The Role of Carbon Capture and Storage in the Energy Transition
In this paper, we review and analyze the salient features of the ongoing energy transition from a high to a low carbon economy. Our analysis shows that this transition will require decarbonizing the power, transport, and industry sectors, and the transition pathway will be country-specific. Carbon c...
Saved in:
Published in | Energy & fuels Vol. 35; no. 9; pp. 7364 - 7386 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
06.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we review and analyze the salient features of the ongoing energy transition from a high to a low carbon economy. Our analysis shows that this transition will require decarbonizing the power, transport, and industry sectors, and the transition pathway will be country-specific. Carbon capture and storage (CCS) technologies will play a major role in this energy transition by decarbonizing existing and new fossil fuel power plants and the production of low-carbon fossil-fuel-based blue hydrogen. Blue hydrogen can be used for hydrogen fuel cell mobility in the transport sector and heat and feedstock in the industry sector. Current estimates show that there is adequate CO2 storage capacity in the world’s saline aquifers and oil and gas reservoirs to store 2 centuries of anthropogenic CO2 emission. However, the slow pace of CCS implementation is concerning and is due, in part, to too low of an oil price to make CO2-enhanced oil recovery profitable, lack of financial incentives for CO2 geological storage, low public acceptance, lack of consistent government energy policy and CCS regulations, and high capital investment. We propose several ways to accelerate CCS implementation. Among others, they include establishing regional CCS corridors to make use of economy of scale, public CCS engagement, carbon pricing, and using public–private partnership for financing, technology transfer, and linking up different stakeholders. |
---|---|
AbstractList | In this paper, we review and analyze the salient features of the ongoing energy transition from a high to a low carbon economy. Our analysis shows that this transition will require decarbonizing the power, transport, and industry sectors, and the transition pathway will be country-specific. Carbon capture and storage (CCS) technologies will play a major role in this energy transition by decarbonizing existing and new fossil fuel power plants and the production of low-carbon fossil-fuel-based blue hydrogen. Blue hydrogen can be used for hydrogen fuel cell mobility in the transport sector and heat and feedstock in the industry sector. Current estimates show that there is adequate CO₂ storage capacity in the world’s saline aquifers and oil and gas reservoirs to store 2 centuries of anthropogenic CO₂ emission. However, the slow pace of CCS implementation is concerning and is due, in part, to too low of an oil price to make CO₂-enhanced oil recovery profitable, lack of financial incentives for CO₂ geological storage, low public acceptance, lack of consistent government energy policy and CCS regulations, and high capital investment. We propose several ways to accelerate CCS implementation. Among others, they include establishing regional CCS corridors to make use of economy of scale, public CCS engagement, carbon pricing, and using public–private partnership for financing, technology transfer, and linking up different stakeholders. In this paper, we review and analyze the salient features of the ongoing energy transition from a high to a low carbon economy. Our analysis shows that this transition will require decarbonizing the power, transport, and industry sectors, and the transition pathway will be country-specific. Carbon capture and storage (CCS) technologies will play a major role in this energy transition by decarbonizing existing and new fossil fuel power plants and the production of low-carbon fossil-fuel-based blue hydrogen. Blue hydrogen can be used for hydrogen fuel cell mobility in the transport sector and heat and feedstock in the industry sector. Current estimates show that there is adequate CO2 storage capacity in the world’s saline aquifers and oil and gas reservoirs to store 2 centuries of anthropogenic CO2 emission. However, the slow pace of CCS implementation is concerning and is due, in part, to too low of an oil price to make CO2-enhanced oil recovery profitable, lack of financial incentives for CO2 geological storage, low public acceptance, lack of consistent government energy policy and CCS regulations, and high capital investment. We propose several ways to accelerate CCS implementation. Among others, they include establishing regional CCS corridors to make use of economy of scale, public CCS engagement, carbon pricing, and using public–private partnership for financing, technology transfer, and linking up different stakeholders. |
Author | Radhamani, Adiyodi Veettil Lau, Hon Chung Ramakrishna, Seeram Zhang, Kai |
AuthorAffiliation | Department of Mechanical Engineering Department of Civil and Environment Engineering |
AuthorAffiliation_xml | – name: Department of Civil and Environment Engineering – name: Department of Mechanical Engineering |
Author_xml | – sequence: 1 givenname: Hon Chung orcidid: 0000-0001-7749-1256 surname: Lau fullname: Lau, Hon Chung email: honchung.lau@gmail.com organization: Department of Civil and Environment Engineering – sequence: 2 givenname: Seeram orcidid: 0000-0001-8479-8686 surname: Ramakrishna fullname: Ramakrishna, Seeram organization: Department of Mechanical Engineering – sequence: 3 givenname: Kai surname: Zhang fullname: Zhang, Kai organization: Department of Civil and Environment Engineering – sequence: 4 givenname: Adiyodi Veettil surname: Radhamani fullname: Radhamani, Adiyodi Veettil organization: Department of Civil and Environment Engineering |
BookMark | eNqNkD1PwzAQhi1UJNrCb8AjS4o_8mEPCKGqBaRKSFBmy3EuJVVqF9sZ-u9JaAfEAtM73PPcnd4JGllnAaFrSmaUMHqrTZiBBb851B20YUYNIYSzMzSmGSNJRpgcoTERokhIztILNAlh2yM5F9kY3a8_AL-6FrCr8Vz70tk-9rHzgLWt8Ft0Xm8ANxbHnlx8H8Jrr21oYuPsJTqvdRvg6pRT9L5crOdPyerl8Xn-sEo052lMykpQIktdZVwUMk8pyyQjuTEVz9NSCiaJBMM146SQAmpWpUXF-y8zrqEuGZ-im-PevXefHYSodk0w0LbaguuCYlmR8iJnTPTo3RE13oXgoVamiXp4NnrdtIoSNRSn-uLUj-LUqbjeL375e9_stD_8w-RHcwC2rvNWD9M_rC_Zr4uf |
CitedBy_id | crossref_primary_10_1016_j_enconman_2025_119500 crossref_primary_10_3390_en16196967 crossref_primary_10_1007_s40518_024_00248_3 crossref_primary_10_1039_D2VA00236A crossref_primary_10_1002_ghg_2219 crossref_primary_10_1016_j_energy_2022_123751 crossref_primary_10_1016_j_susmat_2024_e00972 crossref_primary_10_1021_acs_energyfuels_4c02110 crossref_primary_10_1016_j_ijhydene_2024_03_152 crossref_primary_10_47134_innovative_v3i4_132 crossref_primary_10_1051_e3sconf_202451301009 crossref_primary_10_24891_ea_22_11_2112 crossref_primary_10_1021_acs_energyfuels_3c02784 crossref_primary_10_1039_D1TA07382F crossref_primary_10_1144_SP527_2022_38 crossref_primary_10_1016_j_jngse_2022_104654 crossref_primary_10_1016_j_earscirev_2024_104792 crossref_primary_10_3390_en16062834 crossref_primary_10_1111_risa_17449 crossref_primary_10_1021_acs_energyfuels_3c02648 crossref_primary_10_1126_sciadv_adg2229 crossref_primary_10_1021_acs_energyfuels_4c02513 crossref_primary_10_3390_en16237800 crossref_primary_10_1016_j_jpowsour_2022_231133 crossref_primary_10_1016_j_apenergy_2024_123622 crossref_primary_10_1021_acs_energyfuels_4c00462 crossref_primary_10_1063_5_0147944 crossref_primary_10_3389_fenrg_2022_909898 crossref_primary_10_2118_210264_PA crossref_primary_10_3390_pr12102167 crossref_primary_10_1007_s43979_022_00010_y crossref_primary_10_1016_j_jece_2024_115103 crossref_primary_10_1021_acsami_3c06804 crossref_primary_10_1093_ijlct_ctaf023 crossref_primary_10_3390_en14102803 crossref_primary_10_1002_ep_14144 crossref_primary_10_1021_acs_iecr_3c03286 crossref_primary_10_3390_su151914486 crossref_primary_10_1016_j_electacta_2024_144714 crossref_primary_10_1016_j_renene_2025_122884 crossref_primary_10_1021_acsomega_4c10432 crossref_primary_10_1016_j_nxsust_2025_100118 crossref_primary_10_1021_acsaem_4c02834 crossref_primary_10_1016_j_rser_2023_113215 crossref_primary_10_1021_acs_energyfuels_1c00502 crossref_primary_10_1016_j_ijggc_2022_103628 crossref_primary_10_1016_j_rsurfi_2024_100381 crossref_primary_10_1149_1945_7111_ad9060 crossref_primary_10_3390_land11070997 crossref_primary_10_1021_acs_energyfuels_2c00238 crossref_primary_10_1016_j_ecmx_2024_100673 crossref_primary_10_2139_ssrn_3920262 crossref_primary_10_1039_D3SU00309D crossref_primary_10_1016_j_molliq_2024_124909 crossref_primary_10_1021_acs_energyfuels_3c00581 crossref_primary_10_1016_j_rineng_2024_102636 crossref_primary_10_3389_fchem_2021_734108 crossref_primary_10_1016_j_jngse_2022_104814 crossref_primary_10_1016_j_egyr_2022_11_209 crossref_primary_10_1016_j_joei_2021_11_012 crossref_primary_10_1016_j_seppur_2025_132108 crossref_primary_10_1016_j_fuel_2022_124224 crossref_primary_10_1115_1_4056612 crossref_primary_10_1016_j_cis_2023_102936 crossref_primary_10_1016_j_mtcomm_2022_103431 crossref_primary_10_1021_acs_energyfuels_1c03349 crossref_primary_10_1021_acs_energyfuels_4c01374 crossref_primary_10_3390_fire6030128 crossref_primary_10_3390_su14105827 crossref_primary_10_54097_ije_v2i3_9345 crossref_primary_10_1016_j_ccst_2024_100266 crossref_primary_10_1016_j_rser_2023_113153 crossref_primary_10_3390_en16031167 crossref_primary_10_1021_acs_energyfuels_3c00311 crossref_primary_10_1016_j_rser_2023_113150 crossref_primary_10_1016_j_enrev_2024_100090 crossref_primary_10_1039_D4CP00175C crossref_primary_10_1021_acs_energyfuels_3c00838 crossref_primary_10_1021_acs_est_3c08708 crossref_primary_10_1021_acs_energyfuels_4c04212 crossref_primary_10_1088_1755_1315_791_1_012109 crossref_primary_10_1016_j_ecoinf_2023_102164 crossref_primary_10_3390_su15129334 crossref_primary_10_1144_egc1_2023_10 crossref_primary_10_1016_j_nxsust_2024_100040 crossref_primary_10_1016_j_geoen_2023_211796 crossref_primary_10_1007_s13399_024_06010_5 crossref_primary_10_1016_j_esr_2024_101356 crossref_primary_10_1016_j_jece_2025_116102 crossref_primary_10_1016_j_jcou_2021_101738 crossref_primary_10_1016_j_jgsce_2023_204999 crossref_primary_10_3390_su14148425 crossref_primary_10_1007_s11356_021_17623_y crossref_primary_10_1021_acs_energyfuels_4c01587 crossref_primary_10_3390_en16062597 crossref_primary_10_1016_j_ijggc_2022_103694 crossref_primary_10_1016_j_energy_2024_131858 crossref_primary_10_3390_liquids4040042 crossref_primary_10_1108_IJCCSM_07_2024_0120 crossref_primary_10_1016_j_egyr_2023_02_020 crossref_primary_10_1016_j_fuel_2023_127776 crossref_primary_10_1021_acs_energyfuels_3c05163 crossref_primary_10_1007_s10098_023_02664_3 crossref_primary_10_3390_su16020942 crossref_primary_10_1016_j_ccst_2021_100026 crossref_primary_10_1021_acs_energyfuels_3c03660 crossref_primary_10_1016_j_enss_2023_08_004 crossref_primary_10_3390_en15228639 crossref_primary_10_1016_j_est_2023_107796 crossref_primary_10_1021_acs_energyfuels_2c03717 crossref_primary_10_3390_molecules30020277 crossref_primary_10_1016_j_jcou_2023_102438 crossref_primary_10_1016_j_apenergy_2023_120738 crossref_primary_10_1016_j_egyr_2022_04_047 crossref_primary_10_1021_acs_cgd_3c00209 crossref_primary_10_1007_s11157_023_09662_3 crossref_primary_10_3390_en16227617 crossref_primary_10_1021_acs_energyfuels_2c04122 crossref_primary_10_3390_en15062152 crossref_primary_10_1016_j_energy_2022_125361 crossref_primary_10_3390_molecules27175379 crossref_primary_10_1021_acs_energyfuels_4c00465 crossref_primary_10_1016_j_ijggc_2023_103863 crossref_primary_10_3390_catal14010004 crossref_primary_10_3390_en14206455 crossref_primary_10_1021_acssuschemeng_2c02691 crossref_primary_10_3390_systems11010011 crossref_primary_10_1016_j_ijhydene_2024_04_213 crossref_primary_10_1016_j_arabjc_2023_105106 crossref_primary_10_1016_j_petrol_2021_109979 crossref_primary_10_1021_acssuschemeng_3c08088 crossref_primary_10_1016_j_ijhydene_2022_04_012 crossref_primary_10_1002_eem2_12832 crossref_primary_10_1016_j_ccst_2024_100238 crossref_primary_10_1016_j_jclepro_2022_131384 crossref_primary_10_3390_nano11102476 crossref_primary_10_1016_j_energy_2025_135777 crossref_primary_10_1021_acs_energyfuels_4c02937 crossref_primary_10_1016_j_ccst_2022_100036 crossref_primary_10_1016_j_ijggc_2023_104020 crossref_primary_10_1016_j_jclepro_2024_142516 crossref_primary_10_1039_D3EE02532B crossref_primary_10_1016_j_egyr_2022_03_012 crossref_primary_10_1016_j_energy_2022_123470 crossref_primary_10_1021_acs_langmuir_4c03811 crossref_primary_10_1016_j_rser_2023_113945 crossref_primary_10_1016_j_ccst_2024_100195 crossref_primary_10_1016_j_rser_2024_115229 crossref_primary_10_1016_j_apenergy_2025_125726 crossref_primary_10_1016_j_carbon_2022_12_062 crossref_primary_10_1016_j_jclepro_2023_136901 crossref_primary_10_1016_j_jgsce_2023_205070 crossref_primary_10_1016_j_cscee_2023_100422 crossref_primary_10_1016_j_apenergy_2023_121723 crossref_primary_10_1016_j_ijhydene_2025_01_214 |
Cites_doi | 10.1016/j.enpol.2020.111834 10.3390/en8054073 10.1016/j.enpol.2018.10.039 10.1016/j.egypro.2014.11.808 10.1007/s10765-018-2455-3 10.1111/iar.12064 10.1021/acs.energyfuels.7b00656 10.1016/j.ijggc.2014.01.009 10.3390/en12061129 10.1021/ie200686q 10.1016/j.coal.2007.11.001 10.1016/j.ijggc.2010.10.001 10.1016/j.egypro.2014.11.545 10.1021/ef200124d 10.2118/24645-MS 10.1016/j.rser.2018.11.010 10.4043/30270-MS 10.1029/2007JB004976 10.1021/acsenergylett.9b02585 10.1016/j.egypro.2017.03.1886 10.1016/j.energy.2019.02.055 10.1016/j.energy.2015.12.044 10.1016/j.marpetgeo.2010.02.015 10.1016/j.ijggc.2011.11.007 10.1016/j.jngse.2012.08.002 10.1007/978-3-540-68910-2 10.1021/acs.energyfuels.6b01909 10.1016/j.esr.2017.12.007 10.1007/s10584-020-02780-9 10.3390/en14040833 10.1016/j.scitotenv.2020.143203 10.1016/j.ijggc.2019.02.014 10.1021/acs.est.8b03359 10.1016/j.renene.2017.12.060 10.1002/2013JB010784 10.1016/j.enpol.2013.11.039 10.1016/j.egypro.2014.11.744 10.2118/20118-PA 10.1038/s41598-019-44611-7 10.1080/15567036.2018.1548518 10.1080/14693062.2016.1242058 10.2118/194486-PA 10.1016/j.enconman.2005.08.023 10.1016/j.enpol.2013.06.107 10.1021/acs.energyfuels.6b03204 10.1016/j.energy.2019.116671 10.1016/j.chemgeo.2007.06.009 10.1007/978-981-15-1052-6 10.1007/978-981-13-3296-8_4 10.1002/er.4930 10.1016/j.egypro.2017.03.1523 10.1088/1748-9326/11/11/114010 10.1016/j.enpol.2017.10.040 10.1016/j.chemphys.2016.05.031 10.1201/b20059 10.1039/C7EE02342A 10.1016/j.ijggc.2009.09.015 10.1021/es0223325 10.1039/C7EE03610H 10.1016/j.jclepro.2018.10.147 10.7122/485492-MS 10.2118/01-12-TN1 10.1016/j.ijhydene.2011.01.170 10.1016/j.ijggc.2015.05.028 10.1021/acs.est.5b01982 10.1016/j.ijggc.2015.05.024 10.1016/0920-5861(94)00081-C 10.1016/j.ijggc.2014.09.024 10.1016/j.ijhydene.2017.04.101 10.1016/j.egypro.2017.03.1707 10.1016/j.petrol.2018.01.049 10.2523/IPTC-21162-MS 10.2118/133804-PA 10.1016/j.egypro.2018.07.021 10.3390/su11143972 10.2118/187100-MS 10.1057/s41599-019-0217-x 10.1016/j.egypro.2011.02.557 10.1038/s41467-019-11161-5 10.1016/j.rser.2014.07.093 10.1016/j.ijhydene.2016.05.293 10.1016/j.tra.2020.06.020 10.3390/su13010298 10.1016/j.jclepro.2013.07.048 10.1016/j.egypro.2014.11.334 10.2118/24156-MS 10.1016/j.ijggc.2010.11.010 10.1007/s40518-019-00136-1 10.1016/j.egypro.2017.03.1566 10.1007/s00603-019-01820-w 10.1007/s12182-010-0010-3 10.1038/nature12858 10.1016/j.energy.2014.12.037 10.1080/17583004.2017.1309203 10.1088/1755-1315/225/1/012009 10.1007/978-3-030-21209-4 10.1016/j.ijsbe.2017.07.008 10.1029/2011GL047265 10.1002/ceat.202000077 10.1016/j.ijggc.2008.02.004 10.1016/j.petrol.2018.03.047 10.1002/2016GL070654 10.1016/j.egypro.2017.03.1493 10.2118/127096-MS 10.1088/1748-9326/abbd02 10.1021/acs.energyfuels.7b01740 10.1016/0196-8904(95)00056-J 10.1016/j.egypro.2017.03.1615 10.1017/CBO9781316134245 10.2118/126421-MS 10.2118/14394-MS 10.1130/GES01207.1 10.1007/s11356-019-06128-4 10.1016/S0956-053X(97)10037-X 10.1016/j.renene.2017.04.015 10.2118/163141-PA 10.1016/j.enpol.2012.01.055 10.1163/15718085-12341362 10.1016/j.ijggc.2015.03.022 10.1016/j.jclepro.2018.08.241 10.1038/s41598-019-54363-z 10.1016/j.rser.2013.07.055 10.1073/pnas.0605318103 10.1016/j.ijggc.2019.04.008 10.1557/mrs.2019.312 10.1016/j.ijhydene.2016.01.009 10.1016/j.rser.2017.09.002 10.1260/014459803322986286 10.1016/j.jclepro.2020.121874 10.1016/j.coldregions.2014.08.002 10.2118/139771-PA 10.2523/IPTC-21348-MS 10.1016/j.apenergy.2016.05.014 10.1016/j.enpol.2020.111906 10.1186/s13068-020-01730-y 10.1016/j.marpetgeo.2018.07.028 10.1016/j.apenergy.2020.114531 10.1016/j.pecs.2005.11.005 10.1016/j.apenergy.2020.114848 10.1016/j.biortech.2018.02.089 10.1016/j.ijggc.2013.08.011 10.1016/j.applthermaleng.2009.05.005 10.1016/j.apenergy.2015.03.023 10.1016/j.coche.2017.06.005 10.1016/j.apenergy.2015.08.124 10.1039/c004106h 10.1016/S1750-5836(07)00086-2 10.1201/9781420008494 10.1016/j.ijggc.2015.01.007 10.1016/j.ijggc.2015.02.023 10.1038/s41598-019-55476-1 10.1039/D0SE00222D 10.1109/PTC.2019.8810865 10.1039/C5RA26459F 10.1016/j.energy.2018.11.112 10.5018/economics-ejournal.ja.2018-40 10.1007/s00253-011-3437-6 10.1016/j.apenergy.2020.114491 10.1016/j.egypro.2009.02.049 10.3390/en9070481 10.1016/j.apenergy.2016.12.120 10.1016/j.enpol.2020.111716 10.1016/j.enpol.2021.112150 10.1016/j.ijggc.2018.02.022 10.1002/ghg.1802 10.1039/C7EE03639F 10.1016/j.ijhydene.2019.04.226 10.1126/science.1250828 10.1016/j.egypro.2017.03.1801 10.1260/0144-5987.32.6.943 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.energyfuels.1c00032 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5029 |
EndPage | 7386 |
ExternalDocumentID | 10_1021_acs_energyfuels_1c00032 b016321429 |
GroupedDBID | 02 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F X -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV BAANH CITATION CUPRZ ZCA ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a334t-bd8109bad53879641259206ccd364b982909ec3a230798ef2d47d300053aefb23 |
IEDL.DBID | ACS |
ISSN | 0887-0624 1520-5029 |
IngestDate | Fri Jul 11 04:24:50 EDT 2025 Thu Apr 24 23:11:19 EDT 2025 Tue Jul 01 02:27:36 EDT 2025 Sun May 09 06:29:48 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a334t-bd8109bad53879641259206ccd364b982909ec3a230798ef2d47d300053aefb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8479-8686 0000-0001-7749-1256 |
PQID | 2574376228 |
PQPubID | 24069 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2574376228 crossref_citationtrail_10_1021_acs_energyfuels_1c00032 crossref_primary_10_1021_acs_energyfuels_1c00032 acs_journals_10_1021_acs_energyfuels_1c00032 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-06 |
PublicationDateYYYYMMDD | 2021-05-06 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Energy & fuels |
PublicationTitleAlternate | Energy Fuels |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 Energy Transitions Commission (ETC) (ref114/cit114) 2020 Li H. (ref158/cit158) 2021 ref16/cit16 Shell Deutschland Oil GmbH (ref58/cit58) 2017 ref185/cit185 ref23/cit23 ref115/cit115 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref42/cit42 Lake L. W. (ref148/cit148) 2015 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref124/cit124 ref126/cit126 ref54/cit54 United States Energy Information Administration (EIA) (ref55/cit55) 2021 ref137/cit137 ref11/cit11 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref203/cit203 Global CCS Institute (ref78/cit78) 2020 Council of Australian Governments (COAG) Energy Council (ref69/cit69) 2019 ref144/cit144 ref218/cit218 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref210/cit210 ref153/cit153 ref222/cit222 ref150/cit150 ref224/cit224 ref56/cit56 Boyle G. (ref83/cit83) 2012 ref155/cit155 ref156/cit156 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 cr-split#-ref128/cit128.2 ref37/cit37 cr-split#-ref128/cit128.1 ref221/cit221 ref60/cit60 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref145/cit145 ref21/cit21 ref166/cit166 ref164/cit164 ref213/cit213 ref211/cit211 ref36/cit36 ref79/cit79 ref139/cit139 ref172/cit172 ref200/cit200 ref14/cit14 ref57/cit57 ref134/cit134 Rogers R. (ref169/cit169) 2011 ref208/cit208 ref40/cit40 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref216/cit216 ref15/cit15 ref180/cit180 de Pee A. (ref102/cit102) 2018 ref62/cit62 ref41/cit41 ref104/cit104 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 Sloan E. D. (ref195/cit195) 2007 ref196/cit196 ref7/cit7 ref45/cit45 Cavaliere P. (ref107/cit107) 2019 International Renewable Energy Agency (IRENA) (ref81/cit81) 2019 ref52/cit52 ref184/cit184 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref2/cit2 ref77/cit77 ref71/cit71 Jemai K. (ref141/cit141) 2014; 9 ref188/cit188 ref118/cit118 Archer D. (ref4/cit4) 2012 ref89/cit89 ref19/cit19 Dickel R. (ref27/cit27) 2020 ref96/cit96 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 United States Department of Energy (ref212/cit212) 2019 ref64/cit64 Houghton J. (ref5/cit5) 2015 Ahmed U. (ref187/cit187) 2016 ref6/cit6 ref18/cit18 ref136/cit136 Lawson A. (ref94/cit94) 2018 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref39/cit39 ref202/cit202 ref206/cit206 ref132/cit132 ref91/cit91 Wu N. Y. (ref201/cit201) 2007; 27 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 National Energy Technology Laboratory (NETL), United States Department of Energy (U.S. DOE) (ref125/cit125) 2007 Deloitte China (ref63/cit63) 2020; 1 ref129/cit129 ref44/cit44 ref70/cit70 ref9/cit9 ref152/cit152 ref225/cit225 ref226/cit226 ref154/cit154 ref223/cit223 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 Ghosh S. K. (ref20/cit20) 2020 ref31/cit31 ref220/cit220 ref88/cit88 ref160/cit160 ref143/cit143 ref217/cit217 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref215/cit215 ref50/cit50 ref209/cit209 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 Seidle J. (ref168/cit168) 2011 ref51/cit51 ref135/cit135 ref68/cit68 ref130/cit130 ref204/cit204 ref146/cit146 Central Europe Energy Partners (CEEP) (ref112/cit112) 2019 ref26/cit26 ref73/cit73 ref165/cit165 ref95/cit95 ref108/cit108 ref192/cit192 ref30/cit30 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref9/cit9 – ident: ref25/cit25 doi: 10.1016/j.enpol.2020.111834 – ident: ref205/cit205 doi: 10.3390/en8054073 – ident: ref220/cit220 doi: 10.1016/j.enpol.2018.10.039 – volume-title: The Climate Crisis: An Introductory Guide to Climate Change year: 2012 ident: ref4/cit4 – ident: ref164/cit164 doi: 10.1016/j.egypro.2014.11.808 – ident: ref185/cit185 doi: 10.1007/s10765-018-2455-3 – ident: ref203/cit203 doi: 10.1111/iar.12064 – ident: ref155/cit155 – ident: ref173/cit173 doi: 10.1021/acs.energyfuels.7b00656 – ident: ref118/cit118 doi: 10.1016/j.ijggc.2014.01.009 – ident: ref19/cit19 – ident: ref34/cit34 doi: 10.3390/en12061129 – ident: ref45/cit45 doi: 10.1021/ie200686q – ident: ref172/cit172 doi: 10.1016/j.coal.2007.11.001 – volume-title: Fundamentals of Coalbed Methane Reservoir Engineering year: 2011 ident: ref168/cit168 – ident: ref221/cit221 doi: 10.1016/j.ijggc.2010.10.001 – ident: ref190/cit190 doi: 10.1016/j.egypro.2014.11.545 – ident: ref76/cit76 doi: 10.1021/ef200124d – volume-title: Decarbonizing U.S. Transportation year: 2018 ident: ref94/cit94 – ident: ref151/cit151 doi: 10.2118/24645-MS – ident: ref104/cit104 doi: 10.1016/j.rser.2018.11.010 – ident: ref188/cit188 doi: 10.4043/30270-MS – ident: ref200/cit200 doi: 10.1029/2007JB004976 – volume-title: Making Mission Possible: Delivering a Net-Zero Economy, Version 1.0 year: 2020 ident: ref114/cit114 – ident: ref15/cit15 doi: 10.1021/acsenergylett.9b02585 – ident: ref225/cit225 doi: 10.1016/j.egypro.2017.03.1886 – ident: ref184/cit184 doi: 10.1016/j.energy.2019.02.055 – volume-title: Blue Hydrogen as an Enabler of Green Hydrogen: The Case of Germany year: 2020 ident: ref27/cit27 – ident: ref222/cit222 doi: 10.1016/j.energy.2015.12.044 – ident: ref197/cit197 doi: 10.1016/j.marpetgeo.2010.02.015 – ident: ref127/cit127 doi: 10.1016/j.ijggc.2011.11.007 – ident: ref198/cit198 doi: 10.1016/j.jngse.2012.08.002 – ident: ref2/cit2 – ident: ref71/cit71 – ident: ref26/cit26 – ident: ref183/cit183 doi: 10.1007/978-3-540-68910-2 – ident: ref206/cit206 doi: 10.1021/acs.energyfuels.6b01909 – ident: ref21/cit21 – ident: ref96/cit96 doi: 10.1016/j.esr.2017.12.007 – ident: ref109/cit109 doi: 10.1007/s10584-020-02780-9 – ident: ref59/cit59 doi: 10.3390/en14040833 – ident: ref213/cit213 doi: 10.1016/j.scitotenv.2020.143203 – ident: ref219/cit219 doi: 10.1016/j.ijggc.2019.02.014 – volume-title: Fundamentals of Enhanced Oil Recovery year: 2015 ident: ref148/cit148 – ident: ref91/cit91 doi: 10.1021/acs.est.8b03359 – ident: ref35/cit35 doi: 10.1016/j.renene.2017.12.060 – ident: ref202/cit202 doi: 10.1002/2013JB010784 – ident: ref24/cit24 doi: 10.1016/j.enpol.2013.11.039 – ident: ref217/cit217 doi: 10.1016/j.egypro.2014.11.744 – ident: ref150/cit150 doi: 10.2118/20118-PA – ident: ref135/cit135 doi: 10.1038/s41598-019-44611-7 – ident: ref14/cit14 doi: 10.1080/15567036.2018.1548518 – ident: ref36/cit36 doi: 10.1080/14693062.2016.1242058 – ident: ref196/cit196 doi: 10.2118/194486-PA – volume-title: Internal Revenue Code Tax Fact Sheet year: 2019 ident: ref212/cit212 – ident: ref159/cit159 doi: 10.1016/j.enconman.2005.08.023 – ident: ref22/cit22 doi: 10.1016/j.enpol.2013.06.107 – ident: ref47/cit47 doi: 10.1021/acs.energyfuels.6b03204 – ident: ref30/cit30 doi: 10.1016/j.energy.2019.116671 – volume-title: Australia’s National Hydrogen Strategy year: 2019 ident: ref69/cit69 – volume-title: Annual Energy Outlook 2021 year: 2021 ident: ref55/cit55 – ident: ref161/cit161 doi: 10.1016/j.chemgeo.2007.06.009 – volume-title: Circular Economy: Global Perspective year: 2020 ident: ref20/cit20 doi: 10.1007/978-981-15-1052-6 – ident: ref108/cit108 doi: 10.1007/978-981-13-3296-8_4 – ident: ref67/cit67 doi: 10.1002/er.4930 – ident: ref129/cit129 doi: 10.1016/j.egypro.2017.03.1523 – ident: ref115/cit115 – ident: ref52/cit52 doi: 10.1088/1748-9326/11/11/114010 – ident: ref211/cit211 – ident: ref50/cit50 doi: 10.1016/j.enpol.2017.10.040 – ident: ref11/cit11 – ident: ref140/cit140 doi: 10.1016/j.chemphys.2016.05.031 – volume-title: Unconventional Oil and Gas Resources Exploitation and Development year: 2016 ident: ref187/cit187 doi: 10.1201/b20059 – ident: ref17/cit17 doi: 10.1039/C7EE02342A – ident: ref162/cit162 doi: 10.1016/j.ijggc.2009.09.015 – ident: ref116/cit116 doi: 10.1021/es0223325 – ident: ref138/cit138 – volume-title: Pathways of Energy Transition in Central Europe year: 2019 ident: ref112/cit112 – ident: ref12/cit12 – volume: 1 volume-title: Fueling the Future of Mobility: Hydrogen and Fuel Cell Solutions for Transportation year: 2020 ident: ref63/cit63 – ident: ref38/cit38 doi: 10.1039/C7EE03610H – ident: ref84/cit84 doi: 10.1016/j.jclepro.2018.10.147 – ident: ref144/cit144 – ident: ref176/cit176 doi: 10.7122/485492-MS – ident: ref64/cit64 – ident: ref163/cit163 doi: 10.2118/01-12-TN1 – ident: ref75/cit75 doi: 10.1016/j.ijhydene.2011.01.170 – ident: ref42/cit42 doi: 10.1016/j.ijggc.2015.05.028 – ident: ref189/cit189 doi: 10.1021/acs.est.5b01982 – ident: ref13/cit13 – ident: ref175/cit175 – ident: ref214/cit214 doi: 10.1016/j.ijggc.2015.05.024 – ident: ref16/cit16 doi: 10.1016/0920-5861(94)00081-C – ident: ref56/cit56 – ident: ref44/cit44 doi: 10.1016/j.ijggc.2014.09.024 – ident: ref77/cit77 doi: 10.1016/j.ijhydene.2017.04.101 – ident: ref57/cit57 – volume-title: Decarbonization of Industrial Sectors: The Next Frontier year: 2018 ident: ref102/cit102 – ident: ref156/cit156 doi: 10.1016/j.egypro.2017.03.1707 – ident: ref194/cit194 doi: 10.1016/j.petrol.2018.01.049 – ident: ref3/cit3 – ident: ref105/cit105 doi: 10.2523/IPTC-21162-MS – ident: ref121/cit121 doi: 10.2118/133804-PA – ident: #cr-split#-ref128/cit128.1 doi: 10.1016/j.egypro.2018.07.021 – ident: ref7/cit7 doi: 10.3390/su11143972 – year: 2021 ident: ref158/cit158 publication-title: Int. J. Greenhouse Gas Control – ident: ref131/cit131 doi: 10.2118/187100-MS – volume-title: Hydrogen: A Renewable Energy Perspective year: 2019 ident: ref81/cit81 – ident: ref132/cit132 – ident: ref224/cit224 doi: 10.1057/s41599-019-0217-x – ident: ref31/cit31 – ident: ref210/cit210 doi: 10.1016/j.egypro.2011.02.557 – ident: ref113/cit113 – ident: ref28/cit28 doi: 10.1038/s41467-019-11161-5 – ident: ref39/cit39 doi: 10.1016/j.rser.2014.07.093 – ident: ref65/cit65 doi: 10.1016/j.ijhydene.2016.05.293 – ident: ref70/cit70 – ident: ref97/cit97 doi: 10.1016/j.tra.2020.06.020 – ident: ref82/cit82 doi: 10.3390/su13010298 – volume-title: Coalbed Methane Principles and Practices year: 2011 ident: ref169/cit169 – ident: ref79/cit79 doi: 10.1016/j.jclepro.2013.07.048 – ident: ref166/cit166 doi: 10.1016/j.egypro.2014.11.334 – ident: ref147/cit147 doi: 10.2118/24156-MS – ident: ref209/cit209 doi: 10.1016/j.ijggc.2010.11.010 – ident: ref103/cit103 doi: 10.1007/s40518-019-00136-1 – ident: ref117/cit117 doi: 10.1016/j.egypro.2017.03.1566 – ident: ref145/cit145 – ident: ref193/cit193 doi: 10.1007/s00603-019-01820-w – ident: ref134/cit134 doi: 10.1007/s12182-010-0010-3 – ident: ref136/cit136 doi: 10.1038/nature12858 – ident: ref146/cit146 – ident: ref92/cit92 doi: 10.1016/j.energy.2014.12.037 – ident: ref37/cit37 doi: 10.1080/17583004.2017.1309203 – ident: ref106/cit106 doi: 10.1088/1755-1315/225/1/012009 – volume-title: Ironmaking and Steelmaking Processes year: 2019 ident: ref107/cit107 doi: 10.1007/978-3-030-21209-4 – ident: ref48/cit48 – ident: ref89/cit89 doi: 10.1016/j.ijsbe.2017.07.008 – ident: ref179/cit179 doi: 10.1029/2011GL047265 – volume-title: Global Status of CCS 2020 year: 2020 ident: ref78/cit78 – ident: #cr-split#-ref128/cit128.2 – ident: ref110/cit110 doi: 10.1002/ceat.202000077 – ident: ref124/cit124 doi: 10.1016/j.ijggc.2008.02.004 – ident: ref177/cit177 doi: 10.1016/j.petrol.2018.03.047 – ident: ref170/cit170 doi: 10.1002/2016GL070654 – ident: ref216/cit216 doi: 10.1016/j.egypro.2017.03.1493 – ident: ref10/cit10 – ident: ref130/cit130 doi: 10.2118/127096-MS – ident: ref101/cit101 doi: 10.1088/1748-9326/abbd02 – ident: ref171/cit171 doi: 10.1021/acs.energyfuels.7b01740 – ident: ref122/cit122 doi: 10.1016/0196-8904(95)00056-J – ident: ref182/cit182 doi: 10.1016/j.egypro.2017.03.1615 – volume-title: Global Warming: The Complete Briefing. year: 2015 ident: ref5/cit5 doi: 10.1017/CBO9781316134245 – ident: ref119/cit119 doi: 10.2118/126421-MS – ident: ref149/cit149 doi: 10.2118/14394-MS – ident: ref181/cit181 doi: 10.1130/GES01207.1 – ident: ref61/cit61 doi: 10.1007/s11356-019-06128-4 – ident: ref143/cit143 doi: 10.1016/S0956-053X(97)10037-X – ident: ref111/cit111 doi: 10.1016/j.renene.2017.04.015 – ident: ref180/cit180 doi: 10.2118/163141-PA – ident: ref54/cit54 doi: 10.1016/j.enpol.2012.01.055 – ident: ref215/cit215 doi: 10.1163/15718085-12341362 – ident: ref123/cit123 doi: 10.1016/j.ijggc.2015.03.022 – volume-title: Methodology for Development of Carbon Sequestration Capacity Estimates. Appendix A in Carbon Sequestration Atlas of the United States and Canada year: 2007 ident: ref125/cit125 – ident: ref93/cit93 doi: 10.1016/j.jclepro.2018.08.241 – ident: ref137/cit137 doi: 10.1038/s41598-019-54363-z – ident: ref153/cit153 – ident: ref6/cit6 doi: 10.1016/j.rser.2013.07.055 – ident: ref139/cit139 doi: 10.1073/pnas.0605318103 – ident: ref218/cit218 doi: 10.1016/j.ijggc.2019.04.008 – ident: ref62/cit62 doi: 10.1557/mrs.2019.312 – ident: ref66/cit66 doi: 10.1016/j.ijhydene.2016.01.009 – ident: ref53/cit53 doi: 10.1016/j.rser.2017.09.002 – ident: ref8/cit8 doi: 10.1260/014459803322986286 – ident: ref178/cit178 doi: 10.1016/j.jclepro.2020.121874 – ident: ref199/cit199 doi: 10.1016/j.coldregions.2014.08.002 – ident: ref120/cit120 – ident: ref72/cit72 – ident: ref165/cit165 doi: 10.2118/139771-PA – ident: ref1/cit1 doi: 10.2523/IPTC-21348-MS – ident: ref29/cit29 doi: 10.1016/j.apenergy.2016.05.014 – ident: ref87/cit87 doi: 10.1016/j.enpol.2020.111906 – ident: ref85/cit85 doi: 10.1186/s13068-020-01730-y – ident: ref204/cit204 doi: 10.1016/j.marpetgeo.2018.07.028 – ident: ref46/cit46 doi: 10.1016/j.apenergy.2020.114531 – ident: ref68/cit68 – ident: ref74/cit74 doi: 10.1016/j.pecs.2005.11.005 – ident: ref99/cit99 doi: 10.1016/j.apenergy.2020.114848 – volume-title: Sustainable Mobility through Fuel Cells and Hydrogen year: 2017 ident: ref58/cit58 – ident: ref73/cit73 – volume-title: Renewable Energy: Power for a Sustainable Future year: 2012 ident: ref83/cit83 – ident: ref86/cit86 doi: 10.1016/j.biortech.2018.02.089 – ident: ref174/cit174 doi: 10.1016/j.ijggc.2013.08.011 – ident: ref40/cit40 doi: 10.1016/j.applthermaleng.2009.05.005 – ident: ref186/cit186 – ident: ref192/cit192 doi: 10.1016/j.apenergy.2015.03.023 – ident: ref41/cit41 doi: 10.1016/j.coche.2017.06.005 – ident: ref98/cit98 doi: 10.1016/j.apenergy.2015.08.124 – ident: ref43/cit43 doi: 10.1039/c004106h – ident: ref133/cit133 doi: 10.1016/S1750-5836(07)00086-2 – volume-title: Clathrate Hydrates of Natural Gases year: 2007 ident: ref195/cit195 doi: 10.1201/9781420008494 – volume: 27 start-page: 1 issue: 9 year: 2007 ident: ref201/cit201 publication-title: Nat. Gas Ind. – ident: ref126/cit126 doi: 10.1016/j.ijggc.2015.01.007 – ident: ref226/cit226 doi: 10.1016/j.ijggc.2015.02.023 – ident: ref154/cit154 – ident: ref207/cit207 doi: 10.1038/s41598-019-55476-1 – ident: ref100/cit100 doi: 10.1039/D0SE00222D – ident: ref95/cit95 doi: 10.1109/PTC.2019.8810865 – ident: ref18/cit18 – ident: ref88/cit88 doi: 10.1039/C5RA26459F – ident: ref33/cit33 doi: 10.1016/j.energy.2018.11.112 – volume: 9 start-page: 150 year: 2014 ident: ref141/cit141 publication-title: WSEAS Trans. Heat Mass Transfer – ident: ref51/cit51 doi: 10.5018/economics-ejournal.ja.2018-40 – ident: ref90/cit90 doi: 10.1007/s00253-011-3437-6 – ident: ref191/cit191 doi: 10.1016/j.apenergy.2020.114491 – ident: ref142/cit142 doi: 10.1016/j.egypro.2009.02.049 – ident: ref152/cit152 doi: 10.3390/en9070481 – ident: ref32/cit32 doi: 10.1016/j.apenergy.2016.12.120 – ident: ref23/cit23 doi: 10.1016/j.enpol.2020.111716 – ident: ref49/cit49 doi: 10.1016/j.enpol.2021.112150 – ident: ref157/cit157 doi: 10.1016/j.ijggc.2018.02.022 – ident: ref167/cit167 doi: 10.1002/ghg.1802 – ident: ref80/cit80 doi: 10.1039/C7EE03639F – ident: ref60/cit60 doi: 10.1016/j.ijhydene.2019.04.226 – ident: ref208/cit208 doi: 10.1126/science.1250828 – ident: ref223/cit223 doi: 10.1016/j.egypro.2017.03.1801 – ident: ref160/cit160 doi: 10.1260/0144-5987.32.6.943 |
SSID | ssj0006385 |
Score | 2.6658309 |
Snippet | In this paper, we review and analyze the salient features of the ongoing energy transition from a high to a low carbon economy. Our analysis shows that this... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7364 |
SubjectTerms | carbon carbon dioxide carbon sequestration economic investment economies of scale energy energy policy feedstocks fossil fuels heat hydrogen hydrogen fuel cells industry oils prices public-private partnerships stakeholders technology transfer |
Title | The Role of Carbon Capture and Storage in the Energy Transition |
URI | http://dx.doi.org/10.1021/acs.energyfuels.1c00032 https://www.proquest.com/docview/2574376228 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KPagHH1WxvljBo6nJbrJJTlKKpQh6aC30FvYJYklKk1789c6mSWmRUj0FArPJzs5-M8O8EHpwNaHUUNcJtQQHRcWRIzwiHC0N3C9jdMBtgfPbOxuM_ddJMGkgb0sEn3hPXOYdXdbBmQWoi44nrR0PqLtHWBRaf6vbG63AF8QpqJt7uoz4dUrX9oWsWpL5plraROVS1fSP0bAu2FlmmHx1FoXoyO_f_Rv_vosTdFQZnri7lJRT1NBpC-336nlvLXS41prwDD2D_OBhNtU4M7jH5yJL4TGz8QbMU4VH4KsDFOHPFIMJiV_Kj-JS85VJYOdo3H_56A2catiCwyn1C0eoyHNjwRUgoC1PBcMnJi6TUlHmi9jGW2MtKbeJ43GkDVF-qGhZy8u1EYReoGaapfoSYRNRwWMd6sDXPg1NFCiPcEWFGwgGrngbPQI7kuqy5EkZBydeYl-u8SipeNRGrD6aRFaNy-38jOluQndFOFv27thNcl-ffQLst8ETnupskScAbbAXRkh09b_fv0YHxObB2CRJdoOaxXyhb8GQKcRdKbo_Zhbw3g |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcJB6UA--xfpcwaOpyW6SJieRYqnPgw-op7BPECWRpr349c5uk9oKInoKLMxmdnZ2HswL4NjXlDHDfK-tJTooKk08EVDhaWnwfRmjI24LnG_v4t5TeNWP-nOQ1LUwiESJO5UuiP_VXSA4tWvalcOZEWqNViCtOY_Cdx5NEmrdrvPOw0QGI1dFdY9PP6Zhndn180ZWO8lyVjvNCmencbor8DzB1SWavLZGQ9GSH9_aOP7nMKuwXJmh5HzMN2swp_N1WOjU09_WYWmqUeEGnCE3kfviTZPCkA4fiCLHz7uNPhCeK_KAnjsKJvKSEzQoyYX7KXF60KWEbcJT9-Kx0_Oq0QseZywcekIlgZ8KrlAe2mJVNINS6sdSKhaHIrXR11RLxm0aeZpoQ1XYVsxV9nJtBGVb0MiLXG8DMQkTPNVtHYU6ZG2TRCqgXDHhRyJGx7wJJ0iOrHo6Zeai4jTI7OIUjbKKRk2I6xvKZNXG3E7TePsd0J8Avo87efwOclSzQIbkt6EUnutiVGYo6PAsMaXJzt_QP4SF3uPtTXZzeXe9C4vUZsjY9Ml4DxrDwUjvo4kzFAeOmz8BkcT5Pw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZSsNAcJAKHg_e4u0KPpqa7CZpAoJItXgW8YC-SNgTREmKaV_8emfXpFRBRJ8CC7uZnZ2TuQD2fU0ZM8z3Wlqig6LSxBMBFZ6WBvnLGB1xW-B8043PH8PLXtSbgKO6FgaBKPGk0gXxLVf3lak6DASHdl27kjgzRM3RDKQ16VEAT9rgnXW9Ttr3IzmMlBXVfT79mIZ1dtfPB1kNJcuvGuqrgHZapzMPTyN4XbLJS3M4EE35_q2V438vtABzlTlKTj7pZxEmdL4E0-16CtwSzI41LFyGY6Qqcle8alIY0uZvosjx07dRCMJzRe7Rg0cBRZ5zgoYlOXM_JU4futSwFXjsnD20z71qBIPHGQsHnlBJ4KeCK5SLtmgVzaGU-rGUisWhSG0UNtWScZtOnibaUBW2FHMVvlwbQdkqNPIi12tATMIET3VLR6EOWcskkQooV0z4kYjRQV-HA0RHVrFQmbnoOA0yuziGo6zC0TrE9StlsmpnbqdqvP6-0R9t7H929Ph9y15NBhmi34ZUeK6LYZmhwMO7xJQmG38Dfxembk872fVF92oTZqhNlLFZlPEWNAZvQ72Nls5A7DiC_gCbM_vC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Carbon+Capture+and+Storage+in+the+Energy+Transition&rft.jtitle=Energy+%26+fuels&rft.au=Lau%2C+Chung&rft.au=Ramakrishna%2C+Seeram&rft.au=Zhang%2C+Kai&rft.au=Radhamani%2C+Adiyodi+Veettil&rft.date=2021-05-06&rft.issn=1520-5029&rft.volume=35&rft.issue=9+p.7364-7386&rft.spage=7364&rft.epage=7386&rft_id=info:doi/10.1021%2Facs.energyfuels.1c00032&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |