Nanostructured Organosilica Nitric Oxide Donors Intrinsically Regulate Macrophage Polarization with Antitumor Effect
Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational d...
Saved in:
Published in | ACS nano Vol. 16; no. 7; pp. 10943 - 10957 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.2c03348 |
Cover
Loading…
Abstract | Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational design for effective NO delivery and macrophage activation. S-Nitrosothiol (SNO) modified organosilica nanoparticles with a tetrasulfide-containing composition produced a higher level of intracellular NO than their bare silica counterparts in macrophages. Enhanced intracellular delivery of NO resulted in mitochondrial dysfunction and disruption of the tricarboxylic acid cycle, leading to macrophage activation and delayed tumor growth. This study provides insights on intracellularly delivered NO for regulating the polarization of macrophages and cancer immunotherapy. |
---|---|
AbstractList | Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational design for effective NO delivery and macrophage activation. S-Nitrosothiol (SNO) modified organosilica nanoparticles with a tetrasulfide-containing composition produced a higher level of intracellular NO than their bare silica counterparts in macrophages. Enhanced intracellular delivery of NO resulted in mitochondrial dysfunction and disruption of the tricarboxylic acid cycle, leading to macrophage activation and delayed tumor growth. This study provides insights on intracellularly delivered NO for regulating the polarization of macrophages and cancer immunotherapy.Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational design for effective NO delivery and macrophage activation. S-Nitrosothiol (SNO) modified organosilica nanoparticles with a tetrasulfide-containing composition produced a higher level of intracellular NO than their bare silica counterparts in macrophages. Enhanced intracellular delivery of NO resulted in mitochondrial dysfunction and disruption of the tricarboxylic acid cycle, leading to macrophage activation and delayed tumor growth. This study provides insights on intracellularly delivered NO for regulating the polarization of macrophages and cancer immunotherapy. Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational design for effective NO delivery and macrophage activation. -Nitrosothiol (SNO) modified organosilica nanoparticles with a tetrasulfide-containing composition produced a higher level of intracellular NO than their bare silica counterparts in macrophages. Enhanced intracellular delivery of NO resulted in mitochondrial dysfunction and disruption of the tricarboxylic acid cycle, leading to macrophage activation and delayed tumor growth. This study provides insights on intracellularly delivered NO for regulating the polarization of macrophages and cancer immunotherapy. Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational design for effective NO delivery and macrophage activation. S-Nitrosothiol (SNO) modified organosilica nanoparticles with a tetrasulfide-containing composition produced a higher level of intracellular NO than their bare silica counterparts in macrophages. Enhanced intracellular delivery of NO resulted in mitochondrial dysfunction and disruption of the tricarboxylic acid cycle, leading to macrophage activation and delayed tumor growth. This study provides insights on intracellularly delivered NO for regulating the polarization of macrophages and cancer immunotherapy. |
Author | Yu, Chengzhong Song, Hao Theivendran, Shevanuja Gu, Zhengying Yang, Yannan Cheng, Dan Yang, Yang Tang, Jie Zhang, Min |
AuthorAffiliation | Australian Institute for Bioengineering and Nanotechnology School of Chemistry and Molecular Engineering |
AuthorAffiliation_xml | – name: Australian Institute for Bioengineering and Nanotechnology – name: School of Chemistry and Molecular Engineering |
Author_xml | – sequence: 1 givenname: Shevanuja surname: Theivendran fullname: Theivendran, Shevanuja organization: Australian Institute for Bioengineering and Nanotechnology – sequence: 2 givenname: Zhengying surname: Gu fullname: Gu, Zhengying email: zygu@chem.ecnu.edu.cn organization: School of Chemistry and Molecular Engineering – sequence: 3 givenname: Jie surname: Tang fullname: Tang, Jie organization: Australian Institute for Bioengineering and Nanotechnology – sequence: 4 givenname: Yannan surname: Yang fullname: Yang, Yannan organization: Australian Institute for Bioengineering and Nanotechnology – sequence: 5 givenname: Hao orcidid: 0000-0002-6383-0605 surname: Song fullname: Song, Hao organization: Australian Institute for Bioengineering and Nanotechnology – sequence: 6 givenname: Yang surname: Yang fullname: Yang, Yang organization: Australian Institute for Bioengineering and Nanotechnology – sequence: 7 givenname: Min surname: Zhang fullname: Zhang, Min organization: Australian Institute for Bioengineering and Nanotechnology – sequence: 8 givenname: Dan surname: Cheng fullname: Cheng, Dan organization: Australian Institute for Bioengineering and Nanotechnology – sequence: 9 givenname: Chengzhong orcidid: 0000-0003-3707-0785 surname: Yu fullname: Yu, Chengzhong email: c.yu@uq.edu.au organization: School of Chemistry and Molecular Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35735363$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLZDEQhcOgjK9Zz27IUhha87iP9FJ8g9oiCu4u1bmVNpJO2iSXUX-90W5dDMxAQYqq7xTknC2y5oNHQn5ytseZ4Pugkwcf9oRmUlbqG9nkY9mMmGru1776mm-QrZQeGatb1TbfyYasW1nLRm6SfFXkKcdB5yFiTydx9j6wzmqgVzZHq-nk2fZIj4IPMdFzX2Y-lbVzL_QGZ4ODjPQSdAyLB5ghvQ4Oon2FbIOnf2x-oAc-2zzMQ6THxqDOO2TdgEv4Y_Vuk7uT49vDs9HF5PT88OBiBFLKPDKVGItageGVmTKoNPat4mhAAW9R9dNaVSC46avKaNUKKeuei7ZCxYxm_Vhuk93l3UUMTwOm3M1t0ugceAxD6kSjmJBNqYL-WqHDdI59t4h2DvGl-3SqAPtLoPwzpYjmC-Gse8-iW2XRrbIoivovhbb5w5Ucwbr_6H4vdWXRPYYh-uLRP-k37zyhNQ |
CitedBy_id | crossref_primary_10_1016_j_biomaterials_2025_123100 crossref_primary_10_1002_smtd_202300812 crossref_primary_10_1016_j_actbio_2024_01_026 crossref_primary_10_1007_s40820_024_01455_9 crossref_primary_10_1186_s12951_023_01841_2 crossref_primary_10_1016_j_addr_2023_114829 crossref_primary_10_1177_08853282231200711 crossref_primary_10_1002_EXP_20220086 crossref_primary_10_1021_acsnano_3c12064 crossref_primary_10_1002_adma_202401504 crossref_primary_10_1002_adhm_202300882 crossref_primary_10_1021_acs_nanolett_4c01869 crossref_primary_10_1039_D2CS00437B crossref_primary_10_1039_D3TB01538F crossref_primary_10_1021_acsmaterialslett_2c01079 crossref_primary_10_1016_j_ijbiomac_2023_126371 crossref_primary_10_1002_smll_202308055 crossref_primary_10_1016_j_jconrel_2022_08_018 crossref_primary_10_1021_acsanm_3c03482 crossref_primary_10_1002_adfm_202312092 crossref_primary_10_1016_j_ijbiomac_2023_126539 crossref_primary_10_1021_acsapm_3c02759 crossref_primary_10_1016_j_cej_2024_152590 crossref_primary_10_1016_j_pmatsci_2023_101230 crossref_primary_10_1016_j_cej_2024_154499 crossref_primary_10_3390_inorganics12060152 crossref_primary_10_1126_sciadv_adq6700 crossref_primary_10_3390_nu15194181 crossref_primary_10_1016_j_biomaterials_2024_122474 crossref_primary_10_3390_pharmaceutics15102443 crossref_primary_10_1016_j_nantod_2024_102500 crossref_primary_10_1021_acs_biomac_4c01071 crossref_primary_10_1021_acsmacrolett_3c00052 crossref_primary_10_1016_j_bbrc_2025_151345 crossref_primary_10_1016_j_jiec_2023_03_055 crossref_primary_10_1002_smll_202207261 crossref_primary_10_1016_j_ijbiomac_2023_128057 crossref_primary_10_1021_acsnano_4c16329 crossref_primary_10_1039_D4CC01594K crossref_primary_10_1021_acssuschemeng_3c01412 crossref_primary_10_1021_acs_molpharmaceut_2c00973 crossref_primary_10_1186_s12967_024_05552_6 crossref_primary_10_1021_acsanm_2c04321 crossref_primary_10_1016_j_ccr_2023_215052 crossref_primary_10_1186_s12951_024_02929_z crossref_primary_10_1007_s13205_024_04050_2 crossref_primary_10_1021_acs_analchem_4c00083 crossref_primary_10_1016_j_mtbio_2025_101540 crossref_primary_10_1021_acs_nanolett_3c04706 crossref_primary_10_1186_s12951_025_03304_2 crossref_primary_10_1016_j_jconrel_2022_10_012 crossref_primary_10_1016_j_biomaterials_2024_122532 crossref_primary_10_1016_j_cej_2024_148520 crossref_primary_10_1002_adfm_202401272 crossref_primary_10_1002_adfm_202408189 crossref_primary_10_1021_acsami_4c08415 crossref_primary_10_1002_smll_202305567 |
Cites_doi | 10.1016/j.it.2017.03.001 10.1021/acsami.8b19236 10.1016/j.biotechadv.2015.01.005 10.1021/cr000040l 10.1038/nnano.2016.168 10.1371/journal.ppat.1008566 10.1038/s41467-020-14433-7 10.5493/wjem.v5.i2.64 10.1039/D0SC02803G 10.4049/jimmunol.1002253 10.1021/jacs.8b10904 10.1002/adfm.202270072 10.1097/00006123-200103000-00032 10.1139/v98-062 10.1038/s41565-019-0570-3 10.1038/s41577-019-0127-6 10.2217/nnm-2017-0238 10.3389/fphar.2014.00196 10.1016/j.jconrel.2016.12.026 10.1016/j.cellimm.2008.08.007 10.2147/IJN.S28357 10.1038/s41467-019-09158-1 10.1021/acs.langmuir.7b01140 10.1515/BC.2009.033 10.5402/2012/926817 10.1016/j.immuni.2013.10.010 10.1001/jama.1996.03540140074032 10.1016/j.mtadv.2020.100069 10.1039/B912493B 10.1073/pnas.93.25.14428 10.1021/la302357h 10.18632/oncotarget.20298 10.1021/acs.accounts.5b00102 10.1002/anie.201800594 10.1158/0008-5472.CAN-15-1737 10.1016/S0005-2728(99)00025-0 10.3791/50966 10.1038/nrendo.2017.69 10.1016/j.mam.2008.08.006 10.1046/j.1365-2893.2003.00486.x 10.1016/j.celrep.2016.09.008 10.1002/anie.201504536 10.1002/adfm.201404402 10.1021/acs.chemmater.6b03896 10.1016/j.matt.2019.07.007 10.3389/fimmu.2019.02265 10.2217/nnm.16.5 10.1038/modpathol.3800253 10.1086/315093 10.3791/50323 10.3389/fncel.2019.00103 10.1111/j.1939-1676.1990.tb03119.x 10.3389/fimmu.2019.01084 10.1016/j.drudis.2019.05.033 10.3389/fimmu.2017.00061 10.1016/j.celrep.2019.06.018 10.1038/nrclinonc.2016.217 10.1002/anie.201914264 10.1002/advs.202003895 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.2c03348 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 10957 |
ExternalDocumentID | 35735363 10_1021_acsnano_2c03348 i37894 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABUCX ACGFO ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHGD ADHLV BAANH CITATION CUPRZ ED~ JG~ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a333t-f429258af14fb0a4ced781efa8a17e8db584a21fd44fc872335d1274e80fc0d93 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 04:50:54 EDT 2025 Thu Jan 02 22:53:25 EST 2025 Tue Jul 01 03:37:27 EDT 2025 Thu Apr 24 23:06:15 EDT 2025 Thu Jul 28 03:11:18 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | macrophage nitric oxide organosilica nanoparticles immunotherapy |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-f429258af14fb0a4ced781efa8a17e8db584a21fd44fc872335d1274e80fc0d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6383-0605 0000-0003-3707-0785 |
PMID | 35735363 |
PQID | 2680236236 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2680236236 pubmed_primary_35735363 crossref_primary_10_1021_acsnano_2c03348 crossref_citationtrail_10_1021_acsnano_2c03348 acs_journals_10_1021_acsnano_2c03348 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-26 |
PublicationDateYYYYMMDD | 2022-07-26 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref9/cit9 doi: 10.1016/j.it.2017.03.001 – ident: ref33/cit33 doi: 10.1021/acsami.8b19236 – ident: ref18/cit18 doi: 10.1016/j.biotechadv.2015.01.005 – ident: ref16/cit16 doi: 10.1021/cr000040l – ident: ref48/cit48 doi: 10.1038/nnano.2016.168 – ident: ref36/cit36 doi: 10.1371/journal.ppat.1008566 – ident: ref10/cit10 doi: 10.1038/s41467-020-14433-7 – ident: ref17/cit17 doi: 10.5493/wjem.v5.i2.64 – ident: ref32/cit32 doi: 10.1039/D0SC02803G – ident: ref14/cit14 doi: 10.4049/jimmunol.1002253 – ident: ref49/cit49 doi: 10.1021/jacs.8b10904 – ident: ref50/cit50 doi: 10.1002/adfm.202270072 – ident: ref12/cit12 doi: 10.1097/00006123-200103000-00032 – ident: ref29/cit29 doi: 10.1139/v98-062 – ident: ref23/cit23 doi: 10.1038/s41565-019-0570-3 – ident: ref8/cit8 doi: 10.1038/s41577-019-0127-6 – ident: ref35/cit35 doi: 10.2217/nnm-2017-0238 – ident: ref27/cit27 doi: 10.3389/fphar.2014.00196 – ident: ref38/cit38 doi: 10.1016/j.jconrel.2016.12.026 – ident: ref53/cit53 doi: 10.1016/j.cellimm.2008.08.007 – ident: ref58/cit58 doi: 10.2147/IJN.S28357 – ident: ref56/cit56 doi: 10.1038/s41467-019-09158-1 – ident: ref57/cit57 doi: 10.1021/acs.langmuir.7b01140 – ident: ref26/cit26 doi: 10.1515/BC.2009.033 – ident: ref55/cit55 doi: 10.5402/2012/926817 – ident: ref54/cit54 doi: 10.1016/j.immuni.2013.10.010 – ident: ref1/cit1 doi: 10.1001/jama.1996.03540140074032 – ident: ref39/cit39 doi: 10.1016/j.mtadv.2020.100069 – ident: ref20/cit20 doi: 10.1039/B912493B – ident: ref28/cit28 doi: 10.1073/pnas.93.25.14428 – ident: ref34/cit34 doi: 10.1021/la302357h – ident: ref44/cit44 doi: 10.18632/oncotarget.20298 – ident: ref4/cit4 doi: 10.1021/acs.accounts.5b00102 – ident: ref25/cit25 doi: 10.1002/anie.201800594 – ident: ref7/cit7 doi: 10.1158/0008-5472.CAN-15-1737 – ident: ref46/cit46 doi: 10.1016/S0005-2728(99)00025-0 – ident: ref59/cit59 doi: 10.3791/50966 – ident: ref3/cit3 doi: 10.1038/nrendo.2017.69 – ident: ref37/cit37 doi: 10.1016/j.mam.2008.08.006 – ident: ref52/cit52 doi: 10.1046/j.1365-2893.2003.00486.x – ident: ref11/cit11 doi: 10.1016/j.celrep.2016.09.008 – ident: ref21/cit21 doi: 10.1002/anie.201504536 – ident: ref22/cit22 doi: 10.1002/adfm.201404402 – ident: ref30/cit30 doi: 10.1021/acs.chemmater.6b03896 – ident: ref24/cit24 doi: 10.1016/j.matt.2019.07.007 – ident: ref43/cit43 doi: 10.3389/fimmu.2019.02265 – ident: ref47/cit47 doi: 10.2217/nnm.16.5 – ident: ref51/cit51 doi: 10.1038/modpathol.3800253 – ident: ref15/cit15 doi: 10.1086/315093 – ident: ref42/cit42 doi: 10.3791/50323 – ident: ref45/cit45 doi: 10.3389/fncel.2019.00103 – ident: ref13/cit13 doi: 10.1111/j.1939-1676.1990.tb03119.x – ident: ref41/cit41 doi: 10.3389/fimmu.2019.01084 – ident: ref2/cit2 doi: 10.1016/j.drudis.2019.05.033 – ident: ref6/cit6 doi: 10.3389/fimmu.2017.00061 – ident: ref19/cit19 doi: 10.1016/j.celrep.2019.06.018 – ident: ref40/cit40 doi: 10.1038/nrclinonc.2016.217 – ident: ref31/cit31 doi: 10.1002/anie.201914264 – ident: ref5/cit5 doi: 10.1002/advs.202003895 |
SSID | ssj0057876 |
Score | 2.5972452 |
Snippet | Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10943 |
SubjectTerms | Humans Macrophage Activation Macrophages Nanoparticles Neoplasms Nitric Oxide Nitric Oxide Donors - pharmacology Silicon Dioxide - pharmacology |
Title | Nanostructured Organosilica Nitric Oxide Donors Intrinsically Regulate Macrophage Polarization with Antitumor Effect |
URI | http://dx.doi.org/10.1021/acsnano.2c03348 https://www.ncbi.nlm.nih.gov/pubmed/35735363 https://www.proquest.com/docview/2680236236 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaeoFDoby6QCsjceCSJfEj8R5XC4hW4iEeErfIscfqquCgza5E--sZJ9kFilZUysmKrcSeGX_j8XxDyJ4yVoIGiJx2NhJOmahwqI8yMaynDCKGmq7p9Cw9uRE_b-XtM1n0vxF8lhxoU3ntyy4zccga_Ug-sRRBdkBBg6up0Q1ylzYBZHSQEUXMWHzeDBC2IVO93obmYMt6jzlebm5nVTU1Ybha8rs7GRdd8_ctceP7n79CPrdIk_Yb0fhCPoBfJUsv-AfXyBhta9kwyE5GYGmdmFlWw3CQR8-Ggbyfnj8OLdDD0pejiv7w2Obrhb37Qy-bOvZAT3UoBPYLTRO9CK5ym9tJwyEv7YdE4Ml9OaINU_I6uTk-uh6cRG0ZhkhzzseRCxWtpNIuEa6ItTBgM5WA00onGShbIIbRLHFWCGdUxjiXNkFnF1TsTGx7fIMs-NLDV0J1jI48ADdpJgSzRSEh5VpyI7R2PZV1yB7OV96qUZXXEXKW5O0k5u0kdkh3uni5aanMQ0WNu_kd9mcdHhoWj_mv7k6lIUdNC-ET7aGcVDmKXaDbx6dDNhsxmQ3GZcYlT_nW__3ANllkIY0iziKW7pAFXGj4huBmXHyvxfoJlxj4tA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VcoAeeD_C00g9cNmw68euc4wKVQpNeLVSbyuvPRZRixdlEwn49Yx3N-GlSHC1bMv2jO1vPJ5vAPa1dQoNYuKNd4n02iaVp_2oMstH2hJiaOmaprN8cipfn6mzHUjXsTA0iIZ6alon_k92gewFlQUT6iG3aQwevQSXCYrw-IlvfPBxffZG9cs7PzLZyQQmNmQ-f3UQbyPb_H4bbYGY7VVzeB3ebwbZ_jA5H66W1dB-_4O_8X9mcQOu9biTjTtFuQk7GG7B3i9shLdhSSdt3fHJrhboWBumWTfz-KzHZvNI5c_efp07ZC_rUC8adhSoLLRivvjGPnRZ7ZFNTUwL9okOKvYuGs59pCeLT75sHMOCV5_rBet4k-_A6eGrk4NJ0idlSIwQYpn4mN9KaeMz6avUSIuu0Bl6o01WoHYVIRrDM--k9FYXXAjlMjJ9Uafepm4k7sJuqAPeB2ZSMusRhc0LKbmrKoW5MEpYaYwf6WIA-7ReZb-pmrL1l_Os7Bex7BdxAMO1DEvbE5vH_BoX2xs83zT40nF6bK_6bK0UJe276EwxAetVU_I8UucReMwHcK_Tlk1nQhVCiVw8-LcJPIUrk5PpcXl8NHvzEK7yGGCRFgnPH8EuCR0fE-xZVk9aTf8BiloBJA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKKyE40JZnWqBG6oHLhl0_dp1j1BK1QEMFROpt5fVDRBRvlU0k2l_fmV0n4qFI5WrZlh8z9ozH3zeEHCpjpdPOJV57mwivTFJ50EeZGTZQBiyGlq7pbJyfTMSHC3kRQWGIhYFBNNBT0wbxUauvrI8MA9k7KA861H1mUgSQ3iNbGLTDj3zDo6_L8xdFMO9iyeArg0GxIvT5pwO8kUzz5420xsxsr5vRNpmsBtr-MvnRX8yrvrn5i8Pxf2eyQx5F-5MOO4HZJRsuPCYPf2MlfELmcOLWHa_sYuYsbeGadTPF5z06niKlP_38a2odPa5DPWvoaYCy0G735TX90mW3d_RMY3qw73Bg0XN0oCPik-LTLx0iPHjxs57Rjj_5KZmM3n87OklicoZEc87nicc8V1JpnwlfpVoYZwuVOa-VzgqnbAWWjWaZt0J4owrGubQZuMBOpd6kdsCfkc1QB_eCUJ2Ce-8cN3khBLNVJV3OteRGaO0HquiRQ1ivMipXU7Zxc5aVcRHLuIg90l_uY2kiwTnm2bhc3-DtqsFVx-2xvuqbpWCUoH8YVNHB1YumZDlS6IERmffI805iVp1xWXDJc753twkckPvnx6Py0-n44z55wBBnkRYJy1-STdhz9wqsn3n1uhX2W8KbA6c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanostructured+Organosilica+Nitric+Oxide+Donors+Intrinsically+Regulate+Macrophage+Polarization+with+Antitumor+Effect&rft.jtitle=ACS+nano&rft.au=Theivendran%2C+Shevanuja&rft.au=Gu%2C+Zhengying&rft.au=Tang%2C+Jie&rft.au=Yang%2C+Yannan&rft.date=2022-07-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=16&rft.issue=7&rft.spage=10943&rft_id=info:doi/10.1021%2Facsnano.2c03348&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |