1016_j_fuel_2023_129019
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126684
crossref_primary_10_1016_j_fuel_2022_124987
crossref_primary_10_3390_w15101923
crossref_primary_10_1115_1_4056331
crossref_primary_10_1016_j_heliyon_2023_e14303
crossref_primary_10_1007_s43621_024_00446_5
crossref_primary_10_1016_j_est_2022_106548
crossref_primary_10_1016_j_isci_2023_108174
crossref_primary_10_1155_2023_6809569
crossref_primary_10_3390_en15196957
crossref_primary_10_1016_j_energy_2025_134576
crossref_primary_10_3390_agronomy14030492
crossref_primary_10_1016_j_solmat_2023_112207
crossref_primary_10_1016_j_energy_2024_130814
crossref_primary_10_32604_fdmp_2023_027299
crossref_primary_10_3390_en16083441
crossref_primary_10_3390_w15061095
crossref_primary_10_1080_15325008_2023_2243458
crossref_primary_10_1108_AEAT_03_2024_0076
crossref_primary_10_1080_10407782_2024_2321524
crossref_primary_10_1038_s41598_022_24294_3
crossref_primary_10_1016_j_ijhydene_2023_07_114
crossref_primary_10_1016_j_csite_2025_105969
crossref_primary_10_1016_j_rineng_2024_103002
crossref_primary_10_1007_s13762_025_06355_y
crossref_primary_10_1007_s42452_024_06045_3
crossref_primary_10_1016_j_tsep_2023_101808
crossref_primary_10_3390_en16052095
crossref_primary_10_1016_j_jclepro_2024_143220
crossref_primary_10_1063_5_0157303
crossref_primary_10_3390_app13105824
crossref_primary_10_1016_j_mtcomm_2023_106903
crossref_primary_10_1016_j_wasman_2023_08_004
crossref_primary_10_1016_j_jclepro_2023_137736
crossref_primary_10_1177_0958305X231206507
crossref_primary_10_1016_j_molliq_2022_120615
crossref_primary_10_61435_ijred_2024_60387
crossref_primary_10_1016_j_jtice_2023_104818
crossref_primary_10_1063_5_0181743
crossref_primary_10_1177_0958305X241253772
crossref_primary_10_1080_01430750_2023_2198534
crossref_primary_10_1016_j_icheatmasstransfer_2025_108659
crossref_primary_10_1007_s00170_022_10767_2
crossref_primary_10_1016_j_ijhydene_2023_03_361
crossref_primary_10_1080_15567036_2023_2232322
crossref_primary_10_1016_j_csite_2024_104819
crossref_primary_10_1016_j_ijthermalsci_2023_108825
crossref_primary_10_1007_s40735_024_00863_z
crossref_primary_10_1080_02726351_2022_2124472
crossref_primary_10_1016_j_jtice_2023_104907
crossref_primary_10_5004_dwt_2023_29194
crossref_primary_10_1016_j_seta_2023_103088
crossref_primary_10_1063_5_0160372
crossref_primary_10_1016_j_ijhydene_2023_08_259
crossref_primary_10_3390_lubricants11020065
crossref_primary_10_3390_en16196974
crossref_primary_10_1016_j_partic_2023_06_021
crossref_primary_10_1016_j_renene_2023_02_033
crossref_primary_10_1021_acs_energyfuels_3c03360
crossref_primary_10_3390_app13116603
crossref_primary_10_1021_acs_energyfuels_2c01754
crossref_primary_10_1007_s40997_022_00565_2
crossref_primary_10_1088_2631_7990_acf4d4
crossref_primary_10_1016_j_energy_2023_129862
crossref_primary_10_61435_ijred_2024_60119
crossref_primary_10_1016_j_heliyon_2022_e11969
crossref_primary_10_1007_s00231_024_03493_w
crossref_primary_10_1016_j_tsep_2023_101679
crossref_primary_10_1080_10407782_2023_2291125
crossref_primary_10_1016_j_csite_2022_102376
crossref_primary_10_1016_j_csite_2024_105645
crossref_primary_10_1016_j_enconman_2022_116242
crossref_primary_10_1016_j_icheatmasstransfer_2025_108624
crossref_primary_10_1016_j_envc_2023_100729
crossref_primary_10_1016_j_fuel_2023_127575
crossref_primary_10_3390_en15186659
crossref_primary_10_1016_j_enganabound_2023_01_024
crossref_primary_10_1016_j_est_2023_106663
crossref_primary_10_1016_j_heliyon_2023_e18402
crossref_primary_10_1007_s11630_023_1760_8
crossref_primary_10_1049_mna2_12154
crossref_primary_10_1016_j_corsci_2025_112875
crossref_primary_10_3390_en16062841
crossref_primary_10_1016_j_corsci_2023_111222
crossref_primary_10_1016_j_est_2024_111766
crossref_primary_10_3390_pr11041202
crossref_primary_10_1186_s40537_024_00920_x
crossref_primary_10_3390_fermentation9070598
crossref_primary_10_1007_s11356_022_25071_5
crossref_primary_10_3390_batteries9010013
crossref_primary_10_3390_ma15248944
crossref_primary_10_1016_j_ijhydene_2023_03_452
crossref_primary_10_1016_j_seta_2022_102570
crossref_primary_10_1515_ntrev_2023_0147
crossref_primary_10_1016_j_jestch_2024_101919
crossref_primary_10_1016_j_prime_2024_100493
crossref_primary_10_1002_zamm_202200190
crossref_primary_10_3390_s23136021
crossref_primary_10_3390_ma15175811
crossref_primary_10_1007_s11356_023_30656_9
crossref_primary_10_1016_j_apenergy_2024_122634
crossref_primary_10_1016_j_flatc_2023_100501
crossref_primary_10_1016_j_ijhydene_2022_11_067
crossref_primary_10_3390_app121910057
crossref_primary_10_1007_s10973_024_13473_1
crossref_primary_10_1021_acsomega_3c04005
crossref_primary_10_1177_0958305X251315408
crossref_primary_10_1016_j_csite_2022_102571
crossref_primary_10_1080_01430750_2023_2231467
crossref_primary_10_3390_en16217432
crossref_primary_10_1155_2023_3456536
crossref_primary_10_1155_2023_9208703
crossref_primary_10_1016_j_ijhydene_2023_01_340
crossref_primary_10_1016_j_seta_2025_104261
crossref_primary_10_1016_j_jclepro_2023_136137
crossref_primary_10_1108_DTS_06_2023_0041
crossref_primary_10_1108_HFF_11_2023_0703
crossref_primary_10_1016_j_est_2023_107049
crossref_primary_10_1016_j_envres_2023_118047
crossref_primary_10_1016_j_ijhydene_2022_11_076
crossref_primary_10_1016_j_seta_2024_104097
crossref_primary_10_1016_j_est_2024_112929
crossref_primary_10_3390_pr10122745
crossref_primary_10_1177_0958305X241260793
crossref_primary_10_1016_j_seta_2022_102991
crossref_primary_10_1016_j_fluid_2023_114016
crossref_primary_10_1155_2022_7506237
crossref_primary_10_1016_j_csite_2022_102448
crossref_primary_10_1016_j_fuel_2022_126502
crossref_primary_10_1016_j_ijhydene_2022_09_133
crossref_primary_10_3390_sym16070804
crossref_primary_10_1016_j_enganabound_2022_12_014
crossref_primary_10_1016_j_flatc_2023_100606
crossref_primary_10_1016_j_wasman_2022_10_003
crossref_primary_10_3390_ma15228180
crossref_primary_10_3390_app13116428
crossref_primary_10_1016_j_est_2022_105718
crossref_primary_10_2139_ssrn_4838761
crossref_primary_10_1016_j_asej_2023_102122
crossref_primary_10_3390_su14159273
crossref_primary_10_1080_15567036_2023_2193558
crossref_primary_10_3390_fluids9010020
crossref_primary_10_61435_ijred_2025_60632
crossref_primary_10_1016_j_fuel_2022_127364
crossref_primary_10_1038_s41598_023_46955_7
crossref_primary_10_1016_j_aej_2022_10_006
crossref_primary_10_1016_j_fuel_2022_127126
crossref_primary_10_3390_ma15196520
crossref_primary_10_35534_ism_2024_10003
crossref_primary_10_1016_j_jgsce_2025_205602
crossref_primary_10_1007_s10973_023_12100_9
crossref_primary_10_1155_2022_6730963
crossref_primary_10_1016_j_apenergy_2022_120607
crossref_primary_10_1016_j_ijbiomac_2022_12_041
crossref_primary_10_1080_10407790_2023_2280208
crossref_primary_10_1002_er_8739
crossref_primary_10_1007_s11356_024_33785_x
crossref_primary_10_1016_j_rser_2023_113421
crossref_primary_10_1016_j_biortech_2023_128952
crossref_primary_10_3390_ma15175974
crossref_primary_10_1016_j_renene_2024_121683
crossref_primary_10_1021_acsomega_2c04937
crossref_primary_10_1016_j_fuel_2023_128405
crossref_primary_10_1016_j_ijhydene_2023_06_032
crossref_primary_10_1016_j_csite_2025_105912
crossref_primary_10_1155_2024_2329261
Cites_doi 10.1016/j.ijhydene.2022.04.093
10.1007/s00521-022-07038-2
10.1016/j.energy.2021.120546
10.4028/www.scientific.net/KEM.801.193
10.1016/j.euromechflu.2020.02.004
10.1016/j.icheatmasstransfer.2019.104389
10.48550/arXiv.1811.12808
10.1016/j.molliq.2018.04.012
10.1080/15567036.2022.2066739
10.1016/j.ijheatmasstransfer.2018.03.103
10.1080/08916152.2019.1625469
10.1016/j.chaos.2020.110055
10.1016/j.colsurfa.2021.126562
10.2298/TSCI130316116D
10.1021/acs.energyfuels.1c01439
10.1016/j.molliq.2020.115217
10.1016/j.bjbas.2017.10.001
10.1115/1.4007777
10.1016/j.fuel.2022.123618
10.1007/s10973-020-10491-7
10.1016/j.applthermaleng.2016.07.196
10.1016/j.egyr.2020.04.035
10.2298/TSCI151110097U
10.1016/j.applthermaleng.2017.04.083
10.1016/j.solener.2020.07.009
10.1016/j.pecs.2020.100898
10.1016/j.solener.2019.12.067
10.1016/j.powtec.2012.11.030
10.1007/s10973-020-09998-w
10.3390/s21072269
10.1016/j.rser.2017.08.060
10.1080/15567036.2021.1966139
10.1016/j.icheatmasstransfer.2019.104408
10.1016/j.renene.2021.02.086
10.1016/j.jclepro.2020.120696
10.1049/iet-rpg.2018.5649
10.1016/j.molliq.2020.114843
10.1016/j.powtec.2021.04.069
10.1016/j.asoc.2019.105979
10.1016/j.cis.2020.102199
10.1080/01430750.2021.1873856
10.1016/j.molliq.2020.114020
10.1016/j.enconman.2020.112582
10.1080/15567036.2021.1892883
10.17775/CSEEJPES.2018.01010
10.1080/15567036.2022.2067268
10.1115/1.4052237
10.1016/j.rser.2019.05.058
10.1016/j.fuel.2019.04.169
10.1016/j.nanoen.2021.106069
10.1021/acs.energyfuels.1c01990
10.1016/j.icheatmasstransfer.2017.12.012
10.1080/10407780490250391
10.1038/s41560-017-0036-5
10.14710/ijred.2021.33917
10.1016/j.biombioe.2017.01.029
10.1016/j.physa.2019.122142
10.1016/j.enpol.2021.112322
10.1080/15567036.2022.2044412
10.1080/17597269.2018.1472980
10.1002/htj.22138
10.1007/s10973-018-7974-4
10.1016/j.powtec.2020.09.011
10.1016/j.powtec.2020.07.020
10.1002/er.8010
10.1016/j.energy.2020.117086
10.1080/15567036.2022.2049930
10.1016/j.solener.2021.01.022
10.1016/j.cep.2021.108447
10.1016/j.enconman.2017.04.076
10.1016/j.rser.2020.109899
10.1016/j.applthermaleng.2017.05.090
10.14710/ijred.2022.39298
10.14710/ijred.2022.42545
10.1016/j.eiar.2020.106508
10.1155/2019/4145353
10.1021/acs.energyfuels.0c01034
10.1016/j.ijheatmasstransfer.2018.04.142
10.1063/1.5115925
10.1016/j.neucom.2018.04.045
10.1016/j.rser.2019.109422
10.1016/j.rser.2019.109661
10.1016/j.molliq.2019.110923
10.1016/j.molliq.2018.01.061
10.1016/j.colsurfa.2022.128389
10.1016/j.powtec.2020.01.015
10.1016/j.ast.2019.105527
10.1016/j.icheatmasstransfer.2016.08.015
10.14710/ijred.2022.40359
10.1016/j.enconman.2021.114450
10.1016/j.physe.2017.08.019
10.1016/j.rser.2016.04.024
10.1007/s10973-020-09541-x
10.1016/j.icheatmasstransfer.2021.105217
10.1080/15567036.2020.1829204
10.1016/j.desal.2019.114244
10.1021/acs.energyfuels.0c01491
10.1021/acsaem.0c01556
10.4028/www.scientific.net/MSF.928.83
10.1016/j.envsci.2021.03.015
10.1016/j.renene.2017.10.029
10.14710/ijred.2021.32657
10.1016/j.rser.2021.111025
10.1016/j.jclepro.2018.09.242
10.1016/j.est.2021.103778
10.1016/j.powtec.2020.02.010
10.1080/24701556.2019.1606827
10.1016/j.rser.2016.11.256
10.1016/j.pecs.2021.100904
10.1016/j.rser.2014.01.035
10.1016/j.nanoso.2018.12.001
10.1016/j.renene.2019.07.104
10.1016/j.apt.2014.05.014
10.1016/j.psep.2022.02.061
10.1115/1.4051340
10.1016/j.enconman.2020.113619
10.1016/j.rser.2017.07.049
10.1016/j.molliq.2020.112987
10.1016/j.rser.2020.110287
10.1016/j.icheatmasstransfer.2013.10.002
10.1016/j.rser.2020.110494
10.1016/j.seta.2021.101416
10.1016/j.colsurfa.2020.125968
10.1016/j.renene.2010.07.022
10.1080/15567036.2021.1965264
10.1080/15567036.2018.1549167
10.1016/j.enconman.2007.11.002
10.1016/j.renene.2008.05.002
10.1007/s10973-020-09373-9
10.1021/acs.energyfuels.2c00178
10.1016/j.ijthermalsci.2021.106935
10.1007/s10973-020-09695-8
10.1016/j.jclepro.2021.125834
10.1016/j.csite.2022.101817
10.1007/s10973-018-7305-9
10.1016/j.enbenv.2019.11.003
10.1016/j.rser.2021.111341
10.1016/j.rser.2019.04.058
10.1016/j.seta.2019.100559
10.1016/j.apenergy.2021.117567
10.1016/j.icheatmasstransfer.2013.06.003
10.1016/j.chemolab.2015.10.001
10.1016/j.molliq.2021.115659
10.1016/j.fuel.2020.119337
10.1016/j.ijheatmasstransfer.2020.119993
10.1007/s13399-019-00442-0
10.1007/s10973-018-7496-0
10.1016/j.jclepro.2022.132194
10.1016/j.fuel.2020.117304
10.1016/j.ijheatmasstransfer.2018.11.069
10.1016/j.renene.2017.12.005
10.1016/j.physa.2019.123946
10.4028/www.scientific.net/MSF.928.106
10.1016/j.seta.2021.101341
10.1016/j.applthermaleng.2016.03.051
10.1016/j.jmp.2020.102474
10.1016/j.apenergy.2005.01.007
10.1016/j.renene.2017.11.011
10.1016/j.expthermflusci.2015.03.028
10.1016/j.icheatmasstransfer.2011.10.002
10.1016/j.rser.2018.11.017
10.1016/j.erss.2021.102199
10.1007/s10973-020-09372-w
10.3390/en11061398
10.1016/j.molliq.2020.113058
10.1166/jnn.2014.8467
10.1016/j.jclepro.2020.122353
10.3390/nano10091767
10.14710/ijred.9.2.303-310
10.1016/j.renene.2014.12.035
10.1080/01457632.2018.1546770
10.1007/s10973-020-09760-2
10.1016/j.enconman.2020.113206
10.1080/19942060.2019.1620130
10.1016/j.rser.2015.12.292
10.1007/s11814-008-0156-5
10.1016/j.energy.2018.09.131
10.1016/j.ijthermalsci.2008.11.001
10.1016/j.expthermflusci.2015.11.004
10.1016/j.cjche.2016.10.016
10.1080/02726351.2021.1929610
10.1016/j.seta.2021.101861
10.1016/j.jclepro.2021.127161
10.1080/15567036.2020.1811810
10.1080/15567036.2022.2056269
10.1016/j.rser.2021.111506
10.1007/s10973-019-08838-w
10.1007/s10311-021-01288-7
10.1016/j.applthermaleng.2013.03.047
10.1016/j.est.2022.104186
10.1016/j.molliq.2021.116434
10.1016/j.oceaneng.2020.107651
10.1016/j.ijthermalsci.2021.106861
10.1016/j.rser.2020.110114
10.1016/j.expthermflusci.2016.03.005
10.1016/j.nanoen.2021.106834
10.1016/j.ces.2006.07.029
10.1016/j.rser.2020.109792
10.1021/acs.energyfuels.1c01409
10.1115/1.4032941
10.1007/s10462-021-09975-1
10.1007/s10973-019-09138-z
10.1016/j.icheatmasstransfer.2012.05.017
10.1016/j.icheatmasstransfer.2020.104930
10.1109/MTS.2021.3056294
10.1162/neco.1991.3.2.246
10.1016/j.seta.2021.101715
10.1080/19942060.2018.1542345
10.1016/j.applthermaleng.2018.01.062
10.1007/BF00994018
10.1016/j.est.2020.102067
10.1016/j.physa.2019.124127
10.1007/s10973-018-6978-4
10.1016/j.ijhydene.2022.04.152
10.1016/j.ces.2017.08.034
10.1016/j.powtec.2019.05.036
10.1016/j.applthermaleng.2020.116533
10.1093/ijlct/ctz030
10.1016/j.egyr.2021.11.252
10.1016/j.powtec.2021.03.001
10.1016/j.cma.2020.112989
10.1080/15567036.2020.1814453
10.1016/j.icheatmasstransfer.2016.12.019
10.14710/ijred.2022.41116
10.1016/j.renene.2016.12.095
10.1016/j.expthermflusci.2016.12.004
10.1016/j.physa.2019.124015
10.1016/j.ijheatmasstransfer.2008.10.036
10.1080/15567036.2021.1879969
10.1016/j.ijheatmasstransfer.2021.121159
10.1016/j.rser.2017.03.113
10.1007/s10462-017-9610-2
10.1016/j.enconman.2020.112766
10.1016/j.jmmm.2015.11.039
10.1016/j.apenergy.2020.115415
10.1016/j.icheatmasstransfer.2016.12.002
10.1016/j.solmat.2021.111423
10.1016/j.molliq.2019.02.106
10.1016/j.jclepro.2020.120408
10.1016/j.renene.2018.06.023
10.1016/j.ijft.2021.100084
10.1162/neco.1997.9.8.1735
10.1016/j.jtice.2017.03.002
10.1016/j.eswa.2019.112842
10.1016/j.rser.2010.07.006
10.3390/nano9020267
10.1016/j.matpr.2017.11.182
10.1016/j.rser.2019.109345
10.1016/j.expthermflusci.2015.11.009
10.1016/j.seta.2021.101732
10.14710/ijred.2021.34931
10.1016/j.jclepro.2022.131946
10.1016/j.icheatmasstransfer.2015.05.002
10.1016/j.energy.2020.118800
10.1016/j.apenergy.2018.09.022
10.1016/j.enconman.2016.06.079
10.1016/j.nanoso.2019.100386
10.1016/j.rser.2021.111434
10.14710/ijred.2022.41971
10.1016/j.icheatmasstransfer.2016.09.010
10.1016/j.seta.2018.12.020
10.1016/j.applthermaleng.2016.09.027
10.1016/j.ijthermalsci.2020.106763
10.1016/j.renene.2017.02.008
10.1016/j.molliq.2020.114287
10.1016/j.biortech.2022.126920
10.1016/j.icheatmasstransfer.2012.07.023
10.1016/j.powtec.2018.03.058
10.1016/j.jclepro.2017.07.007
10.1016/j.apenergy.2018.05.075
10.1016/j.molliq.2019.01.073
10.1016/j.powtec.2017.10.038
10.1016/j.rser.2017.05.039
10.1016/j.ijheatmasstransfer.2007.03.043
10.1063/1.4976233
10.1016/j.geothermics.2013.11.001
10.3390/en14185968
10.1016/j.adapen.2021.100063
10.1016/j.expthermflusci.2011.12.013
10.1007/s00231-018-2335-1
10.1016/j.seta.2021.101434
10.4028/www.scientific.net/AMR.984-985.784
10.1007/s10973-020-10047-9
10.1016/j.measurement.2021.110524
10.1016/j.powtec.2020.02.026
10.1016/j.apt.2017.11.013
10.1016/j.expthermflusci.2013.09.018
10.1016/j.solener.2021.09.022
10.1016/j.enconman.2016.03.086
10.1007/s00231-016-1906-2
10.1016/j.expthermflusci.2011.11.007
10.1016/j.energy.2019.116541
10.1007/s11814-021-1057-0
10.1021/acs.energyfuels.0c01533
10.1016/j.ijhydene.2021.11.091
10.1007/s11630-006-0257-6
10.1080/01457632.2018.1528051
10.1016/j.nucengdes.2011.04.045
10.1016/j.ijrefrig.2021.05.016
10.1016/j.applthermaleng.2006.07.036
10.1016/j.powtec.2022.117190
10.1007/s10973-020-10183-2
10.3390/en12071301
10.1016/j.molliq.2021.116890
10.1016/j.powtec.2020.07.115
10.1016/j.geothermics.2017.11.005
10.1016/j.ces.2020.116140
10.1016/j.icheatmasstransfer.2017.03.003
10.1016/j.rser.2019.109485
10.1007/s10973-021-10775-6
10.1016/j.jclepro.2021.126031
10.1016/j.amc.2019.124710
10.1016/j.icheatmasstransfer.2012.10.023
10.1016/j.fuel.2022.124131
10.1615/JEnhHeatTransf.2018026042
10.1016/j.fuproc.2021.106997
10.1016/j.rser.2018.06.029
10.1016/j.applthermaleng.2016.01.125
10.1016/j.joei.2015.02.012
10.1007/s10973-021-10705-6
10.1016/j.seta.2021.101646
10.1016/j.jclepro.2021.129525
10.1016/j.diii.2020.10.001
10.1016/j.solmat.2021.111504
10.1016/j.powtec.2021.09.039
10.1016/j.enconman.2022.115209
10.1016/j.apenergy.2021.116665
10.1016/j.renene.2020.10.020
10.1021/acs.energyfuels.0c04339
10.1016/j.est.2021.102947
10.1016/j.chemolab.2020.104010
10.1016/j.jclepro.2022.131772
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.energyfuels.2c01006
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 6658
ExternalDocumentID 10_1021_acs_energyfuels_2c01006
a569949721
GroupedDBID 02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABUCX
ACGFO
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DC
DU5
EBS
ED
F5P
GGK
GNL
IH9
JG
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
ZCA
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
BAANH
CITATION
CUPRZ
ED~
JG~
~02
7S9
L.6
ID FETCH-LOGICAL-a334t-f482195bd7b657ef9d74dd7d06b0b27d90ac6861c699ba00bbb52d35dd4cea903
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Fri Jul 11 09:28:52 EDT 2025
Tue Jul 01 02:27:48 EDT 2025
Thu Apr 24 22:58:52 EDT 2025
Sat Jul 09 03:33:25 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a334t-f482195bd7b657ef9d74dd7d06b0b27d90ac6861c699ba00bbb52d35dd4cea903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7585-6693
0000-0003-4609-0382
0000-0002-1767-8040
0000-0003-1626-3529
PQID 2718292173
PQPubID 24069
PageCount 33
ParticipantIDs proquest_miscellaneous_2718292173
crossref_citationtrail_10_1021_acs_energyfuels_2c01006
crossref_primary_10_1021_acs_energyfuels_2c01006
acs_journals_10_1021_acs_energyfuels_2c01006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-07
PublicationDateYYYYMMDD 2022-07-07
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-07
  day: 07
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref330/cit330
ref332/cit332
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref187/cit187
ref181/cit181
ref327/cit327
ref111/cit111
ref255/cit255
ref329/cit329
ref113/cit113
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref251/cit251
ref325/cit325
ref253/cit253
ref42/cit42
ref321/cit321
ref323/cit323
ref120/cit120
ref178/cit178
ref122/cit122
ref248/cit248
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref240/cit240
ref137/cit137
ref310/cit310
ref318/cit318
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref314/cit314
ref86/cit86
ref170/cit170
ref244/cit244
ref271/cit271
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref279/cit279
ref203/cit203
ref275/cit275
ref233/cit233
ref148/cit148
ref307/cit307
ref55/cit55
ref144/cit144
ref303/cit303
ref218/cit218
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref264/cit264
ref338/cit338
ref22/cit22
ref260/cit260
ref334/cit334
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref268/cit268
ref153/cit153
ref297/cit297
ref227/cit227
ref222/cit222
ref150/cit150
ref294/cit294
ref63/cit63
ref224/cit224
ref295/cit295
ref56/cit56
ref155/cit155
ref229/cit229
ref156/cit156
ref158/cit158
Dickson M. H. (ref280/cit280) 2003
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref221/cit221
ref292/cit292
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
ref306/cit306
ref230/cit230
ref145/cit145
ref304/cit304
ref238/cit238
ref21/cit21
ref166/cit166
ref164/cit164
ref213/cit213
ref284/cit284
ref286/cit286
(ref4/cit4) 2022
ref78/cit78
ref211/cit211
ref312/cit312
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref246/cit246
ref243/cit243
ref317/cit317
ref270/cit270
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref278/cit278
ref134/cit134
ref208/cit208
ref40/cit40
ref273/cit273
ref131/cit131
ref205/cit205
ref161/cit161
ref320/cit320
ref142/cit142
ref216/cit216
ref301/cit301
ref289/cit289
ref15/cit15
ref180/cit180
ref235/cit235
ref309/cit309
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref262/cit262
ref177/cit177
ref336/cit336
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref281/cit281
ref7/cit7
ref45/cit45
ref331/cit331
ref333/cit333
ref52/cit52
ref184/cit184
ref114/cit114
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref254/cit254
ref182/cit182
ref328/cit328
ref2/cit2
ref112/cit112
ref256/cit256
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref337/cit337
ref191/cit191
ref265/cit265
ref109/cit109
ref339/cit339
ref13/cit13
ref193/cit193
Ferreira C. (ref94/cit94) 2001; 13
ref105/cit105
ref261/cit261
ref335/cit335
ref263/cit263
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref267/cit267
ref195/cit195
ref269/cit269
ref64/cit64
ref311/cit311
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref245/cit245
ref319/cit319
ref241/cit241
ref315/cit315
ref76/cit76
ref32/cit32
ref39/cit39
ref272/cit272
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref276/cit276
ref91/cit91
ref287/cit287
ref252/cit252
ref12/cit12
ref326/cit326
ref322/cit322
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref249/cit249
ref283/cit283
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref225/cit225
ref296/cit296
ref226/cit226
ref154/cit154
ref298/cit298
ref27/cit27
ref228/cit228
ref299/cit299
ref293/cit293
ref223/cit223
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
ref290/cit290
ref220/cit220
ref291/cit291
ref88/cit88
ref160/cit160
ref234/cit234
ref143/cit143
ref302/cit302
ref217/cit217
ref288/cit288
ref53/cit53
ref149/cit149
ref162/cit162
ref308/cit308
ref46/cit46
ref236/cit236
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref300/cit300
ref215/cit215
ref50/cit50
ref282/cit282
ref313/cit313
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref247/cit247
ref72/cit72
ref242/cit242
ref316/cit316
ref201/cit201
Sharma P. (ref73/cit73) 2021; 11
ref340/cit340
ref51/cit51
ref277/cit277
ref135/cit135
ref68/cit68
ref130/cit130
ref274/cit274
ref204/cit204
ref146/cit146
ref305/cit305
ref26/cit26
ref231/cit231
ref69/cit69
ref165/cit165
ref324/cit324
ref239/cit239
ref250/cit250
ref95/cit95
ref108/cit108
ref192/cit192
ref266/cit266
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
ref285/cit285
References_xml – ident: ref90/cit90
  doi: 10.1016/j.ijhydene.2022.04.093
– ident: ref154/cit154
  doi: 10.1007/s00521-022-07038-2
– ident: ref252/cit252
  doi: 10.1016/j.energy.2021.120546
– ident: ref188/cit188
  doi: 10.4028/www.scientific.net/KEM.801.193
– ident: ref203/cit203
  doi: 10.1016/j.euromechflu.2020.02.004
– ident: ref33/cit33
  doi: 10.1016/j.icheatmasstransfer.2019.104389
– ident: ref112/cit112
  doi: 10.48550/arXiv.1811.12808
– ident: ref169/cit169
  doi: 10.1016/j.molliq.2018.04.012
– ident: ref10/cit10
  doi: 10.1080/15567036.2022.2066739
– ident: ref34/cit34
  doi: 10.1016/j.ijheatmasstransfer.2018.03.103
– ident: ref224/cit224
  doi: 10.1080/08916152.2019.1625469
– ident: ref109/cit109
  doi: 10.1016/j.chaos.2020.110055
– ident: ref42/cit42
  doi: 10.1016/j.colsurfa.2021.126562
– ident: ref299/cit299
  doi: 10.2298/TSCI130316116D
– ident: ref26/cit26
  doi: 10.1021/acs.energyfuels.1c01439
– ident: ref140/cit140
  doi: 10.1016/j.molliq.2020.115217
– ident: ref206/cit206
  doi: 10.1016/j.bjbas.2017.10.001
– ident: ref215/cit215
  doi: 10.1115/1.4007777
– ident: ref309/cit309
  doi: 10.1016/j.fuel.2022.123618
– ident: ref166/cit166
  doi: 10.1007/s10973-020-10491-7
– ident: ref217/cit217
  doi: 10.1016/j.applthermaleng.2016.07.196
– ident: ref57/cit57
  doi: 10.1016/j.egyr.2020.04.035
– ident: ref213/cit213
  doi: 10.2298/TSCI151110097U
– ident: ref229/cit229
  doi: 10.1016/j.applthermaleng.2017.04.083
– ident: ref29/cit29
  doi: 10.1016/j.solener.2020.07.009
– volume-title: Transport Energy Strategies
  year: 2022
  ident: ref4/cit4
– ident: ref168/cit168
  doi: 10.1016/j.pecs.2020.100898
– ident: ref141/cit141
  doi: 10.1016/j.solener.2019.12.067
– ident: ref216/cit216
  doi: 10.1016/j.powtec.2012.11.030
– ident: ref16/cit16
  doi: 10.1007/s10973-020-09998-w
– ident: ref88/cit88
  doi: 10.3390/s21072269
– ident: ref204/cit204
  doi: 10.1016/j.rser.2017.08.060
– ident: ref254/cit254
  doi: 10.1080/15567036.2021.1966139
– ident: ref124/cit124
  doi: 10.1016/j.icheatmasstransfer.2019.104408
– ident: ref178/cit178
  doi: 10.1016/j.renene.2021.02.086
– ident: ref51/cit51
  doi: 10.1016/j.jclepro.2020.120696
– ident: ref54/cit54
  doi: 10.1049/iet-rpg.2018.5649
– ident: ref68/cit68
  doi: 10.1016/j.molliq.2020.114843
– ident: ref171/cit171
  doi: 10.1016/j.powtec.2021.04.069
– ident: ref325/cit325
  doi: 10.1016/j.asoc.2019.105979
– ident: ref18/cit18
  doi: 10.1016/j.cis.2020.102199
– ident: ref91/cit91
  doi: 10.1080/01430750.2021.1873856
– ident: ref144/cit144
  doi: 10.1016/j.molliq.2020.114020
– ident: ref269/cit269
  doi: 10.1016/j.enconman.2020.112582
– ident: ref304/cit304
  doi: 10.1080/15567036.2021.1892883
– ident: ref327/cit327
  doi: 10.17775/CSEEJPES.2018.01010
– ident: ref106/cit106
  doi: 10.1080/15567036.2022.2067268
– ident: ref335/cit335
  doi: 10.1115/1.4052237
– ident: ref279/cit279
  doi: 10.1016/j.rser.2019.05.058
– ident: ref322/cit322
  doi: 10.1016/j.fuel.2019.04.169
– ident: ref11/cit11
  doi: 10.1016/j.nanoen.2021.106069
– ident: ref17/cit17
  doi: 10.1021/acs.energyfuels.1c01990
– ident: ref165/cit165
  doi: 10.1016/j.icheatmasstransfer.2017.12.012
– ident: ref200/cit200
  doi: 10.1080/10407780490250391
– ident: ref46/cit46
  doi: 10.1038/s41560-017-0036-5
– ident: ref256/cit256
  doi: 10.14710/ijred.2021.33917
– ident: ref320/cit320
  doi: 10.1016/j.biombioe.2017.01.029
– ident: ref156/cit156
  doi: 10.1016/j.physa.2019.122142
– ident: ref8/cit8
  doi: 10.1016/j.enpol.2021.112322
– ident: ref313/cit313
  doi: 10.1080/15567036.2022.2044412
– ident: ref92/cit92
  doi: 10.1080/17597269.2018.1472980
– ident: ref316/cit316
  doi: 10.1002/htj.22138
– ident: ref31/cit31
  doi: 10.1007/s10973-018-7974-4
– ident: ref81/cit81
  doi: 10.1016/j.powtec.2020.09.011
– ident: ref118/cit118
  doi: 10.1016/j.powtec.2020.07.020
– ident: ref167/cit167
  doi: 10.1002/er.8010
– volume: 13
  start-page: 87
  year: 2001
  ident: ref94/cit94
  publication-title: Complex Systems
– ident: ref121/cit121
  doi: 10.1016/j.energy.2020.117086
– ident: ref296/cit296
  doi: 10.1080/15567036.2022.2049930
– ident: ref183/cit183
  doi: 10.1016/j.solener.2021.01.022
– ident: ref28/cit28
  doi: 10.1016/j.cep.2021.108447
– ident: ref194/cit194
  doi: 10.1016/j.enconman.2017.04.076
– ident: ref59/cit59
  doi: 10.1016/j.rser.2020.109899
– ident: ref248/cit248
  doi: 10.1016/j.applthermaleng.2017.05.090
– ident: ref303/cit303
  doi: 10.14710/ijred.2022.39298
– ident: ref281/cit281
  doi: 10.14710/ijred.2022.42545
– ident: ref44/cit44
  doi: 10.1016/j.eiar.2020.106508
– ident: ref97/cit97
  doi: 10.1155/2019/4145353
– ident: ref76/cit76
  doi: 10.1021/acs.energyfuels.0c01034
– ident: ref134/cit134
  doi: 10.1016/j.ijheatmasstransfer.2018.04.142
– ident: ref239/cit239
  doi: 10.1063/1.5115925
– ident: ref101/cit101
  doi: 10.1016/j.neucom.2018.04.045
– ident: ref295/cit295
  doi: 10.1016/j.rser.2019.109422
– ident: ref278/cit278
  doi: 10.1016/j.rser.2019.109661
– ident: ref162/cit162
  doi: 10.1016/j.molliq.2019.110923
– ident: ref152/cit152
  doi: 10.1016/j.molliq.2018.01.061
– ident: ref175/cit175
  doi: 10.1016/j.colsurfa.2022.128389
– ident: ref32/cit32
  doi: 10.1016/j.powtec.2020.01.015
– ident: ref105/cit105
  doi: 10.1016/j.ast.2019.105527
– ident: ref291/cit291
  doi: 10.1016/j.icheatmasstransfer.2016.08.015
– ident: ref331/cit331
  doi: 10.14710/ijred.2022.40359
– ident: ref35/cit35
  doi: 10.1016/j.enconman.2021.114450
– ident: ref161/cit161
  doi: 10.1016/j.physe.2017.08.019
– ident: ref260/cit260
  doi: 10.1016/j.rser.2016.04.024
– ident: ref133/cit133
  doi: 10.1007/s10973-020-09541-x
– ident: ref63/cit63
  doi: 10.1016/j.icheatmasstransfer.2021.105217
– ident: ref317/cit317
  doi: 10.1080/15567036.2020.1829204
– ident: ref25/cit25
  doi: 10.1016/j.desal.2019.114244
– ident: ref53/cit53
  doi: 10.1021/acs.energyfuels.0c01491
– ident: ref139/cit139
  doi: 10.1021/acsaem.0c01556
– ident: ref185/cit185
  doi: 10.4028/www.scientific.net/MSF.928.83
– ident: ref45/cit45
  doi: 10.1016/j.envsci.2021.03.015
– ident: ref283/cit283
  doi: 10.1016/j.renene.2017.10.029
– ident: ref257/cit257
  doi: 10.14710/ijred.2021.32657
– ident: ref36/cit36
  doi: 10.1016/j.rser.2021.111025
– ident: ref50/cit50
  doi: 10.1016/j.jclepro.2018.09.242
– ident: ref324/cit324
  doi: 10.1016/j.est.2021.103778
– ident: ref150/cit150
  doi: 10.1016/j.powtec.2020.02.010
– ident: ref236/cit236
  doi: 10.1080/24701556.2019.1606827
– ident: ref293/cit293
  doi: 10.1016/j.rser.2016.11.256
– ident: ref64/cit64
  doi: 10.1016/j.pecs.2021.100904
– ident: ref337/cit337
  doi: 10.1016/j.rser.2014.01.035
– ident: ref145/cit145
  doi: 10.1016/j.nanoso.2018.12.001
– ident: ref268/cit268
  doi: 10.1016/j.renene.2019.07.104
– ident: ref249/cit249
  doi: 10.1016/j.apt.2014.05.014
– ident: ref314/cit314
  doi: 10.1016/j.psep.2022.02.061
– ident: ref340/cit340
  doi: 10.1115/1.4051340
– ident: ref22/cit22
  doi: 10.1016/j.enconman.2020.113619
– ident: ref87/cit87
  doi: 10.1016/j.rser.2017.07.049
– ident: ref120/cit120
  doi: 10.1016/j.molliq.2020.112987
– ident: ref60/cit60
  doi: 10.1016/j.rser.2020.110287
– ident: ref218/cit218
  doi: 10.1016/j.icheatmasstransfer.2013.10.002
– ident: ref62/cit62
  doi: 10.1016/j.rser.2020.110494
– ident: ref65/cit65
  doi: 10.1016/j.seta.2021.101416
– ident: ref122/cit122
  doi: 10.1016/j.colsurfa.2020.125968
– ident: ref334/cit334
  doi: 10.1016/j.renene.2010.07.022
– ident: ref332/cit332
  doi: 10.1080/15567036.2021.1965264
– ident: ref9/cit9
  doi: 10.1080/15567036.2018.1549167
– ident: ref198/cit198
  doi: 10.1016/j.enconman.2007.11.002
– ident: ref275/cit275
  doi: 10.1016/j.renene.2008.05.002
– ident: ref130/cit130
  doi: 10.1007/s10973-020-09373-9
– ident: ref41/cit41
  doi: 10.1016/j.rser.2020.110494
– ident: ref43/cit43
  doi: 10.1021/acs.energyfuels.2c00178
– ident: ref119/cit119
  doi: 10.1016/j.ijthermalsci.2021.106935
– ident: ref27/cit27
  doi: 10.1007/s10973-020-09695-8
– ident: ref61/cit61
  doi: 10.1016/j.jclepro.2021.125834
– ident: ref71/cit71
  doi: 10.1016/j.csite.2022.101817
– ident: ref138/cit138
  doi: 10.1007/s10973-018-7305-9
– volume-title: Geothermal Energy: Utilization and Technology
  year: 2003
  ident: ref280/cit280
– ident: ref329/cit329
  doi: 10.1016/j.enbenv.2019.11.003
– ident: ref146/cit146
  doi: 10.1016/j.rser.2021.111341
– ident: ref285/cit285
  doi: 10.1016/j.rser.2019.04.058
– ident: ref273/cit273
  doi: 10.1016/j.seta.2019.100559
– ident: ref321/cit321
  doi: 10.1016/j.apenergy.2021.117567
– ident: ref190/cit190
  doi: 10.1016/j.icheatmasstransfer.2013.06.003
– ident: ref96/cit96
  doi: 10.1016/j.chemolab.2015.10.001
– ident: ref128/cit128
  doi: 10.1016/j.molliq.2021.115659
– ident: ref307/cit307
  doi: 10.1016/j.fuel.2020.119337
– ident: ref21/cit21
  doi: 10.1016/j.ijheatmasstransfer.2020.119993
– ident: ref315/cit315
  doi: 10.1007/s13399-019-00442-0
– ident: ref12/cit12
  doi: 10.1007/s10973-018-7496-0
– ident: ref242/cit242
  doi: 10.1016/j.jclepro.2022.132194
– ident: ref70/cit70
  doi: 10.1016/j.fuel.2020.117304
– volume: 11
  start-page: 701
  issue: 2
  year: 2021
  ident: ref73/cit73
  publication-title: Int. J. Renew. Energy Resour.
– ident: ref164/cit164
  doi: 10.1016/j.ijheatmasstransfer.2018.11.069
– ident: ref265/cit265
  doi: 10.1016/j.renene.2017.12.005
– ident: ref158/cit158
  doi: 10.1016/j.physa.2019.123946
– ident: ref187/cit187
  doi: 10.4028/www.scientific.net/MSF.928.106
– ident: ref14/cit14
  doi: 10.1016/j.seta.2021.101341
– ident: ref228/cit228
  doi: 10.1016/j.applthermaleng.2016.03.051
– ident: ref115/cit115
  doi: 10.1016/j.jmp.2020.102474
– ident: ref199/cit199
  doi: 10.1016/j.apenergy.2005.01.007
– ident: ref267/cit267
  doi: 10.1016/j.renene.2017.11.011
– ident: ref193/cit193
  doi: 10.1016/j.expthermflusci.2015.03.028
– ident: ref241/cit241
  doi: 10.1016/j.icheatmasstransfer.2011.10.002
– ident: ref210/cit210
  doi: 10.1016/j.rser.2018.11.017
– ident: ref48/cit48
  doi: 10.1016/j.erss.2021.102199
– ident: ref176/cit176
  doi: 10.1007/s10973-020-09372-w
– ident: ref205/cit205
  doi: 10.3390/en11061398
– ident: ref163/cit163
  doi: 10.1016/j.molliq.2020.113058
– ident: ref232/cit232
  doi: 10.1166/jnn.2014.8467
– ident: ref264/cit264
  doi: 10.1016/j.jclepro.2020.122353
– ident: ref58/cit58
  doi: 10.3390/nano10091767
– ident: ref255/cit255
  doi: 10.14710/ijred.9.2.303-310
– ident: ref277/cit277
  doi: 10.1016/j.renene.2014.12.035
– ident: ref234/cit234
  doi: 10.1080/01457632.2018.1546770
– ident: ref15/cit15
  doi: 10.1007/s10973-020-09760-2
– ident: ref330/cit330
  doi: 10.1016/j.enconman.2020.113206
– ident: ref135/cit135
  doi: 10.1080/19942060.2019.1620130
– ident: ref220/cit220
  doi: 10.1016/j.rser.2015.12.292
– ident: ref189/cit189
  doi: 10.1007/s11814-008-0156-5
– ident: ref319/cit319
  doi: 10.1016/j.energy.2018.09.131
– ident: ref202/cit202
  doi: 10.1016/j.ijthermalsci.2008.11.001
– ident: ref221/cit221
  doi: 10.1016/j.expthermflusci.2015.11.004
– ident: ref174/cit174
  doi: 10.1016/j.cjche.2016.10.016
– ident: ref125/cit125
  doi: 10.1080/02726351.2021.1929610
– ident: ref24/cit24
  doi: 10.1016/j.seta.2021.101861
– ident: ref7/cit7
  doi: 10.1016/j.jclepro.2021.127161
– ident: ref294/cit294
  doi: 10.1080/15567036.2020.1811810
– ident: ref302/cit302
  doi: 10.1080/15567036.2022.2056269
– ident: ref333/cit333
  doi: 10.1016/j.rser.2021.111506
– ident: ref131/cit131
  doi: 10.1007/s10973-019-08838-w
– ident: ref177/cit177
  doi: 10.1007/s10311-021-01288-7
– ident: ref214/cit214
  doi: 10.1016/j.applthermaleng.2013.03.047
– ident: ref38/cit38
  doi: 10.1016/j.est.2022.104186
– ident: ref143/cit143
  doi: 10.1016/j.molliq.2021.116434
– ident: ref336/cit336
  doi: 10.1016/j.oceaneng.2020.107651
– ident: ref292/cit292
  doi: 10.1016/j.ijthermalsci.2021.106861
– ident: ref263/cit263
  doi: 10.1016/j.rser.2020.110114
– ident: ref223/cit223
  doi: 10.1016/j.expthermflusci.2016.03.005
– ident: ref30/cit30
  doi: 10.1016/j.nanoen.2021.106834
– ident: ref201/cit201
  doi: 10.1016/j.ces.2006.07.029
– ident: ref113/cit113
  doi: 10.1016/j.rser.2020.109792
– ident: ref78/cit78
  doi: 10.1021/acs.energyfuels.1c01409
– ident: ref95/cit95
  doi: 10.1115/1.4032941
– ident: ref107/cit107
  doi: 10.1007/s10462-021-09975-1
– ident: ref173/cit173
  doi: 10.1007/s10973-019-09138-z
– ident: ref89/cit89
  doi: 10.1016/j.icheatmasstransfer.2012.05.017
– ident: ref155/cit155
  doi: 10.1016/j.icheatmasstransfer.2020.104930
– ident: ref339/cit339
  doi: 10.1109/MTS.2021.3056294
– ident: ref102/cit102
  doi: 10.1162/neco.1991.3.2.246
– ident: ref170/cit170
  doi: 10.1016/j.seta.2021.101715
– ident: ref108/cit108
  doi: 10.1007/s10462-021-09975-1
– ident: ref160/cit160
  doi: 10.1080/19942060.2018.1542345
– ident: ref207/cit207
  doi: 10.1016/j.applthermaleng.2018.01.062
– ident: ref77/cit77
  doi: 10.1007/BF00994018
– ident: ref147/cit147
  doi: 10.1016/j.est.2020.102067
– ident: ref123/cit123
  doi: 10.1016/j.physa.2019.124127
– ident: ref172/cit172
  doi: 10.1007/s10973-018-6978-4
– ident: ref85/cit85
  doi: 10.1016/j.ijhydene.2022.04.152
– ident: ref151/cit151
  doi: 10.1016/j.ces.2017.08.034
– ident: ref137/cit137
  doi: 10.1016/j.powtec.2019.05.036
– ident: ref209/cit209
  doi: 10.1016/j.applthermaleng.2020.116533
– ident: ref290/cit290
  doi: 10.1093/ijlct/ctz030
– ident: ref270/cit270
  doi: 10.1016/j.egyr.2021.11.252
– ident: ref274/cit274
  doi: 10.1016/j.powtec.2021.03.001
– ident: ref104/cit104
  doi: 10.1016/j.cma.2020.112989
– ident: ref312/cit312
  doi: 10.1080/15567036.2020.1814453
– ident: ref195/cit195
  doi: 10.1016/j.icheatmasstransfer.2016.12.019
– ident: ref253/cit253
  doi: 10.14710/ijred.2022.41116
– ident: ref262/cit262
  doi: 10.1016/j.renene.2016.12.095
– ident: ref240/cit240
  doi: 10.1016/j.expthermflusci.2016.12.004
– ident: ref80/cit80
  doi: 10.1016/j.physa.2019.124015
– ident: ref245/cit245
  doi: 10.1016/j.ijheatmasstransfer.2008.10.036
– ident: ref2/cit2
  doi: 10.1080/15567036.2021.1879969
– ident: ref126/cit126
  doi: 10.1016/j.ijheatmasstransfer.2021.121159
– ident: ref149/cit149
  doi: 10.1016/j.rser.2017.03.113
– ident: ref93/cit93
  doi: 10.1007/s10462-017-9610-2
– ident: ref98/cit98
  doi: 10.1016/j.enconman.2020.112766
– ident: ref196/cit196
  doi: 10.1016/j.jmmm.2015.11.039
– ident: ref49/cit49
  doi: 10.1016/j.apenergy.2020.115415
– ident: ref287/cit287
  doi: 10.1016/j.icheatmasstransfer.2016.12.002
– ident: ref75/cit75
  doi: 10.1016/j.solmat.2021.111423
– ident: ref148/cit148
  doi: 10.1016/j.molliq.2019.02.106
– ident: ref13/cit13
  doi: 10.1016/j.jclepro.2020.120408
– ident: ref272/cit272
  doi: 10.1016/j.renene.2018.06.023
– ident: ref69/cit69
  doi: 10.1016/j.ijft.2021.100084
– ident: ref100/cit100
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref227/cit227
  doi: 10.1016/j.jtice.2017.03.002
– ident: ref99/cit99
  doi: 10.1016/j.eswa.2019.112842
– ident: ref284/cit284
  doi: 10.1016/j.rser.2010.07.006
– ident: ref300/cit300
  doi: 10.3390/nano9020267
– ident: ref238/cit238
  doi: 10.1016/j.matpr.2017.11.182
– ident: ref86/cit86
  doi: 10.1016/j.rser.2019.109345
– ident: ref233/cit233
  doi: 10.1016/j.expthermflusci.2015.11.009
– ident: ref261/cit261
  doi: 10.1016/j.seta.2021.101732
– ident: ref258/cit258
  doi: 10.14710/ijred.2021.34931
– ident: ref3/cit3
  doi: 10.1016/j.jclepro.2022.131946
– ident: ref222/cit222
  doi: 10.1016/j.icheatmasstransfer.2015.05.002
– ident: ref318/cit318
  doi: 10.1016/j.energy.2020.118800
– ident: ref179/cit179
  doi: 10.1016/j.apenergy.2018.09.022
– ident: ref289/cit289
  doi: 10.1016/j.enconman.2016.06.079
– ident: ref5/cit5
  doi: 10.1016/j.nanoso.2019.100386
– ident: ref66/cit66
  doi: 10.1016/j.rser.2021.111434
– ident: ref306/cit306
  doi: 10.14710/ijred.2022.41971
– ident: ref111/cit111
  doi: 10.1016/j.icheatmasstransfer.2016.09.010
– ident: ref237/cit237
  doi: 10.1016/j.seta.2018.12.020
– ident: ref181/cit181
  doi: 10.1016/j.applthermaleng.2016.09.027
– ident: ref208/cit208
  doi: 10.1016/j.ijthermalsci.2020.106763
– ident: ref305/cit305
  doi: 10.1016/j.renene.2017.02.008
– ident: ref19/cit19
  doi: 10.1016/j.molliq.2020.114287
– ident: ref6/cit6
  doi: 10.1016/j.biortech.2022.126920
– ident: ref219/cit219
  doi: 10.1016/j.icheatmasstransfer.2012.07.023
– ident: ref226/cit226
  doi: 10.1016/j.powtec.2018.03.058
– ident: ref326/cit326
  doi: 10.1016/j.jclepro.2017.07.007
– ident: ref328/cit328
  doi: 10.1016/j.apenergy.2018.05.075
– ident: ref159/cit159
  doi: 10.1016/j.molliq.2019.01.073
– ident: ref84/cit84
  doi: 10.1016/j.powtec.2017.10.038
– ident: ref276/cit276
  doi: 10.1016/j.rser.2017.05.039
– ident: ref250/cit250
  doi: 10.1016/j.ijheatmasstransfer.2007.03.043
– ident: ref186/cit186
  doi: 10.1063/1.4976233
– ident: ref282/cit282
  doi: 10.1016/j.geothermics.2013.11.001
– ident: ref52/cit52
  doi: 10.1002/er.8010
– ident: ref114/cit114
  doi: 10.3390/en14185968
– ident: ref338/cit338
  doi: 10.1016/j.adapen.2021.100063
– ident: ref211/cit211
  doi: 10.1016/j.expthermflusci.2011.12.013
– ident: ref225/cit225
  doi: 10.1007/s00231-018-2335-1
– ident: ref259/cit259
  doi: 10.1016/j.seta.2021.101434
– ident: ref298/cit298
  doi: 10.4028/www.scientific.net/AMR.984-985.784
– ident: ref129/cit129
  doi: 10.1007/s10973-020-10047-9
– ident: ref74/cit74
  doi: 10.1016/j.measurement.2021.110524
– ident: ref56/cit56
  doi: 10.1016/j.rser.2019.109345
– ident: ref136/cit136
  doi: 10.1016/j.powtec.2020.02.026
– ident: ref184/cit184
  doi: 10.1016/j.apt.2017.11.013
– ident: ref212/cit212
  doi: 10.1016/j.expthermflusci.2013.09.018
– ident: ref271/cit271
  doi: 10.1016/j.solener.2021.09.022
– ident: ref230/cit230
  doi: 10.1016/j.enconman.2016.03.086
– ident: ref247/cit247
  doi: 10.1007/s00231-016-1906-2
– ident: ref231/cit231
  doi: 10.1016/j.expthermflusci.2011.11.007
– ident: ref323/cit323
  doi: 10.1016/j.energy.2019.116541
– ident: ref116/cit116
  doi: 10.1007/s11814-021-1057-0
– ident: ref83/cit83
  doi: 10.1021/acs.energyfuels.0c01533
– ident: ref308/cit308
  doi: 10.1016/j.ijhydene.2021.11.091
– ident: ref244/cit244
  doi: 10.1007/s11630-006-0257-6
– ident: ref191/cit191
  doi: 10.1080/01457632.2018.1528051
– ident: ref251/cit251
  doi: 10.1016/j.nucengdes.2011.04.045
– ident: ref180/cit180
  doi: 10.1016/j.ijrefrig.2021.05.016
– ident: ref243/cit243
  doi: 10.1016/j.applthermaleng.2006.07.036
– ident: ref79/cit79
  doi: 10.1016/j.powtec.2022.117190
– ident: ref132/cit132
  doi: 10.1007/s10973-020-10183-2
– ident: ref55/cit55
  doi: 10.3390/en12071301
– ident: ref67/cit67
  doi: 10.1016/j.molliq.2021.116890
– ident: ref117/cit117
  doi: 10.1016/j.powtec.2020.07.115
– ident: ref288/cit288
  doi: 10.1016/j.geothermics.2017.11.005
– ident: ref142/cit142
  doi: 10.1016/j.ces.2020.116140
– ident: ref157/cit157
  doi: 10.1016/j.icheatmasstransfer.2017.03.003
– ident: ref311/cit311
  doi: 10.1016/j.rser.2019.109485
– ident: ref127/cit127
  doi: 10.1007/s10973-021-10775-6
– ident: ref37/cit37
  doi: 10.1016/j.jclepro.2021.126031
– ident: ref246/cit246
  doi: 10.1016/j.amc.2019.124710
– ident: ref182/cit182
  doi: 10.1016/j.icheatmasstransfer.2012.10.023
– ident: ref82/cit82
  doi: 10.1016/j.fuel.2022.124131
– ident: ref235/cit235
  doi: 10.1615/JEnhHeatTransf.2018026042
– ident: ref310/cit310
  doi: 10.1016/j.fuproc.2021.106997
– ident: ref266/cit266
  doi: 10.1016/j.rser.2018.06.029
– ident: ref192/cit192
  doi: 10.1016/j.applthermaleng.2016.01.125
– ident: ref197/cit197
  doi: 10.1016/j.joei.2015.02.012
– ident: ref23/cit23
  doi: 10.1007/s10973-021-10705-6
– ident: ref286/cit286
  doi: 10.1016/j.seta.2021.101646
– ident: ref39/cit39
  doi: 10.1016/j.jclepro.2021.129525
– ident: ref110/cit110
  doi: 10.1016/j.diii.2020.10.001
– ident: ref72/cit72
  doi: 10.1016/j.solmat.2021.111504
– ident: ref301/cit301
  doi: 10.1016/j.powtec.2021.09.039
– ident: ref297/cit297
  doi: 10.1016/j.enconman.2022.115209
– ident: ref47/cit47
  doi: 10.1016/j.apenergy.2021.116665
– ident: ref103/cit103
  doi: 10.1016/j.renene.2020.10.020
– ident: ref20/cit20
  doi: 10.1021/acs.energyfuels.0c04339
– ident: ref40/cit40
  doi: 10.1016/j.est.2021.102947
– ident: ref153/cit153
  doi: 10.1016/j.chemolab.2020.104010
– ident: ref1/cit1
  doi: 10.1016/j.jclepro.2022.131772
SSID ssj0006385
Score 2.6897893
SecondaryResourceType review_article
Snippet Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6626
SubjectTerms algorithms
artificial intelligence
computer software
energy
ethics
heat transfer
nanofluids
prediction
swarms
thermal conductivity
Title Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System
URI http://dx.doi.org/10.1021/acs.energyfuels.2c01006
https://www.proquest.com/docview/2718292173
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KPagH32J9sYJHUzebzSZ7rKWlCPXgA7yFfUpRUrENgr_e2TyKIlK9hZAJm9nJfDO7M98idG64kABbLjCM6IDJlAfCX_E0dqHUUaqdX4cc3_DRA7t-jB9bKPxlB5-Gl1LPurbsg3MFwEWXakghPMn2CuVp4vOtXv9u4XzBnOKG3JNwypqSrt9f5GFJz77D0nevXELNcBPdNg07VYXJc7eYq67--Mnf-Pev2EIbdeCJe5WlbKOWzXfQar85720HrX-hJtxFE4gnAY9wr6oRmOFJjsdl4aXFNSfrE27K9jBEvhj89NS9FBMTXAEyGjwCL49LKHT2zYvfwsjefacWHpRDxBVb-h56GA7u-6OgPpYhkFHE5oFjKbi5WJlE8TixTpiEGZMYwhVRNDGCSM1THmouhJKEKKViaqLYGKatFCTaR-18mtsDhCMtYkuYSyiYhGBWSKqMDpWGJFODa-mgC1BcVv9Ws6zcMadh5m9-0WZWa7ODeDOJma4pzv1JGy_LBclC8LVi-VguctZYSQYT5bdZZG6nBTwAcE8FpHrR4f-Gf4TWqG-uKBePj1F7_lbYEwh55uq0NPJPgpwBsA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hOEAPLaWtCgXqShybreM4TnzcrkDbluVAQYJT5E-0KspWZCMkfj1jb7KFSgi1t8jKWBN7Mm9szzwDHFghFcKWTyynJuGqFIkMT6LMfapMVhof9iEnJ2J8zr9f5BcrUPa1MKhEgz018RD_D7tA-iW0uVgO51tEjQEzuJIIXNtrGJKwsOwajn4ufTBaVd5zfFLBeJ_Z9XRHAZ1M8xidHjvniDhHr-ByqWtMNPk1aOd6YO7-onH8n4_ZhJddGEqGC7t5DSuu3oL1UX_72xa8eEBU-AamGF0iOpHhImOgIdOaTGIapiMdQ-sV6ZP4CMbBBL32zF-3U5t8RZy0ZIw-n0Rg9O4miJ-iZrehboscRhXJgjv9LZwfHZ6Nxkl3SUOisozPE89LdHq5toUWeeG8tAW3trBUaKpZYSVVRpQiNUJKrSjVWufMZrm13DglafYOVutZ7d4DyYzMHeW-YGggkjupmLYm1QaXnAYdzTZ8xoGrup-sqeL5OUur0PhgNKtuNLdB9HNZmY7wPNy7cf28IF0K_l5wfjwv8qk3lgonKhy6qNrNWnwBwZ9JXPhlO_-m_kdYH59Njqvjbyc_PsAGC2UXcVt5F1bnN63bw2Borvej3d8DVfAKEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KBasPVlvF1qor9NGcm81mk4W-XM8e12qLqIW-lLCfcrTkSnOh0L_e2b3kaAUp-hZCZpnszs7HzsxvAXatkArNlk8spybhqhSJDE-izH2qTFYaH84hj0_E5JQfneVnK7DX98IgEw2O1MQkftjVV9Z3CAPpp_DexZY436LlGDCD0UTA234Uknch9BqOfiz1MEpW3uN8UsF4X93194GChTLNfQt1X0FHqzNeh_Mlv7HY5GLQzvXA3P4B5fi_P_QcnnXuKBku5OcFrLh6A9ZG_S1wG_D0DmDhJkzRy0QrRYaLyoGGTGtyHMsxHemQWn-RvpiPoD9MUHvP_GU7tck-2ktLJqj7STSQ3l0H8u_I2U3o3yIHkUWywFB_Cafjg5-jSdJd1pCoLOPzxPMSlV-ubaFxLZyXtuDWFpYKTTUrrKTKiFKkRkipFaVa65zZLLeWG6ckzV7Baj2r3WsgmZG5o9wXDAVFcicV09ak2mDoaVDhbMFHnLiq22xNFfPoLK3CyzuzWXWzuQWiX8_KdMDn4f6Ny4cJ6ZLwaoH98TDJh15gKlyokHxRtZu1-AE6AUxiAJht_xv77-Hxt8_j6uvhyZc38ISF7ot4urwDq_Pr1r1Fn2iu30XR_w3DPgyU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Machine+Learning+Research+for+Nanofluid-Based+Heat+Transfer+in+Renewable+Energy+System&rft.jtitle=Energy+%26+fuels&rft.au=Sharma%2C+Prabhakar&rft.au=Said%2C+Zafar&rft.au=Kumar%2C+Anurag&rft.au=Ni%C5%BEeti%C4%87%2C+Sandro&rft.date=2022-07-07&rft.issn=1520-5029&rft.volume=36&rft.issue=13+p.6626-6658&rft.spage=6626&rft.epage=6658&rft_id=info:doi/10.1021%2Facs.energyfuels.2c01006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon