The Role of Carbon Capture and Storage in the Energy Transition

In this paper, we review and analyze the salient features of the ongoing energy transition from a high to a low carbon economy. Our analysis shows that this transition will require decarbonizing the power, transport, and industry sectors, and the transition pathway will be country-specific. Carbon c...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 35; no. 9; pp. 7364 - 7386
Main Authors Lau, Hon Chung, Ramakrishna, Seeram, Zhang, Kai, Radhamani, Adiyodi Veettil
Format Journal Article
LanguageEnglish
Published American Chemical Society 06.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we review and analyze the salient features of the ongoing energy transition from a high to a low carbon economy. Our analysis shows that this transition will require decarbonizing the power, transport, and industry sectors, and the transition pathway will be country-specific. Carbon capture and storage (CCS) technologies will play a major role in this energy transition by decarbonizing existing and new fossil fuel power plants and the production of low-carbon fossil-fuel-based blue hydrogen. Blue hydrogen can be used for hydrogen fuel cell mobility in the transport sector and heat and feedstock in the industry sector. Current estimates show that there is adequate CO2 storage capacity in the world’s saline aquifers and oil and gas reservoirs to store 2 centuries of anthropogenic CO2 emission. However, the slow pace of CCS implementation is concerning and is due, in part, to too low of an oil price to make CO2-enhanced oil recovery profitable, lack of financial incentives for CO2 geological storage, low public acceptance, lack of consistent government energy policy and CCS regulations, and high capital investment. We propose several ways to accelerate CCS implementation. Among others, they include establishing regional CCS corridors to make use of economy of scale, public CCS engagement, carbon pricing, and using public–private partnership for financing, technology transfer, and linking up different stakeholders.
AbstractList In this paper, we review and analyze the salient features of the ongoing energy transition from a high to a low carbon economy. Our analysis shows that this transition will require decarbonizing the power, transport, and industry sectors, and the transition pathway will be country-specific. Carbon capture and storage (CCS) technologies will play a major role in this energy transition by decarbonizing existing and new fossil fuel power plants and the production of low-carbon fossil-fuel-based blue hydrogen. Blue hydrogen can be used for hydrogen fuel cell mobility in the transport sector and heat and feedstock in the industry sector. Current estimates show that there is adequate CO₂ storage capacity in the world’s saline aquifers and oil and gas reservoirs to store 2 centuries of anthropogenic CO₂ emission. However, the slow pace of CCS implementation is concerning and is due, in part, to too low of an oil price to make CO₂-enhanced oil recovery profitable, lack of financial incentives for CO₂ geological storage, low public acceptance, lack of consistent government energy policy and CCS regulations, and high capital investment. We propose several ways to accelerate CCS implementation. Among others, they include establishing regional CCS corridors to make use of economy of scale, public CCS engagement, carbon pricing, and using public–private partnership for financing, technology transfer, and linking up different stakeholders.
In this paper, we review and analyze the salient features of the ongoing energy transition from a high to a low carbon economy. Our analysis shows that this transition will require decarbonizing the power, transport, and industry sectors, and the transition pathway will be country-specific. Carbon capture and storage (CCS) technologies will play a major role in this energy transition by decarbonizing existing and new fossil fuel power plants and the production of low-carbon fossil-fuel-based blue hydrogen. Blue hydrogen can be used for hydrogen fuel cell mobility in the transport sector and heat and feedstock in the industry sector. Current estimates show that there is adequate CO2 storage capacity in the world’s saline aquifers and oil and gas reservoirs to store 2 centuries of anthropogenic CO2 emission. However, the slow pace of CCS implementation is concerning and is due, in part, to too low of an oil price to make CO2-enhanced oil recovery profitable, lack of financial incentives for CO2 geological storage, low public acceptance, lack of consistent government energy policy and CCS regulations, and high capital investment. We propose several ways to accelerate CCS implementation. Among others, they include establishing regional CCS corridors to make use of economy of scale, public CCS engagement, carbon pricing, and using public–private partnership for financing, technology transfer, and linking up different stakeholders.
Author Radhamani, Adiyodi Veettil
Lau, Hon Chung
Ramakrishna, Seeram
Zhang, Kai
AuthorAffiliation Department of Mechanical Engineering
Department of Civil and Environment Engineering
AuthorAffiliation_xml – name: Department of Civil and Environment Engineering
– name: Department of Mechanical Engineering
Author_xml – sequence: 1
  givenname: Hon Chung
  orcidid: 0000-0001-7749-1256
  surname: Lau
  fullname: Lau, Hon Chung
  email: honchung.lau@gmail.com
  organization: Department of Civil and Environment Engineering
– sequence: 2
  givenname: Seeram
  orcidid: 0000-0001-8479-8686
  surname: Ramakrishna
  fullname: Ramakrishna, Seeram
  organization: Department of Mechanical Engineering
– sequence: 3
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: Department of Civil and Environment Engineering
– sequence: 4
  givenname: Adiyodi Veettil
  surname: Radhamani
  fullname: Radhamani, Adiyodi Veettil
  organization: Department of Civil and Environment Engineering
BookMark eNqNkD1PwzAQhi1UJNrCb8AjS4o_8mEPCKGqBaRKSFBmy3EuJVVqF9sZ-u9JaAfEAtM73PPcnd4JGllnAaFrSmaUMHqrTZiBBb851B20YUYNIYSzMzSmGSNJRpgcoTERokhIztILNAlh2yM5F9kY3a8_AL-6FrCr8Vz70tk-9rHzgLWt8Ft0Xm8ANxbHnlx8H8Jrr21oYuPsJTqvdRvg6pRT9L5crOdPyerl8Xn-sEo052lMykpQIktdZVwUMk8pyyQjuTEVz9NSCiaJBMM146SQAmpWpUXF-y8zrqEuGZ-im-PevXefHYSodk0w0LbaguuCYlmR8iJnTPTo3RE13oXgoVamiXp4NnrdtIoSNRSn-uLUj-LUqbjeL375e9_stD_8w-RHcwC2rvNWD9M_rC_Zr4uf
CitedBy_id crossref_primary_10_1016_j_enconman_2025_119500
crossref_primary_10_3390_en16196967
crossref_primary_10_1007_s40518_024_00248_3
crossref_primary_10_1039_D2VA00236A
crossref_primary_10_1002_ghg_2219
crossref_primary_10_1016_j_energy_2022_123751
crossref_primary_10_1016_j_susmat_2024_e00972
crossref_primary_10_1021_acs_energyfuels_4c02110
crossref_primary_10_1016_j_ijhydene_2024_03_152
crossref_primary_10_47134_innovative_v3i4_132
crossref_primary_10_1051_e3sconf_202451301009
crossref_primary_10_24891_ea_22_11_2112
crossref_primary_10_1021_acs_energyfuels_3c02784
crossref_primary_10_1039_D1TA07382F
crossref_primary_10_1144_SP527_2022_38
crossref_primary_10_1016_j_jngse_2022_104654
crossref_primary_10_1016_j_earscirev_2024_104792
crossref_primary_10_3390_en16062834
crossref_primary_10_1111_risa_17449
crossref_primary_10_1021_acs_energyfuels_3c02648
crossref_primary_10_1126_sciadv_adg2229
crossref_primary_10_1021_acs_energyfuels_4c02513
crossref_primary_10_3390_en16237800
crossref_primary_10_1016_j_jpowsour_2022_231133
crossref_primary_10_1016_j_apenergy_2024_123622
crossref_primary_10_1021_acs_energyfuels_4c00462
crossref_primary_10_1063_5_0147944
crossref_primary_10_3389_fenrg_2022_909898
crossref_primary_10_2118_210264_PA
crossref_primary_10_3390_pr12102167
crossref_primary_10_1007_s43979_022_00010_y
crossref_primary_10_1016_j_jece_2024_115103
crossref_primary_10_1021_acsami_3c06804
crossref_primary_10_1093_ijlct_ctaf023
crossref_primary_10_3390_en14102803
crossref_primary_10_1002_ep_14144
crossref_primary_10_1021_acs_iecr_3c03286
crossref_primary_10_3390_su151914486
crossref_primary_10_1016_j_electacta_2024_144714
crossref_primary_10_1016_j_renene_2025_122884
crossref_primary_10_1021_acsomega_4c10432
crossref_primary_10_1016_j_nxsust_2025_100118
crossref_primary_10_1021_acsaem_4c02834
crossref_primary_10_1016_j_rser_2023_113215
crossref_primary_10_1021_acs_energyfuels_1c00502
crossref_primary_10_1016_j_ijggc_2022_103628
crossref_primary_10_1016_j_rsurfi_2024_100381
crossref_primary_10_1149_1945_7111_ad9060
crossref_primary_10_3390_land11070997
crossref_primary_10_1021_acs_energyfuels_2c00238
crossref_primary_10_1016_j_ecmx_2024_100673
crossref_primary_10_2139_ssrn_3920262
crossref_primary_10_1039_D3SU00309D
crossref_primary_10_1016_j_molliq_2024_124909
crossref_primary_10_1021_acs_energyfuels_3c00581
crossref_primary_10_1016_j_rineng_2024_102636
crossref_primary_10_3389_fchem_2021_734108
crossref_primary_10_1016_j_jngse_2022_104814
crossref_primary_10_1016_j_egyr_2022_11_209
crossref_primary_10_1016_j_joei_2021_11_012
crossref_primary_10_1016_j_seppur_2025_132108
crossref_primary_10_1016_j_fuel_2022_124224
crossref_primary_10_1115_1_4056612
crossref_primary_10_1016_j_cis_2023_102936
crossref_primary_10_1016_j_mtcomm_2022_103431
crossref_primary_10_1021_acs_energyfuels_1c03349
crossref_primary_10_1021_acs_energyfuels_4c01374
crossref_primary_10_3390_fire6030128
crossref_primary_10_3390_su14105827
crossref_primary_10_54097_ije_v2i3_9345
crossref_primary_10_1016_j_ccst_2024_100266
crossref_primary_10_1016_j_rser_2023_113153
crossref_primary_10_3390_en16031167
crossref_primary_10_1021_acs_energyfuels_3c00311
crossref_primary_10_1016_j_rser_2023_113150
crossref_primary_10_1016_j_enrev_2024_100090
crossref_primary_10_1039_D4CP00175C
crossref_primary_10_1021_acs_energyfuels_3c00838
crossref_primary_10_1021_acs_est_3c08708
crossref_primary_10_1021_acs_energyfuels_4c04212
crossref_primary_10_1088_1755_1315_791_1_012109
crossref_primary_10_1016_j_ecoinf_2023_102164
crossref_primary_10_3390_su15129334
crossref_primary_10_1144_egc1_2023_10
crossref_primary_10_1016_j_nxsust_2024_100040
crossref_primary_10_1016_j_geoen_2023_211796
crossref_primary_10_1007_s13399_024_06010_5
crossref_primary_10_1016_j_esr_2024_101356
crossref_primary_10_1016_j_jece_2025_116102
crossref_primary_10_1016_j_jcou_2021_101738
crossref_primary_10_1016_j_jgsce_2023_204999
crossref_primary_10_3390_su14148425
crossref_primary_10_1007_s11356_021_17623_y
crossref_primary_10_1021_acs_energyfuels_4c01587
crossref_primary_10_3390_en16062597
crossref_primary_10_1016_j_ijggc_2022_103694
crossref_primary_10_1016_j_energy_2024_131858
crossref_primary_10_3390_liquids4040042
crossref_primary_10_1108_IJCCSM_07_2024_0120
crossref_primary_10_1016_j_egyr_2023_02_020
crossref_primary_10_1016_j_fuel_2023_127776
crossref_primary_10_1021_acs_energyfuels_3c05163
crossref_primary_10_1007_s10098_023_02664_3
crossref_primary_10_3390_su16020942
crossref_primary_10_1016_j_ccst_2021_100026
crossref_primary_10_1021_acs_energyfuels_3c03660
crossref_primary_10_1016_j_enss_2023_08_004
crossref_primary_10_3390_en15228639
crossref_primary_10_1016_j_est_2023_107796
crossref_primary_10_1021_acs_energyfuels_2c03717
crossref_primary_10_3390_molecules30020277
crossref_primary_10_1016_j_jcou_2023_102438
crossref_primary_10_1016_j_apenergy_2023_120738
crossref_primary_10_1016_j_egyr_2022_04_047
crossref_primary_10_1021_acs_cgd_3c00209
crossref_primary_10_1007_s11157_023_09662_3
crossref_primary_10_3390_en16227617
crossref_primary_10_1021_acs_energyfuels_2c04122
crossref_primary_10_3390_en15062152
crossref_primary_10_1016_j_energy_2022_125361
crossref_primary_10_3390_molecules27175379
crossref_primary_10_1021_acs_energyfuels_4c00465
crossref_primary_10_1016_j_ijggc_2023_103863
crossref_primary_10_3390_catal14010004
crossref_primary_10_3390_en14206455
crossref_primary_10_1021_acssuschemeng_2c02691
crossref_primary_10_3390_systems11010011
crossref_primary_10_1016_j_ijhydene_2024_04_213
crossref_primary_10_1016_j_arabjc_2023_105106
crossref_primary_10_1016_j_petrol_2021_109979
crossref_primary_10_1021_acssuschemeng_3c08088
crossref_primary_10_1016_j_ijhydene_2022_04_012
crossref_primary_10_1002_eem2_12832
crossref_primary_10_1016_j_ccst_2024_100238
crossref_primary_10_1016_j_jclepro_2022_131384
crossref_primary_10_3390_nano11102476
crossref_primary_10_1016_j_energy_2025_135777
crossref_primary_10_1021_acs_energyfuels_4c02937
crossref_primary_10_1016_j_ccst_2022_100036
crossref_primary_10_1016_j_ijggc_2023_104020
crossref_primary_10_1016_j_jclepro_2024_142516
crossref_primary_10_1039_D3EE02532B
crossref_primary_10_1016_j_egyr_2022_03_012
crossref_primary_10_1016_j_energy_2022_123470
crossref_primary_10_1021_acs_langmuir_4c03811
crossref_primary_10_1016_j_rser_2023_113945
crossref_primary_10_1016_j_ccst_2024_100195
crossref_primary_10_1016_j_rser_2024_115229
crossref_primary_10_1016_j_apenergy_2025_125726
crossref_primary_10_1016_j_carbon_2022_12_062
crossref_primary_10_1016_j_jclepro_2023_136901
crossref_primary_10_1016_j_jgsce_2023_205070
crossref_primary_10_1016_j_cscee_2023_100422
crossref_primary_10_1016_j_apenergy_2023_121723
crossref_primary_10_1016_j_ijhydene_2025_01_214
Cites_doi 10.1016/j.enpol.2020.111834
10.3390/en8054073
10.1016/j.enpol.2018.10.039
10.1016/j.egypro.2014.11.808
10.1007/s10765-018-2455-3
10.1111/iar.12064
10.1021/acs.energyfuels.7b00656
10.1016/j.ijggc.2014.01.009
10.3390/en12061129
10.1021/ie200686q
10.1016/j.coal.2007.11.001
10.1016/j.ijggc.2010.10.001
10.1016/j.egypro.2014.11.545
10.1021/ef200124d
10.2118/24645-MS
10.1016/j.rser.2018.11.010
10.4043/30270-MS
10.1029/2007JB004976
10.1021/acsenergylett.9b02585
10.1016/j.egypro.2017.03.1886
10.1016/j.energy.2019.02.055
10.1016/j.energy.2015.12.044
10.1016/j.marpetgeo.2010.02.015
10.1016/j.ijggc.2011.11.007
10.1016/j.jngse.2012.08.002
10.1007/978-3-540-68910-2
10.1021/acs.energyfuels.6b01909
10.1016/j.esr.2017.12.007
10.1007/s10584-020-02780-9
10.3390/en14040833
10.1016/j.scitotenv.2020.143203
10.1016/j.ijggc.2019.02.014
10.1021/acs.est.8b03359
10.1016/j.renene.2017.12.060
10.1002/2013JB010784
10.1016/j.enpol.2013.11.039
10.1016/j.egypro.2014.11.744
10.2118/20118-PA
10.1038/s41598-019-44611-7
10.1080/15567036.2018.1548518
10.1080/14693062.2016.1242058
10.2118/194486-PA
10.1016/j.enconman.2005.08.023
10.1016/j.enpol.2013.06.107
10.1021/acs.energyfuels.6b03204
10.1016/j.energy.2019.116671
10.1016/j.chemgeo.2007.06.009
10.1007/978-981-15-1052-6
10.1007/978-981-13-3296-8_4
10.1002/er.4930
10.1016/j.egypro.2017.03.1523
10.1088/1748-9326/11/11/114010
10.1016/j.enpol.2017.10.040
10.1016/j.chemphys.2016.05.031
10.1201/b20059
10.1039/C7EE02342A
10.1016/j.ijggc.2009.09.015
10.1021/es0223325
10.1039/C7EE03610H
10.1016/j.jclepro.2018.10.147
10.7122/485492-MS
10.2118/01-12-TN1
10.1016/j.ijhydene.2011.01.170
10.1016/j.ijggc.2015.05.028
10.1021/acs.est.5b01982
10.1016/j.ijggc.2015.05.024
10.1016/0920-5861(94)00081-C
10.1016/j.ijggc.2014.09.024
10.1016/j.ijhydene.2017.04.101
10.1016/j.egypro.2017.03.1707
10.1016/j.petrol.2018.01.049
10.2523/IPTC-21162-MS
10.2118/133804-PA
10.1016/j.egypro.2018.07.021
10.3390/su11143972
10.2118/187100-MS
10.1057/s41599-019-0217-x
10.1016/j.egypro.2011.02.557
10.1038/s41467-019-11161-5
10.1016/j.rser.2014.07.093
10.1016/j.ijhydene.2016.05.293
10.1016/j.tra.2020.06.020
10.3390/su13010298
10.1016/j.jclepro.2013.07.048
10.1016/j.egypro.2014.11.334
10.2118/24156-MS
10.1016/j.ijggc.2010.11.010
10.1007/s40518-019-00136-1
10.1016/j.egypro.2017.03.1566
10.1007/s00603-019-01820-w
10.1007/s12182-010-0010-3
10.1038/nature12858
10.1016/j.energy.2014.12.037
10.1080/17583004.2017.1309203
10.1088/1755-1315/225/1/012009
10.1007/978-3-030-21209-4
10.1016/j.ijsbe.2017.07.008
10.1029/2011GL047265
10.1002/ceat.202000077
10.1016/j.ijggc.2008.02.004
10.1016/j.petrol.2018.03.047
10.1002/2016GL070654
10.1016/j.egypro.2017.03.1493
10.2118/127096-MS
10.1088/1748-9326/abbd02
10.1021/acs.energyfuels.7b01740
10.1016/0196-8904(95)00056-J
10.1016/j.egypro.2017.03.1615
10.1017/CBO9781316134245
10.2118/126421-MS
10.2118/14394-MS
10.1130/GES01207.1
10.1007/s11356-019-06128-4
10.1016/S0956-053X(97)10037-X
10.1016/j.renene.2017.04.015
10.2118/163141-PA
10.1016/j.enpol.2012.01.055
10.1163/15718085-12341362
10.1016/j.ijggc.2015.03.022
10.1016/j.jclepro.2018.08.241
10.1038/s41598-019-54363-z
10.1016/j.rser.2013.07.055
10.1073/pnas.0605318103
10.1016/j.ijggc.2019.04.008
10.1557/mrs.2019.312
10.1016/j.ijhydene.2016.01.009
10.1016/j.rser.2017.09.002
10.1260/014459803322986286
10.1016/j.jclepro.2020.121874
10.1016/j.coldregions.2014.08.002
10.2118/139771-PA
10.2523/IPTC-21348-MS
10.1016/j.apenergy.2016.05.014
10.1016/j.enpol.2020.111906
10.1186/s13068-020-01730-y
10.1016/j.marpetgeo.2018.07.028
10.1016/j.apenergy.2020.114531
10.1016/j.pecs.2005.11.005
10.1016/j.apenergy.2020.114848
10.1016/j.biortech.2018.02.089
10.1016/j.ijggc.2013.08.011
10.1016/j.applthermaleng.2009.05.005
10.1016/j.apenergy.2015.03.023
10.1016/j.coche.2017.06.005
10.1016/j.apenergy.2015.08.124
10.1039/c004106h
10.1016/S1750-5836(07)00086-2
10.1201/9781420008494
10.1016/j.ijggc.2015.01.007
10.1016/j.ijggc.2015.02.023
10.1038/s41598-019-55476-1
10.1039/D0SE00222D
10.1109/PTC.2019.8810865
10.1039/C5RA26459F
10.1016/j.energy.2018.11.112
10.5018/economics-ejournal.ja.2018-40
10.1007/s00253-011-3437-6
10.1016/j.apenergy.2020.114491
10.1016/j.egypro.2009.02.049
10.3390/en9070481
10.1016/j.apenergy.2016.12.120
10.1016/j.enpol.2020.111716
10.1016/j.enpol.2021.112150
10.1016/j.ijggc.2018.02.022
10.1002/ghg.1802
10.1039/C7EE03639F
10.1016/j.ijhydene.2019.04.226
10.1126/science.1250828
10.1016/j.egypro.2017.03.1801
10.1260/0144-5987.32.6.943
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.energyfuels.1c00032
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 7386
ExternalDocumentID 10_1021_acs_energyfuels_1c00032
b016321429
GroupedDBID 02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
BAANH
CITATION
CUPRZ
ZCA
~02
7S9
L.6
ID FETCH-LOGICAL-a334t-bd8109bad53879641259206ccd364b982909ec3a230798ef2d47d300053aefb23
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Fri Jul 11 04:24:50 EDT 2025
Thu Apr 24 23:11:19 EDT 2025
Tue Jul 01 02:27:36 EDT 2025
Sun May 09 06:29:48 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a334t-bd8109bad53879641259206ccd364b982909ec3a230798ef2d47d300053aefb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8479-8686
0000-0001-7749-1256
PQID 2574376228
PQPubID 24069
PageCount 23
ParticipantIDs proquest_miscellaneous_2574376228
crossref_citationtrail_10_1021_acs_energyfuels_1c00032
crossref_primary_10_1021_acs_energyfuels_1c00032
acs_journals_10_1021_acs_energyfuels_1c00032
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-06
PublicationDateYYYYMMDD 2021-05-06
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-06
  day: 06
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
Energy Transitions Commission (ETC) (ref114/cit114) 2020
Li H. (ref158/cit158) 2021
ref16/cit16
Shell Deutschland Oil GmbH (ref58/cit58) 2017
ref185/cit185
ref23/cit23
ref115/cit115
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref42/cit42
Lake L. W. (ref148/cit148) 2015
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref124/cit124
ref126/cit126
ref54/cit54
United States Energy Information Administration (EIA) (ref55/cit55) 2021
ref137/cit137
ref11/cit11
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref203/cit203
Global CCS Institute (ref78/cit78) 2020
Council of Australian Governments (COAG) Energy Council (ref69/cit69) 2019
ref144/cit144
ref218/cit218
ref167/cit167
ref163/cit163
ref66/cit66
ref22/cit22
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref153/cit153
ref222/cit222
ref150/cit150
ref224/cit224
ref56/cit56
Boyle G. (ref83/cit83) 2012
ref155/cit155
ref156/cit156
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
cr-split#-ref128/cit128.2
ref37/cit37
cr-split#-ref128/cit128.1
ref221/cit221
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref145/cit145
ref21/cit21
ref166/cit166
ref164/cit164
ref213/cit213
ref211/cit211
ref36/cit36
ref79/cit79
ref139/cit139
ref172/cit172
ref200/cit200
ref14/cit14
ref57/cit57
ref134/cit134
Rogers R. (ref169/cit169) 2011
ref208/cit208
ref40/cit40
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref216/cit216
ref15/cit15
ref180/cit180
de Pee A. (ref102/cit102) 2018
ref62/cit62
ref41/cit41
ref104/cit104
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
Sloan E. D. (ref195/cit195) 2007
ref196/cit196
ref7/cit7
ref45/cit45
Cavaliere P. (ref107/cit107) 2019
International Renewable Energy Agency (IRENA) (ref81/cit81) 2019
ref52/cit52
ref184/cit184
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref2/cit2
ref77/cit77
ref71/cit71
Jemai K. (ref141/cit141) 2014; 9
ref188/cit188
ref118/cit118
Archer D. (ref4/cit4) 2012
ref89/cit89
ref19/cit19
Dickel R. (ref27/cit27) 2020
ref96/cit96
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
United States Department of Energy (ref212/cit212) 2019
ref64/cit64
Houghton J. (ref5/cit5) 2015
Ahmed U. (ref187/cit187) 2016
ref6/cit6
ref18/cit18
ref136/cit136
Lawson A. (ref94/cit94) 2018
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref76/cit76
ref32/cit32
ref39/cit39
ref202/cit202
ref206/cit206
ref132/cit132
ref91/cit91
Wu N. Y. (ref201/cit201) 2007; 27
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
National Energy Technology Laboratory (NETL), United States Department of Energy (U.S. DOE) (ref125/cit125) 2007
Deloitte China (ref63/cit63) 2020; 1
ref129/cit129
ref44/cit44
ref70/cit70
ref9/cit9
ref152/cit152
ref225/cit225
ref226/cit226
ref154/cit154
ref223/cit223
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
Ghosh S. K. (ref20/cit20) 2020
ref31/cit31
ref220/cit220
ref88/cit88
ref160/cit160
ref143/cit143
ref217/cit217
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref215/cit215
ref50/cit50
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
Seidle J. (ref168/cit168) 2011
ref51/cit51
ref135/cit135
ref68/cit68
ref130/cit130
ref204/cit204
ref146/cit146
Central Europe Energy Partners (CEEP) (ref112/cit112) 2019
ref26/cit26
ref73/cit73
ref165/cit165
ref95/cit95
ref108/cit108
ref192/cit192
ref30/cit30
ref47/cit47
ref127/cit127
References_xml – ident: ref9/cit9
– ident: ref25/cit25
  doi: 10.1016/j.enpol.2020.111834
– ident: ref205/cit205
  doi: 10.3390/en8054073
– ident: ref220/cit220
  doi: 10.1016/j.enpol.2018.10.039
– volume-title: The Climate Crisis: An Introductory Guide to Climate Change
  year: 2012
  ident: ref4/cit4
– ident: ref164/cit164
  doi: 10.1016/j.egypro.2014.11.808
– ident: ref185/cit185
  doi: 10.1007/s10765-018-2455-3
– ident: ref203/cit203
  doi: 10.1111/iar.12064
– ident: ref155/cit155
– ident: ref173/cit173
  doi: 10.1021/acs.energyfuels.7b00656
– ident: ref118/cit118
  doi: 10.1016/j.ijggc.2014.01.009
– ident: ref19/cit19
– ident: ref34/cit34
  doi: 10.3390/en12061129
– ident: ref45/cit45
  doi: 10.1021/ie200686q
– ident: ref172/cit172
  doi: 10.1016/j.coal.2007.11.001
– volume-title: Fundamentals of Coalbed Methane Reservoir Engineering
  year: 2011
  ident: ref168/cit168
– ident: ref221/cit221
  doi: 10.1016/j.ijggc.2010.10.001
– ident: ref190/cit190
  doi: 10.1016/j.egypro.2014.11.545
– ident: ref76/cit76
  doi: 10.1021/ef200124d
– volume-title: Decarbonizing U.S. Transportation
  year: 2018
  ident: ref94/cit94
– ident: ref151/cit151
  doi: 10.2118/24645-MS
– ident: ref104/cit104
  doi: 10.1016/j.rser.2018.11.010
– ident: ref188/cit188
  doi: 10.4043/30270-MS
– ident: ref200/cit200
  doi: 10.1029/2007JB004976
– volume-title: Making Mission Possible: Delivering a Net-Zero Economy, Version 1.0
  year: 2020
  ident: ref114/cit114
– ident: ref15/cit15
  doi: 10.1021/acsenergylett.9b02585
– ident: ref225/cit225
  doi: 10.1016/j.egypro.2017.03.1886
– ident: ref184/cit184
  doi: 10.1016/j.energy.2019.02.055
– volume-title: Blue Hydrogen as an Enabler of Green Hydrogen: The Case of Germany
  year: 2020
  ident: ref27/cit27
– ident: ref222/cit222
  doi: 10.1016/j.energy.2015.12.044
– ident: ref197/cit197
  doi: 10.1016/j.marpetgeo.2010.02.015
– ident: ref127/cit127
  doi: 10.1016/j.ijggc.2011.11.007
– ident: ref198/cit198
  doi: 10.1016/j.jngse.2012.08.002
– ident: ref2/cit2
– ident: ref71/cit71
– ident: ref26/cit26
– ident: ref183/cit183
  doi: 10.1007/978-3-540-68910-2
– ident: ref206/cit206
  doi: 10.1021/acs.energyfuels.6b01909
– ident: ref21/cit21
– ident: ref96/cit96
  doi: 10.1016/j.esr.2017.12.007
– ident: ref109/cit109
  doi: 10.1007/s10584-020-02780-9
– ident: ref59/cit59
  doi: 10.3390/en14040833
– ident: ref213/cit213
  doi: 10.1016/j.scitotenv.2020.143203
– ident: ref219/cit219
  doi: 10.1016/j.ijggc.2019.02.014
– volume-title: Fundamentals of Enhanced Oil Recovery
  year: 2015
  ident: ref148/cit148
– ident: ref91/cit91
  doi: 10.1021/acs.est.8b03359
– ident: ref35/cit35
  doi: 10.1016/j.renene.2017.12.060
– ident: ref202/cit202
  doi: 10.1002/2013JB010784
– ident: ref24/cit24
  doi: 10.1016/j.enpol.2013.11.039
– ident: ref217/cit217
  doi: 10.1016/j.egypro.2014.11.744
– ident: ref150/cit150
  doi: 10.2118/20118-PA
– ident: ref135/cit135
  doi: 10.1038/s41598-019-44611-7
– ident: ref14/cit14
  doi: 10.1080/15567036.2018.1548518
– ident: ref36/cit36
  doi: 10.1080/14693062.2016.1242058
– ident: ref196/cit196
  doi: 10.2118/194486-PA
– volume-title: Internal Revenue Code Tax Fact Sheet
  year: 2019
  ident: ref212/cit212
– ident: ref159/cit159
  doi: 10.1016/j.enconman.2005.08.023
– ident: ref22/cit22
  doi: 10.1016/j.enpol.2013.06.107
– ident: ref47/cit47
  doi: 10.1021/acs.energyfuels.6b03204
– ident: ref30/cit30
  doi: 10.1016/j.energy.2019.116671
– volume-title: Australia’s National Hydrogen Strategy
  year: 2019
  ident: ref69/cit69
– volume-title: Annual Energy Outlook 2021
  year: 2021
  ident: ref55/cit55
– ident: ref161/cit161
  doi: 10.1016/j.chemgeo.2007.06.009
– volume-title: Circular Economy: Global Perspective
  year: 2020
  ident: ref20/cit20
  doi: 10.1007/978-981-15-1052-6
– ident: ref108/cit108
  doi: 10.1007/978-981-13-3296-8_4
– ident: ref67/cit67
  doi: 10.1002/er.4930
– ident: ref129/cit129
  doi: 10.1016/j.egypro.2017.03.1523
– ident: ref115/cit115
– ident: ref52/cit52
  doi: 10.1088/1748-9326/11/11/114010
– ident: ref211/cit211
– ident: ref50/cit50
  doi: 10.1016/j.enpol.2017.10.040
– ident: ref11/cit11
– ident: ref140/cit140
  doi: 10.1016/j.chemphys.2016.05.031
– volume-title: Unconventional Oil and Gas Resources Exploitation and Development
  year: 2016
  ident: ref187/cit187
  doi: 10.1201/b20059
– ident: ref17/cit17
  doi: 10.1039/C7EE02342A
– ident: ref162/cit162
  doi: 10.1016/j.ijggc.2009.09.015
– ident: ref116/cit116
  doi: 10.1021/es0223325
– ident: ref138/cit138
– volume-title: Pathways of Energy Transition in Central Europe
  year: 2019
  ident: ref112/cit112
– ident: ref12/cit12
– volume: 1
  volume-title: Fueling the Future of Mobility: Hydrogen and Fuel Cell Solutions for Transportation
  year: 2020
  ident: ref63/cit63
– ident: ref38/cit38
  doi: 10.1039/C7EE03610H
– ident: ref84/cit84
  doi: 10.1016/j.jclepro.2018.10.147
– ident: ref144/cit144
– ident: ref176/cit176
  doi: 10.7122/485492-MS
– ident: ref64/cit64
– ident: ref163/cit163
  doi: 10.2118/01-12-TN1
– ident: ref75/cit75
  doi: 10.1016/j.ijhydene.2011.01.170
– ident: ref42/cit42
  doi: 10.1016/j.ijggc.2015.05.028
– ident: ref189/cit189
  doi: 10.1021/acs.est.5b01982
– ident: ref13/cit13
– ident: ref175/cit175
– ident: ref214/cit214
  doi: 10.1016/j.ijggc.2015.05.024
– ident: ref16/cit16
  doi: 10.1016/0920-5861(94)00081-C
– ident: ref56/cit56
– ident: ref44/cit44
  doi: 10.1016/j.ijggc.2014.09.024
– ident: ref77/cit77
  doi: 10.1016/j.ijhydene.2017.04.101
– ident: ref57/cit57
– volume-title: Decarbonization of Industrial Sectors: The Next Frontier
  year: 2018
  ident: ref102/cit102
– ident: ref156/cit156
  doi: 10.1016/j.egypro.2017.03.1707
– ident: ref194/cit194
  doi: 10.1016/j.petrol.2018.01.049
– ident: ref3/cit3
– ident: ref105/cit105
  doi: 10.2523/IPTC-21162-MS
– ident: ref121/cit121
  doi: 10.2118/133804-PA
– ident: #cr-split#-ref128/cit128.1
  doi: 10.1016/j.egypro.2018.07.021
– ident: ref7/cit7
  doi: 10.3390/su11143972
– year: 2021
  ident: ref158/cit158
  publication-title: Int. J. Greenhouse Gas Control
– ident: ref131/cit131
  doi: 10.2118/187100-MS
– volume-title: Hydrogen: A Renewable Energy Perspective
  year: 2019
  ident: ref81/cit81
– ident: ref132/cit132
– ident: ref224/cit224
  doi: 10.1057/s41599-019-0217-x
– ident: ref31/cit31
– ident: ref210/cit210
  doi: 10.1016/j.egypro.2011.02.557
– ident: ref113/cit113
– ident: ref28/cit28
  doi: 10.1038/s41467-019-11161-5
– ident: ref39/cit39
  doi: 10.1016/j.rser.2014.07.093
– ident: ref65/cit65
  doi: 10.1016/j.ijhydene.2016.05.293
– ident: ref70/cit70
– ident: ref97/cit97
  doi: 10.1016/j.tra.2020.06.020
– ident: ref82/cit82
  doi: 10.3390/su13010298
– volume-title: Coalbed Methane Principles and Practices
  year: 2011
  ident: ref169/cit169
– ident: ref79/cit79
  doi: 10.1016/j.jclepro.2013.07.048
– ident: ref166/cit166
  doi: 10.1016/j.egypro.2014.11.334
– ident: ref147/cit147
  doi: 10.2118/24156-MS
– ident: ref209/cit209
  doi: 10.1016/j.ijggc.2010.11.010
– ident: ref103/cit103
  doi: 10.1007/s40518-019-00136-1
– ident: ref117/cit117
  doi: 10.1016/j.egypro.2017.03.1566
– ident: ref145/cit145
– ident: ref193/cit193
  doi: 10.1007/s00603-019-01820-w
– ident: ref134/cit134
  doi: 10.1007/s12182-010-0010-3
– ident: ref136/cit136
  doi: 10.1038/nature12858
– ident: ref146/cit146
– ident: ref92/cit92
  doi: 10.1016/j.energy.2014.12.037
– ident: ref37/cit37
  doi: 10.1080/17583004.2017.1309203
– ident: ref106/cit106
  doi: 10.1088/1755-1315/225/1/012009
– volume-title: Ironmaking and Steelmaking Processes
  year: 2019
  ident: ref107/cit107
  doi: 10.1007/978-3-030-21209-4
– ident: ref48/cit48
– ident: ref89/cit89
  doi: 10.1016/j.ijsbe.2017.07.008
– ident: ref179/cit179
  doi: 10.1029/2011GL047265
– volume-title: Global Status of CCS 2020
  year: 2020
  ident: ref78/cit78
– ident: #cr-split#-ref128/cit128.2
– ident: ref110/cit110
  doi: 10.1002/ceat.202000077
– ident: ref124/cit124
  doi: 10.1016/j.ijggc.2008.02.004
– ident: ref177/cit177
  doi: 10.1016/j.petrol.2018.03.047
– ident: ref170/cit170
  doi: 10.1002/2016GL070654
– ident: ref216/cit216
  doi: 10.1016/j.egypro.2017.03.1493
– ident: ref10/cit10
– ident: ref130/cit130
  doi: 10.2118/127096-MS
– ident: ref101/cit101
  doi: 10.1088/1748-9326/abbd02
– ident: ref171/cit171
  doi: 10.1021/acs.energyfuels.7b01740
– ident: ref122/cit122
  doi: 10.1016/0196-8904(95)00056-J
– ident: ref182/cit182
  doi: 10.1016/j.egypro.2017.03.1615
– volume-title: Global Warming: The Complete Briefing.
  year: 2015
  ident: ref5/cit5
  doi: 10.1017/CBO9781316134245
– ident: ref119/cit119
  doi: 10.2118/126421-MS
– ident: ref149/cit149
  doi: 10.2118/14394-MS
– ident: ref181/cit181
  doi: 10.1130/GES01207.1
– ident: ref61/cit61
  doi: 10.1007/s11356-019-06128-4
– ident: ref143/cit143
  doi: 10.1016/S0956-053X(97)10037-X
– ident: ref111/cit111
  doi: 10.1016/j.renene.2017.04.015
– ident: ref180/cit180
  doi: 10.2118/163141-PA
– ident: ref54/cit54
  doi: 10.1016/j.enpol.2012.01.055
– ident: ref215/cit215
  doi: 10.1163/15718085-12341362
– ident: ref123/cit123
  doi: 10.1016/j.ijggc.2015.03.022
– volume-title: Methodology for Development of Carbon Sequestration Capacity Estimates. Appendix A in Carbon Sequestration Atlas of the United States and Canada
  year: 2007
  ident: ref125/cit125
– ident: ref93/cit93
  doi: 10.1016/j.jclepro.2018.08.241
– ident: ref137/cit137
  doi: 10.1038/s41598-019-54363-z
– ident: ref153/cit153
– ident: ref6/cit6
  doi: 10.1016/j.rser.2013.07.055
– ident: ref139/cit139
  doi: 10.1073/pnas.0605318103
– ident: ref218/cit218
  doi: 10.1016/j.ijggc.2019.04.008
– ident: ref62/cit62
  doi: 10.1557/mrs.2019.312
– ident: ref66/cit66
  doi: 10.1016/j.ijhydene.2016.01.009
– ident: ref53/cit53
  doi: 10.1016/j.rser.2017.09.002
– ident: ref8/cit8
  doi: 10.1260/014459803322986286
– ident: ref178/cit178
  doi: 10.1016/j.jclepro.2020.121874
– ident: ref199/cit199
  doi: 10.1016/j.coldregions.2014.08.002
– ident: ref120/cit120
– ident: ref72/cit72
– ident: ref165/cit165
  doi: 10.2118/139771-PA
– ident: ref1/cit1
  doi: 10.2523/IPTC-21348-MS
– ident: ref29/cit29
  doi: 10.1016/j.apenergy.2016.05.014
– ident: ref87/cit87
  doi: 10.1016/j.enpol.2020.111906
– ident: ref85/cit85
  doi: 10.1186/s13068-020-01730-y
– ident: ref204/cit204
  doi: 10.1016/j.marpetgeo.2018.07.028
– ident: ref46/cit46
  doi: 10.1016/j.apenergy.2020.114531
– ident: ref68/cit68
– ident: ref74/cit74
  doi: 10.1016/j.pecs.2005.11.005
– ident: ref99/cit99
  doi: 10.1016/j.apenergy.2020.114848
– volume-title: Sustainable Mobility through Fuel Cells and Hydrogen
  year: 2017
  ident: ref58/cit58
– ident: ref73/cit73
– volume-title: Renewable Energy: Power for a Sustainable Future
  year: 2012
  ident: ref83/cit83
– ident: ref86/cit86
  doi: 10.1016/j.biortech.2018.02.089
– ident: ref174/cit174
  doi: 10.1016/j.ijggc.2013.08.011
– ident: ref40/cit40
  doi: 10.1016/j.applthermaleng.2009.05.005
– ident: ref186/cit186
– ident: ref192/cit192
  doi: 10.1016/j.apenergy.2015.03.023
– ident: ref41/cit41
  doi: 10.1016/j.coche.2017.06.005
– ident: ref98/cit98
  doi: 10.1016/j.apenergy.2015.08.124
– ident: ref43/cit43
  doi: 10.1039/c004106h
– ident: ref133/cit133
  doi: 10.1016/S1750-5836(07)00086-2
– volume-title: Clathrate Hydrates of Natural Gases
  year: 2007
  ident: ref195/cit195
  doi: 10.1201/9781420008494
– volume: 27
  start-page: 1
  issue: 9
  year: 2007
  ident: ref201/cit201
  publication-title: Nat. Gas Ind.
– ident: ref126/cit126
  doi: 10.1016/j.ijggc.2015.01.007
– ident: ref226/cit226
  doi: 10.1016/j.ijggc.2015.02.023
– ident: ref154/cit154
– ident: ref207/cit207
  doi: 10.1038/s41598-019-55476-1
– ident: ref100/cit100
  doi: 10.1039/D0SE00222D
– ident: ref95/cit95
  doi: 10.1109/PTC.2019.8810865
– ident: ref18/cit18
– ident: ref88/cit88
  doi: 10.1039/C5RA26459F
– ident: ref33/cit33
  doi: 10.1016/j.energy.2018.11.112
– volume: 9
  start-page: 150
  year: 2014
  ident: ref141/cit141
  publication-title: WSEAS Trans. Heat Mass Transfer
– ident: ref51/cit51
  doi: 10.5018/economics-ejournal.ja.2018-40
– ident: ref90/cit90
  doi: 10.1007/s00253-011-3437-6
– ident: ref191/cit191
  doi: 10.1016/j.apenergy.2020.114491
– ident: ref142/cit142
  doi: 10.1016/j.egypro.2009.02.049
– ident: ref152/cit152
  doi: 10.3390/en9070481
– ident: ref32/cit32
  doi: 10.1016/j.apenergy.2016.12.120
– ident: ref23/cit23
  doi: 10.1016/j.enpol.2020.111716
– ident: ref49/cit49
  doi: 10.1016/j.enpol.2021.112150
– ident: ref157/cit157
  doi: 10.1016/j.ijggc.2018.02.022
– ident: ref167/cit167
  doi: 10.1002/ghg.1802
– ident: ref80/cit80
  doi: 10.1039/C7EE03639F
– ident: ref60/cit60
  doi: 10.1016/j.ijhydene.2019.04.226
– ident: ref208/cit208
  doi: 10.1126/science.1250828
– ident: ref223/cit223
  doi: 10.1016/j.egypro.2017.03.1801
– ident: ref160/cit160
  doi: 10.1260/0144-5987.32.6.943
SSID ssj0006385
Score 2.6658309
Snippet In this paper, we review and analyze the salient features of the ongoing energy transition from a high to a low carbon economy. Our analysis shows that this...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7364
SubjectTerms carbon
carbon dioxide
carbon sequestration
economic investment
economies of scale
energy
energy policy
feedstocks
fossil fuels
heat
hydrogen
hydrogen fuel cells
industry
oils
prices
public-private partnerships
stakeholders
technology transfer
Title The Role of Carbon Capture and Storage in the Energy Transition
URI http://dx.doi.org/10.1021/acs.energyfuels.1c00032
https://www.proquest.com/docview/2574376228
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KPagHH1WxvljBo6nJbrJJTlKKpQh6aC30FvYJYklKk1789c6mSWmRUj0FArPJzs5-M8O8EHpwNaHUUNcJtQQHRcWRIzwiHC0N3C9jdMBtgfPbOxuM_ddJMGkgb0sEn3hPXOYdXdbBmQWoi44nrR0PqLtHWBRaf6vbG63AF8QpqJt7uoz4dUrX9oWsWpL5plraROVS1fSP0bAu2FlmmHx1FoXoyO_f_Rv_vosTdFQZnri7lJRT1NBpC-336nlvLXS41prwDD2D_OBhNtU4M7jH5yJL4TGz8QbMU4VH4KsDFOHPFIMJiV_Kj-JS85VJYOdo3H_56A2catiCwyn1C0eoyHNjwRUgoC1PBcMnJi6TUlHmi9jGW2MtKbeJ43GkDVF-qGhZy8u1EYReoGaapfoSYRNRwWMd6sDXPg1NFCiPcEWFGwgGrngbPQI7kuqy5EkZBydeYl-u8SipeNRGrD6aRFaNy-38jOluQndFOFv27thNcl-ffQLst8ETnupskScAbbAXRkh09b_fv0YHxObB2CRJdoOaxXyhb8GQKcRdKbo_Zhbw3g
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcJB6UA--xfpcwaOpyW6SJieRYqnPgw-op7BPECWRpr349c5uk9oKInoKLMxmdnZ2HswL4NjXlDHDfK-tJTooKk08EVDhaWnwfRmjI24LnG_v4t5TeNWP-nOQ1LUwiESJO5UuiP_VXSA4tWvalcOZEWqNViCtOY_Cdx5NEmrdrvPOw0QGI1dFdY9PP6Zhndn180ZWO8lyVjvNCmencbor8DzB1SWavLZGQ9GSH9_aOP7nMKuwXJmh5HzMN2swp_N1WOjU09_WYWmqUeEGnCE3kfviTZPCkA4fiCLHz7uNPhCeK_KAnjsKJvKSEzQoyYX7KXF60KWEbcJT9-Kx0_Oq0QseZywcekIlgZ8KrlAe2mJVNINS6sdSKhaHIrXR11RLxm0aeZpoQ1XYVsxV9nJtBGVb0MiLXG8DMQkTPNVtHYU6ZG2TRCqgXDHhRyJGx7wJJ0iOrHo6Zeai4jTI7OIUjbKKRk2I6xvKZNXG3E7TePsd0J8Avo87efwOclSzQIbkt6EUnutiVGYo6PAsMaXJzt_QP4SF3uPtTXZzeXe9C4vUZsjY9Ml4DxrDwUjvo4kzFAeOmz8BkcT5Pw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZSsNAcJAKHg_e4u0KPpqa7CZpAoJItXgW8YC-SNgTREmKaV_8emfXpFRBRJ8CC7uZnZ2TuQD2fU0ZM8z3Wlqig6LSxBMBFZ6WBvnLGB1xW-B8043PH8PLXtSbgKO6FgaBKPGk0gXxLVf3lak6DASHdl27kjgzRM3RDKQ16VEAT9rgnXW9Ttr3IzmMlBXVfT79mIZ1dtfPB1kNJcuvGuqrgHZapzMPTyN4XbLJS3M4EE35_q2V438vtABzlTlKTj7pZxEmdL4E0-16CtwSzI41LFyGY6Qqcle8alIY0uZvosjx07dRCMJzRe7Rg0cBRZ5zgoYlOXM_JU4futSwFXjsnD20z71qBIPHGQsHnlBJ4KeCK5SLtmgVzaGU-rGUisWhSG0UNtWScZtOnibaUBW2FHMVvlwbQdkqNPIi12tATMIET3VLR6EOWcskkQooV0z4kYjRQV-HA0RHVrFQmbnoOA0yuziGo6zC0TrE9StlsmpnbqdqvP6-0R9t7H929Ph9y15NBhmi34ZUeK6LYZmhwMO7xJQmG38Dfxembk872fVF92oTZqhNlLFZlPEWNAZvQ72Nls5A7DiC_gCbM_vC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Carbon+Capture+and+Storage+in+the+Energy+Transition&rft.jtitle=Energy+%26+fuels&rft.au=Lau%2C+Chung&rft.au=Ramakrishna%2C+Seeram&rft.au=Zhang%2C+Kai&rft.au=Radhamani%2C+Adiyodi+Veettil&rft.date=2021-05-06&rft.issn=1520-5029&rft.volume=35&rft.issue=9+p.7364-7386&rft.spage=7364&rft.epage=7386&rft_id=info:doi/10.1021%2Facs.energyfuels.1c00032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon