Ultrafast Response and Programmable Locomotion of Liquid/Vapor/Light-Driven Soft Multifunctional Actuators
External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli...
Saved in:
Published in | ACS nano Vol. 16; no. 2; pp. 2672 - 2681 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors. |
---|---|
AbstractList | External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors.External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors. External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors. |
Author | Hou, Xu Deng, Wenyan Wang, Miao Zhou, Lei Ren, Lei He, Wen Sun, Hao Hou, Yaqi Yu, Lejian |
AuthorAffiliation | School of Mechanical Engineering and Automation Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Collaborative Innovation Centre of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology Xiamen University The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials |
AuthorAffiliation_xml | – name: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering – name: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) – name: Collaborative Innovation Centre of Chemistry for Energy Materials – name: School of Mechanical Engineering and Automation – name: Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology – name: Xiamen University – name: The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials |
Author_xml | – sequence: 1 givenname: Miao orcidid: 0000-0002-6354-7324 surname: Wang fullname: Wang, Miao email: miaowang@xmu.edu.cn organization: Xiamen University – sequence: 2 givenname: Lei surname: Zhou fullname: Zhou, Lei organization: Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology – sequence: 3 givenname: Wenyan surname: Deng fullname: Deng, Wenyan organization: Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology – sequence: 4 givenname: Yaqi surname: Hou fullname: Hou, Yaqi organization: Xiamen University – sequence: 5 givenname: Wen surname: He fullname: He, Wen organization: Xiamen University – sequence: 6 givenname: Lejian surname: Yu fullname: Yu, Lejian organization: Xiamen University – sequence: 7 givenname: Hao surname: Sun fullname: Sun, Hao email: sh@fzu.edu.cn organization: School of Mechanical Engineering and Automation – sequence: 8 givenname: Lei orcidid: 0000-0003-2131-1601 surname: Ren fullname: Ren, Lei email: renlei@xmu.edu.cn organization: Xiamen University – sequence: 9 givenname: Xu orcidid: 0000-0002-9615-9547 surname: Hou fullname: Hou, Xu email: houx@xmu.edu.cn organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35040625$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAURoMoPkbX7iRLQeokvelrOYxPqCi-cFfSNBkztMlMkgr-ezvM6ELQVS6557uL8x2gbWONROiYknNKYjrmwhtu7DkVpGBZtoX2aQFpRPL0bftnTugeOvB-TkiS5Vm6i_YgIYykcbKP5i9tcFxxH_Cj9AtrvMTcNPjB2ZnjXcfrVuLSCtvZoK3BVuFSL3vdjF_5wrpxqWfvIbpw-kMa_GRVwHd9G7TqjVjxvMUTEXoerPOHaEfx1sujzTtCz1eXz9ObqLy_vp1OyogDQIgUFAQKWTd5TVIGICGhscqBNQDN8CsVxDVLOYic1QVTKYuFIiBqlkBW5zBCp-uzC2eXvfSh6rQXsm25kbb3VZzGlNA8Yyv0ZIP2dSebauF0x91n9a1nAMZrQDjrvZPqB6GkWhVQbQqoNgUMieRXQujAVyoGzbr9J3e2zg2Lam57N6jzf9Jfuo-cMw |
CitedBy_id | crossref_primary_10_1002_adma_202413648 crossref_primary_10_1016_j_xcrp_2023_101588 crossref_primary_10_1002_smll_202401635 crossref_primary_10_1021_acsapm_3c00627 crossref_primary_10_1088_2631_7990_ad9fbb crossref_primary_10_1126_sciadv_adi1690 crossref_primary_10_1016_j_xcrp_2022_101209 crossref_primary_10_1039_D2TB02503E crossref_primary_10_1088_1361_665X_ace174 crossref_primary_10_1016_j_cej_2024_153294 crossref_primary_10_1016_j_surfin_2023_103509 crossref_primary_10_1021_acsapm_3c00809 crossref_primary_10_1007_s40843_023_2619_7 crossref_primary_10_1016_j_nanoen_2022_107848 crossref_primary_10_1002_adma_202414170 crossref_primary_10_1007_s10854_023_10605_5 crossref_primary_10_1021_acsami_3c06041 crossref_primary_10_1002_pssa_202400049 crossref_primary_10_1007_s10570_023_05329_y crossref_primary_10_1002_aisy_202400396 crossref_primary_10_1016_j_snb_2023_133344 crossref_primary_10_1039_D3NJ04471H crossref_primary_10_1002_admt_202400073 crossref_primary_10_1016_j_progpolymsci_2023_101665 crossref_primary_10_1039_D2MA00086E crossref_primary_10_1021_acsami_4c18410 crossref_primary_10_1021_acsami_4c17962 crossref_primary_10_1002_smll_202309364 crossref_primary_10_1016_j_cej_2023_143959 crossref_primary_10_1007_s12668_024_01678_5 crossref_primary_10_1016_j_cej_2024_155881 crossref_primary_10_1021_acs_langmuir_4c00861 crossref_primary_10_1021_acsnano_2c12203 crossref_primary_10_1021_acs_nanolett_3c02702 crossref_primary_10_1039_D3MA00119A crossref_primary_10_1016_j_cej_2024_153268 crossref_primary_10_1002_aisy_202300233 crossref_primary_10_1016_j_carbon_2022_10_072 crossref_primary_10_1021_acsnano_2c10999 crossref_primary_10_1039_D3LC01086D crossref_primary_10_1007_s10853_023_08480_w crossref_primary_10_1016_j_joule_2023_04_007 crossref_primary_10_1021_acsapm_4c00452 crossref_primary_10_1016_j_snb_2024_136021 crossref_primary_10_3390_molecules28196752 crossref_primary_10_1016_j_jcis_2025_02_147 crossref_primary_10_1007_s10118_022_2858_2 |
Cites_doi | 10.1002/anie.201105925 10.1039/C7NR09580E 10.1002/advs.201600437 10.1021/acs.jpclett.9b02249 10.1021/acsami.9b20365 10.1021/acsnano.0c10797 10.1002/adma.201806492 10.1021/am403071k 10.1039/C7TB00921F 10.1002/adma.201600211 10.1021/acsami.8b08554 10.1021/acsnano.8b01372 10.1021/nn5062854 10.1021/acsnano.8b09600 10.1016/j.compscitech.2020.108133 10.1002/adfm.201402070 10.1016/j.compositesb.2014.03.007 10.1126/sciadv.1500533 10.1039/C5TA01894C 10.1002/adma.201403587 10.1021/nl201503e 10.1039/C7NR03028B 10.1039/C7NR07116G 10.1126/scirobotics.aav4494 10.1002/adfm.201401011 10.1021/jacs.5b10131 10.1021/acsami.8b22099 10.1021/acsami.8b00396 10.1126/scirobotics.aaz4239 10.1002/adfm.201802547 10.1016/j.carbon.2019.04.014 10.1002/adfm.201602772 10.1002/adma.201502777 10.1002/adfm.201704388 10.1021/acsami.9b10885 10.1002/adfm.201501511 10.1021/ja905378v 10.1002/adfm.202007749 10.1016/j.sna.2014.01.012 10.1021/nl401088b 10.1002/adma.201704569 10.1038/s41467-019-10549-7 10.1039/C8NR01300D 10.1002/adfm.201000034 10.1088/1361-6439/abd222 10.1021/acsnano.1c05130 10.1038/s41598-017-00870-w 10.1016/j.eml.2019.100463 10.1039/C8MH01647J 10.1021/acsami.9b09491 10.1021/acs.nanolett.6b04393 10.1039/C7NR01913K 10.1002/mame.202000327 10.1021/acsnano.1c03950 10.1002/adfm.201808995 10.1021/acs.chemmater.7b03953 10.1002/anie.201210232 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.1c09477 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2681 |
ExternalDocumentID | 35040625 10_1021_acsnano_1c09477 c534047718 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ ED~ JG~ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a333t-f39039ebd8b06433e3512f834d33dbd8ef32b46a3c84b94f642cf03cb4537b83 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 17:28:45 EDT 2025 Thu Jan 02 22:55:32 EST 2025 Thu Apr 24 23:07:20 EDT 2025 Tue Jul 01 03:37:21 EDT 2025 Thu Feb 24 03:10:34 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | multistimuli fast response large deformation soft actuator programmable locomotion |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-f39039ebd8b06433e3512f834d33dbd8ef32b46a3c84b94f642cf03cb4537b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2131-1601 0000-0002-9615-9547 0000-0002-6354-7324 |
PMID | 35040625 |
PQID | 2621018748 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2621018748 pubmed_primary_35040625 crossref_primary_10_1021_acsnano_1c09477 crossref_citationtrail_10_1021_acsnano_1c09477 acs_journals_10_1021_acsnano_1c09477 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220222 2022-02-22 |
PublicationDateYYYYMMDD | 2022-02-22 |
PublicationDate_xml | – month: 02 year: 2022 text: 20220222 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.1002/anie.201105925 – ident: ref13/cit13 doi: 10.1039/C7NR09580E – ident: ref52/cit52 doi: 10.1002/advs.201600437 – ident: ref11/cit11 doi: 10.1021/acs.jpclett.9b02249 – ident: ref39/cit39 doi: 10.1021/acsami.9b20365 – ident: ref9/cit9 doi: 10.1021/acsnano.0c10797 – ident: ref23/cit23 doi: 10.1002/adma.201806492 – ident: ref25/cit25 doi: 10.1021/am403071k – ident: ref17/cit17 doi: 10.1039/C7TB00921F – ident: ref49/cit49 doi: 10.1002/adma.201600211 – ident: ref33/cit33 doi: 10.1021/acsami.8b08554 – ident: ref3/cit3 doi: 10.1021/acsnano.8b01372 – ident: ref47/cit47 doi: 10.1021/nn5062854 – ident: ref7/cit7 doi: 10.1021/acsnano.8b09600 – ident: ref56/cit56 doi: 10.1016/j.compscitech.2020.108133 – ident: ref40/cit40 doi: 10.1002/adfm.201402070 – ident: ref44/cit44 doi: 10.1016/j.compositesb.2014.03.007 – ident: ref38/cit38 doi: 10.1126/sciadv.1500533 – ident: ref26/cit26 doi: 10.1039/C5TA01894C – ident: ref12/cit12 doi: 10.1002/adma.201403587 – ident: ref42/cit42 doi: 10.1021/nl201503e – ident: ref54/cit54 doi: 10.1039/C7NR03028B – ident: ref19/cit19 doi: 10.1039/C7NR07116G – ident: ref30/cit30 doi: 10.1126/scirobotics.aav4494 – ident: ref46/cit46 doi: 10.1002/adfm.201401011 – ident: ref50/cit50 doi: 10.1021/jacs.5b10131 – ident: ref10/cit10 doi: 10.1021/acsami.8b22099 – ident: ref22/cit22 doi: 10.1021/acsami.8b00396 – ident: ref2/cit2 doi: 10.1126/scirobotics.aaz4239 – ident: ref6/cit6 doi: 10.1002/adfm.201802547 – ident: ref20/cit20 doi: 10.1016/j.carbon.2019.04.014 – ident: ref48/cit48 doi: 10.1002/adfm.201602772 – ident: ref27/cit27 doi: 10.1002/adma.201502777 – ident: ref34/cit34 doi: 10.1002/adfm.201704388 – ident: ref4/cit4 doi: 10.1021/acsami.9b10885 – ident: ref35/cit35 doi: 10.1002/adfm.201501511 – ident: ref41/cit41 doi: 10.1021/ja905378v – ident: ref55/cit55 doi: 10.1002/adfm.202007749 – ident: ref45/cit45 doi: 10.1016/j.sna.2014.01.012 – ident: ref32/cit32 doi: 10.1021/nl401088b – ident: ref51/cit51 doi: 10.1002/adma.201704569 – ident: ref29/cit29 doi: 10.1038/s41467-019-10549-7 – ident: ref16/cit16 doi: 10.1039/C8NR01300D – ident: ref36/cit36 doi: 10.1002/adfm.201000034 – ident: ref57/cit57 doi: 10.1088/1361-6439/abd222 – ident: ref5/cit5 doi: 10.1021/acsnano.1c05130 – ident: ref37/cit37 doi: 10.1038/s41598-017-00870-w – ident: ref24/cit24 doi: 10.1016/j.eml.2019.100463 – ident: ref31/cit31 doi: 10.1039/C8MH01647J – ident: ref18/cit18 doi: 10.1021/acsami.9b09491 – ident: ref21/cit21 doi: 10.1021/acs.nanolett.6b04393 – ident: ref53/cit53 doi: 10.1039/C7NR01913K – ident: ref15/cit15 doi: 10.1002/mame.202000327 – ident: ref8/cit8 doi: 10.1021/acsnano.1c03950 – ident: ref1/cit1 doi: 10.1002/adfm.201808995 – ident: ref14/cit14 doi: 10.1021/acs.chemmater.7b03953 – ident: ref43/cit43 doi: 10.1002/anie.201210232 |
SSID | ssj0057876 |
Score | 2.5700505 |
Snippet | External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2672 |
SubjectTerms | Locomotion Nanotubes, Carbon Solvents |
Title | Ultrafast Response and Programmable Locomotion of Liquid/Vapor/Light-Driven Soft Multifunctional Actuators |
URI | http://dx.doi.org/10.1021/acsnano.1c09477 https://www.ncbi.nlm.nih.gov/pubmed/35040625 https://www.proquest.com/docview/2621018748 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagXHYPvJaFLgsyUg97Sdt48jxWXaoKFYS2Leotsh1b2qUk0KQXfv3OxGl5VBVck9hK7PHMN5mZbxjriSHkuTRDD02f9IhQyVM5ynIYWyUTkeswpULhj5-i6TL4sApXv8ii_47gC38gdVXIouz7Gj2ROH7IHokoicnPGo3nO6VLche5ADI6yIgi9iw-BxOQGdLVn2boCLZsbMzkicvOqhpqQkot-drf1qqvfx4SN_779Z-yxy3S5CMnGs_YA1M8Z6e_8Q-esbvlut5IK6ua37hcWcNlkfPPLmnrG5VV8VmpS9frh5eWz25_bFF-v0jE7YNZw0JyvSGNyeeo0HlTz0u20v1i5COqT6GGPi_YYvJ-MZ56bfMFTwJA7VlIh5Aa3DhFqAUMIDSwCQQ5QI5XjQWhgkiCTgKVBhb9GG2HoFUQQqwSOGedoizMK8YDX8hc4e3UJoEVsUKp0MSarxAt6Djush4uUtaenSprwuLCz9qVy9qV67L-bscy3fKXUxuN9fEBV_sB3x11x_FH3-1EIMPjRTETWZhyW2UiEn7TtzDpspdONvaTQYgaEP3Hi__7gNfsRFDtBNXDi0vWqTdb8wYRTa3eNrJ8D6iA8nM |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xONAeSoHSLrTFSBy4ZEk8ySY5rqBoCwHxWCpuke3YEpQm7SZ74dczTrLLSyuVaxJbfoxnvsl4vgHY4S5mmdCuQ6ZPOJZQyZEZyXIQGikinqkgtonCJ6e9wZV_dB1cz4E7yYWhQZTUU1kH8R_ZBbw9epaLvOh6ihySMJyHRYIi3Lpb_f3Lie614tdr4sjkJxOYmJL5vOrAWiNVPrdGMyBmbWoOl-F8Osj6hsnv7riSXXX_gr_xLbP4CB9a3Mn6jaCswJzOV-H9EzbCNbi9uqtGwoiyYhfNzVnNRJ6xs-YK1x-bZMWSQhVN5R9WGJbc_BuTNP8ShOL3kpqT5GBk9Se7JPXO6uxeazmbH46sb7NVbHmfTzA8_DHcHzhtKQZHIGLlGIxdjDVto7QYBjUSUDAR-hliRk-1QS79nkAV-TL2DXk1yriopB9gKCNch4W8yPUXYL7HRSbpdWwi3_BQkowoy6EvCTuoMOzADi1S2p6kMq2D5NxL25VL25XrQHeycalq2cxtUY272Q12pw3-NkQesz_dnkhCSofNRlBErotxmfIe9-oqhlEHPjciMu0MA9KH5E1u_N8EtmBpMDxJ0uTn6fEmvOM2q8JmyvOvsFCNxvobYZ1Kfq_F-wENT_rU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BKyF6KOXVBigsUg9cnMY7dmwfo5aoQKgq2qDerH1K9GG3sXPpr--M7URAFQmutne1j9mZbzw73wDsyQFaq9wgINOnAiZUCrQlWY4Tr1UqrYkzThT-fjw8mkZfz-PzLimMc2FoEBX1VDVBfD7VN9Z3DAPhPj0vVFH2Q0NOSZI8hnUO2rHLNTo4XehfFsFhG0smX5kAxZLQ50EHbJFM9adFWgEzG3MzfgbT5UCbWyaX_Xmt--buLw7H_53JFmx2-FOMWoF5Do9c8QI2fmMlfAkX06t6pryqavGjvUHrhCqsOGmvcl1zspWYlKZsKwCJ0ovJr9s5SfVPRWh-f9JwkxzOWI-KU1LzosnyZQva_ngUI85a4TI_r-Bs_Pns4CjoSjIEChHrwGM2wMzRdmrGMuiQAINPMbKIlp46j1JHQ4UmjXQWefJujB-g0VGMiU7xNawVZeF2QEShVFbT68ynkZeJJlkxzKWvCUOYJOnBHi1S3p2oKm-C5TLMu5XLu5XrQX-xebnpWM25uMbV6gaflg1uWkKP1Z9-XEhDToeOIymqcOW8yuVQhk01w7QH262YLDvDmPQieZVv_m0CH-DJyeE4n3w5_vYWnkpOruCEefkO1urZ3O0S5Kn1-0bC7wEny_1X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Response+and+Programmable+Locomotion+of+Liquid%2FVapor%2FLight-Driven+Soft+Multifunctional+Actuators&rft.jtitle=ACS+nano&rft.au=Wang%2C+Miao&rft.au=Zhou%2C+Lei&rft.au=Deng%2C+Wenyan&rft.au=Hou%2C+Yaqi&rft.date=2022-02-22&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=16&rft.issue=2&rft.spage=2672&rft_id=info:doi/10.1021%2Facsnano.1c09477&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |