A New Global Mechanism for MILD Combustion Using Artificial-Neural-Network-Based Optimization

A new global mechanism of combustion called the GM-ANN mechanism is proposed for MILD combustion, with its reaction parameters being optimized by artificial neural network (ANN). More specifically, the GM mechanism is first obtained by selecting well-performed global reactions from Jones and Lindste...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 35; no. 18; pp. 14941 - 14953
Main Authors Si, Jicang, Wang, Guochang, Liu, Xiangtao, Wu, Mengwei, Mi, Jianchun
Format Journal Article
LanguageEnglish
Published American Chemical Society 16.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new global mechanism of combustion called the GM-ANN mechanism is proposed for MILD combustion, with its reaction parameters being optimized by artificial neural network (ANN). More specifically, the GM mechanism is first obtained by selecting well-performed global reactions from Jones and Lindstedt ( Combust. Flame 1988, 73, 233 ) (named “JL” mechanism) and Westbrook and Dryer ( Combust. Sci. Technol. 1981, 27, 31 ) (named “WD” mechanism). Then, its parameters are optimized using ANN to achieve the results best matching those from experiments and/or numerical simulations using the detailed mechanism GRI-Mech-3.0 (abbreviated as GRI-3.0). The GM-ANN mechanism is tested by comparing its performance with those of GRI-3.0 and JL and WD mechanisms in zero-dimensional perfectly stirred reactor (PSR), nonpremixed CH4/H2 jet-in-hot-coflow (JHC) flame, and premixed and nonpremixed combustion in furnace. Results obtained demonstrate that the GM-ANN mechanism performs better than the JL and WD mechanisms for various cases of MILD combustion. Therefore, the GM-ANN mechanism should be a better choice than the JL and WD mechanisms for high-cost computations of MILD combustion by large eddy simulation (LES) and direct numerical simulation (DNS) that need to use global mechanisms.
AbstractList A new global mechanism of combustion called the GM-ANN mechanism is proposed for MILD combustion, with its reaction parameters being optimized by artificial neural network (ANN). More specifically, the GM mechanism is first obtained by selecting well-performed global reactions from Jones and Lindstedt ( Combust. Flame 1988, 73, 233 ) (named “JL” mechanism) and Westbrook and Dryer ( Combust. Sci. Technol. 1981, 27, 31 ) (named “WD” mechanism). Then, its parameters are optimized using ANN to achieve the results best matching those from experiments and/or numerical simulations using the detailed mechanism GRI-Mech-3.0 (abbreviated as GRI-3.0). The GM-ANN mechanism is tested by comparing its performance with those of GRI-3.0 and JL and WD mechanisms in zero-dimensional perfectly stirred reactor (PSR), nonpremixed CH4/H2 jet-in-hot-coflow (JHC) flame, and premixed and nonpremixed combustion in furnace. Results obtained demonstrate that the GM-ANN mechanism performs better than the JL and WD mechanisms for various cases of MILD combustion. Therefore, the GM-ANN mechanism should be a better choice than the JL and WD mechanisms for high-cost computations of MILD combustion by large eddy simulation (LES) and direct numerical simulation (DNS) that need to use global mechanisms.
A new global mechanism of combustion called the GM-ANN mechanism is proposed for MILD combustion, with its reaction parameters being optimized by artificial neural network (ANN). More specifically, the GM mechanism is first obtained by selecting well-performed global reactions from Jones and Lindstedt (Combust. Flame1988, 73, 233) (named “JL” mechanism) and Westbrook and Dryer (Combust. Sci. Technol. 1981, 27, 31) (named “WD” mechanism). Then, its parameters are optimized using ANN to achieve the results best matching those from experiments and/or numerical simulations using the detailed mechanism GRI-Mech-3.0 (abbreviated as GRI-3.0). The GM-ANN mechanism is tested by comparing its performance with those of GRI-3.0 and JL and WD mechanisms in zero-dimensional perfectly stirred reactor (PSR), nonpremixed CH₄/H₂ jet-in-hot-coflow (JHC) flame, and premixed and nonpremixed combustion in furnace. Results obtained demonstrate that the GM-ANN mechanism performs better than the JL and WD mechanisms for various cases of MILD combustion. Therefore, the GM-ANN mechanism should be a better choice than the JL and WD mechanisms for high-cost computations of MILD combustion by large eddy simulation (LES) and direct numerical simulation (DNS) that need to use global mechanisms.
Author Si, Jicang
Wu, Mengwei
Mi, Jianchun
Liu, Xiangtao
Wang, Guochang
AuthorAffiliation College of Engineering
AuthorAffiliation_xml – name: College of Engineering
Author_xml – sequence: 1
  givenname: Jicang
  surname: Si
  fullname: Si, Jicang
  organization: College of Engineering
– sequence: 2
  givenname: Guochang
  surname: Wang
  fullname: Wang, Guochang
  organization: College of Engineering
– sequence: 3
  givenname: Xiangtao
  surname: Liu
  fullname: Liu, Xiangtao
  organization: College of Engineering
– sequence: 4
  givenname: Mengwei
  surname: Wu
  fullname: Wu, Mengwei
  organization: College of Engineering
– sequence: 5
  givenname: Jianchun
  orcidid: 0000-0002-9585-9015
  surname: Mi
  fullname: Mi, Jianchun
  email: jmi@pku.edu.cn
  organization: College of Engineering
BookMark eNqNkDtPwzAUhS0EEuXxG_DIkuJXYmdgKOUpFVhgRNGtcw2GJC52IgS_npYyIBaYznDPd3T17ZDNLnRIyAFnY84EPwKbxthhfHx3AzZpzC3jRrANMuK5YFnORLlJRswYnbFCqG2yk9IzY6yQJh-Rhwm9wTd60YQ5NPQa7RN0PrXUhUivr2andBra-ZB6Hzp6n3z3SCex985bD012g0P8iv4txJfsBBLW9HbR-9Z_wArZI1sOmoT737lL7s_P7qaX2ez24mo6mWUgpeozgcrKwtSlAai1zrHIUZWFgjpnIIXlTkJZgtBzniumnSqddkbViE4xV9RylxyudxcxvA6Y-qr1yWLTQIdhSJUoZKGNLI1eVo_XVRtDShFdZX3_9WwfwTcVZ9VKa7XUWv3QWn1rXfL6F7-IvoX4_g9SrslV4TkMsYPV9Q_qE3tcmAU
CitedBy_id crossref_primary_10_1017_aer_2024_96
crossref_primary_10_1007_s44196_023_00335_1
crossref_primary_10_1021_acs_energyfuels_3c01097
crossref_primary_10_1063_5_0098898
crossref_primary_10_1080_13647830_2022_2110945
crossref_primary_10_1016_j_jaecs_2024_100291
crossref_primary_10_1021_acsomega_2c02324
Cites_doi 10.1080/713665229
10.1021/acs.energyfuels.7b01666
10.1007/s11630-020-1235-0
10.1016/S1540-7489(02)80145-6
10.1021/ef7005854
10.2514/3.7521
10.1016/j.combustflame.2004.02.011
10.1016/S0360-1285(97)00006-3
10.1080/10407799308914901
10.1016/j.energy.2018.01.089
10.1016/0045-7930(94)00032-T
10.1016/j.energy.2021.121603
10.1080/00102208108946970
10.1137/0111030
10.1201/9781420041033
10.1016/0010-2180(88)90021-1
10.1142/S0218488598000094
10.1016/j.pecs.2004.02.003
10.1021/acs.energyfuels.1c00511
10.1016/j.energy.2019.04.198
10.2514/6.1981-42
10.1016/j.combustflame.2005.03.002
10.1016/j.combustflame.2013.01.024
10.1021/acs.energyfuels.9b04413
10.1016/j.ijggc.2018.08.018
10.1007/BF00175354
10.1080/00102200701838735
10.1080/00102202.2011.635612
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.energyfuels.1c01820
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 14953
ExternalDocumentID 10_1021_acs_energyfuels_1c01820
b504336188
GroupedDBID 02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
BAANH
CITATION
CUPRZ
ZCA
~02
7S9
L.6
ID FETCH-LOGICAL-a334t-2e4c368d98aad775e65e4964ad50a32c1f3a99a27b15407f49f7f84deef40f6d3
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Fri Jul 11 12:31:01 EDT 2025
Tue Jul 01 02:27:41 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Sat Sep 18 04:34:06 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a334t-2e4c368d98aad775e65e4964ad50a32c1f3a99a27b15407f49f7f84deef40f6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9585-9015
PQID 2636783987
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2636783987
crossref_citationtrail_10_1021_acs_energyfuels_1c01820
crossref_primary_10_1021_acs_energyfuels_1c01820
acs_journals_10_1021_acs_energyfuels_1c01820
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-16
PublicationDateYYYYMMDD 2021-09-16
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-16
  day: 16
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Turns S. R. (ref14/cit14) 1996
ref23/cit23
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
Tsuji H. (ref3/cit3) 2002
ref26/cit26
Marinov N. M. (ref13/cit13) 1996
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
Goodfellow I. (ref32/cit32) 2016
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.1080/713665229
– ident: ref8/cit8
  doi: 10.1021/acs.energyfuels.7b01666
– ident: ref20/cit20
  doi: 10.1007/s11630-020-1235-0
– ident: ref15/cit15
  doi: 10.1016/S1540-7489(02)80145-6
– volume-title: Transport Phenomena in Combustion
  year: 1996
  ident: ref13/cit13
– ident: ref34/cit34
  doi: 10.1021/ef7005854
– ident: ref21/cit21
– ident: ref25/cit25
  doi: 10.2514/3.7521
– ident: ref22/cit22
  doi: 10.1016/j.combustflame.2004.02.011
– ident: ref2/cit2
  doi: 10.1016/S0360-1285(97)00006-3
– ident: ref29/cit29
  doi: 10.1080/10407799308914901
– ident: ref9/cit9
  doi: 10.1016/j.energy.2018.01.089
– ident: ref26/cit26
  doi: 10.1016/0045-7930(94)00032-T
– ident: ref18/cit18
  doi: 10.1016/j.energy.2021.121603
– ident: ref11/cit11
  doi: 10.1080/00102208108946970
– ident: ref31/cit31
  doi: 10.1137/0111030
– volume-title: High temperature air combustion: from energy conservation to pollution reduction
  year: 2002
  ident: ref3/cit3
  doi: 10.1201/9781420041033
– ident: ref12/cit12
  doi: 10.1016/0010-2180(88)90021-1
– ident: ref30/cit30
  doi: 10.1142/S0218488598000094
– ident: ref1/cit1
  doi: 10.1016/j.pecs.2004.02.003
– ident: ref4/cit4
  doi: 10.1021/acs.energyfuels.1c00511
– ident: ref24/cit24
  doi: 10.1016/j.energy.2019.04.198
– volume-title: An introduction to combustion
  year: 1996
  ident: ref14/cit14
– ident: ref27/cit27
  doi: 10.2514/6.1981-42
– ident: ref23/cit23
  doi: 10.1016/j.combustflame.2005.03.002
– ident: ref19/cit19
  doi: 10.1016/j.combustflame.2013.01.024
– volume-title: Deep learning
  year: 2016
  ident: ref32/cit32
– ident: ref10/cit10
  doi: 10.1021/acs.energyfuels.9b04413
– ident: ref5/cit5
– ident: ref33/cit33
  doi: 10.1016/j.ijggc.2018.08.018
– ident: ref16/cit16
– ident: ref17/cit17
  doi: 10.1007/BF00175354
– ident: ref6/cit6
  doi: 10.1080/00102200701838735
– ident: ref7/cit7
  doi: 10.1080/00102202.2011.635612
SSID ssj0006385
Score 2.399508
Snippet A new global mechanism of combustion called the GM-ANN mechanism is proposed for MILD combustion, with its reaction parameters being optimized by artificial...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14941
SubjectTerms Combustion
energy
furnaces
neural networks
Title A New Global Mechanism for MILD Combustion Using Artificial-Neural-Network-Based Optimization
URI http://dx.doi.org/10.1021/acs.energyfuels.1c01820
https://www.proquest.com/docview/2636783987
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOACHQikICkVG6pEsiT2xneOyLQLEtlILEpcqcvyQEJCtmt0Lvx7bSRAIIcopkqWxkvF4ZqKZ-T6Ar94ZGq0dS5jBKkGkVSK1xSTnPhlxWFVahXnn8Q9-colnV_nVHGSvVPBpdqh0M7BxDs7NfLgYZDoNoOPzsEi5FOF_azj6_eh8vTnlPbhnyin2LV2vbxTCkm6eh6XnXjmGmuNV-NUP7LQdJjeD2bQa6PuX-I3__xVr8KFLPMmwtZSPMGfrdVga9Xxv67DyBJrwE_wZEu__SEsJQMY2DAhfN3fE57hkfHr-jXhHUgUmsElNYttB3LmFo4iIH_ERW8yTIx8pDfnpndNdN_W5AZfH3y9GJ0lHxZAoxnCaUIuacWkKqZQRIrc8t1hwVCZPFaM6c0wVhaKiygKin8PCCSfRWOswddywTVioJ7XdAuKXfMqnWCoxQ-cyaZ2URgrlBBbC2G048Moqu6vUlLFKTrMyLD7RYNlpcBt4f3Cl7mDNA7vG7duC6aPg3xbZ422R_d4ySn84obSiajuZNSXlzEd9Vkjx-X2vvwPLNHTJBFIKvgsL038z-8WnOdNqLxr2A5IQ_aA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PTxQxFH9BPCAHFZQIotZEb84y03Y6nQOHdZHswi4ehISLGTr9kxhk1jC7MfKJ-Cp8K167MyuYGOKBg6dJmvSl0_f63q_pe78H8A6dodHasYgZXkac0zKS2vIoFQhGHC9LrXy98-hA9I_43nF6vACXbS0MLqJGSXV4xP_NLpBs-TEbyuHcFKNGJ9Gx5x5v0in37a-feFmrtwc7qNn3lO5-Ouz1o6afQKQY45OIWq6ZkCaXSpksS61ILc8FVyaNFaM6cUzluaJZmXhaOsdzlznJjbWOx04YhnIfwEOEQNRf87q9L3Ofj1actpyisaC8zST7-8J9NNT17Wh4OxiECLf7BK7mexMSW04700nZ0Rd_0Eb-D5v3FB43MJt0Z-diBRZstQpLvba73Sos3yBifAZfuwS9PZk1QCAj68uhv9VnBBE9GQ2GOwTdZun7no0rEpIsguQZ-UbgNwmfkFAffURcYMhndMVnTY3rczi6l39dg8VqXNkXQHAIAa5iseQJdy6R1klpZKZcxvPM2HX4gMopGsdRFyEngCaFH7yhsaLR2DqI1l4K3ZC4-14i3--eGM8n_pjxmNw95W1rkAUqxz8kqcqOp3VBBUOMw3KZbfzb8t_AUv9wNCyGg4P9l_CI-vwg345DbMLi5HxqXyHAm5Svw9kicHLf9ngNYKlgxg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fTxQxEJ8gJooPiqgR_0BN9M09dttut_vgw3nHhRMOTZSEF7J0-ychyh5x70LgM_FV-E5Me7sXMDHEBx582qRJJ93OdGaa_uY3AO_RGRqtHYuY4WXEOS0jqS2PUoHJiONlqZWvdx7tiq09_mU_3V-Ai7YWBhdRo6Q6POL7U31iXMMwkGz4cRtK4twUI0cn0bHnH28gldv27BQvbPWnYR-1-4HSweaP3lbU9BSIFGN8ElHLNRPS5FIpk2WpFanlueDKpLFiVCeOqTxXNCsTT03neO4yJ7mx1vHYCcNQ7j247x8L_VWv2_s-9_toyWnLKxoLyls02d8X7iOirm9GxJsBIUS5wRO4nO9PALf87EwnZUef_0Ed-b9s4DI8btJt0p2dj6ewYKsVeNhru9ytwKNrhIzP4KBL0OuTWSMEMrK-LPqoPiaY2ZPRcKdP0H2Wvv_ZuCIBbBEkz0g4As9J-ARgffQZ8wNDvqJLPm5qXZ_D3p386wtYrMaVfQkEhzDRVSyWPOHOJdI6KY3MlMt4nhm7Ch9ROUXjQOoiYANoUvjBaxorGo2tgmhtptANmbvvKfLr9onxfOLJjM_k9invWqMsUDn-QUlVdjytCyoY5josl9mrf1v-Ojz41h8UO8Pd7dewRD1MyHflEG9gcfJ7at9injcp18LxInB41-Z4BdHjY0k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Global+Mechanism+for+MILD+Combustion+Using+Artificial-Neural-Network-Based+Optimization&rft.jtitle=Energy+%26+fuels&rft.au=Si%2C+Jicang&rft.au=Wang%2C+Guochang&rft.au=Liu%2C+Xiangtao&rft.au=Wu%2C+Mengwei&rft.date=2021-09-16&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=35&rft.issue=18&rft.spage=14941&rft.epage=14953&rft_id=info:doi/10.1021%2Facs.energyfuels.1c01820&rft.externalDocID=b504336188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon