Hybrid Plasmonic Nanodumbbells Engineering for Multi-Intensified Second Near-Infrared Light Induced Photodynamic Therapy
Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long waveleng...
Saved in:
Published in | ACS nano Vol. 15; no. 5; pp. 8694 - 8705 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSe x S y with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O2 –) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core–shell ACA. In vivo results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy. |
---|---|
AbstractList | Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSe x S y with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O2 –) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core–shell ACA. In vivo results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy. Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSe S with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O ) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core-shell ACA. results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy. Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSexSy with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O2-) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core-shell ACA. In vivo results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy.Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSexSy with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O2-) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core-shell ACA. In vivo results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy. |
Author | Zhang, Jiatao Bai, Bing Wang, Dong Ji, Lei Wan, Xiaodong Hou, Dayong Wang, Hongzhi Xu, Meng Qiao, Zeng-Ying Wang, Hao |
AuthorAffiliation | CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine State Key Laboratory of Heavy Oil Processing, College of New Energy China University of Petroleum (East China) |
AuthorAffiliation_xml | – name: China University of Petroleum (East China) – name: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine – name: State Key Laboratory of Heavy Oil Processing, College of New Energy – name: CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety |
Author_xml | – sequence: 1 givenname: Dong surname: Wang fullname: Wang, Dong organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine – sequence: 2 givenname: Hongzhi surname: Wang fullname: Wang, Hongzhi organization: China University of Petroleum (East China) – sequence: 3 givenname: Lei surname: Ji fullname: Ji, Lei organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine – sequence: 4 givenname: Meng surname: Xu fullname: Xu, Meng organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine – sequence: 5 givenname: Bing surname: Bai fullname: Bai, Bing organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine – sequence: 6 givenname: Xiaodong surname: Wan fullname: Wan, Xiaodong organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine – sequence: 7 givenname: Dayong surname: Hou fullname: Hou, Dayong organization: CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety – sequence: 8 givenname: Zeng-Ying orcidid: 0000-0002-9932-7702 surname: Qiao fullname: Qiao, Zeng-Ying email: qiaozy@nanoctr.cn organization: CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety – sequence: 9 givenname: Hao orcidid: 0000-0002-1961-0787 surname: Wang fullname: Wang, Hao email: wanghao@nanoctr.cn organization: CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety – sequence: 10 givenname: Jiatao orcidid: 0000-0001-7414-4902 surname: Zhang fullname: Zhang, Jiatao email: zhangjt@bit.edu.cn organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33957753$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rGzEQxUVJyfe5t7LHQthEH5bkPZaQNAY3DSSB3IRWGtkKu5IraSH-76tip4dCTqMZ_d6DmXeCDkIMgNAXgi8JpuRKmxx0iJfEYCwl_YSOScdEi-fi5eDfm5MjdJLzK8ZczqU4REeMdVxKzo7R2922T942D4POYwzeNPfVz05j38Mw5OYmrHwASD6sGhdT83Maim8XoUDI3nmwzSOYGGxzDzrVuUs61eHSr9alWQQ7mdo9rGOJdhv0WP2f1pD0ZnuGPjs9ZDjf11P0fHvzdH3XLn_9WFx_X7aaMVZaB9h1ljtGDe0N4XQuoRMAM8fcDMtOznqYM8y0cFRIxwlzpNMSS02csNqxU_Rt57tJ8fcEuajRZ1N30wHilBXldMYEE5JW9OsenfoRrNokP-q0Ve_XqgDfASbFnBM4ZXzRxcdQkvaDIlj9TUXtU1H7VKru6j_du_XHioudon6o1zilUG_0If0HOZShjg |
CitedBy_id | crossref_primary_10_1039_D2TB00778A crossref_primary_10_1021_acsapm_2c00638 crossref_primary_10_1007_s12598_023_02450_6 crossref_primary_10_1002_adfm_202106884 crossref_primary_10_1002_ange_202109068 crossref_primary_10_1039_D1TB02130C crossref_primary_10_1007_s12672_024_01682_x crossref_primary_10_1016_j_cej_2023_142958 crossref_primary_10_1021_acs_chemmater_4c01090 crossref_primary_10_1002_adhm_202201607 crossref_primary_10_1039_D3TA00294B crossref_primary_10_1016_j_bioadv_2024_213820 crossref_primary_10_1021_acsami_3c17888 crossref_primary_10_1002_smm2_1193 crossref_primary_10_1016_j_nantod_2023_101984 crossref_primary_10_1002_adtp_202300229 crossref_primary_10_1039_D1BM01384J crossref_primary_10_1021_acs_nanolett_3c00632 crossref_primary_10_2217_nnm_2023_0118 crossref_primary_10_1002_adma_202305985 crossref_primary_10_1016_j_ijbiomac_2022_09_128 crossref_primary_10_1002_cssc_202200498 crossref_primary_10_1039_D3NJ04226J crossref_primary_10_3389_fmats_2022_1054877 crossref_primary_10_1016_j_addr_2022_114456 crossref_primary_10_1039_D2TB02801H crossref_primary_10_1039_D2TB00002D crossref_primary_10_1002_adma_202411194 crossref_primary_10_1186_s12951_024_02350_6 crossref_primary_10_1002_adma_202212178 crossref_primary_10_1039_D2DT02960J crossref_primary_10_1021_acs_nanolett_5c00324 crossref_primary_10_1021_acsanm_2c04551 crossref_primary_10_1038_s41467_023_37001_1 crossref_primary_10_1038_s41467_022_31106_9 crossref_primary_10_1016_j_ccr_2023_215282 crossref_primary_10_1016_j_cej_2022_140903 crossref_primary_10_1016_j_nantod_2023_101803 crossref_primary_10_1088_1748_605X_ad4e84 crossref_primary_10_1007_s11426_024_2082_6 crossref_primary_10_1016_j_cej_2025_160924 crossref_primary_10_1016_j_actbio_2024_02_005 crossref_primary_10_1016_j_cej_2024_153951 crossref_primary_10_1016_j_chemosphere_2023_140306 crossref_primary_10_1016_j_apmt_2022_101453 crossref_primary_10_1007_s40820_022_00901_w crossref_primary_10_1002_smll_202303594 crossref_primary_10_1021_acs_langmuir_3c03231 crossref_primary_10_1186_s43046_021_00093_1 crossref_primary_10_1186_s12951_024_02530_4 crossref_primary_10_1039_D2BM00374K crossref_primary_10_1039_D2SC03036E crossref_primary_10_1007_s12274_022_4876_5 crossref_primary_10_3390_chemosensors10110439 crossref_primary_10_3390_molecules27175548 crossref_primary_10_1039_D4MH00819G crossref_primary_10_1002_adhm_202401211 crossref_primary_10_1002_anie_202109068 crossref_primary_10_1039_D1NR08293K crossref_primary_10_1016_j_ijpharm_2023_123745 crossref_primary_10_1021_acsami_3c05566 crossref_primary_10_1016_j_cclet_2024_109522 crossref_primary_10_1021_acsabm_2c00998 crossref_primary_10_1021_acsnano_2c12314 crossref_primary_10_1016_j_colsurfb_2023_113158 crossref_primary_10_1007_s12598_022_01980_9 crossref_primary_10_1016_j_jmst_2024_07_002 crossref_primary_10_1039_D2NJ03142F crossref_primary_10_1016_j_envres_2023_116929 |
Cites_doi | 10.1002/adma.201804437 10.1038/nmat4476 10.1002/adfm.201808762 10.1021/acsnano.8b01010 10.1021/acsnano.6b05419 10.1038/s41467-019-12853-8 10.1002/adma.201806897 10.1002/adma.201905825 10.1021/jacs.7b12972 10.1038/nmat2986 10.1038/s41467-019-11269-8 10.1002/adma.201500247 10.1021/acsnano.9b05386 10.1002/anie.201906134 10.1021/acs.chemrev.9b00443 10.1021/jacs.8b01072 10.1021/acs.nanolett.7b03310 10.1039/C8CS00320C 10.1126/science.aal4677 10.1038/s41579-018-0128-7 10.1002/aenm.201803889 10.7150/thno.35418 10.1038/s41565-017-0024-8 10.1021/jacs.9b12788 10.1038/nphoton.2012.158 10.1016/j.nanoen.2018.02.040 10.1038/s41560-018-0194-0 10.1038/s41579-018-0058-4 10.1038/s41467-018-03505-4 10.1021/jacs.5b12073 10.1002/adma.201701076 10.1002/adma.201606864 10.1038/nature08777 10.1038/nnano.2014.298 10.1038/s41587-019-0262-4 10.1038/s41579-018-0019-y 10.1126/science.aat9691 10.1002/anie.201807695 10.1021/acs.jpclett.9b00617 10.1002/anie.201813702 10.1002/adma.201907365 10.1038/nature05762 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.1c00772 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 8705 |
ExternalDocumentID | 33957753 10_1021_acsnano_1c00772 b609214851 |
Genre | Journal Article |
GroupedDBID | - .K2 23M 3RI 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ NPM 7X8 |
ID | FETCH-LOGICAL-a333t-fe0f9d5f32c2bc15287e96ee4f3f407974be8303a6f267f513f19a707a1f6daf3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 00:47:49 EDT 2025 Thu Apr 03 07:02:21 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Tue Jul 01 03:37:10 EDT 2025 Thu May 27 05:45:54 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | doping colloidal semiconductor nanocrystals PDT NIR-II heterostructures |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-fe0f9d5f32c2bc15287e96ee4f3f407974be8303a6f267f513f19a707a1f6daf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1961-0787 0000-0001-7414-4902 0000-0002-9932-7702 |
PMID | 33957753 |
PQID | 2524363672 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2524363672 pubmed_primary_33957753 crossref_citationtrail_10_1021_acsnano_1c00772 crossref_primary_10_1021_acsnano_1c00772 acs_journals_10_1021_acsnano_1c00772 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 3RI GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-25 |
PublicationDateYYYYMMDD | 2021-05-25 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref22/cit22 doi: 10.1002/adma.201804437 – ident: ref14/cit14 doi: 10.1038/nmat4476 – ident: ref24/cit24 doi: 10.1002/adfm.201808762 – ident: ref3/cit3 doi: 10.1021/acsnano.8b01010 – ident: ref30/cit30 doi: 10.1021/acsnano.6b05419 – ident: ref18/cit18 doi: 10.1038/s41467-019-12853-8 – ident: ref20/cit20 doi: 10.1002/adma.201806897 – ident: ref9/cit9 doi: 10.1002/adma.201905825 – ident: ref15/cit15 doi: 10.1021/jacs.7b12972 – ident: ref2/cit2 doi: 10.1038/nmat2986 – ident: ref1/cit1 doi: 10.1038/s41467-019-11269-8 – ident: ref25/cit25 doi: 10.1002/adma.201500247 – ident: ref10/cit10 doi: 10.1021/acsnano.9b05386 – ident: ref26/cit26 doi: 10.1002/anie.201906134 – ident: ref29/cit29 doi: 10.1021/acs.chemrev.9b00443 – ident: ref4/cit4 doi: 10.1021/jacs.8b01072 – ident: ref5/cit5 doi: 10.1021/acs.nanolett.7b03310 – ident: ref34/cit34 doi: 10.1039/C8CS00320C – ident: ref38/cit38 doi: 10.1126/science.aal4677 – ident: ref39/cit39 doi: 10.1038/s41579-018-0128-7 – ident: ref27/cit27 doi: 10.1002/aenm.201803889 – ident: ref16/cit16 doi: 10.7150/thno.35418 – ident: ref33/cit33 doi: 10.1038/s41565-017-0024-8 – ident: ref8/cit8 doi: 10.1021/jacs.9b12788 – ident: ref31/cit31 doi: 10.1038/nphoton.2012.158 – ident: ref28/cit28 doi: 10.1016/j.nanoen.2018.02.040 – ident: ref35/cit35 doi: 10.1038/s41560-018-0194-0 – ident: ref40/cit40 doi: 10.1038/s41579-018-0058-4 – ident: ref13/cit13 doi: 10.1038/s41467-018-03505-4 – ident: ref6/cit6 doi: 10.1021/jacs.5b12073 – ident: ref11/cit11 doi: 10.1002/adma.201701076 – ident: ref17/cit17 doi: 10.1002/adma.201606864 – ident: ref7/cit7 doi: 10.1038/nature08777 – ident: ref42/cit42 doi: 10.1038/nnano.2014.298 – ident: ref19/cit19 doi: 10.1038/s41587-019-0262-4 – ident: ref41/cit41 doi: 10.1038/s41579-018-0019-y – ident: ref37/cit37 doi: 10.1126/science.aat9691 – ident: ref23/cit23 doi: 10.1002/anie.201807695 – ident: ref32/cit32 doi: 10.1021/acs.jpclett.9b00617 – ident: ref12/cit12 doi: 10.1002/anie.201813702 – ident: ref21/cit21 doi: 10.1002/adma.201907365 – ident: ref36/cit36 doi: 10.1038/nature05762 |
SSID | ssj0057876 |
Score | 2.5913382 |
Snippet | Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8694 |
Title | Hybrid Plasmonic Nanodumbbells Engineering for Multi-Intensified Second Near-Infrared Light Induced Photodynamic Therapy |
URI | http://dx.doi.org/10.1021/acsnano.1c00772 https://www.ncbi.nlm.nih.gov/pubmed/33957753 https://www.proquest.com/docview/2524363672 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-UwEA7ivuiD7nrfi0TwwZcc06RJm0cR5SAqggq-lTQXFlZbsT2wu79-Z9qes1446GNLUtp0kvk-ZuYbQvZVDM5GJ1kp85SlKnCWRy-YT4JRNlgTORYKX1zq8W16dqfu_otFv47gi-TQuqayVT1KHErPwGn7Seg8Q551dHw9PXTR7nQfQAaCDChipuLz5gHohlzz0g3NwZadjzld7bOzmk6aEFNLfo0mbTlyf98KN77_-p_JyoA06VFvGl_IQqjWyPIz_cF18nv8Bwu26BVA6AfUyKVw2NZ-8lBiOKKhzwZTALe0q9ZlQ9Z7BPBKr5FPe3oJ-wXuxydMZ6fnSPgpNgVxcHX1s25r3ze-pze9iMEGuT09uTkes6EVA7NSypbFwKPxKkrhROnA5-dZMDqENMoIlBBISRly8IZWR6GzqBIZE2Mzntkkam-j3CSLVV2FbUJ5njpuAheel2kqytxYrOCW2njjpRc7ZB_WrBi2UlN0UXKRFMNCFsNC7pDR9AcWbpAzx64a9_MnHMwmPPZKHvOH7k0tooDdhiEUW4V60hRCiVRqqXHMVm8qs4dJDHkC-_v6sQ_4RpYE5sdwxYT6Thbbp0n4AQCnLXc70_4HAkr4Bg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQHGgPpfRBoS11JQ69eOvYsTc-IlS00GVFxSJxixw_hEQ3qUhWKv31zCTZhbZaqT3Gske2M_Z8o5n5TMiBisHZ6CQrZJayVAXOsugF80kwygZrIsdC4bOJHl2mp1fqao3wRS0MTKIGSXUbxH9gF0g-Q1tpy2qQOGSggUt3A6CIQHfr8Ohicfei-ukujgx-MoCJJZnPXwLQGrn6d2u0AmK2puZ4i3xbTrLNMLkZzJti4H79wd_4P6t4Tp71uJMedoqyTdZC-YI8fcRG-JL8HN1h-RY9B0A9Q8ZcCldv5eezAoMTNX3UmQLUpW3tLutz4CNAWXqB3rWnEzg90B5vMbmdjtH9p_hEiIOv8-uqqfxdaWcgf9pRGrwil8dfpkcj1j_MwKyUsmEx8Gi8ilI4UThAANkwGB1CGmUEBxFclCJkYButjkIPo0pkTIwd8qFNovY2ytdkvazK8IZQnqWOm8CF50WaiiIzFuu5pTbeeOnFLjmAPcv7g1XnbcxcJHm_kXm_kbtksPiPuevJzfGNje-rB3xaDvjR8Xqs7vpxoRg5nD0MqNgyVPM6F0qkUkuNfXY6jVkKkxgABV9w798W8IFsjqZn43x8Mvn6ljwRmDnDFRPqHVlvbufhPUCfpthvtf0eBXYAdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYlgdIemr6bPlXIoRdtZcnSWseQZNm26bKQLORmZD0ItGuH2AtNf31nbO2Stiy0RwtpkOUZ6RvPzCdCDlQMzkYnWSWLnOUqcFZEL5jPglE2WBM5Fgp_nenpIv98oS5SURjWwsAkWpDU9kF8tOorHxPDQPYR2mtbN6PMIQsNbLy7GLRDl-vw6Gy9_6IK6iGWDL4yAIoNoc9fAvBEcu3vJ9IWmNkfN5M9sthMtM8y-TZaddXI_fyDw_F_3-QheZDwJz0cFOYRuRPqx-T-LVbCJ-TH9AbLuOgcgPUSmXMpbMGNXy0rDFK09FZnCpCX9jW8LOXCR4C09Ay9bE9nYEXQHq8xyZ2e4m8AileFOHiaXzZd429quwT55wO1wVOymJycH01ZuqCBWSllx2Lg0XgVpXCicoAEinEwOoQ8ygiOIrgqVSjgjLQ6Cj2OKpMxM3bMxzaL2tson5GduqnDC0J5kTtuAheeV3kuqsJYrOuW2njjpRf75ADWrEwG1pZ97FxkZVrIMi3kPhmtv2XpEsk53rXxffuAD5sBVwO_x_au79fKUYINYmDF1qFZtaVQIpdaauzzfNCajTCJgVDwCV_-2wu8I3fnx5Py9NPsyytyT2ACDVdMqNdkp7tehTeAgLrqba_wvwBLBQL5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Plasmonic+Nanodumbbells+Engineering+for+Multi-Intensified+Second+Near-Infrared+Light+Induced+Photodynamic+Therapy&rft.jtitle=ACS+nano&rft.au=Wang%2C+Dong&rft.au=Wang%2C+Hongzhi&rft.au=Ji%2C+Lei&rft.au=Xu%2C+Meng&rft.date=2021-05-25&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=15&rft.issue=5&rft.spage=8694&rft_id=info:doi/10.1021%2Facsnano.1c00772&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |