Hybrid Plasmonic Nanodumbbells Engineering for Multi-Intensified Second Near-Infrared Light Induced Photodynamic Therapy

Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long waveleng...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 5; pp. 8694 - 8705
Main Authors Wang, Dong, Wang, Hongzhi, Ji, Lei, Xu, Meng, Bai, Bing, Wan, Xiaodong, Hou, Dayong, Qiao, Zeng-Ying, Wang, Hao, Zhang, Jiatao
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSe x S y with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O2 –) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core–shell ACA. In vivo results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy.
AbstractList Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSe x S y with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O2 –) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core–shell ACA. In vivo results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy.
Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSe S with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O ) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core-shell ACA. results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy.
Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSexSy with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O2-) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core-shell ACA. In vivo results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy.Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive oxygen species (ROS) production hinder its development. A strategy that can achieve a second near-infrared (NIR-II) light that is a long wavelength induced multi-intensified antibacterial PDT is most critical. Herein, hybrid plasmonic Au/CdSexSy with precise Ag doping (ACA) nanodumbbells are rationally designed for ideal NIR-II light induced antibacterial PDT. Plasmonic Au nanorods extend the photocatalytic activity of ACA to NIR-II regions, which provides a basis for NIR-II light induced PDT. More importantly, multi-intensified PDT can be realized by the following creativities: (i) elaborate design of as-synthesized nanodumbbells that allows for electron holes to be redistributed in different regions simultaneously, (ii) the efficient hot-electrons injection that benefits from the ratio tailoring of anions ratio of Se and S, and (iii) the dopant Ag level inhibiting the combination of electron holes. The nanodumbbells create effective hot-electrons injection and a separation of electron holes, which provides great convenience for the production of ROS and allows NIR-II light induced PDT for the inhibition of bacteria and biofilms. As a result, comparably, our well-defined ACA hybrid nanodumbbells can generate about 40-fold superoxide radicals (·O2-) and more hydroxyl radicals (·OH). Therefore, the MIC value of the as-synthesized nanodumbbells is lower than the value of 1/16 of core-shell ACA. In vivo results further demonstrate that our nanodumbbells exhibit excellent PDT efficacy.
Author Zhang, Jiatao
Bai, Bing
Wang, Dong
Ji, Lei
Wan, Xiaodong
Hou, Dayong
Wang, Hongzhi
Xu, Meng
Qiao, Zeng-Ying
Wang, Hao
AuthorAffiliation CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety
Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine
State Key Laboratory of Heavy Oil Processing, College of New Energy
China University of Petroleum (East China)
AuthorAffiliation_xml – name: China University of Petroleum (East China)
– name: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine
– name: State Key Laboratory of Heavy Oil Processing, College of New Energy
– name: CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety
Author_xml – sequence: 1
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine
– sequence: 2
  givenname: Hongzhi
  surname: Wang
  fullname: Wang, Hongzhi
  organization: China University of Petroleum (East China)
– sequence: 3
  givenname: Lei
  surname: Ji
  fullname: Ji, Lei
  organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine
– sequence: 4
  givenname: Meng
  surname: Xu
  fullname: Xu, Meng
  organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine
– sequence: 5
  givenname: Bing
  surname: Bai
  fullname: Bai, Bing
  organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine
– sequence: 6
  givenname: Xiaodong
  surname: Wan
  fullname: Wan, Xiaodong
  organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine
– sequence: 7
  givenname: Dayong
  surname: Hou
  fullname: Hou, Dayong
  organization: CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety
– sequence: 8
  givenname: Zeng-Ying
  orcidid: 0000-0002-9932-7702
  surname: Qiao
  fullname: Qiao, Zeng-Ying
  email: qiaozy@nanoctr.cn
  organization: CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety
– sequence: 9
  givenname: Hao
  orcidid: 0000-0002-1961-0787
  surname: Wang
  fullname: Wang, Hao
  email: wanghao@nanoctr.cn
  organization: CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety
– sequence: 10
  givenname: Jiatao
  orcidid: 0000-0001-7414-4902
  surname: Zhang
  fullname: Zhang, Jiatao
  email: zhangjt@bit.edu.cn
  organization: Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Institute of Engineering Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33957753$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rGzEQxUVJyfe5t7LHQthEH5bkPZaQNAY3DSSB3IRWGtkKu5IraSH-76tip4dCTqMZ_d6DmXeCDkIMgNAXgi8JpuRKmxx0iJfEYCwl_YSOScdEi-fi5eDfm5MjdJLzK8ZczqU4REeMdVxKzo7R2922T942D4POYwzeNPfVz05j38Mw5OYmrHwASD6sGhdT83Maim8XoUDI3nmwzSOYGGxzDzrVuUs61eHSr9alWQQ7mdo9rGOJdhv0WP2f1pD0ZnuGPjs9ZDjf11P0fHvzdH3XLn_9WFx_X7aaMVZaB9h1ljtGDe0N4XQuoRMAM8fcDMtOznqYM8y0cFRIxwlzpNMSS02csNqxU_Rt57tJ8fcEuajRZ1N30wHilBXldMYEE5JW9OsenfoRrNokP-q0Ve_XqgDfASbFnBM4ZXzRxcdQkvaDIlj9TUXtU1H7VKru6j_du_XHioudon6o1zilUG_0If0HOZShjg
CitedBy_id crossref_primary_10_1039_D2TB00778A
crossref_primary_10_1021_acsapm_2c00638
crossref_primary_10_1007_s12598_023_02450_6
crossref_primary_10_1002_adfm_202106884
crossref_primary_10_1002_ange_202109068
crossref_primary_10_1039_D1TB02130C
crossref_primary_10_1007_s12672_024_01682_x
crossref_primary_10_1016_j_cej_2023_142958
crossref_primary_10_1021_acs_chemmater_4c01090
crossref_primary_10_1002_adhm_202201607
crossref_primary_10_1039_D3TA00294B
crossref_primary_10_1016_j_bioadv_2024_213820
crossref_primary_10_1021_acsami_3c17888
crossref_primary_10_1002_smm2_1193
crossref_primary_10_1016_j_nantod_2023_101984
crossref_primary_10_1002_adtp_202300229
crossref_primary_10_1039_D1BM01384J
crossref_primary_10_1021_acs_nanolett_3c00632
crossref_primary_10_2217_nnm_2023_0118
crossref_primary_10_1002_adma_202305985
crossref_primary_10_1016_j_ijbiomac_2022_09_128
crossref_primary_10_1002_cssc_202200498
crossref_primary_10_1039_D3NJ04226J
crossref_primary_10_3389_fmats_2022_1054877
crossref_primary_10_1016_j_addr_2022_114456
crossref_primary_10_1039_D2TB02801H
crossref_primary_10_1039_D2TB00002D
crossref_primary_10_1002_adma_202411194
crossref_primary_10_1186_s12951_024_02350_6
crossref_primary_10_1002_adma_202212178
crossref_primary_10_1039_D2DT02960J
crossref_primary_10_1021_acs_nanolett_5c00324
crossref_primary_10_1021_acsanm_2c04551
crossref_primary_10_1038_s41467_023_37001_1
crossref_primary_10_1038_s41467_022_31106_9
crossref_primary_10_1016_j_ccr_2023_215282
crossref_primary_10_1016_j_cej_2022_140903
crossref_primary_10_1016_j_nantod_2023_101803
crossref_primary_10_1088_1748_605X_ad4e84
crossref_primary_10_1007_s11426_024_2082_6
crossref_primary_10_1016_j_cej_2025_160924
crossref_primary_10_1016_j_actbio_2024_02_005
crossref_primary_10_1016_j_cej_2024_153951
crossref_primary_10_1016_j_chemosphere_2023_140306
crossref_primary_10_1016_j_apmt_2022_101453
crossref_primary_10_1007_s40820_022_00901_w
crossref_primary_10_1002_smll_202303594
crossref_primary_10_1021_acs_langmuir_3c03231
crossref_primary_10_1186_s43046_021_00093_1
crossref_primary_10_1186_s12951_024_02530_4
crossref_primary_10_1039_D2BM00374K
crossref_primary_10_1039_D2SC03036E
crossref_primary_10_1007_s12274_022_4876_5
crossref_primary_10_3390_chemosensors10110439
crossref_primary_10_3390_molecules27175548
crossref_primary_10_1039_D4MH00819G
crossref_primary_10_1002_adhm_202401211
crossref_primary_10_1002_anie_202109068
crossref_primary_10_1039_D1NR08293K
crossref_primary_10_1016_j_ijpharm_2023_123745
crossref_primary_10_1021_acsami_3c05566
crossref_primary_10_1016_j_cclet_2024_109522
crossref_primary_10_1021_acsabm_2c00998
crossref_primary_10_1021_acsnano_2c12314
crossref_primary_10_1016_j_colsurfb_2023_113158
crossref_primary_10_1007_s12598_022_01980_9
crossref_primary_10_1016_j_jmst_2024_07_002
crossref_primary_10_1039_D2NJ03142F
crossref_primary_10_1016_j_envres_2023_116929
Cites_doi 10.1002/adma.201804437
10.1038/nmat4476
10.1002/adfm.201808762
10.1021/acsnano.8b01010
10.1021/acsnano.6b05419
10.1038/s41467-019-12853-8
10.1002/adma.201806897
10.1002/adma.201905825
10.1021/jacs.7b12972
10.1038/nmat2986
10.1038/s41467-019-11269-8
10.1002/adma.201500247
10.1021/acsnano.9b05386
10.1002/anie.201906134
10.1021/acs.chemrev.9b00443
10.1021/jacs.8b01072
10.1021/acs.nanolett.7b03310
10.1039/C8CS00320C
10.1126/science.aal4677
10.1038/s41579-018-0128-7
10.1002/aenm.201803889
10.7150/thno.35418
10.1038/s41565-017-0024-8
10.1021/jacs.9b12788
10.1038/nphoton.2012.158
10.1016/j.nanoen.2018.02.040
10.1038/s41560-018-0194-0
10.1038/s41579-018-0058-4
10.1038/s41467-018-03505-4
10.1021/jacs.5b12073
10.1002/adma.201701076
10.1002/adma.201606864
10.1038/nature08777
10.1038/nnano.2014.298
10.1038/s41587-019-0262-4
10.1038/s41579-018-0019-y
10.1126/science.aat9691
10.1002/anie.201807695
10.1021/acs.jpclett.9b00617
10.1002/anie.201813702
10.1002/adma.201907365
10.1038/nature05762
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.1c00772
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 8705
ExternalDocumentID 33957753
10_1021_acsnano_1c00772
b609214851
Genre Journal Article
GroupedDBID -
.K2
23M
3RI
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
NPM
7X8
ID FETCH-LOGICAL-a333t-fe0f9d5f32c2bc15287e96ee4f3f407974be8303a6f267f513f19a707a1f6daf3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 00:47:49 EDT 2025
Thu Apr 03 07:02:21 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Tue Jul 01 03:37:10 EDT 2025
Thu May 27 05:45:54 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords doping
colloidal semiconductor nanocrystals
PDT
NIR-II
heterostructures
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-fe0f9d5f32c2bc15287e96ee4f3f407974be8303a6f267f513f19a707a1f6daf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1961-0787
0000-0001-7414-4902
0000-0002-9932-7702
PMID 33957753
PQID 2524363672
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2524363672
pubmed_primary_33957753
crossref_citationtrail_10_1021_acsnano_1c00772
crossref_primary_10_1021_acsnano_1c00772
acs_journals_10_1021_acsnano_1c00772
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
3RI
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-25
PublicationDateYYYYMMDD 2021-05-25
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1002/adma.201804437
– ident: ref14/cit14
  doi: 10.1038/nmat4476
– ident: ref24/cit24
  doi: 10.1002/adfm.201808762
– ident: ref3/cit3
  doi: 10.1021/acsnano.8b01010
– ident: ref30/cit30
  doi: 10.1021/acsnano.6b05419
– ident: ref18/cit18
  doi: 10.1038/s41467-019-12853-8
– ident: ref20/cit20
  doi: 10.1002/adma.201806897
– ident: ref9/cit9
  doi: 10.1002/adma.201905825
– ident: ref15/cit15
  doi: 10.1021/jacs.7b12972
– ident: ref2/cit2
  doi: 10.1038/nmat2986
– ident: ref1/cit1
  doi: 10.1038/s41467-019-11269-8
– ident: ref25/cit25
  doi: 10.1002/adma.201500247
– ident: ref10/cit10
  doi: 10.1021/acsnano.9b05386
– ident: ref26/cit26
  doi: 10.1002/anie.201906134
– ident: ref29/cit29
  doi: 10.1021/acs.chemrev.9b00443
– ident: ref4/cit4
  doi: 10.1021/jacs.8b01072
– ident: ref5/cit5
  doi: 10.1021/acs.nanolett.7b03310
– ident: ref34/cit34
  doi: 10.1039/C8CS00320C
– ident: ref38/cit38
  doi: 10.1126/science.aal4677
– ident: ref39/cit39
  doi: 10.1038/s41579-018-0128-7
– ident: ref27/cit27
  doi: 10.1002/aenm.201803889
– ident: ref16/cit16
  doi: 10.7150/thno.35418
– ident: ref33/cit33
  doi: 10.1038/s41565-017-0024-8
– ident: ref8/cit8
  doi: 10.1021/jacs.9b12788
– ident: ref31/cit31
  doi: 10.1038/nphoton.2012.158
– ident: ref28/cit28
  doi: 10.1016/j.nanoen.2018.02.040
– ident: ref35/cit35
  doi: 10.1038/s41560-018-0194-0
– ident: ref40/cit40
  doi: 10.1038/s41579-018-0058-4
– ident: ref13/cit13
  doi: 10.1038/s41467-018-03505-4
– ident: ref6/cit6
  doi: 10.1021/jacs.5b12073
– ident: ref11/cit11
  doi: 10.1002/adma.201701076
– ident: ref17/cit17
  doi: 10.1002/adma.201606864
– ident: ref7/cit7
  doi: 10.1038/nature08777
– ident: ref42/cit42
  doi: 10.1038/nnano.2014.298
– ident: ref19/cit19
  doi: 10.1038/s41587-019-0262-4
– ident: ref41/cit41
  doi: 10.1038/s41579-018-0019-y
– ident: ref37/cit37
  doi: 10.1126/science.aat9691
– ident: ref23/cit23
  doi: 10.1002/anie.201807695
– ident: ref32/cit32
  doi: 10.1021/acs.jpclett.9b00617
– ident: ref12/cit12
  doi: 10.1002/anie.201813702
– ident: ref21/cit21
  doi: 10.1002/adma.201907365
– ident: ref36/cit36
  doi: 10.1038/nature05762
SSID ssj0057876
Score 2.5913382
Snippet Photodynamic therapy (PDT) has shown great potential in infection treatment. However, the shallow depth of the short wavelength light and the low reactive...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8694
Title Hybrid Plasmonic Nanodumbbells Engineering for Multi-Intensified Second Near-Infrared Light Induced Photodynamic Therapy
URI http://dx.doi.org/10.1021/acsnano.1c00772
https://www.ncbi.nlm.nih.gov/pubmed/33957753
https://www.proquest.com/docview/2524363672
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-UwEA7ivuiD7nrfi0TwwZcc06RJm0cR5SAqggq-lTQXFlZbsT2wu79-Z9qes1446GNLUtp0kvk-ZuYbQvZVDM5GJ1kp85SlKnCWRy-YT4JRNlgTORYKX1zq8W16dqfu_otFv47gi-TQuqayVT1KHErPwGn7Seg8Q551dHw9PXTR7nQfQAaCDChipuLz5gHohlzz0g3NwZadjzld7bOzmk6aEFNLfo0mbTlyf98KN77_-p_JyoA06VFvGl_IQqjWyPIz_cF18nv8Bwu26BVA6AfUyKVw2NZ-8lBiOKKhzwZTALe0q9ZlQ9Z7BPBKr5FPe3oJ-wXuxydMZ6fnSPgpNgVxcHX1s25r3ze-pze9iMEGuT09uTkes6EVA7NSypbFwKPxKkrhROnA5-dZMDqENMoIlBBISRly8IZWR6GzqBIZE2Mzntkkam-j3CSLVV2FbUJ5njpuAheel2kqytxYrOCW2njjpRc7ZB_WrBi2UlN0UXKRFMNCFsNC7pDR9AcWbpAzx64a9_MnHMwmPPZKHvOH7k0tooDdhiEUW4V60hRCiVRqqXHMVm8qs4dJDHkC-_v6sQ_4RpYE5sdwxYT6Thbbp0n4AQCnLXc70_4HAkr4Bg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQHGgPpfRBoS11JQ69eOvYsTc-IlS00GVFxSJxixw_hEQ3qUhWKv31zCTZhbZaqT3Gske2M_Z8o5n5TMiBisHZ6CQrZJayVAXOsugF80kwygZrIsdC4bOJHl2mp1fqao3wRS0MTKIGSXUbxH9gF0g-Q1tpy2qQOGSggUt3A6CIQHfr8Ohicfei-ukujgx-MoCJJZnPXwLQGrn6d2u0AmK2puZ4i3xbTrLNMLkZzJti4H79wd_4P6t4Tp71uJMedoqyTdZC-YI8fcRG-JL8HN1h-RY9B0A9Q8ZcCldv5eezAoMTNX3UmQLUpW3tLutz4CNAWXqB3rWnEzg90B5vMbmdjtH9p_hEiIOv8-uqqfxdaWcgf9pRGrwil8dfpkcj1j_MwKyUsmEx8Gi8ilI4UThAANkwGB1CGmUEBxFclCJkYButjkIPo0pkTIwd8qFNovY2ytdkvazK8IZQnqWOm8CF50WaiiIzFuu5pTbeeOnFLjmAPcv7g1XnbcxcJHm_kXm_kbtksPiPuevJzfGNje-rB3xaDvjR8Xqs7vpxoRg5nD0MqNgyVPM6F0qkUkuNfXY6jVkKkxgABV9w798W8IFsjqZn43x8Mvn6ljwRmDnDFRPqHVlvbufhPUCfpthvtf0eBXYAdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYlgdIemr6bPlXIoRdtZcnSWseQZNm26bKQLORmZD0ItGuH2AtNf31nbO2Stiy0RwtpkOUZ6RvPzCdCDlQMzkYnWSWLnOUqcFZEL5jPglE2WBM5Fgp_nenpIv98oS5SURjWwsAkWpDU9kF8tOorHxPDQPYR2mtbN6PMIQsNbLy7GLRDl-vw6Gy9_6IK6iGWDL4yAIoNoc9fAvBEcu3vJ9IWmNkfN5M9sthMtM8y-TZaddXI_fyDw_F_3-QheZDwJz0cFOYRuRPqx-T-LVbCJ-TH9AbLuOgcgPUSmXMpbMGNXy0rDFK09FZnCpCX9jW8LOXCR4C09Ay9bE9nYEXQHq8xyZ2e4m8AileFOHiaXzZd429quwT55wO1wVOymJycH01ZuqCBWSllx2Lg0XgVpXCicoAEinEwOoQ8ygiOIrgqVSjgjLQ6Cj2OKpMxM3bMxzaL2tson5GduqnDC0J5kTtuAheeV3kuqsJYrOuW2njjpRf75ADWrEwG1pZ97FxkZVrIMi3kPhmtv2XpEsk53rXxffuAD5sBVwO_x_au79fKUYINYmDF1qFZtaVQIpdaauzzfNCajTCJgVDwCV_-2wu8I3fnx5Py9NPsyytyT2ACDVdMqNdkp7tehTeAgLrqba_wvwBLBQL5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Plasmonic+Nanodumbbells+Engineering+for+Multi-Intensified+Second+Near-Infrared+Light+Induced+Photodynamic+Therapy&rft.jtitle=ACS+nano&rft.au=Wang%2C+Dong&rft.au=Wang%2C+Hongzhi&rft.au=Ji%2C+Lei&rft.au=Xu%2C+Meng&rft.date=2021-05-25&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=15&rft.issue=5&rft.spage=8694&rft_id=info:doi/10.1021%2Facsnano.1c00772&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon