NiCo Layered Double Hydroxide Nanoarrays Grown on an Etched Ni Foam Substrate for High-Performance Supercapacitor Electrode

Nickel foam (NF) with a desirable 3D open-pore structure is extensively adopted in developing integrated electrodes, and the enhanced interaction between the electrode materials and NF substrate is recognized as an effective method for a high-performance supercapacitor electrode with a low resistanc...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 37; no. 8; pp. 6208 - 6219
Main Authors Zhu, Yanan, Wu, Qingqing, Zeng, Lei, Liang, Qunfang, Xu, Xuetang, Wang, Fan
Format Journal Article
LanguageEnglish
Published American Chemical Society 20.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nickel foam (NF) with a desirable 3D open-pore structure is extensively adopted in developing integrated electrodes, and the enhanced interaction between the electrode materials and NF substrate is recognized as an effective method for a high-performance supercapacitor electrode with a low resistance nature and high stability. In this work, an etched NF (ENF) with residual nanosheets is adopted as a novel substrate to facilitate the capacitive activity of NiCo layered double hydroxide (NiCo LDH) nanowire arrays. NiCo LDH nanosheet arrays grown on a pristine NF substrate (NiCo LDH/NF) are synthesized initially and used as a precursor. Then, the ENF substrate with a residual nanosheet is obtained by partially removing NiCo LDH nanosheet arrays in a formamide/KOH mixed solution. Subsequently, NiCo LDH nanowire arrays are hydrothermally grown on ENF to form a NiCo LDH/ENF electrode. The role of the residual nanosheet on ENF is discussed in detail, in which the content of Ni3+/Co3+ and the resistance nature of NiCo LDH/ENF can be optimized with the amount of residual nanosheets. Hence, the ENF substrate with an optimal amount of residual nanosheets is beneficial for retaining the adhesion of nanoarrays and realizing the low resistance nature in a mild route. The NiCo LDH/ENF electrode shows a capacity of 976.6 C g–1 at 1 A g–1 with excellent cyclic stability. The as-assembled NiCo LDH/ENF//activated carbon hybrid supercapacitor delivers a high specific capacitance of 150.8 F g–1 at 1 A g–1 and achieves an energy density of 67.9 Wh kg–1 at a power density of 900 W kg–1 with an excellent cycle stability with a 90.6% capacity retention after 10,000 cycles, indicating high energy density and good stability.
AbstractList Nickel foam (NF) with a desirable 3D open-pore structure is extensively adopted in developing integrated electrodes, and the enhanced interaction between the electrode materials and NF substrate is recognized as an effective method for a high-performance supercapacitor electrode with a low resistance nature and high stability. In this work, an etched NF (ENF) with residual nanosheets is adopted as a novel substrate to facilitate the capacitive activity of NiCo layered double hydroxide (NiCo LDH) nanowire arrays. NiCo LDH nanosheet arrays grown on a pristine NF substrate (NiCo LDH/NF) are synthesized initially and used as a precursor. Then, the ENF substrate with a residual nanosheet is obtained by partially removing NiCo LDH nanosheet arrays in a formamide/KOH mixed solution. Subsequently, NiCo LDH nanowire arrays are hydrothermally grown on ENF to form a NiCo LDH/ENF electrode. The role of the residual nanosheet on ENF is discussed in detail, in which the content of Ni³⁺/Co³⁺ and the resistance nature of NiCo LDH/ENF can be optimized with the amount of residual nanosheets. Hence, the ENF substrate with an optimal amount of residual nanosheets is beneficial for retaining the adhesion of nanoarrays and realizing the low resistance nature in a mild route. The NiCo LDH/ENF electrode shows a capacity of 976.6 C g–¹ at 1 A g–¹ with excellent cyclic stability. The as-assembled NiCo LDH/ENF//activated carbon hybrid supercapacitor delivers a high specific capacitance of 150.8 F g–¹ at 1 A g–¹ and achieves an energy density of 67.9 Wh kg–¹ at a power density of 900 W kg–¹ with an excellent cycle stability with a 90.6% capacity retention after 10,000 cycles, indicating high energy density and good stability.
Nickel foam (NF) with a desirable 3D open-pore structure is extensively adopted in developing integrated electrodes, and the enhanced interaction between the electrode materials and NF substrate is recognized as an effective method for a high-performance supercapacitor electrode with a low resistance nature and high stability. In this work, an etched NF (ENF) with residual nanosheets is adopted as a novel substrate to facilitate the capacitive activity of NiCo layered double hydroxide (NiCo LDH) nanowire arrays. NiCo LDH nanosheet arrays grown on a pristine NF substrate (NiCo LDH/NF) are synthesized initially and used as a precursor. Then, the ENF substrate with a residual nanosheet is obtained by partially removing NiCo LDH nanosheet arrays in a formamide/KOH mixed solution. Subsequently, NiCo LDH nanowire arrays are hydrothermally grown on ENF to form a NiCo LDH/ENF electrode. The role of the residual nanosheet on ENF is discussed in detail, in which the content of Ni3+/Co3+ and the resistance nature of NiCo LDH/ENF can be optimized with the amount of residual nanosheets. Hence, the ENF substrate with an optimal amount of residual nanosheets is beneficial for retaining the adhesion of nanoarrays and realizing the low resistance nature in a mild route. The NiCo LDH/ENF electrode shows a capacity of 976.6 C g–1 at 1 A g–1 with excellent cyclic stability. The as-assembled NiCo LDH/ENF//activated carbon hybrid supercapacitor delivers a high specific capacitance of 150.8 F g–1 at 1 A g–1 and achieves an energy density of 67.9 Wh kg–1 at a power density of 900 W kg–1 with an excellent cycle stability with a 90.6% capacity retention after 10,000 cycles, indicating high energy density and good stability.
Author Zhu, Yanan
Wu, Qingqing
Liang, Qunfang
Zeng, Lei
Xu, Xuetang
Wang, Fan
AuthorAffiliation School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: School of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Yanan
  surname: Zhu
  fullname: Zhu, Yanan
– sequence: 2
  givenname: Qingqing
  surname: Wu
  fullname: Wu, Qingqing
– sequence: 3
  givenname: Lei
  surname: Zeng
  fullname: Zeng, Lei
– sequence: 4
  givenname: Qunfang
  surname: Liang
  fullname: Liang, Qunfang
– sequence: 5
  givenname: Xuetang
  surname: Xu
  fullname: Xu, Xuetang
  email: xxtang@gxu.edu.cn
– sequence: 6
  givenname: Fan
  orcidid: 0000-0002-6106-4724
  surname: Wang
  fullname: Wang, Fan
  email: fanwang@gxu.edu.cn
BookMark eNqNkE1r3DAQhkVIIJukv6E69uKtZPnz0EPZbrKBZRtIcjZjeZTVYkvbkU1r-uejsDmUXtrDoIH3fYT0XLFz5x0y9lGKpRSp_Aw6LNEhvcxmwj4slRZCyfyMLWSeiiQXaX3OFqKqykQUaXbJrkI4CCEKVeUL9ntnV55vYUbCjn_zU9sj38wd-V-2Q74D54EI5sDvyP903DsOjq9HvY_1neW3Hgb-OLVhJBiRG098Y1_2yQNS3AdwGmN8RNJwBG3HmK971CP5Dm_YhYE-4If385o9366fVptk-_3ufvV1m4BS2ZgojXlRl1WaFQgmTlG3uSoybdJa520uO51mBk0n60yZqpLQCQBVdm2KUGOtrtmn071H8j8mDGMz2KCx78Ghn0KjRCZUmalaxeqXU1WTD4HQNPHNMFrv4v9s30jRvElvovTmD-nNu_TIl3_xR7ID0PwfpDqRb4WDn8hFJf-kXgEnYaPP
CitedBy_id crossref_primary_10_1039_D3TC03014H
crossref_primary_10_1016_j_ccr_2025_216547
crossref_primary_10_1016_j_est_2023_109132
crossref_primary_10_1016_j_mtchem_2024_102274
crossref_primary_10_1016_j_ijhydene_2024_02_101
crossref_primary_10_1016_j_jcis_2024_10_064
crossref_primary_10_1016_j_jpowsour_2023_233990
crossref_primary_10_1016_j_jallcom_2024_173883
crossref_primary_10_1016_j_est_2024_112910
crossref_primary_10_1016_j_jallcom_2024_174819
Cites_doi 10.1016/j.matchemphys.2017.10.028
10.1021/acs.inorgchem.6b02203
10.1002/celc.201800669
10.1016/j.ijhydene.2018.03.229
10.1016/j.est.2022.104300
10.1007/s10934-020-01007-7
10.1016/j.jallcom.2022.163749
10.1039/C5CS00362H
10.1016/j.jallcom.2019.05.304
10.1016/j.est.2021.102858
10.1126/science.1200770
10.1002/chem.202203264
10.1039/C9EE02380A
10.1039/D2TA03074H
10.1021/acsaem.0c00295
10.1016/j.jallcom.2021.163532
10.1016/j.mtchem.2022.101152
10.1039/C5TA01034A
10.1149/1.2945911
10.1016/j.electacta.2017.07.133
10.1007/s12274-023-5533-1
10.1002/chem.201804218
10.1016/j.jpowsour.2019.227590
10.1039/D0TA06030E
10.1002/adfm.201600494
10.1016/j.apsusc.2022.153231
10.1021/acs.chemrev.8b00252
10.1002/adfm.201800036
10.1016/j.jcis.2021.08.066
10.1016/j.electacta.2020.137081
10.1002/adfm.201400310
10.1002/cssc.202101873
10.1016/j.apsusc.2020.147073
10.1016/j.jcis.2016.09.064
10.1016/j.electacta.2020.137226
10.1016/j.jcis.2020.11.056
10.1016/j.jpowsour.2021.230657
10.1002/adfm.201803272
10.1021/acsami.9b23427
10.1016/j.jpowsour.2020.228056
10.1039/C5NR01320H
10.1002/aenm.202003203
10.1039/D1DT02066H
10.1007/s12274-022-5201-x
10.1021/j100206a034
10.1016/j.jallcom.2020.155293
10.1016/j.cej.2021.129390
10.1016/j.jcis.2020.06.050
10.1039/C5TA07047C
10.1039/C6CC07645A
10.1021/ja0584471
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.energyfuels.3c00315
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 6219
ExternalDocumentID 10_1021_acs_energyfuels_3c00315
c350251848
GroupedDBID -~X
.DC
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
ZCA
~02
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
AGXLV
BAANH
CITATION
CUPRZ
7S9
L.6
ID FETCH-LOGICAL-a334t-3ce56978246eaf6ea69b5364cf29c5b51dc24fefd1943f881ad0aa37db2ea9e93
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Fri Jul 11 07:16:49 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
Tue Jul 01 02:27:56 EDT 2025
Thu Jul 06 08:30:35 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a334t-3ce56978246eaf6ea69b5364cf29c5b51dc24fefd1943f881ad0aa37db2ea9e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6106-4724
PQID 3040374393
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_3040374393
crossref_citationtrail_10_1021_acs_energyfuels_3c00315
crossref_primary_10_1021_acs_energyfuels_3c00315
acs_journals_10_1021_acs_energyfuels_3c00315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-20
PublicationDateYYYYMMDD 2023-04-20
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-20
  day: 20
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1016/j.matchemphys.2017.10.028
– ident: ref19/cit19
  doi: 10.1021/acs.inorgchem.6b02203
– ident: ref36/cit36
  doi: 10.1002/celc.201800669
– ident: ref28/cit28
  doi: 10.1016/j.ijhydene.2018.03.229
– ident: ref41/cit41
  doi: 10.1016/j.est.2022.104300
– ident: ref5/cit5
  doi: 10.1007/s10934-020-01007-7
– ident: ref46/cit46
  doi: 10.1016/j.jallcom.2022.163749
– ident: ref4/cit4
  doi: 10.1039/C5CS00362H
– ident: ref11/cit11
  doi: 10.1016/j.jallcom.2019.05.304
– ident: ref21/cit21
  doi: 10.1016/j.est.2021.102858
– ident: ref3/cit3
  doi: 10.1126/science.1200770
– ident: ref7/cit7
  doi: 10.1002/chem.202203264
– ident: ref12/cit12
  doi: 10.1039/C9EE02380A
– ident: ref32/cit32
  doi: 10.1039/D2TA03074H
– ident: ref17/cit17
  doi: 10.1021/acsaem.0c00295
– ident: ref48/cit48
  doi: 10.1016/j.jallcom.2021.163532
– ident: ref8/cit8
  doi: 10.1016/j.mtchem.2022.101152
– ident: ref31/cit31
  doi: 10.1039/C5TA01034A
– ident: ref42/cit42
  doi: 10.1149/1.2945911
– ident: ref35/cit35
  doi: 10.1016/j.electacta.2017.07.133
– ident: ref33/cit33
  doi: 10.1007/s12274-023-5533-1
– ident: ref23/cit23
  doi: 10.1002/chem.201804218
– ident: ref29/cit29
  doi: 10.1016/j.jpowsour.2019.227590
– ident: ref24/cit24
  doi: 10.1039/D0TA06030E
– ident: ref10/cit10
  doi: 10.1002/adfm.201600494
– ident: ref27/cit27
  doi: 10.1016/j.apsusc.2022.153231
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.8b00252
– ident: ref43/cit43
  doi: 10.1002/adfm.201800036
– ident: ref34/cit34
  doi: 10.1016/j.jcis.2021.08.066
– ident: ref20/cit20
  doi: 10.1016/j.electacta.2020.137081
– ident: ref25/cit25
  doi: 10.1002/adfm.201400310
– ident: ref14/cit14
  doi: 10.1002/cssc.202101873
– ident: ref49/cit49
  doi: 10.1016/j.apsusc.2020.147073
– ident: ref16/cit16
  doi: 10.1016/j.jcis.2016.09.064
– ident: ref47/cit47
  doi: 10.1016/j.electacta.2020.137226
– ident: ref45/cit45
  doi: 10.1016/j.jcis.2020.11.056
– ident: ref13/cit13
  doi: 10.1016/j.jpowsour.2021.230657
– ident: ref6/cit6
  doi: 10.1002/adfm.201803272
– ident: ref2/cit2
  doi: 10.1021/acsami.9b23427
– ident: ref51/cit51
  doi: 10.1016/j.jpowsour.2020.228056
– ident: ref39/cit39
  doi: 10.1039/C5NR01320H
– ident: ref40/cit40
  doi: 10.1002/aenm.202003203
– ident: ref9/cit9
  doi: 10.1039/D1DT02066H
– ident: ref44/cit44
  doi: 10.1007/s12274-022-5201-x
– ident: ref38/cit38
  doi: 10.1021/j100206a034
– ident: ref15/cit15
  doi: 10.1016/j.jallcom.2020.155293
– ident: ref37/cit37
  doi: 10.1016/j.cej.2021.129390
– ident: ref50/cit50
  doi: 10.1016/j.jcis.2020.06.050
– ident: ref22/cit22
  doi: 10.1039/C5TA07047C
– ident: ref30/cit30
  doi: 10.1039/C6CC07645A
– ident: ref26/cit26
  doi: 10.1021/ja0584471
SSID ssj0006385
Score 2.460801
Snippet Nickel foam (NF) with a desirable 3D open-pore structure is extensively adopted in developing integrated electrodes, and the enhanced interaction between the...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6208
SubjectTerms adhesion
Batteries and Energy Storage
capacitance
carbon
electrochemical capacitors
electrodes
energy
energy density
foams
nanosheets
nanowires
nickel
Title NiCo Layered Double Hydroxide Nanoarrays Grown on an Etched Ni Foam Substrate for High-Performance Supercapacitor Electrode
URI http://dx.doi.org/10.1021/acs.energyfuels.3c00315
https://www.proquest.com/docview/3040374393
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF615UA58ChFlJcWqUccvM94jyhKiBBEqA-pN2sfs1JEsSsnOYT--c46dmmFqpbDXmyvtY_Zb2Y0O_MRcljYWOigikzwRGFWGDxzIFmmjEDtPhxaZlKi8I-Znp7Kb2fqbIuwOyL4nH22fjGANg8urlBdDIRPgqi2ySOu8Sgna2h0fA2-KE6qL-6Zay77K113_yipJb-4rZZuo3KraibPyFGfsLO5YfJrsFq6gf_zb_3Gh8_iOXnaGZ70y0ZSXpAtqPbI41HP97ZHntwoTfiSXM7mo5p-t-vE5UnRzHbnQKfrgGOaB6AIyrVtGrte0K_Jkad1RW1Fx0kGAp3N6aS2v2lCpbb6LUXTmKYrJdnPv4kK-PoCGo_a2iOsNHS8YeQJsE9OJ-OT0TTriBoyK4RcZsKD0uiOcqnBRmzaOCW09JEbr5xiwXMZIQZmpIhFwWzIrRXD4DhYA0a8IjtVXcFrQq0vpClYBOO1NN46CQjXMncutcgOyCdcyrI7aIuyjaFzVqaHN9a37Nb3gOh-W0vfFT1P3Bvn93fMrztebOp-3N_lYy83JW5dCrzYCuoVfoBIKZLnJ9783_Dfkt1Eb5-iVzx_R3aWzQreoxG0dB9asb8CFQ0H8g
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQeeBQQ5WkkjmSJn2sfq9UuC2xXSLRSOUV-SitKUiW7hy1_nnE22bZIqIJDLk5sTezxN2ONZz6E3ikTlfRCZYwmCjOlYc8FTjKhGVj34dAQnRKFj-dyeso_n4mzHaT6XBgQooGRmjaIf1VdgHxIbaFNh4srsBoD5pI-ijvoLrgkNOn20ejbFoNBq0Rf4zOXlPc3u_4-ULJOrrlpnW6Cc2txJg_Q962s7UWTH4PV0g7c5R9lHP_nZx6i-50bio82evMI7YTyAO2Neva3A7R_rVDhY_RrvhhVeGbWidkTg9NtzwOerj2ItvABA0RXpq7NusEf07EeVyU2JR4njfB4vsCTyvzECaPaWrgYHGWcLphkX6_SFuD1Ragd2G4HIFPj8Yafx4cn6HQyPhlNs462ITOM8WXGXBASDqeUy2AiPFJbwSR3kWonrCDeUR5D9ERzFpUixufGsKG3NBgdNHuKdsuqDM8QNk5xrUgM2kmunbE8AHjz3Nr0RHKI3sNUFt22a4o2ok5JkRqvzW_Rze8hkv3qFq4rgZ6YOM5v75hvO15sqoDc3uVtrz4FLF0Kw5gyVCv4AHCTpXMge_5v4r9Be9OT41kx-zT_8gLdS8T3Ka5F85dod1mvwitwj5b2dbsTfgOHbhBT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkGA88DFAjE8j8UhK4q_GEi9TaSkwqkkwaS8o8qdUsSVV0j4U_nnu0qRsSGiCB784sXW273531vnuCHmVm5grL_OEMyxhlmuQuSCyRGoO2n04NJnGQOHPMzU9ER9P5ekOedvHwgARDczUtE58lOqFj12GgewN9oc2JC6uQHMMuEOelNfIdXTeIX8fjr5scRg4S_Z5PlPFRP-66-8ToYZyzWUNdRmgW60zuUO-beltH5t8H6yWduB-_JHK8X8XdJfc7sxRerjhn3tkJ5T75OaorwK3T25dSFh4n_yczUcVPTJrrPBJwfi2Z4FO1x7Im_tAAaorU9dm3dD3eL2nVUlNScfIGZ7O5nRSmXOKWNXmxKVgMFN8aJIc_w5fgM-LUDvQ4Q7ApqbjTZ0eHx6Qk8n462iadOUbEsO5WCbcBangksqECiZCU9pKroSLTDtpZeYdEzFEn2nBY55nxqfG8KG3LBgdNH9IdsuqDI8INS4XOs9i0E4J7YwVAUBcpNZii9kBeQ1bWXTi1xStZ51lBXZe2N-i298DovoTLlyXCh0rcpxdPTDdDlxssoFcPeRlz0IFHB26Y0wZqhX8APjJ8T7IH_8b-S_IjeN3k-Low-zTE7LHwOpC9xZLn5LdZb0Kz8BKWtrnrTD8AhnEEtY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NiCo+Layered+Double+Hydroxide+Nanoarrays+Grown+on+an+Etched+Ni+Foam+Substrate+for+High-Performance+Supercapacitor+Electrode&rft.jtitle=Energy+%26+fuels&rft.au=Zhu%2C+Yanan&rft.au=Wu%2C+Qingqing&rft.au=Zeng%2C+Lei&rft.au=Liang%2C+Qunfang&rft.date=2023-04-20&rft.issn=1520-5029&rft.volume=37&rft.issue=8+p.6208-6219&rft.spage=6208&rft.epage=6219&rft_id=info:doi/10.1021%2Facs.energyfuels.3c00315&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon