A New Global Mechanism for MILD Combustion Using Artificial-Neural-Network-Based Optimization
A new global mechanism of combustion called the GM-ANN mechanism is proposed for MILD combustion, with its reaction parameters being optimized by artificial neural network (ANN). More specifically, the GM mechanism is first obtained by selecting well-performed global reactions from Jones and Lindste...
Saved in:
Published in | Energy & fuels Vol. 35; no. 18; pp. 14941 - 14953 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
16.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new global mechanism of combustion called the GM-ANN mechanism is proposed for MILD combustion, with its reaction parameters being optimized by artificial neural network (ANN). More specifically, the GM mechanism is first obtained by selecting well-performed global reactions from Jones and Lindstedt ( Combust. Flame 1988, 73, 233 ) (named “JL” mechanism) and Westbrook and Dryer ( Combust. Sci. Technol. 1981, 27, 31 ) (named “WD” mechanism). Then, its parameters are optimized using ANN to achieve the results best matching those from experiments and/or numerical simulations using the detailed mechanism GRI-Mech-3.0 (abbreviated as GRI-3.0). The GM-ANN mechanism is tested by comparing its performance with those of GRI-3.0 and JL and WD mechanisms in zero-dimensional perfectly stirred reactor (PSR), nonpremixed CH4/H2 jet-in-hot-coflow (JHC) flame, and premixed and nonpremixed combustion in furnace. Results obtained demonstrate that the GM-ANN mechanism performs better than the JL and WD mechanisms for various cases of MILD combustion. Therefore, the GM-ANN mechanism should be a better choice than the JL and WD mechanisms for high-cost computations of MILD combustion by large eddy simulation (LES) and direct numerical simulation (DNS) that need to use global mechanisms. |
---|---|
AbstractList | A new global mechanism of combustion called the GM-ANN mechanism is proposed for MILD combustion, with its reaction parameters being optimized by artificial neural network (ANN). More specifically, the GM mechanism is first obtained by selecting well-performed global reactions from Jones and Lindstedt ( Combust. Flame 1988, 73, 233 ) (named “JL” mechanism) and Westbrook and Dryer ( Combust. Sci. Technol. 1981, 27, 31 ) (named “WD” mechanism). Then, its parameters are optimized using ANN to achieve the results best matching those from experiments and/or numerical simulations using the detailed mechanism GRI-Mech-3.0 (abbreviated as GRI-3.0). The GM-ANN mechanism is tested by comparing its performance with those of GRI-3.0 and JL and WD mechanisms in zero-dimensional perfectly stirred reactor (PSR), nonpremixed CH4/H2 jet-in-hot-coflow (JHC) flame, and premixed and nonpremixed combustion in furnace. Results obtained demonstrate that the GM-ANN mechanism performs better than the JL and WD mechanisms for various cases of MILD combustion. Therefore, the GM-ANN mechanism should be a better choice than the JL and WD mechanisms for high-cost computations of MILD combustion by large eddy simulation (LES) and direct numerical simulation (DNS) that need to use global mechanisms. A new global mechanism of combustion called the GM-ANN mechanism is proposed for MILD combustion, with its reaction parameters being optimized by artificial neural network (ANN). More specifically, the GM mechanism is first obtained by selecting well-performed global reactions from Jones and Lindstedt (Combust. Flame1988, 73, 233) (named “JL” mechanism) and Westbrook and Dryer (Combust. Sci. Technol. 1981, 27, 31) (named “WD” mechanism). Then, its parameters are optimized using ANN to achieve the results best matching those from experiments and/or numerical simulations using the detailed mechanism GRI-Mech-3.0 (abbreviated as GRI-3.0). The GM-ANN mechanism is tested by comparing its performance with those of GRI-3.0 and JL and WD mechanisms in zero-dimensional perfectly stirred reactor (PSR), nonpremixed CH₄/H₂ jet-in-hot-coflow (JHC) flame, and premixed and nonpremixed combustion in furnace. Results obtained demonstrate that the GM-ANN mechanism performs better than the JL and WD mechanisms for various cases of MILD combustion. Therefore, the GM-ANN mechanism should be a better choice than the JL and WD mechanisms for high-cost computations of MILD combustion by large eddy simulation (LES) and direct numerical simulation (DNS) that need to use global mechanisms. |
Author | Si, Jicang Wu, Mengwei Mi, Jianchun Liu, Xiangtao Wang, Guochang |
AuthorAffiliation | College of Engineering |
AuthorAffiliation_xml | – name: College of Engineering |
Author_xml | – sequence: 1 givenname: Jicang surname: Si fullname: Si, Jicang organization: College of Engineering – sequence: 2 givenname: Guochang surname: Wang fullname: Wang, Guochang organization: College of Engineering – sequence: 3 givenname: Xiangtao surname: Liu fullname: Liu, Xiangtao organization: College of Engineering – sequence: 4 givenname: Mengwei surname: Wu fullname: Wu, Mengwei organization: College of Engineering – sequence: 5 givenname: Jianchun orcidid: 0000-0002-9585-9015 surname: Mi fullname: Mi, Jianchun email: jmi@pku.edu.cn organization: College of Engineering |
BookMark | eNqNkDtPwzAUhS0EEuXxG_DIkuJXYmdgKOUpFVhgRNGtcw2GJC52IgS_npYyIBaYznDPd3T17ZDNLnRIyAFnY84EPwKbxthhfHx3AzZpzC3jRrANMuK5YFnORLlJRswYnbFCqG2yk9IzY6yQJh-Rhwm9wTd60YQ5NPQa7RN0PrXUhUivr2andBra-ZB6Hzp6n3z3SCex985bD012g0P8iv4txJfsBBLW9HbR-9Z_wArZI1sOmoT737lL7s_P7qaX2ez24mo6mWUgpeozgcrKwtSlAai1zrHIUZWFgjpnIIXlTkJZgtBzniumnSqddkbViE4xV9RylxyudxcxvA6Y-qr1yWLTQIdhSJUoZKGNLI1eVo_XVRtDShFdZX3_9WwfwTcVZ9VKa7XUWv3QWn1rXfL6F7-IvoX4_g9SrslV4TkMsYPV9Q_qE3tcmAU |
CitedBy_id | crossref_primary_10_1017_aer_2024_96 crossref_primary_10_1007_s44196_023_00335_1 crossref_primary_10_1021_acs_energyfuels_3c01097 crossref_primary_10_1063_5_0098898 crossref_primary_10_1080_13647830_2022_2110945 crossref_primary_10_1016_j_jaecs_2024_100291 crossref_primary_10_1021_acsomega_2c02324 |
Cites_doi | 10.1080/713665229 10.1021/acs.energyfuels.7b01666 10.1007/s11630-020-1235-0 10.1016/S1540-7489(02)80145-6 10.1021/ef7005854 10.2514/3.7521 10.1016/j.combustflame.2004.02.011 10.1016/S0360-1285(97)00006-3 10.1080/10407799308914901 10.1016/j.energy.2018.01.089 10.1016/0045-7930(94)00032-T 10.1016/j.energy.2021.121603 10.1080/00102208108946970 10.1137/0111030 10.1201/9781420041033 10.1016/0010-2180(88)90021-1 10.1142/S0218488598000094 10.1016/j.pecs.2004.02.003 10.1021/acs.energyfuels.1c00511 10.1016/j.energy.2019.04.198 10.2514/6.1981-42 10.1016/j.combustflame.2005.03.002 10.1016/j.combustflame.2013.01.024 10.1021/acs.energyfuels.9b04413 10.1016/j.ijggc.2018.08.018 10.1007/BF00175354 10.1080/00102200701838735 10.1080/00102202.2011.635612 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.energyfuels.1c01820 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5029 |
EndPage | 14953 |
ExternalDocumentID | 10_1021_acs_energyfuels_1c01820 b504336188 |
GroupedDBID | 02 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F X -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AGXLV BAANH CITATION CUPRZ ZCA ~02 7S9 L.6 |
ID | FETCH-LOGICAL-a334t-2e4c368d98aad775e65e4964ad50a32c1f3a99a27b15407f49f7f84deef40f6d3 |
IEDL.DBID | ACS |
ISSN | 0887-0624 1520-5029 |
IngestDate | Fri Jul 11 12:31:01 EDT 2025 Tue Jul 01 02:27:41 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Sat Sep 18 04:34:06 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a334t-2e4c368d98aad775e65e4964ad50a32c1f3a99a27b15407f49f7f84deef40f6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9585-9015 |
PQID | 2636783987 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2636783987 crossref_citationtrail_10_1021_acs_energyfuels_1c01820 crossref_primary_10_1021_acs_energyfuels_1c01820 acs_journals_10_1021_acs_energyfuels_1c01820 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-16 |
PublicationDateYYYYMMDD | 2021-09-16 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Energy & fuels |
PublicationTitleAlternate | Energy Fuels |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Turns S. R. (ref14/cit14) 1996 ref23/cit23 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 Tsuji H. (ref3/cit3) 2002 ref26/cit26 Marinov N. M. (ref13/cit13) 1996 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 Goodfellow I. (ref32/cit32) 2016 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.1080/713665229 – ident: ref8/cit8 doi: 10.1021/acs.energyfuels.7b01666 – ident: ref20/cit20 doi: 10.1007/s11630-020-1235-0 – ident: ref15/cit15 doi: 10.1016/S1540-7489(02)80145-6 – volume-title: Transport Phenomena in Combustion year: 1996 ident: ref13/cit13 – ident: ref34/cit34 doi: 10.1021/ef7005854 – ident: ref21/cit21 – ident: ref25/cit25 doi: 10.2514/3.7521 – ident: ref22/cit22 doi: 10.1016/j.combustflame.2004.02.011 – ident: ref2/cit2 doi: 10.1016/S0360-1285(97)00006-3 – ident: ref29/cit29 doi: 10.1080/10407799308914901 – ident: ref9/cit9 doi: 10.1016/j.energy.2018.01.089 – ident: ref26/cit26 doi: 10.1016/0045-7930(94)00032-T – ident: ref18/cit18 doi: 10.1016/j.energy.2021.121603 – ident: ref11/cit11 doi: 10.1080/00102208108946970 – ident: ref31/cit31 doi: 10.1137/0111030 – volume-title: High temperature air combustion: from energy conservation to pollution reduction year: 2002 ident: ref3/cit3 doi: 10.1201/9781420041033 – ident: ref12/cit12 doi: 10.1016/0010-2180(88)90021-1 – ident: ref30/cit30 doi: 10.1142/S0218488598000094 – ident: ref1/cit1 doi: 10.1016/j.pecs.2004.02.003 – ident: ref4/cit4 doi: 10.1021/acs.energyfuels.1c00511 – ident: ref24/cit24 doi: 10.1016/j.energy.2019.04.198 – volume-title: An introduction to combustion year: 1996 ident: ref14/cit14 – ident: ref27/cit27 doi: 10.2514/6.1981-42 – ident: ref23/cit23 doi: 10.1016/j.combustflame.2005.03.002 – ident: ref19/cit19 doi: 10.1016/j.combustflame.2013.01.024 – volume-title: Deep learning year: 2016 ident: ref32/cit32 – ident: ref10/cit10 doi: 10.1021/acs.energyfuels.9b04413 – ident: ref5/cit5 – ident: ref33/cit33 doi: 10.1016/j.ijggc.2018.08.018 – ident: ref16/cit16 – ident: ref17/cit17 doi: 10.1007/BF00175354 – ident: ref6/cit6 doi: 10.1080/00102200701838735 – ident: ref7/cit7 doi: 10.1080/00102202.2011.635612 |
SSID | ssj0006385 |
Score | 2.399508 |
Snippet | A new global mechanism of combustion called the GM-ANN mechanism is proposed for MILD combustion, with its reaction parameters being optimized by artificial... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14941 |
SubjectTerms | Combustion energy furnaces neural networks |
Title | A New Global Mechanism for MILD Combustion Using Artificial-Neural-Network-Based Optimization |
URI | http://dx.doi.org/10.1021/acs.energyfuels.1c01820 https://www.proquest.com/docview/2636783987 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOACHQikICkVG6pEsiT2xneOyLQLEtlILEpcqcvyQEJCtmt0Lvx7bSRAIIcopkqWxkvF4ZqKZ-T6Ar94ZGq0dS5jBKkGkVSK1xSTnPhlxWFVahXnn8Q9-colnV_nVHGSvVPBpdqh0M7BxDs7NfLgYZDoNoOPzsEi5FOF_azj6_eh8vTnlPbhnyin2LV2vbxTCkm6eh6XnXjmGmuNV-NUP7LQdJjeD2bQa6PuX-I3__xVr8KFLPMmwtZSPMGfrdVga9Xxv67DyBJrwE_wZEu__SEsJQMY2DAhfN3fE57hkfHr-jXhHUgUmsElNYttB3LmFo4iIH_ERW8yTIx8pDfnpndNdN_W5AZfH3y9GJ0lHxZAoxnCaUIuacWkKqZQRIrc8t1hwVCZPFaM6c0wVhaKiygKin8PCCSfRWOswddywTVioJ7XdAuKXfMqnWCoxQ-cyaZ2URgrlBBbC2G048Moqu6vUlLFKTrMyLD7RYNlpcBt4f3Cl7mDNA7vG7duC6aPg3xbZ422R_d4ySn84obSiajuZNSXlzEd9Vkjx-X2vvwPLNHTJBFIKvgsL038z-8WnOdNqLxr2A5IQ_aA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PTxQxFH9BPCAHFZQIotZEb84y03Y6nQOHdZHswi4ehISLGTr9kxhk1jC7MfKJ-Cp8K167MyuYGOKBg6dJmvSl0_f63q_pe78H8A6dodHasYgZXkac0zKS2vIoFQhGHC9LrXy98-hA9I_43nF6vACXbS0MLqJGSXV4xP_NLpBs-TEbyuHcFKNGJ9Gx5x5v0in37a-feFmrtwc7qNn3lO5-Ouz1o6afQKQY45OIWq6ZkCaXSpksS61ILc8FVyaNFaM6cUzluaJZmXhaOsdzlznJjbWOx04YhnIfwEOEQNRf87q9L3Ofj1actpyisaC8zST7-8J9NNT17Wh4OxiECLf7BK7mexMSW04700nZ0Rd_0Eb-D5v3FB43MJt0Z-diBRZstQpLvba73Sos3yBifAZfuwS9PZk1QCAj68uhv9VnBBE9GQ2GOwTdZun7no0rEpIsguQZ-UbgNwmfkFAffURcYMhndMVnTY3rczi6l39dg8VqXNkXQHAIAa5iseQJdy6R1klpZKZcxvPM2HX4gMopGsdRFyEngCaFH7yhsaLR2DqI1l4K3ZC4-14i3--eGM8n_pjxmNw95W1rkAUqxz8kqcqOp3VBBUOMw3KZbfzb8t_AUv9wNCyGg4P9l_CI-vwg345DbMLi5HxqXyHAm5Svw9kicHLf9ngNYKlgxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fTxQxEJ8gJooPiqgR_0BN9M09dttut_vgw3nHhRMOTZSEF7J0-ychyh5x70LgM_FV-E5Me7sXMDHEBx582qRJJ93OdGaa_uY3AO_RGRqtHYuY4WXEOS0jqS2PUoHJiONlqZWvdx7tiq09_mU_3V-Ai7YWBhdRo6Q6POL7U31iXMMwkGz4cRtK4twUI0cn0bHnH28gldv27BQvbPWnYR-1-4HSweaP3lbU9BSIFGN8ElHLNRPS5FIpk2WpFanlueDKpLFiVCeOqTxXNCsTT03neO4yJ7mx1vHYCcNQ7j247x8L_VWv2_s-9_toyWnLKxoLyls02d8X7iOirm9GxJsBIUS5wRO4nO9PALf87EwnZUef_0Ed-b9s4DI8btJt0p2dj6ewYKsVeNhru9ytwKNrhIzP4KBL0OuTWSMEMrK-LPqoPiaY2ZPRcKdP0H2Wvv_ZuCIBbBEkz0g4As9J-ARgffQZ8wNDvqJLPm5qXZ_D3p386wtYrMaVfQkEhzDRVSyWPOHOJdI6KY3MlMt4nhm7Ch9ROUXjQOoiYANoUvjBaxorGo2tgmhtptANmbvvKfLr9onxfOLJjM_k9invWqMsUDn-QUlVdjytCyoY5josl9mrf1v-Ojz41h8UO8Pd7dewRD1MyHflEG9gcfJ7at9injcp18LxInB41-Z4BdHjY0k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Global+Mechanism+for+MILD+Combustion+Using+Artificial-Neural-Network-Based+Optimization&rft.jtitle=Energy+%26+fuels&rft.au=Si%2C+Jicang&rft.au=Wang%2C+Guochang&rft.au=Liu%2C+Xiangtao&rft.au=Wu%2C+Mengwei&rft.date=2021-09-16&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=35&rft.issue=18&rft.spage=14941&rft.epage=14953&rft_id=info:doi/10.1021%2Facs.energyfuels.1c01820&rft.externalDocID=b504336188 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |