Nanostructured Organosilica Nitric Oxide Donors Intrinsically Regulate Macrophage Polarization with Antitumor Effect

Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational d...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 16; no. 7; pp. 10943 - 10957
Main Authors Theivendran, Shevanuja, Gu, Zhengying, Tang, Jie, Yang, Yannan, Song, Hao, Yang, Yang, Zhang, Min, Cheng, Dan, Yu, Chengzhong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.07.2022
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.2c03348

Cover

Loading…
Abstract Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational design for effective NO delivery and macrophage activation. S-Nitrosothiol (SNO) modified organosilica nanoparticles with a tetrasulfide-containing composition produced a higher level of intracellular NO than their bare silica counterparts in macrophages. Enhanced intracellular delivery of NO resulted in mitochondrial dysfunction and disruption of the tricarboxylic acid cycle, leading to macrophage activation and delayed tumor growth. This study provides insights on intracellularly delivered NO for regulating the polarization of macrophages and cancer immunotherapy.
AbstractList Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational design for effective NO delivery and macrophage activation. S-Nitrosothiol (SNO) modified organosilica nanoparticles with a tetrasulfide-containing composition produced a higher level of intracellular NO than their bare silica counterparts in macrophages. Enhanced intracellular delivery of NO resulted in mitochondrial dysfunction and disruption of the tricarboxylic acid cycle, leading to macrophage activation and delayed tumor growth. This study provides insights on intracellularly delivered NO for regulating the polarization of macrophages and cancer immunotherapy.Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational design for effective NO delivery and macrophage activation. S-Nitrosothiol (SNO) modified organosilica nanoparticles with a tetrasulfide-containing composition produced a higher level of intracellular NO than their bare silica counterparts in macrophages. Enhanced intracellular delivery of NO resulted in mitochondrial dysfunction and disruption of the tricarboxylic acid cycle, leading to macrophage activation and delayed tumor growth. This study provides insights on intracellularly delivered NO for regulating the polarization of macrophages and cancer immunotherapy.
Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational design for effective NO delivery and macrophage activation. -Nitrosothiol (SNO) modified organosilica nanoparticles with a tetrasulfide-containing composition produced a higher level of intracellular NO than their bare silica counterparts in macrophages. Enhanced intracellular delivery of NO resulted in mitochondrial dysfunction and disruption of the tricarboxylic acid cycle, leading to macrophage activation and delayed tumor growth. This study provides insights on intracellularly delivered NO for regulating the polarization of macrophages and cancer immunotherapy.
Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the activation of macrophages for cancer immunotherapy. Herein, we report the synthesis of a nanoparticle-based NO delivery platform with a rational design for effective NO delivery and macrophage activation. S-Nitrosothiol (SNO) modified organosilica nanoparticles with a tetrasulfide-containing composition produced a higher level of intracellular NO than their bare silica counterparts in macrophages. Enhanced intracellular delivery of NO resulted in mitochondrial dysfunction and disruption of the tricarboxylic acid cycle, leading to macrophage activation and delayed tumor growth. This study provides insights on intracellularly delivered NO for regulating the polarization of macrophages and cancer immunotherapy.
Author Yu, Chengzhong
Song, Hao
Theivendran, Shevanuja
Gu, Zhengying
Yang, Yannan
Cheng, Dan
Yang, Yang
Tang, Jie
Zhang, Min
AuthorAffiliation Australian Institute for Bioengineering and Nanotechnology
School of Chemistry and Molecular Engineering
AuthorAffiliation_xml – name: Australian Institute for Bioengineering and Nanotechnology
– name: School of Chemistry and Molecular Engineering
Author_xml – sequence: 1
  givenname: Shevanuja
  surname: Theivendran
  fullname: Theivendran, Shevanuja
  organization: Australian Institute for Bioengineering and Nanotechnology
– sequence: 2
  givenname: Zhengying
  surname: Gu
  fullname: Gu, Zhengying
  email: zygu@chem.ecnu.edu.cn
  organization: School of Chemistry and Molecular Engineering
– sequence: 3
  givenname: Jie
  surname: Tang
  fullname: Tang, Jie
  organization: Australian Institute for Bioengineering and Nanotechnology
– sequence: 4
  givenname: Yannan
  surname: Yang
  fullname: Yang, Yannan
  organization: Australian Institute for Bioengineering and Nanotechnology
– sequence: 5
  givenname: Hao
  orcidid: 0000-0002-6383-0605
  surname: Song
  fullname: Song, Hao
  organization: Australian Institute for Bioengineering and Nanotechnology
– sequence: 6
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Australian Institute for Bioengineering and Nanotechnology
– sequence: 7
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: Australian Institute for Bioengineering and Nanotechnology
– sequence: 8
  givenname: Dan
  surname: Cheng
  fullname: Cheng, Dan
  organization: Australian Institute for Bioengineering and Nanotechnology
– sequence: 9
  givenname: Chengzhong
  orcidid: 0000-0003-3707-0785
  surname: Yu
  fullname: Yu, Chengzhong
  email: c.yu@uq.edu.au
  organization: School of Chemistry and Molecular Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35735363$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLZDEQhcOgjK9Zz27IUhha87iP9FJ8g9oiCu4u1bmVNpJO2iSXUX-90W5dDMxAQYqq7xTknC2y5oNHQn5ytseZ4Pugkwcf9oRmUlbqG9nkY9mMmGru1776mm-QrZQeGatb1TbfyYasW1nLRm6SfFXkKcdB5yFiTydx9j6wzmqgVzZHq-nk2fZIj4IPMdFzX2Y-lbVzL_QGZ4ODjPQSdAyLB5ghvQ4Oon2FbIOnf2x-oAc-2zzMQ6THxqDOO2TdgEv4Y_Vuk7uT49vDs9HF5PT88OBiBFLKPDKVGItageGVmTKoNPat4mhAAW9R9dNaVSC46avKaNUKKeuei7ZCxYxm_Vhuk93l3UUMTwOm3M1t0ugceAxD6kSjmJBNqYL-WqHDdI59t4h2DvGl-3SqAPtLoPwzpYjmC-Gse8-iW2XRrbIoivovhbb5w5Ucwbr_6H4vdWXRPYYh-uLRP-k37zyhNQ
CitedBy_id crossref_primary_10_1016_j_biomaterials_2025_123100
crossref_primary_10_1002_smtd_202300812
crossref_primary_10_1016_j_actbio_2024_01_026
crossref_primary_10_1007_s40820_024_01455_9
crossref_primary_10_1186_s12951_023_01841_2
crossref_primary_10_1016_j_addr_2023_114829
crossref_primary_10_1177_08853282231200711
crossref_primary_10_1002_EXP_20220086
crossref_primary_10_1021_acsnano_3c12064
crossref_primary_10_1002_adma_202401504
crossref_primary_10_1002_adhm_202300882
crossref_primary_10_1021_acs_nanolett_4c01869
crossref_primary_10_1039_D2CS00437B
crossref_primary_10_1039_D3TB01538F
crossref_primary_10_1021_acsmaterialslett_2c01079
crossref_primary_10_1016_j_ijbiomac_2023_126371
crossref_primary_10_1002_smll_202308055
crossref_primary_10_1016_j_jconrel_2022_08_018
crossref_primary_10_1021_acsanm_3c03482
crossref_primary_10_1002_adfm_202312092
crossref_primary_10_1016_j_ijbiomac_2023_126539
crossref_primary_10_1021_acsapm_3c02759
crossref_primary_10_1016_j_cej_2024_152590
crossref_primary_10_1016_j_pmatsci_2023_101230
crossref_primary_10_1016_j_cej_2024_154499
crossref_primary_10_3390_inorganics12060152
crossref_primary_10_1126_sciadv_adq6700
crossref_primary_10_3390_nu15194181
crossref_primary_10_1016_j_biomaterials_2024_122474
crossref_primary_10_3390_pharmaceutics15102443
crossref_primary_10_1016_j_nantod_2024_102500
crossref_primary_10_1021_acs_biomac_4c01071
crossref_primary_10_1021_acsmacrolett_3c00052
crossref_primary_10_1016_j_bbrc_2025_151345
crossref_primary_10_1016_j_jiec_2023_03_055
crossref_primary_10_1002_smll_202207261
crossref_primary_10_1016_j_ijbiomac_2023_128057
crossref_primary_10_1021_acsnano_4c16329
crossref_primary_10_1039_D4CC01594K
crossref_primary_10_1021_acssuschemeng_3c01412
crossref_primary_10_1021_acs_molpharmaceut_2c00973
crossref_primary_10_1186_s12967_024_05552_6
crossref_primary_10_1021_acsanm_2c04321
crossref_primary_10_1016_j_ccr_2023_215052
crossref_primary_10_1186_s12951_024_02929_z
crossref_primary_10_1007_s13205_024_04050_2
crossref_primary_10_1021_acs_analchem_4c00083
crossref_primary_10_1016_j_mtbio_2025_101540
crossref_primary_10_1021_acs_nanolett_3c04706
crossref_primary_10_1186_s12951_025_03304_2
crossref_primary_10_1016_j_jconrel_2022_10_012
crossref_primary_10_1016_j_biomaterials_2024_122532
crossref_primary_10_1016_j_cej_2024_148520
crossref_primary_10_1002_adfm_202401272
crossref_primary_10_1002_adfm_202408189
crossref_primary_10_1021_acsami_4c08415
crossref_primary_10_1002_smll_202305567
Cites_doi 10.1016/j.it.2017.03.001
10.1021/acsami.8b19236
10.1016/j.biotechadv.2015.01.005
10.1021/cr000040l
10.1038/nnano.2016.168
10.1371/journal.ppat.1008566
10.1038/s41467-020-14433-7
10.5493/wjem.v5.i2.64
10.1039/D0SC02803G
10.4049/jimmunol.1002253
10.1021/jacs.8b10904
10.1002/adfm.202270072
10.1097/00006123-200103000-00032
10.1139/v98-062
10.1038/s41565-019-0570-3
10.1038/s41577-019-0127-6
10.2217/nnm-2017-0238
10.3389/fphar.2014.00196
10.1016/j.jconrel.2016.12.026
10.1016/j.cellimm.2008.08.007
10.2147/IJN.S28357
10.1038/s41467-019-09158-1
10.1021/acs.langmuir.7b01140
10.1515/BC.2009.033
10.5402/2012/926817
10.1016/j.immuni.2013.10.010
10.1001/jama.1996.03540140074032
10.1016/j.mtadv.2020.100069
10.1039/B912493B
10.1073/pnas.93.25.14428
10.1021/la302357h
10.18632/oncotarget.20298
10.1021/acs.accounts.5b00102
10.1002/anie.201800594
10.1158/0008-5472.CAN-15-1737
10.1016/S0005-2728(99)00025-0
10.3791/50966
10.1038/nrendo.2017.69
10.1016/j.mam.2008.08.006
10.1046/j.1365-2893.2003.00486.x
10.1016/j.celrep.2016.09.008
10.1002/anie.201504536
10.1002/adfm.201404402
10.1021/acs.chemmater.6b03896
10.1016/j.matt.2019.07.007
10.3389/fimmu.2019.02265
10.2217/nnm.16.5
10.1038/modpathol.3800253
10.1086/315093
10.3791/50323
10.3389/fncel.2019.00103
10.1111/j.1939-1676.1990.tb03119.x
10.3389/fimmu.2019.01084
10.1016/j.drudis.2019.05.033
10.3389/fimmu.2017.00061
10.1016/j.celrep.2019.06.018
10.1038/nrclinonc.2016.217
10.1002/anie.201914264
10.1002/advs.202003895
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.2c03348
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 10957
ExternalDocumentID 35735363
10_1021_acsnano_2c03348
i37894
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFO
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a333t-f429258af14fb0a4ced781efa8a17e8db584a21fd44fc872335d1274e80fc0d93
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 04:50:54 EDT 2025
Thu Jan 02 22:53:25 EST 2025
Tue Jul 01 03:37:27 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Thu Jul 28 03:11:18 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords macrophage
nitric oxide
organosilica
nanoparticles
immunotherapy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-f429258af14fb0a4ced781efa8a17e8db584a21fd44fc872335d1274e80fc0d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6383-0605
0000-0003-3707-0785
PMID 35735363
PQID 2680236236
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2680236236
pubmed_primary_35735363
crossref_primary_10_1021_acsnano_2c03348
crossref_citationtrail_10_1021_acsnano_2c03348
acs_journals_10_1021_acsnano_2c03348
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-26
PublicationDateYYYYMMDD 2022-07-26
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref9/cit9
  doi: 10.1016/j.it.2017.03.001
– ident: ref33/cit33
  doi: 10.1021/acsami.8b19236
– ident: ref18/cit18
  doi: 10.1016/j.biotechadv.2015.01.005
– ident: ref16/cit16
  doi: 10.1021/cr000040l
– ident: ref48/cit48
  doi: 10.1038/nnano.2016.168
– ident: ref36/cit36
  doi: 10.1371/journal.ppat.1008566
– ident: ref10/cit10
  doi: 10.1038/s41467-020-14433-7
– ident: ref17/cit17
  doi: 10.5493/wjem.v5.i2.64
– ident: ref32/cit32
  doi: 10.1039/D0SC02803G
– ident: ref14/cit14
  doi: 10.4049/jimmunol.1002253
– ident: ref49/cit49
  doi: 10.1021/jacs.8b10904
– ident: ref50/cit50
  doi: 10.1002/adfm.202270072
– ident: ref12/cit12
  doi: 10.1097/00006123-200103000-00032
– ident: ref29/cit29
  doi: 10.1139/v98-062
– ident: ref23/cit23
  doi: 10.1038/s41565-019-0570-3
– ident: ref8/cit8
  doi: 10.1038/s41577-019-0127-6
– ident: ref35/cit35
  doi: 10.2217/nnm-2017-0238
– ident: ref27/cit27
  doi: 10.3389/fphar.2014.00196
– ident: ref38/cit38
  doi: 10.1016/j.jconrel.2016.12.026
– ident: ref53/cit53
  doi: 10.1016/j.cellimm.2008.08.007
– ident: ref58/cit58
  doi: 10.2147/IJN.S28357
– ident: ref56/cit56
  doi: 10.1038/s41467-019-09158-1
– ident: ref57/cit57
  doi: 10.1021/acs.langmuir.7b01140
– ident: ref26/cit26
  doi: 10.1515/BC.2009.033
– ident: ref55/cit55
  doi: 10.5402/2012/926817
– ident: ref54/cit54
  doi: 10.1016/j.immuni.2013.10.010
– ident: ref1/cit1
  doi: 10.1001/jama.1996.03540140074032
– ident: ref39/cit39
  doi: 10.1016/j.mtadv.2020.100069
– ident: ref20/cit20
  doi: 10.1039/B912493B
– ident: ref28/cit28
  doi: 10.1073/pnas.93.25.14428
– ident: ref34/cit34
  doi: 10.1021/la302357h
– ident: ref44/cit44
  doi: 10.18632/oncotarget.20298
– ident: ref4/cit4
  doi: 10.1021/acs.accounts.5b00102
– ident: ref25/cit25
  doi: 10.1002/anie.201800594
– ident: ref7/cit7
  doi: 10.1158/0008-5472.CAN-15-1737
– ident: ref46/cit46
  doi: 10.1016/S0005-2728(99)00025-0
– ident: ref59/cit59
  doi: 10.3791/50966
– ident: ref3/cit3
  doi: 10.1038/nrendo.2017.69
– ident: ref37/cit37
  doi: 10.1016/j.mam.2008.08.006
– ident: ref52/cit52
  doi: 10.1046/j.1365-2893.2003.00486.x
– ident: ref11/cit11
  doi: 10.1016/j.celrep.2016.09.008
– ident: ref21/cit21
  doi: 10.1002/anie.201504536
– ident: ref22/cit22
  doi: 10.1002/adfm.201404402
– ident: ref30/cit30
  doi: 10.1021/acs.chemmater.6b03896
– ident: ref24/cit24
  doi: 10.1016/j.matt.2019.07.007
– ident: ref43/cit43
  doi: 10.3389/fimmu.2019.02265
– ident: ref47/cit47
  doi: 10.2217/nnm.16.5
– ident: ref51/cit51
  doi: 10.1038/modpathol.3800253
– ident: ref15/cit15
  doi: 10.1086/315093
– ident: ref42/cit42
  doi: 10.3791/50323
– ident: ref45/cit45
  doi: 10.3389/fncel.2019.00103
– ident: ref13/cit13
  doi: 10.1111/j.1939-1676.1990.tb03119.x
– ident: ref41/cit41
  doi: 10.3389/fimmu.2019.01084
– ident: ref2/cit2
  doi: 10.1016/j.drudis.2019.05.033
– ident: ref6/cit6
  doi: 10.3389/fimmu.2017.00061
– ident: ref19/cit19
  doi: 10.1016/j.celrep.2019.06.018
– ident: ref40/cit40
  doi: 10.1038/nrclinonc.2016.217
– ident: ref31/cit31
  doi: 10.1002/anie.201914264
– ident: ref5/cit5
  doi: 10.1002/advs.202003895
SSID ssj0057876
Score 2.5972452
Snippet Nitric oxide (NO) has many important biological functions; however, it has been a long-standing challenge to utilize the exogenous NO donor itself in the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10943
SubjectTerms Humans
Macrophage Activation
Macrophages
Nanoparticles
Neoplasms
Nitric Oxide
Nitric Oxide Donors - pharmacology
Silicon Dioxide - pharmacology
Title Nanostructured Organosilica Nitric Oxide Donors Intrinsically Regulate Macrophage Polarization with Antitumor Effect
URI http://dx.doi.org/10.1021/acsnano.2c03348
https://www.ncbi.nlm.nih.gov/pubmed/35735363
https://www.proquest.com/docview/2680236236
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaeoFDoby6QCsjceCSJfEj8R5XC4hW4iEeErfIscfqquCgza5E--sZJ9kFilZUysmKrcSeGX_j8XxDyJ4yVoIGiJx2NhJOmahwqI8yMaynDCKGmq7p9Cw9uRE_b-XtM1n0vxF8lhxoU3ntyy4zccga_Ug-sRRBdkBBg6up0Q1ylzYBZHSQEUXMWHzeDBC2IVO93obmYMt6jzlebm5nVTU1Ybha8rs7GRdd8_ctceP7n79CPrdIk_Yb0fhCPoBfJUsv-AfXyBhta9kwyE5GYGmdmFlWw3CQR8-Ggbyfnj8OLdDD0pejiv7w2Obrhb37Qy-bOvZAT3UoBPYLTRO9CK5ym9tJwyEv7YdE4Ml9OaINU_I6uTk-uh6cRG0ZhkhzzseRCxWtpNIuEa6ItTBgM5WA00onGShbIIbRLHFWCGdUxjiXNkFnF1TsTGx7fIMs-NLDV0J1jI48ADdpJgSzRSEh5VpyI7R2PZV1yB7OV96qUZXXEXKW5O0k5u0kdkh3uni5aanMQ0WNu_kd9mcdHhoWj_mv7k6lIUdNC-ET7aGcVDmKXaDbx6dDNhsxmQ3GZcYlT_nW__3ANllkIY0iziKW7pAFXGj4huBmXHyvxfoJlxj4tA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VcoAeeD_C00g9cNmw68euc4wKVQpNeLVSbyuvPRZRixdlEwn49Yx3N-GlSHC1bMv2jO1vPJ5vAPa1dQoNYuKNd4n02iaVp_2oMstH2hJiaOmaprN8cipfn6mzHUjXsTA0iIZ6alon_k92gewFlQUT6iG3aQwevQSXCYrw-IlvfPBxffZG9cs7PzLZyQQmNmQ-f3UQbyPb_H4bbYGY7VVzeB3ebwbZ_jA5H66W1dB-_4O_8X9mcQOu9biTjTtFuQk7GG7B3i9shLdhSSdt3fHJrhboWBumWTfz-KzHZvNI5c_efp07ZC_rUC8adhSoLLRivvjGPnRZ7ZFNTUwL9okOKvYuGs59pCeLT75sHMOCV5_rBet4k-_A6eGrk4NJ0idlSIwQYpn4mN9KaeMz6avUSIuu0Bl6o01WoHYVIRrDM--k9FYXXAjlMjJ9Uafepm4k7sJuqAPeB2ZSMusRhc0LKbmrKoW5MEpYaYwf6WIA-7ReZb-pmrL1l_Os7Bex7BdxAMO1DEvbE5vH_BoX2xs83zT40nF6bK_6bK0UJe276EwxAetVU_I8UucReMwHcK_Tlk1nQhVCiVw8-LcJPIUrk5PpcXl8NHvzEK7yGGCRFgnPH8EuCR0fE-xZVk9aTf8BiloBJA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKKyE40JZnWqBG6oHLhl0_dp1j1BK1QEMFROpt5fVDRBRvlU0k2l_fmV0n4qFI5WrZlh8z9ozH3zeEHCpjpdPOJV57mwivTFJ50EeZGTZQBiyGlq7pbJyfTMSHC3kRQWGIhYFBNNBT0wbxUauvrI8MA9k7KA861H1mUgSQ3iNbGLTDj3zDo6_L8xdFMO9iyeArg0GxIvT5pwO8kUzz5420xsxsr5vRNpmsBtr-MvnRX8yrvrn5i8Pxf2eyQx5F-5MOO4HZJRsuPCYPf2MlfELmcOLWHa_sYuYsbeGadTPF5z06niKlP_38a2odPa5DPWvoaYCy0G735TX90mW3d_RMY3qw73Bg0XN0oCPik-LTLx0iPHjxs57Rjj_5KZmM3n87OklicoZEc87nicc8V1JpnwlfpVoYZwuVOa-VzgqnbAWWjWaZt0J4owrGubQZuMBOpd6kdsCfkc1QB_eCUJ2Ce-8cN3khBLNVJV3OteRGaO0HquiRQ1ivMipXU7Zxc5aVcRHLuIg90l_uY2kiwTnm2bhc3-DtqsFVx-2xvuqbpWCUoH8YVNHB1YumZDlS6IERmffI805iVp1xWXDJc753twkckPvnx6Py0-n44z55wBBnkRYJy1-STdhz9wqsn3n1uhX2W8KbA6c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanostructured+Organosilica+Nitric+Oxide+Donors+Intrinsically+Regulate+Macrophage+Polarization+with+Antitumor+Effect&rft.jtitle=ACS+nano&rft.au=Theivendran%2C+Shevanuja&rft.au=Gu%2C+Zhengying&rft.au=Tang%2C+Jie&rft.au=Yang%2C+Yannan&rft.date=2022-07-26&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=16&rft.issue=7&rft.spage=10943&rft_id=info:doi/10.1021%2Facsnano.2c03348&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon