Ultrafast Response and Programmable Locomotion of Liquid/Vapor/Light-Driven Soft Multifunctional Actuators

External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 16; no. 2; pp. 2672 - 2681
Main Authors Wang, Miao, Zhou, Lei, Deng, Wenyan, Hou, Yaqi, He, Wen, Yu, Lejian, Sun, Hao, Ren, Lei, Hou, Xu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors.
AbstractList External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors.External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors.
External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors.
Author Hou, Xu
Deng, Wenyan
Wang, Miao
Zhou, Lei
Ren, Lei
He, Wen
Sun, Hao
Hou, Yaqi
Yu, Lejian
AuthorAffiliation School of Mechanical Engineering and Automation
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
Collaborative Innovation Centre of Chemistry for Energy Materials
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering
Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology
Xiamen University
The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials
AuthorAffiliation_xml – name: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering
– name: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– name: Collaborative Innovation Centre of Chemistry for Energy Materials
– name: School of Mechanical Engineering and Automation
– name: Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology
– name: Xiamen University
– name: The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials
Author_xml – sequence: 1
  givenname: Miao
  orcidid: 0000-0002-6354-7324
  surname: Wang
  fullname: Wang, Miao
  email: miaowang@xmu.edu.cn
  organization: Xiamen University
– sequence: 2
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
  organization: Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology
– sequence: 3
  givenname: Wenyan
  surname: Deng
  fullname: Deng, Wenyan
  organization: Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology
– sequence: 4
  givenname: Yaqi
  surname: Hou
  fullname: Hou, Yaqi
  organization: Xiamen University
– sequence: 5
  givenname: Wen
  surname: He
  fullname: He, Wen
  organization: Xiamen University
– sequence: 6
  givenname: Lejian
  surname: Yu
  fullname: Yu, Lejian
  organization: Xiamen University
– sequence: 7
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  email: sh@fzu.edu.cn
  organization: School of Mechanical Engineering and Automation
– sequence: 8
  givenname: Lei
  orcidid: 0000-0003-2131-1601
  surname: Ren
  fullname: Ren, Lei
  email: renlei@xmu.edu.cn
  organization: Xiamen University
– sequence: 9
  givenname: Xu
  orcidid: 0000-0002-9615-9547
  surname: Hou
  fullname: Hou, Xu
  email: houx@xmu.edu.cn
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35040625$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAURoMoPkbX7iRLQeokvelrOYxPqCi-cFfSNBkztMlMkgr-ezvM6ELQVS6557uL8x2gbWONROiYknNKYjrmwhtu7DkVpGBZtoX2aQFpRPL0bftnTugeOvB-TkiS5Vm6i_YgIYykcbKP5i9tcFxxH_Cj9AtrvMTcNPjB2ZnjXcfrVuLSCtvZoK3BVuFSL3vdjF_5wrpxqWfvIbpw-kMa_GRVwHd9G7TqjVjxvMUTEXoerPOHaEfx1sujzTtCz1eXz9ObqLy_vp1OyogDQIgUFAQKWTd5TVIGICGhscqBNQDN8CsVxDVLOYic1QVTKYuFIiBqlkBW5zBCp-uzC2eXvfSh6rQXsm25kbb3VZzGlNA8Yyv0ZIP2dSebauF0x91n9a1nAMZrQDjrvZPqB6GkWhVQbQqoNgUMieRXQujAVyoGzbr9J3e2zg2Lam57N6jzf9Jfuo-cMw
CitedBy_id crossref_primary_10_1002_adma_202413648
crossref_primary_10_1016_j_xcrp_2023_101588
crossref_primary_10_1002_smll_202401635
crossref_primary_10_1021_acsapm_3c00627
crossref_primary_10_1088_2631_7990_ad9fbb
crossref_primary_10_1126_sciadv_adi1690
crossref_primary_10_1016_j_xcrp_2022_101209
crossref_primary_10_1039_D2TB02503E
crossref_primary_10_1088_1361_665X_ace174
crossref_primary_10_1016_j_cej_2024_153294
crossref_primary_10_1016_j_surfin_2023_103509
crossref_primary_10_1021_acsapm_3c00809
crossref_primary_10_1007_s40843_023_2619_7
crossref_primary_10_1016_j_nanoen_2022_107848
crossref_primary_10_1002_adma_202414170
crossref_primary_10_1007_s10854_023_10605_5
crossref_primary_10_1021_acsami_3c06041
crossref_primary_10_1002_pssa_202400049
crossref_primary_10_1007_s10570_023_05329_y
crossref_primary_10_1002_aisy_202400396
crossref_primary_10_1016_j_snb_2023_133344
crossref_primary_10_1039_D3NJ04471H
crossref_primary_10_1002_admt_202400073
crossref_primary_10_1016_j_progpolymsci_2023_101665
crossref_primary_10_1039_D2MA00086E
crossref_primary_10_1021_acsami_4c18410
crossref_primary_10_1021_acsami_4c17962
crossref_primary_10_1002_smll_202309364
crossref_primary_10_1016_j_cej_2023_143959
crossref_primary_10_1007_s12668_024_01678_5
crossref_primary_10_1016_j_cej_2024_155881
crossref_primary_10_1021_acs_langmuir_4c00861
crossref_primary_10_1021_acsnano_2c12203
crossref_primary_10_1021_acs_nanolett_3c02702
crossref_primary_10_1039_D3MA00119A
crossref_primary_10_1016_j_cej_2024_153268
crossref_primary_10_1002_aisy_202300233
crossref_primary_10_1016_j_carbon_2022_10_072
crossref_primary_10_1021_acsnano_2c10999
crossref_primary_10_1039_D3LC01086D
crossref_primary_10_1007_s10853_023_08480_w
crossref_primary_10_1016_j_joule_2023_04_007
crossref_primary_10_1021_acsapm_4c00452
crossref_primary_10_1016_j_snb_2024_136021
crossref_primary_10_3390_molecules28196752
crossref_primary_10_1016_j_jcis_2025_02_147
crossref_primary_10_1007_s10118_022_2858_2
Cites_doi 10.1002/anie.201105925
10.1039/C7NR09580E
10.1002/advs.201600437
10.1021/acs.jpclett.9b02249
10.1021/acsami.9b20365
10.1021/acsnano.0c10797
10.1002/adma.201806492
10.1021/am403071k
10.1039/C7TB00921F
10.1002/adma.201600211
10.1021/acsami.8b08554
10.1021/acsnano.8b01372
10.1021/nn5062854
10.1021/acsnano.8b09600
10.1016/j.compscitech.2020.108133
10.1002/adfm.201402070
10.1016/j.compositesb.2014.03.007
10.1126/sciadv.1500533
10.1039/C5TA01894C
10.1002/adma.201403587
10.1021/nl201503e
10.1039/C7NR03028B
10.1039/C7NR07116G
10.1126/scirobotics.aav4494
10.1002/adfm.201401011
10.1021/jacs.5b10131
10.1021/acsami.8b22099
10.1021/acsami.8b00396
10.1126/scirobotics.aaz4239
10.1002/adfm.201802547
10.1016/j.carbon.2019.04.014
10.1002/adfm.201602772
10.1002/adma.201502777
10.1002/adfm.201704388
10.1021/acsami.9b10885
10.1002/adfm.201501511
10.1021/ja905378v
10.1002/adfm.202007749
10.1016/j.sna.2014.01.012
10.1021/nl401088b
10.1002/adma.201704569
10.1038/s41467-019-10549-7
10.1039/C8NR01300D
10.1002/adfm.201000034
10.1088/1361-6439/abd222
10.1021/acsnano.1c05130
10.1038/s41598-017-00870-w
10.1016/j.eml.2019.100463
10.1039/C8MH01647J
10.1021/acsami.9b09491
10.1021/acs.nanolett.6b04393
10.1039/C7NR01913K
10.1002/mame.202000327
10.1021/acsnano.1c03950
10.1002/adfm.201808995
10.1021/acs.chemmater.7b03953
10.1002/anie.201210232
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.1c09477
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2681
ExternalDocumentID 35040625
10_1021_acsnano_1c09477
c534047718
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a333t-f39039ebd8b06433e3512f834d33dbd8ef32b46a3c84b94f642cf03cb4537b83
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 17:28:45 EDT 2025
Thu Jan 02 22:55:32 EST 2025
Thu Apr 24 23:07:20 EDT 2025
Tue Jul 01 03:37:21 EDT 2025
Thu Feb 24 03:10:34 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords multistimuli
fast response
large deformation
soft actuator
programmable locomotion
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-f39039ebd8b06433e3512f834d33dbd8ef32b46a3c84b94f642cf03cb4537b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2131-1601
0000-0002-9615-9547
0000-0002-6354-7324
PMID 35040625
PQID 2621018748
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2621018748
pubmed_primary_35040625
crossref_primary_10_1021_acsnano_1c09477
crossref_citationtrail_10_1021_acsnano_1c09477
acs_journals_10_1021_acsnano_1c09477
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220222
2022-02-22
PublicationDateYYYYMMDD 2022-02-22
PublicationDate_xml – month: 02
  year: 2022
  text: 20220222
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.1002/anie.201105925
– ident: ref13/cit13
  doi: 10.1039/C7NR09580E
– ident: ref52/cit52
  doi: 10.1002/advs.201600437
– ident: ref11/cit11
  doi: 10.1021/acs.jpclett.9b02249
– ident: ref39/cit39
  doi: 10.1021/acsami.9b20365
– ident: ref9/cit9
  doi: 10.1021/acsnano.0c10797
– ident: ref23/cit23
  doi: 10.1002/adma.201806492
– ident: ref25/cit25
  doi: 10.1021/am403071k
– ident: ref17/cit17
  doi: 10.1039/C7TB00921F
– ident: ref49/cit49
  doi: 10.1002/adma.201600211
– ident: ref33/cit33
  doi: 10.1021/acsami.8b08554
– ident: ref3/cit3
  doi: 10.1021/acsnano.8b01372
– ident: ref47/cit47
  doi: 10.1021/nn5062854
– ident: ref7/cit7
  doi: 10.1021/acsnano.8b09600
– ident: ref56/cit56
  doi: 10.1016/j.compscitech.2020.108133
– ident: ref40/cit40
  doi: 10.1002/adfm.201402070
– ident: ref44/cit44
  doi: 10.1016/j.compositesb.2014.03.007
– ident: ref38/cit38
  doi: 10.1126/sciadv.1500533
– ident: ref26/cit26
  doi: 10.1039/C5TA01894C
– ident: ref12/cit12
  doi: 10.1002/adma.201403587
– ident: ref42/cit42
  doi: 10.1021/nl201503e
– ident: ref54/cit54
  doi: 10.1039/C7NR03028B
– ident: ref19/cit19
  doi: 10.1039/C7NR07116G
– ident: ref30/cit30
  doi: 10.1126/scirobotics.aav4494
– ident: ref46/cit46
  doi: 10.1002/adfm.201401011
– ident: ref50/cit50
  doi: 10.1021/jacs.5b10131
– ident: ref10/cit10
  doi: 10.1021/acsami.8b22099
– ident: ref22/cit22
  doi: 10.1021/acsami.8b00396
– ident: ref2/cit2
  doi: 10.1126/scirobotics.aaz4239
– ident: ref6/cit6
  doi: 10.1002/adfm.201802547
– ident: ref20/cit20
  doi: 10.1016/j.carbon.2019.04.014
– ident: ref48/cit48
  doi: 10.1002/adfm.201602772
– ident: ref27/cit27
  doi: 10.1002/adma.201502777
– ident: ref34/cit34
  doi: 10.1002/adfm.201704388
– ident: ref4/cit4
  doi: 10.1021/acsami.9b10885
– ident: ref35/cit35
  doi: 10.1002/adfm.201501511
– ident: ref41/cit41
  doi: 10.1021/ja905378v
– ident: ref55/cit55
  doi: 10.1002/adfm.202007749
– ident: ref45/cit45
  doi: 10.1016/j.sna.2014.01.012
– ident: ref32/cit32
  doi: 10.1021/nl401088b
– ident: ref51/cit51
  doi: 10.1002/adma.201704569
– ident: ref29/cit29
  doi: 10.1038/s41467-019-10549-7
– ident: ref16/cit16
  doi: 10.1039/C8NR01300D
– ident: ref36/cit36
  doi: 10.1002/adfm.201000034
– ident: ref57/cit57
  doi: 10.1088/1361-6439/abd222
– ident: ref5/cit5
  doi: 10.1021/acsnano.1c05130
– ident: ref37/cit37
  doi: 10.1038/s41598-017-00870-w
– ident: ref24/cit24
  doi: 10.1016/j.eml.2019.100463
– ident: ref31/cit31
  doi: 10.1039/C8MH01647J
– ident: ref18/cit18
  doi: 10.1021/acsami.9b09491
– ident: ref21/cit21
  doi: 10.1021/acs.nanolett.6b04393
– ident: ref53/cit53
  doi: 10.1039/C7NR01913K
– ident: ref15/cit15
  doi: 10.1002/mame.202000327
– ident: ref8/cit8
  doi: 10.1021/acsnano.1c03950
– ident: ref1/cit1
  doi: 10.1002/adfm.201808995
– ident: ref14/cit14
  doi: 10.1021/acs.chemmater.7b03953
– ident: ref43/cit43
  doi: 10.1002/anie.201210232
SSID ssj0057876
Score 2.5700505
Snippet External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2672
SubjectTerms Locomotion
Nanotubes, Carbon
Solvents
Title Ultrafast Response and Programmable Locomotion of Liquid/Vapor/Light-Driven Soft Multifunctional Actuators
URI http://dx.doi.org/10.1021/acsnano.1c09477
https://www.ncbi.nlm.nih.gov/pubmed/35040625
https://www.proquest.com/docview/2621018748
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagXHYPvJaFLgsyUg97Sdt48jxWXaoKFYS2Leotsh1b2qUk0KQXfv3OxGl5VBVck9hK7PHMN5mZbxjriSHkuTRDD02f9IhQyVM5ynIYWyUTkeswpULhj5-i6TL4sApXv8ii_47gC38gdVXIouz7Gj2ROH7IHokoicnPGo3nO6VLche5ADI6yIgi9iw-BxOQGdLVn2boCLZsbMzkicvOqhpqQkot-drf1qqvfx4SN_779Z-yxy3S5CMnGs_YA1M8Z6e_8Q-esbvlut5IK6ua37hcWcNlkfPPLmnrG5VV8VmpS9frh5eWz25_bFF-v0jE7YNZw0JyvSGNyeeo0HlTz0u20v1i5COqT6GGPi_YYvJ-MZ56bfMFTwJA7VlIh5Aa3DhFqAUMIDSwCQQ5QI5XjQWhgkiCTgKVBhb9GG2HoFUQQqwSOGedoizMK8YDX8hc4e3UJoEVsUKp0MSarxAt6Djush4uUtaenSprwuLCz9qVy9qV67L-bscy3fKXUxuN9fEBV_sB3x11x_FH3-1EIMPjRTETWZhyW2UiEn7TtzDpspdONvaTQYgaEP3Hi__7gNfsRFDtBNXDi0vWqTdb8wYRTa3eNrJ8D6iA8nM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xONAeSoHSLrTFSBy4ZEk8ySY5rqBoCwHxWCpuke3YEpQm7SZ74dczTrLLSyuVaxJbfoxnvsl4vgHY4S5mmdCuQ6ZPOJZQyZEZyXIQGikinqkgtonCJ6e9wZV_dB1cz4E7yYWhQZTUU1kH8R_ZBbw9epaLvOh6ihySMJyHRYIi3Lpb_f3Lie614tdr4sjkJxOYmJL5vOrAWiNVPrdGMyBmbWoOl-F8Osj6hsnv7riSXXX_gr_xLbP4CB9a3Mn6jaCswJzOV-H9EzbCNbi9uqtGwoiyYhfNzVnNRJ6xs-YK1x-bZMWSQhVN5R9WGJbc_BuTNP8ShOL3kpqT5GBk9Se7JPXO6uxeazmbH46sb7NVbHmfTzA8_DHcHzhtKQZHIGLlGIxdjDVto7QYBjUSUDAR-hliRk-1QS79nkAV-TL2DXk1yriopB9gKCNch4W8yPUXYL7HRSbpdWwi3_BQkowoy6EvCTuoMOzADi1S2p6kMq2D5NxL25VL25XrQHeycalq2cxtUY272Q12pw3-NkQesz_dnkhCSofNRlBErotxmfIe9-oqhlEHPjciMu0MA9KH5E1u_N8EtmBpMDxJ0uTn6fEmvOM2q8JmyvOvsFCNxvobYZ1Kfq_F-wENT_rU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BKyF6KOXVBigsUg9cnMY7dmwfo5aoQKgq2qDerH1K9GG3sXPpr--M7URAFQmutne1j9mZbzw73wDsyQFaq9wgINOnAiZUCrQlWY4Tr1UqrYkzThT-fjw8mkZfz-PzLimMc2FoEBX1VDVBfD7VN9Z3DAPhPj0vVFH2Q0NOSZI8hnUO2rHLNTo4XehfFsFhG0smX5kAxZLQ50EHbJFM9adFWgEzG3MzfgbT5UCbWyaX_Xmt--buLw7H_53JFmx2-FOMWoF5Do9c8QI2fmMlfAkX06t6pryqavGjvUHrhCqsOGmvcl1zspWYlKZsKwCJ0ovJr9s5SfVPRWh-f9JwkxzOWI-KU1LzosnyZQva_ngUI85a4TI_r-Bs_Pns4CjoSjIEChHrwGM2wMzRdmrGMuiQAINPMbKIlp46j1JHQ4UmjXQWefJujB-g0VGMiU7xNawVZeF2QEShVFbT68ynkZeJJlkxzKWvCUOYJOnBHi1S3p2oKm-C5TLMu5XLu5XrQX-xebnpWM25uMbV6gaflg1uWkKP1Z9-XEhDToeOIymqcOW8yuVQhk01w7QH262YLDvDmPQieZVv_m0CH-DJyeE4n3w5_vYWnkpOruCEefkO1urZ3O0S5Kn1-0bC7wEny_1X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Response+and+Programmable+Locomotion+of+Liquid%2FVapor%2FLight-Driven+Soft+Multifunctional+Actuators&rft.jtitle=ACS+nano&rft.au=Wang%2C+Miao&rft.au=Zhou%2C+Lei&rft.au=Deng%2C+Wenyan&rft.au=Hou%2C+Yaqi&rft.date=2022-02-22&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=16&rft.issue=2&rft.spage=2672&rft_id=info:doi/10.1021%2Facsnano.1c09477&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon