NiCo Layered Double Hydroxide Nanoarrays Grown on an Etched Ni Foam Substrate for High-Performance Supercapacitor Electrode
Nickel foam (NF) with a desirable 3D open-pore structure is extensively adopted in developing integrated electrodes, and the enhanced interaction between the electrode materials and NF substrate is recognized as an effective method for a high-performance supercapacitor electrode with a low resistanc...
Saved in:
Published in | Energy & fuels Vol. 37; no. 8; pp. 6208 - 6219 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
20.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nickel foam (NF) with a desirable 3D open-pore structure is extensively adopted in developing integrated electrodes, and the enhanced interaction between the electrode materials and NF substrate is recognized as an effective method for a high-performance supercapacitor electrode with a low resistance nature and high stability. In this work, an etched NF (ENF) with residual nanosheets is adopted as a novel substrate to facilitate the capacitive activity of NiCo layered double hydroxide (NiCo LDH) nanowire arrays. NiCo LDH nanosheet arrays grown on a pristine NF substrate (NiCo LDH/NF) are synthesized initially and used as a precursor. Then, the ENF substrate with a residual nanosheet is obtained by partially removing NiCo LDH nanosheet arrays in a formamide/KOH mixed solution. Subsequently, NiCo LDH nanowire arrays are hydrothermally grown on ENF to form a NiCo LDH/ENF electrode. The role of the residual nanosheet on ENF is discussed in detail, in which the content of Ni3+/Co3+ and the resistance nature of NiCo LDH/ENF can be optimized with the amount of residual nanosheets. Hence, the ENF substrate with an optimal amount of residual nanosheets is beneficial for retaining the adhesion of nanoarrays and realizing the low resistance nature in a mild route. The NiCo LDH/ENF electrode shows a capacity of 976.6 C g–1 at 1 A g–1 with excellent cyclic stability. The as-assembled NiCo LDH/ENF//activated carbon hybrid supercapacitor delivers a high specific capacitance of 150.8 F g–1 at 1 A g–1 and achieves an energy density of 67.9 Wh kg–1 at a power density of 900 W kg–1 with an excellent cycle stability with a 90.6% capacity retention after 10,000 cycles, indicating high energy density and good stability. |
---|---|
AbstractList | Nickel foam (NF) with a desirable 3D open-pore structure is extensively adopted in developing integrated electrodes, and the enhanced interaction between the electrode materials and NF substrate is recognized as an effective method for a high-performance supercapacitor electrode with a low resistance nature and high stability. In this work, an etched NF (ENF) with residual nanosheets is adopted as a novel substrate to facilitate the capacitive activity of NiCo layered double hydroxide (NiCo LDH) nanowire arrays. NiCo LDH nanosheet arrays grown on a pristine NF substrate (NiCo LDH/NF) are synthesized initially and used as a precursor. Then, the ENF substrate with a residual nanosheet is obtained by partially removing NiCo LDH nanosheet arrays in a formamide/KOH mixed solution. Subsequently, NiCo LDH nanowire arrays are hydrothermally grown on ENF to form a NiCo LDH/ENF electrode. The role of the residual nanosheet on ENF is discussed in detail, in which the content of Ni³⁺/Co³⁺ and the resistance nature of NiCo LDH/ENF can be optimized with the amount of residual nanosheets. Hence, the ENF substrate with an optimal amount of residual nanosheets is beneficial for retaining the adhesion of nanoarrays and realizing the low resistance nature in a mild route. The NiCo LDH/ENF electrode shows a capacity of 976.6 C g–¹ at 1 A g–¹ with excellent cyclic stability. The as-assembled NiCo LDH/ENF//activated carbon hybrid supercapacitor delivers a high specific capacitance of 150.8 F g–¹ at 1 A g–¹ and achieves an energy density of 67.9 Wh kg–¹ at a power density of 900 W kg–¹ with an excellent cycle stability with a 90.6% capacity retention after 10,000 cycles, indicating high energy density and good stability. Nickel foam (NF) with a desirable 3D open-pore structure is extensively adopted in developing integrated electrodes, and the enhanced interaction between the electrode materials and NF substrate is recognized as an effective method for a high-performance supercapacitor electrode with a low resistance nature and high stability. In this work, an etched NF (ENF) with residual nanosheets is adopted as a novel substrate to facilitate the capacitive activity of NiCo layered double hydroxide (NiCo LDH) nanowire arrays. NiCo LDH nanosheet arrays grown on a pristine NF substrate (NiCo LDH/NF) are synthesized initially and used as a precursor. Then, the ENF substrate with a residual nanosheet is obtained by partially removing NiCo LDH nanosheet arrays in a formamide/KOH mixed solution. Subsequently, NiCo LDH nanowire arrays are hydrothermally grown on ENF to form a NiCo LDH/ENF electrode. The role of the residual nanosheet on ENF is discussed in detail, in which the content of Ni3+/Co3+ and the resistance nature of NiCo LDH/ENF can be optimized with the amount of residual nanosheets. Hence, the ENF substrate with an optimal amount of residual nanosheets is beneficial for retaining the adhesion of nanoarrays and realizing the low resistance nature in a mild route. The NiCo LDH/ENF electrode shows a capacity of 976.6 C g–1 at 1 A g–1 with excellent cyclic stability. The as-assembled NiCo LDH/ENF//activated carbon hybrid supercapacitor delivers a high specific capacitance of 150.8 F g–1 at 1 A g–1 and achieves an energy density of 67.9 Wh kg–1 at a power density of 900 W kg–1 with an excellent cycle stability with a 90.6% capacity retention after 10,000 cycles, indicating high energy density and good stability. |
Author | Zhu, Yanan Wu, Qingqing Liang, Qunfang Zeng, Lei Xu, Xuetang Wang, Fan |
AuthorAffiliation | School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Yanan surname: Zhu fullname: Zhu, Yanan – sequence: 2 givenname: Qingqing surname: Wu fullname: Wu, Qingqing – sequence: 3 givenname: Lei surname: Zeng fullname: Zeng, Lei – sequence: 4 givenname: Qunfang surname: Liang fullname: Liang, Qunfang – sequence: 5 givenname: Xuetang surname: Xu fullname: Xu, Xuetang email: xxtang@gxu.edu.cn – sequence: 6 givenname: Fan orcidid: 0000-0002-6106-4724 surname: Wang fullname: Wang, Fan email: fanwang@gxu.edu.cn |
BookMark | eNqNkE1r3DAQhkVIIJukv6E69uKtZPnz0EPZbrKBZRtIcjZjeZTVYkvbkU1r-uejsDmUXtrDoIH3fYT0XLFz5x0y9lGKpRSp_Aw6LNEhvcxmwj4slRZCyfyMLWSeiiQXaX3OFqKqykQUaXbJrkI4CCEKVeUL9ntnV55vYUbCjn_zU9sj38wd-V-2Q74D54EI5sDvyP903DsOjq9HvY_1neW3Hgb-OLVhJBiRG098Y1_2yQNS3AdwGmN8RNJwBG3HmK971CP5Dm_YhYE-4If385o9366fVptk-_3ufvV1m4BS2ZgojXlRl1WaFQgmTlG3uSoybdJa520uO51mBk0n60yZqpLQCQBVdm2KUGOtrtmn071H8j8mDGMz2KCx78Ghn0KjRCZUmalaxeqXU1WTD4HQNPHNMFrv4v9s30jRvElvovTmD-nNu_TIl3_xR7ID0PwfpDqRb4WDn8hFJf-kXgEnYaPP |
CitedBy_id | crossref_primary_10_1039_D3TC03014H crossref_primary_10_1016_j_ccr_2025_216547 crossref_primary_10_1016_j_est_2023_109132 crossref_primary_10_1016_j_mtchem_2024_102274 crossref_primary_10_1016_j_ijhydene_2024_02_101 crossref_primary_10_1016_j_jcis_2024_10_064 crossref_primary_10_1016_j_jpowsour_2023_233990 crossref_primary_10_1016_j_jallcom_2024_173883 crossref_primary_10_1016_j_est_2024_112910 crossref_primary_10_1016_j_jallcom_2024_174819 |
Cites_doi | 10.1016/j.matchemphys.2017.10.028 10.1021/acs.inorgchem.6b02203 10.1002/celc.201800669 10.1016/j.ijhydene.2018.03.229 10.1016/j.est.2022.104300 10.1007/s10934-020-01007-7 10.1016/j.jallcom.2022.163749 10.1039/C5CS00362H 10.1016/j.jallcom.2019.05.304 10.1016/j.est.2021.102858 10.1126/science.1200770 10.1002/chem.202203264 10.1039/C9EE02380A 10.1039/D2TA03074H 10.1021/acsaem.0c00295 10.1016/j.jallcom.2021.163532 10.1016/j.mtchem.2022.101152 10.1039/C5TA01034A 10.1149/1.2945911 10.1016/j.electacta.2017.07.133 10.1007/s12274-023-5533-1 10.1002/chem.201804218 10.1016/j.jpowsour.2019.227590 10.1039/D0TA06030E 10.1002/adfm.201600494 10.1016/j.apsusc.2022.153231 10.1021/acs.chemrev.8b00252 10.1002/adfm.201800036 10.1016/j.jcis.2021.08.066 10.1016/j.electacta.2020.137081 10.1002/adfm.201400310 10.1002/cssc.202101873 10.1016/j.apsusc.2020.147073 10.1016/j.jcis.2016.09.064 10.1016/j.electacta.2020.137226 10.1016/j.jcis.2020.11.056 10.1016/j.jpowsour.2021.230657 10.1002/adfm.201803272 10.1021/acsami.9b23427 10.1016/j.jpowsour.2020.228056 10.1039/C5NR01320H 10.1002/aenm.202003203 10.1039/D1DT02066H 10.1007/s12274-022-5201-x 10.1021/j100206a034 10.1016/j.jallcom.2020.155293 10.1016/j.cej.2021.129390 10.1016/j.jcis.2020.06.050 10.1039/C5TA07047C 10.1039/C6CC07645A 10.1021/ja0584471 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.energyfuels.3c00315 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5029 |
EndPage | 6219 |
ExternalDocumentID | 10_1021_acs_energyfuels_3c00315 c350251848 |
GroupedDBID | -~X .DC 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED~ F5P GGK GNL IH9 JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F ZCA ~02 AAHBH AAYXX ABBLG ABJNI ABLBI AGXLV BAANH CITATION CUPRZ 7S9 L.6 |
ID | FETCH-LOGICAL-a334t-3ce56978246eaf6ea69b5364cf29c5b51dc24fefd1943f881ad0aa37db2ea9e93 |
IEDL.DBID | ACS |
ISSN | 0887-0624 1520-5029 |
IngestDate | Fri Jul 11 07:16:49 EDT 2025 Thu Apr 24 22:51:18 EDT 2025 Tue Jul 01 02:27:56 EDT 2025 Thu Jul 06 08:30:35 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a334t-3ce56978246eaf6ea69b5364cf29c5b51dc24fefd1943f881ad0aa37db2ea9e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6106-4724 |
PQID | 3040374393 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3040374393 crossref_citationtrail_10_1021_acs_energyfuels_3c00315 crossref_primary_10_1021_acs_energyfuels_3c00315 acs_journals_10_1021_acs_energyfuels_3c00315 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-20 |
PublicationDateYYYYMMDD | 2023-04-20 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Energy & fuels |
PublicationTitleAlternate | Energy Fuels |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1016/j.matchemphys.2017.10.028 – ident: ref19/cit19 doi: 10.1021/acs.inorgchem.6b02203 – ident: ref36/cit36 doi: 10.1002/celc.201800669 – ident: ref28/cit28 doi: 10.1016/j.ijhydene.2018.03.229 – ident: ref41/cit41 doi: 10.1016/j.est.2022.104300 – ident: ref5/cit5 doi: 10.1007/s10934-020-01007-7 – ident: ref46/cit46 doi: 10.1016/j.jallcom.2022.163749 – ident: ref4/cit4 doi: 10.1039/C5CS00362H – ident: ref11/cit11 doi: 10.1016/j.jallcom.2019.05.304 – ident: ref21/cit21 doi: 10.1016/j.est.2021.102858 – ident: ref3/cit3 doi: 10.1126/science.1200770 – ident: ref7/cit7 doi: 10.1002/chem.202203264 – ident: ref12/cit12 doi: 10.1039/C9EE02380A – ident: ref32/cit32 doi: 10.1039/D2TA03074H – ident: ref17/cit17 doi: 10.1021/acsaem.0c00295 – ident: ref48/cit48 doi: 10.1016/j.jallcom.2021.163532 – ident: ref8/cit8 doi: 10.1016/j.mtchem.2022.101152 – ident: ref31/cit31 doi: 10.1039/C5TA01034A – ident: ref42/cit42 doi: 10.1149/1.2945911 – ident: ref35/cit35 doi: 10.1016/j.electacta.2017.07.133 – ident: ref33/cit33 doi: 10.1007/s12274-023-5533-1 – ident: ref23/cit23 doi: 10.1002/chem.201804218 – ident: ref29/cit29 doi: 10.1016/j.jpowsour.2019.227590 – ident: ref24/cit24 doi: 10.1039/D0TA06030E – ident: ref10/cit10 doi: 10.1002/adfm.201600494 – ident: ref27/cit27 doi: 10.1016/j.apsusc.2022.153231 – ident: ref1/cit1 doi: 10.1021/acs.chemrev.8b00252 – ident: ref43/cit43 doi: 10.1002/adfm.201800036 – ident: ref34/cit34 doi: 10.1016/j.jcis.2021.08.066 – ident: ref20/cit20 doi: 10.1016/j.electacta.2020.137081 – ident: ref25/cit25 doi: 10.1002/adfm.201400310 – ident: ref14/cit14 doi: 10.1002/cssc.202101873 – ident: ref49/cit49 doi: 10.1016/j.apsusc.2020.147073 – ident: ref16/cit16 doi: 10.1016/j.jcis.2016.09.064 – ident: ref47/cit47 doi: 10.1016/j.electacta.2020.137226 – ident: ref45/cit45 doi: 10.1016/j.jcis.2020.11.056 – ident: ref13/cit13 doi: 10.1016/j.jpowsour.2021.230657 – ident: ref6/cit6 doi: 10.1002/adfm.201803272 – ident: ref2/cit2 doi: 10.1021/acsami.9b23427 – ident: ref51/cit51 doi: 10.1016/j.jpowsour.2020.228056 – ident: ref39/cit39 doi: 10.1039/C5NR01320H – ident: ref40/cit40 doi: 10.1002/aenm.202003203 – ident: ref9/cit9 doi: 10.1039/D1DT02066H – ident: ref44/cit44 doi: 10.1007/s12274-022-5201-x – ident: ref38/cit38 doi: 10.1021/j100206a034 – ident: ref15/cit15 doi: 10.1016/j.jallcom.2020.155293 – ident: ref37/cit37 doi: 10.1016/j.cej.2021.129390 – ident: ref50/cit50 doi: 10.1016/j.jcis.2020.06.050 – ident: ref22/cit22 doi: 10.1039/C5TA07047C – ident: ref30/cit30 doi: 10.1039/C6CC07645A – ident: ref26/cit26 doi: 10.1021/ja0584471 |
SSID | ssj0006385 |
Score | 2.460801 |
Snippet | Nickel foam (NF) with a desirable 3D open-pore structure is extensively adopted in developing integrated electrodes, and the enhanced interaction between the... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6208 |
SubjectTerms | adhesion Batteries and Energy Storage capacitance carbon electrochemical capacitors electrodes energy energy density foams nanosheets nanowires nickel |
Title | NiCo Layered Double Hydroxide Nanoarrays Grown on an Etched Ni Foam Substrate for High-Performance Supercapacitor Electrode |
URI | http://dx.doi.org/10.1021/acs.energyfuels.3c00315 https://www.proquest.com/docview/3040374393 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF615UA58ChFlJcWqUccvM94jyhKiBBEqA-pN2sfs1JEsSsnOYT--c46dmmFqpbDXmyvtY_Zb2Y0O_MRcljYWOigikzwRGFWGDxzIFmmjEDtPhxaZlKi8I-Znp7Kb2fqbIuwOyL4nH22fjGANg8urlBdDIRPgqi2ySOu8Sgna2h0fA2-KE6qL-6Zay77K113_yipJb-4rZZuo3KraibPyFGfsLO5YfJrsFq6gf_zb_3Gh8_iOXnaGZ70y0ZSXpAtqPbI41HP97ZHntwoTfiSXM7mo5p-t-vE5UnRzHbnQKfrgGOaB6AIyrVtGrte0K_Jkad1RW1Fx0kGAp3N6aS2v2lCpbb6LUXTmKYrJdnPv4kK-PoCGo_a2iOsNHS8YeQJsE9OJ-OT0TTriBoyK4RcZsKD0uiOcqnBRmzaOCW09JEbr5xiwXMZIQZmpIhFwWzIrRXD4DhYA0a8IjtVXcFrQq0vpClYBOO1NN46CQjXMncutcgOyCdcyrI7aIuyjaFzVqaHN9a37Nb3gOh-W0vfFT1P3Bvn93fMrztebOp-3N_lYy83JW5dCrzYCuoVfoBIKZLnJ9783_Dfkt1Eb5-iVzx_R3aWzQreoxG0dB9asb8CFQ0H8g |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQeeBQQ5WkkjmSJn2sfq9UuC2xXSLRSOUV-SitKUiW7hy1_nnE22bZIqIJDLk5sTezxN2ONZz6E3ikTlfRCZYwmCjOlYc8FTjKhGVj34dAQnRKFj-dyeso_n4mzHaT6XBgQooGRmjaIf1VdgHxIbaFNh4srsBoD5pI-ijvoLrgkNOn20ejbFoNBq0Rf4zOXlPc3u_4-ULJOrrlpnW6Cc2txJg_Q962s7UWTH4PV0g7c5R9lHP_nZx6i-50bio82evMI7YTyAO2Neva3A7R_rVDhY_RrvhhVeGbWidkTg9NtzwOerj2ItvABA0RXpq7NusEf07EeVyU2JR4njfB4vsCTyvzECaPaWrgYHGWcLphkX6_SFuD1Ragd2G4HIFPj8Yafx4cn6HQyPhlNs462ITOM8WXGXBASDqeUy2AiPFJbwSR3kWonrCDeUR5D9ERzFpUixufGsKG3NBgdNHuKdsuqDM8QNk5xrUgM2kmunbE8AHjz3Nr0RHKI3sNUFt22a4o2ok5JkRqvzW_Rze8hkv3qFq4rgZ6YOM5v75hvO15sqoDc3uVtrz4FLF0Kw5gyVCv4AHCTpXMge_5v4r9Be9OT41kx-zT_8gLdS8T3Ka5F85dod1mvwitwj5b2dbsTfgOHbhBT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkGA88DFAjE8j8UhK4q_GEi9TaSkwqkkwaS8o8qdUsSVV0j4U_nnu0qRsSGiCB784sXW273531vnuCHmVm5grL_OEMyxhlmuQuSCyRGoO2n04NJnGQOHPMzU9ER9P5ekOedvHwgARDczUtE58lOqFj12GgewN9oc2JC6uQHMMuEOelNfIdXTeIX8fjr5scRg4S_Z5PlPFRP-66-8ToYZyzWUNdRmgW60zuUO-beltH5t8H6yWduB-_JHK8X8XdJfc7sxRerjhn3tkJ5T75OaorwK3T25dSFh4n_yczUcVPTJrrPBJwfi2Z4FO1x7Im_tAAaorU9dm3dD3eL2nVUlNScfIGZ7O5nRSmXOKWNXmxKVgMFN8aJIc_w5fgM-LUDvQ4Q7ApqbjTZ0eHx6Qk8n462iadOUbEsO5WCbcBangksqECiZCU9pKroSLTDtpZeYdEzFEn2nBY55nxqfG8KG3LBgdNH9IdsuqDI8INS4XOs9i0E4J7YwVAUBcpNZii9kBeQ1bWXTi1xStZ51lBXZe2N-i298DovoTLlyXCh0rcpxdPTDdDlxssoFcPeRlz0IFHB26Y0wZqhX8APjJ8T7IH_8b-S_IjeN3k-Low-zTE7LHwOpC9xZLn5LdZb0Kz8BKWtrnrTD8AhnEEtY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NiCo+Layered+Double+Hydroxide+Nanoarrays+Grown+on+an+Etched+Ni+Foam+Substrate+for+High-Performance+Supercapacitor+Electrode&rft.jtitle=Energy+%26+fuels&rft.au=Zhu%2C+Yanan&rft.au=Wu%2C+Qingqing&rft.au=Zeng%2C+Lei&rft.au=Liang%2C+Qunfang&rft.date=2023-04-20&rft.issn=1520-5029&rft.volume=37&rft.issue=8+p.6208-6219&rft.spage=6208&rft.epage=6219&rft_id=info:doi/10.1021%2Facs.energyfuels.3c00315&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |