Metallophilic Interaction-Mediated Hierarchical Assembly and Temporal-Controlled Dynamic Chirality Inversion of Metal–Organic Supramolecular Polymers
The study of dynamic supramolecular chirality inversion (SMCI) not only helps to deepen the understanding of chiral transfer and amplification in both living organizations and artificially chemical self-assembly systems but also is useful for the development of smart chiral nanomaterials. However, i...
Saved in:
Published in | ACS nano Vol. 17; no. 3; pp. 2159 - 2169 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study of dynamic supramolecular chirality inversion (SMCI) not only helps to deepen the understanding of chiral transfer and amplification in both living organizations and artificially chemical self-assembly systems but also is useful for the development of smart chiral nanomaterials. However, it is still challenging to achieve the dynamic SMCI of the self-aggregation of metal–organic supramolecular polymers with great potential in asymmetric synthesis, chiroptical switches, and circular polarized luminescence. Here, we successfully developed a hierarchical coassembly system based on the mPAzPCC and various metal ions with effective chirality transfer and temporal-controlled SMCI. Due to the dynamic self-assembly and hierarchical chirality transfer of the Ag+/mPAzPCC complex driven by metallophilic interaction and coordination, morphological transition with nanoribbons, helical nanoribbons, and chiral nanotubules was successively obtained. Interestingly, the SMCI of chiral nanoaggregates was precisely regulated by solvents and metal ions in the Cu2+/mPAzPCC and Mn2+/mPAzPCC system. Besides, temporal-controlled dynamic SMCI switching from helix to bundled helix was clearly revealed in the aggregation of Cu2+/mPAzPCC, Mn2+/mPAzPCC, and Bi3+/mPAzPCC systems. This work provides a metallophilic interaction-mediated helical assembly pathway to dynamically modulate the chirality of metal–organic complex-based assemblies and deepen the understanding of the hierarchically dynamic self-assembly process, which would be of great potential in metal ion-mediated supramolecular asymmetric catalysis and bioinspired chiral sensing. |
---|---|
AbstractList | The study of dynamic supramolecular chirality inversion (SMCI) not only helps to deepen the understanding of chiral transfer and amplification in both living organizations and artificially chemical self-assembly systems but also is useful for the development of smart chiral nanomaterials. However, it is still challenging to achieve the dynamic SMCI of the self-aggregation of metal-organic supramolecular polymers with great potential in asymmetric synthesis, chiroptical switches, and circular polarized luminescence. Here, we successfully developed a hierarchical coassembly system based on the
PAzPCC and various metal ions with effective chirality transfer and temporal-controlled SMCI. Due to the dynamic self-assembly and hierarchical chirality transfer of the Ag
/
PAzPCC complex driven by metallophilic interaction and coordination, morphological transition with nanoribbons, helical nanoribbons, and chiral nanotubules was successively obtained. Interestingly, the SMCI of chiral nanoaggregates was precisely regulated by solvents and metal ions in the Cu
/
PAzPCC and Mn
/
PAzPCC system. Besides, temporal-controlled dynamic SMCI switching from helix to bundled helix was clearly revealed in the aggregation of Cu
/
PAzPCC, Mn
/
PAzPCC, and Bi
/
PAzPCC systems. This work provides a metallophilic interaction-mediated helical assembly pathway to dynamically modulate the chirality of metal-organic complex-based assemblies and deepen the understanding of the hierarchically dynamic self-assembly process, which would be of great potential in metal ion-mediated supramolecular asymmetric catalysis and bioinspired chiral sensing. The study of dynamic supramolecular chirality inversion (SMCI) not only helps to deepen the understanding of chiral transfer and amplification in both living organizations and artificially chemical self-assembly systems but also is useful for the development of smart chiral nanomaterials. However, it is still challenging to achieve the dynamic SMCI of the self-aggregation of metal–organic supramolecular polymers with great potential in asymmetric synthesis, chiroptical switches, and circular polarized luminescence. Here, we successfully developed a hierarchical coassembly system based on the mPAzPCC and various metal ions with effective chirality transfer and temporal-controlled SMCI. Due to the dynamic self-assembly and hierarchical chirality transfer of the Ag+/mPAzPCC complex driven by metallophilic interaction and coordination, morphological transition with nanoribbons, helical nanoribbons, and chiral nanotubules was successively obtained. Interestingly, the SMCI of chiral nanoaggregates was precisely regulated by solvents and metal ions in the Cu2+/mPAzPCC and Mn2+/mPAzPCC system. Besides, temporal-controlled dynamic SMCI switching from helix to bundled helix was clearly revealed in the aggregation of Cu2+/mPAzPCC, Mn2+/mPAzPCC, and Bi3+/mPAzPCC systems. This work provides a metallophilic interaction-mediated helical assembly pathway to dynamically modulate the chirality of metal–organic complex-based assemblies and deepen the understanding of the hierarchically dynamic self-assembly process, which would be of great potential in metal ion-mediated supramolecular asymmetric catalysis and bioinspired chiral sensing. The study of dynamic supramolecular chirality inversion (SMCI) not only helps to deepen the understanding of chiral transfer and amplification in both living organizations and artificially chemical self-assembly systems but also is useful for the development of smart chiral nanomaterials. However, it is still challenging to achieve the dynamic SMCI of the self-aggregation of metal-organic supramolecular polymers with great potential in asymmetric synthesis, chiroptical switches, and circular polarized luminescence. Here, we successfully developed a hierarchical coassembly system based on the mPAzPCC and various metal ions with effective chirality transfer and temporal-controlled SMCI. Due to the dynamic self-assembly and hierarchical chirality transfer of the Ag+/mPAzPCC complex driven by metallophilic interaction and coordination, morphological transition with nanoribbons, helical nanoribbons, and chiral nanotubules was successively obtained. Interestingly, the SMCI of chiral nanoaggregates was precisely regulated by solvents and metal ions in the Cu2+/mPAzPCC and Mn2+/mPAzPCC system. Besides, temporal-controlled dynamic SMCI switching from helix to bundled helix was clearly revealed in the aggregation of Cu2+/mPAzPCC, Mn2+/mPAzPCC, and Bi3+/mPAzPCC systems. This work provides a metallophilic interaction-mediated helical assembly pathway to dynamically modulate the chirality of metal-organic complex-based assemblies and deepen the understanding of the hierarchically dynamic self-assembly process, which would be of great potential in metal ion-mediated supramolecular asymmetric catalysis and bioinspired chiral sensing.The study of dynamic supramolecular chirality inversion (SMCI) not only helps to deepen the understanding of chiral transfer and amplification in both living organizations and artificially chemical self-assembly systems but also is useful for the development of smart chiral nanomaterials. However, it is still challenging to achieve the dynamic SMCI of the self-aggregation of metal-organic supramolecular polymers with great potential in asymmetric synthesis, chiroptical switches, and circular polarized luminescence. Here, we successfully developed a hierarchical coassembly system based on the mPAzPCC and various metal ions with effective chirality transfer and temporal-controlled SMCI. Due to the dynamic self-assembly and hierarchical chirality transfer of the Ag+/mPAzPCC complex driven by metallophilic interaction and coordination, morphological transition with nanoribbons, helical nanoribbons, and chiral nanotubules was successively obtained. Interestingly, the SMCI of chiral nanoaggregates was precisely regulated by solvents and metal ions in the Cu2+/mPAzPCC and Mn2+/mPAzPCC system. Besides, temporal-controlled dynamic SMCI switching from helix to bundled helix was clearly revealed in the aggregation of Cu2+/mPAzPCC, Mn2+/mPAzPCC, and Bi3+/mPAzPCC systems. This work provides a metallophilic interaction-mediated helical assembly pathway to dynamically modulate the chirality of metal-organic complex-based assemblies and deepen the understanding of the hierarchically dynamic self-assembly process, which would be of great potential in metal ion-mediated supramolecular asymmetric catalysis and bioinspired chiral sensing. |
Author | He, Menglu Liu, Peng-Yu Fu, Kuo Wang, Xuejuan He, Yu-Peng Liu, Guofeng Yao, Longfei Zhang, Wannian |
AuthorAffiliation | State Key Laboratory of Fine Chemicals School of Chemical Science and Engineering, Advanced Research Institute |
AuthorAffiliation_xml | – name: State Key Laboratory of Fine Chemicals – name: School of Chemical Science and Engineering, Advanced Research Institute |
Author_xml | – sequence: 1 givenname: Longfei surname: Yao fullname: Yao, Longfei organization: School of Chemical Science and Engineering, Advanced Research Institute – sequence: 2 givenname: Kuo surname: Fu fullname: Fu, Kuo organization: School of Chemical Science and Engineering, Advanced Research Institute – sequence: 3 givenname: Xuejuan surname: Wang fullname: Wang, Xuejuan organization: School of Chemical Science and Engineering, Advanced Research Institute – sequence: 4 givenname: Menglu surname: He fullname: He, Menglu organization: School of Chemical Science and Engineering, Advanced Research Institute – sequence: 5 givenname: Wannian surname: Zhang fullname: Zhang, Wannian organization: State Key Laboratory of Fine Chemicals – sequence: 6 givenname: Peng-Yu surname: Liu fullname: Liu, Peng-Yu organization: State Key Laboratory of Fine Chemicals – sequence: 7 givenname: Yu-Peng orcidid: 0000-0002-0676-6627 surname: He fullname: He, Yu-Peng organization: State Key Laboratory of Fine Chemicals – sequence: 8 givenname: Guofeng orcidid: 0000-0003-1911-8546 surname: Liu fullname: Liu, Guofeng email: liuguofeng@tongji.edu.cn organization: School of Chemical Science and Engineering, Advanced Research Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36648130$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctq3DAYhUVIybXr7IqXheJEl7GsWYbpJYGEFJpAd-K3JHcUZMmV5IJ3fYcu-n59kiiZSRaFCIGE_u8cwTmHaNcHbxA6IfiUYErOQCUPPpxShQUjzQ46IEvGayz4992Xe0P20WFK9xg3rWj5HtpnnC8EYfgA_b02GZwL49o6q6pLn00ElW3w9bXRFrLR1YUtb1GtrQJXnadkhs7NFXhd3ZphDBFcvQo-x-BcoT_OHoZitVrbMrF5Lqa_TEzFsgp99fTfv99_buIP8AX7No0RhuCMmhzE6mtw81DoY_SmB5fM2-15hO4-f7pdXdRXN18uV-dXNTDGcm2MoA0TumzB-h46rDnRC10Ww70mQCllLe_UoiVLgoVuOKFkiRvcc8E7zY7Q-43vGMPPyaQsB5uUcQ68CVOStC1RMbpki4K-26JTNxgtx2gHiLN8DrMAzQZQMaQUTS-VzfCYZY5gnSRYPpYmt6XJbWlFd_af7tn6dcWHjaIM5H2Yoi8ZvUo_AM5jroY |
CitedBy_id | crossref_primary_10_1039_D4NR05421K crossref_primary_10_1016_j_jcis_2024_03_136 crossref_primary_10_1002_idm2_12117 crossref_primary_10_1016_j_saa_2024_124138 crossref_primary_10_1039_D4SC07859D crossref_primary_10_1002_ange_202409782 crossref_primary_10_1002_asia_202400258 crossref_primary_10_1002_slct_202402404 crossref_primary_10_1016_j_matt_2023_04_002 crossref_primary_10_1002_smll_202400220 crossref_primary_10_1021_acs_chemmater_3c03285 crossref_primary_10_1021_acs_langmuir_3c01954 crossref_primary_10_1039_D4SC04165H crossref_primary_10_1016_j_cclet_2023_108757 crossref_primary_10_1016_j_molliq_2024_124190 crossref_primary_10_1039_D3CC04068B crossref_primary_10_1360_SSC_2024_0016 crossref_primary_10_1021_acsami_3c10358 crossref_primary_10_1002_ange_202305525 crossref_primary_10_1002_chem_202403460 crossref_primary_10_1039_D4NR00392F crossref_primary_10_1021_acs_orglett_3c03854 crossref_primary_10_1002_ange_202417573 crossref_primary_10_1007_s11426_024_2008_y crossref_primary_10_1007_s11426_024_2258_2 crossref_primary_10_1016_j_cjsc_2024_100460 crossref_primary_10_26599_NR_2025_94907095 crossref_primary_10_1002_adom_202300019 crossref_primary_10_1021_acsnano_3c10151 crossref_primary_10_1038_s41467_024_53928_5 crossref_primary_10_1002_anie_202409782 crossref_primary_10_1039_D2CS00476C crossref_primary_10_1021_jacs_4c12211 crossref_primary_10_1002_advs_202309547 crossref_primary_10_1021_acsami_4c13524 crossref_primary_10_1002_chem_202403699 crossref_primary_10_1007_s42114_024_00931_5 crossref_primary_10_1002_advs_202306979 crossref_primary_10_1002_anie_202305525 crossref_primary_10_1360_SSC_2024_0062 crossref_primary_10_1039_D3NR01515G crossref_primary_10_1007_s12274_023_5850_4 crossref_primary_10_1002_anie_202417573 crossref_primary_10_1016_j_progpolymsci_2024_101800 |
Cites_doi | 10.1039/D2CC02680E 10.1021/jacs.7b07639 10.1039/C2CS35339C 10.1016/j.mtchem.2018.11.005 10.1039/D0SC04179C 10.1039/C6SC04808K 10.1021/ja405979v 10.1002/chem.201300612 10.1021/jacs.5b11580 10.1021/acs.langmuir.6b02165 10.1021/ja00094a023 10.1016/j.chempr.2018.12.006 10.1039/C6QM00120C 10.1021/ja100613w 10.1002/sstr.202200209 10.1039/D0CS00191K 10.1016/S0010-8545(01)00370-8 10.1021/jacs.9b13184 10.1002/anie.201800251 10.1039/C9DT03697K 10.1002/anie.201807191 10.1246/cl.2003.12 10.1021/jacs.8b10024 10.1016/j.mam.2012.10.007 10.1021/acsnano.9b03255 10.1002/anie.200500640 10.1002/anie.201900607 10.1002/anie.202116414 10.1002/anie.202117406 10.1039/D1NJ04824D 10.1039/C4CS00327F 10.1021/acs.accounts.0c00012 10.1002/anie.201510140 10.1039/C6CS00907G 10.1126/science.1063187 10.1002/anie.201405936 10.1002/agt2.110 10.1039/C4CS00497C 10.1021/jacs.8b03309 10.1021/jacs.7b09760 10.1021/acsnano.9b00218 10.1021/acsnano.7b06097 10.1002/anie.201904884 10.1021/acs.accounts.8b00312 10.1038/s41557-020-00583-0 10.1038/nchem.889 10.1021/acsmaterialslett.2c00111 10.1038/nature10720 10.1039/c2cs35192g 10.1021/cr500671p 10.1039/C1SC00547B 10.1038/s41467-020-20172-6 10.1021/jacs.6b08808 10.1146/annurev.biochem.77.032207.120833 10.1021/ja408860s 10.1021/ja0682172 10.1021/acsnano.9b08408 10.1021/acs.accounts.0c00112 10.1021/jp110636b |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.2c08315 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2169 |
ExternalDocumentID | 36648130 10_1021_acsnano_2c08315 h02286038 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA ADHGD BAANH CITATION CUPRZ NPM 7X8 |
ID | FETCH-LOGICAL-a333t-ee82538d38d83ffab0d61d4dddd30fd1a222376bc4719108d561219050f686bd3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 18:21:38 EDT 2025 Thu Apr 03 07:00:24 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Tue Jul 01 02:58:58 EDT 2025 Thu Feb 16 05:45:46 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | supramolecular polymer dynamic chirality inversion chirality transfer metallophilic interaction hierarchical self-assembly |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-ee82538d38d83ffab0d61d4dddd30fd1a222376bc4719108d561219050f686bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1911-8546 0000-0002-0676-6627 |
PMID | 36648130 |
PQID | 2766432934 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2766432934 pubmed_primary_36648130 crossref_citationtrail_10_1021_acsnano_2c08315 crossref_primary_10_1021_acsnano_2c08315 acs_journals_10_1021_acsnano_2c08315 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-14 |
PublicationDateYYYYMMDD | 2023-02-14 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref50/cit50 doi: 10.1039/D2CC02680E – ident: ref56/cit56 doi: 10.1021/jacs.7b07639 – ident: ref43/cit43 doi: 10.1039/C2CS35339C – ident: ref20/cit20 doi: 10.1016/j.mtchem.2018.11.005 – ident: ref7/cit7 doi: 10.1039/D0SC04179C – ident: ref34/cit34 doi: 10.1039/C6SC04808K – ident: ref39/cit39 doi: 10.1021/ja405979v – ident: ref9/cit9 doi: 10.1002/chem.201300612 – ident: ref17/cit17 doi: 10.1021/jacs.5b11580 – ident: ref44/cit44 doi: 10.1021/acs.langmuir.6b02165 – ident: ref48/cit48 doi: 10.1021/ja00094a023 – ident: ref18/cit18 doi: 10.1016/j.chempr.2018.12.006 – ident: ref55/cit55 doi: 10.1039/C6QM00120C – ident: ref51/cit51 doi: 10.1021/ja100613w – ident: ref19/cit19 doi: 10.1002/sstr.202200209 – ident: ref8/cit8 doi: 10.1039/D0CS00191K – ident: ref40/cit40 doi: 10.1016/S0010-8545(01)00370-8 – ident: ref10/cit10 doi: 10.1021/jacs.9b13184 – ident: ref16/cit16 doi: 10.1002/anie.201800251 – ident: ref45/cit45 doi: 10.1039/C9DT03697K – ident: ref57/cit57 doi: 10.1002/anie.201807191 – ident: ref47/cit47 doi: 10.1246/cl.2003.12 – ident: ref14/cit14 doi: 10.1021/jacs.8b10024 – ident: ref32/cit32 doi: 10.1016/j.mam.2012.10.007 – ident: ref23/cit23 doi: 10.1021/acsnano.9b03255 – ident: ref27/cit27 doi: 10.1002/anie.200500640 – ident: ref15/cit15 doi: 10.1002/anie.201900607 – ident: ref36/cit36 doi: 10.1002/anie.202116414 – ident: ref52/cit52 doi: 10.1002/anie.202117406 – ident: ref22/cit22 doi: 10.1039/D1NJ04824D – ident: ref37/cit37 doi: 10.1039/C4CS00327F – ident: ref21/cit21 doi: 10.1021/acs.accounts.0c00012 – ident: ref24/cit24 doi: 10.1002/anie.201510140 – ident: ref46/cit46 doi: 10.1039/C6CS00907G – ident: ref30/cit30 doi: 10.1126/science.1063187 – ident: ref41/cit41 doi: 10.1002/anie.201405936 – ident: ref35/cit35 doi: 10.1002/agt2.110 – ident: ref1/cit1 doi: 10.1039/C4CS00497C – ident: ref26/cit26 doi: 10.1021/jacs.8b03309 – ident: ref42/cit42 doi: 10.1021/jacs.7b09760 – ident: ref54/cit54 doi: 10.1021/acsnano.9b00218 – ident: ref25/cit25 doi: 10.1021/acsnano.7b06097 – ident: ref33/cit33 doi: 10.1002/anie.201904884 – ident: ref2/cit2 doi: 10.1021/acs.accounts.8b00312 – ident: ref58/cit58 doi: 10.1038/s41557-020-00583-0 – ident: ref11/cit11 doi: 10.1038/nchem.889 – ident: ref53/cit53 doi: 10.1021/acsmaterialslett.2c00111 – ident: ref12/cit12 doi: 10.1038/nature10720 – ident: ref38/cit38 doi: 10.1039/c2cs35192g – ident: ref6/cit6 doi: 10.1021/cr500671p – ident: ref13/cit13 doi: 10.1039/C1SC00547B – ident: ref29/cit29 doi: 10.1038/s41467-020-20172-6 – ident: ref3/cit3 doi: 10.1021/jacs.6b08808 – ident: ref31/cit31 doi: 10.1146/annurev.biochem.77.032207.120833 – ident: ref4/cit4 doi: 10.1021/ja408860s – ident: ref49/cit49 doi: 10.1021/ja0682172 – ident: ref28/cit28 doi: 10.1021/acsnano.9b08408 – ident: ref59/cit59 doi: 10.1021/acs.accounts.0c00112 – ident: ref5/cit5 doi: 10.1021/jp110636b |
SSID | ssj0057876 |
Score | 2.5741339 |
Snippet | The study of dynamic supramolecular chirality inversion (SMCI) not only helps to deepen the understanding of chiral transfer and amplification in both living... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2159 |
Title | Metallophilic Interaction-Mediated Hierarchical Assembly and Temporal-Controlled Dynamic Chirality Inversion of Metal–Organic Supramolecular Polymers |
URI | http://dx.doi.org/10.1021/acsnano.2c08315 https://www.ncbi.nlm.nih.gov/pubmed/36648130 https://www.proquest.com/docview/2766432934 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LjtMwFLWgbGYWPGYYKC8ZqQs2KUnsOO6yKlQVUhHSTKXZRX5FMyJNqiZZdFbzDyz4P76EazstA1U1RNnFdmLnJj7X9_ochAaxEJzQRAQjCZ4OAHgacMrzgKWjWAswaJG7LN-vbLagXy6Tyz9k0f9G8OPoo1B1KcpqGCsripU8RI9ixlPrZ40n59ufrrU75gPI4CADitix-Ow1YKchVf89DR3Alm6OmT7x2Vm1oya0qSXfh20jh-pmn7jx_sd_ih53SBOPvWk8Qw9MeYKO7_APnqKfc9PYwPvKrqoo7FYH_UaHYO4kPIzGs2u7RdkppkBjdW2WsthgUWp84VmtimDi090LKP3JC9zjydX12iF8bIk83JIcrnLs7vfr9offAarwebtai-VWoRd_q4qNXUd_jhbTzxeTWdApNQSCENIExoCjSbiGk5M8FzLULNJUw0HCXEfCopCUSQVTIeATrq0mJ0CRJMwZZ1KTM9Qrq9K8RFjxJKVSKRmqkBolwZYYE2EqWAr-dCj6aABDmnVfWp25IHocZd04Z90499Fw-34z1bGdW9GN4nCFD7sKK0_0cbjo-63BZPAx2giLKE3V1lmcMkB4gKBoH73wlrRrjMAlDj149X8deI2OrLK9TRCP6BvUa9ateQv4p5HvnOX_Blw_BHc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvB_L00hF4pIlcbyOe-BQbam2tFshdSv1FvyKqMgmq01WaDnxHzhw5a_wV_gljJ1keWklLpWIckqciR9jzzee8QzAFpVSxGwgg22Fmg4CeBYIJrKAJ9vUSGRomXkv3yM-OmGvTwenG_C1OwuDlaiQUuWN-D-jC0Qv8Fkhi7JPtcuN1blRHtjlB1TSqpf7uziizyjdezUZjoI2j0Ag4ziuA2tRDYqFwVvEWSZVaHhkmMErDjMTSScjE640LtQoPYVxGSNRUA7CjAuuTIx0L8BFhD7UqXc7w-NurXfszhu7NerlCF5WwYP-qrCTfrr6XfqtgbRetO1dg2-rTvEeLe_7i1r19cc_4kX-z712Ha62uJrsNBPhBmzY4iZc-SXa4i34Mra1czOYuT0kTfxeaHOsIxj7hCXWkNGZO5Dt88MgsaqyU5UviSwMmTQxvPJg2Dj351h6d1nIKZIavjube32GuLAlfgOSlBnx__v-6XNz3lWT48VsLqddPmLypsyXzmpwG07OpWfuwGZRFvYeEC0GCVNaq1CHzGqFM4dzGSaSJwmiC9mDLRzCtF1XqtS7DNAobcc1bce1B_2OrVLdxnZ3KUby9R88X30wa8KarC_6tOPTFJceZ0-ShS0XVUoTjngW8SLrwd2GgVfEYnwlsAX3_60BT-DSaDI-TA_3jw4ewGWKSNK5xkfsIWzW84V9hMivVo_95CPw9rz59gcT92YC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIiE48H4sTyMViUu2Sex13AOHapfVltKqUlupt-BXREU2WW2yQsuJ_8CBP8Bf4Y_wSxg7yYqHVuJSiSinxJn4MfZ84xnPAGzFUgrKBjLYUajpIIBngWAiC3iyExuJDC0z7-V7yCen7M3Z4GwDvnVnYbASFVKqvBHfzeqZydoIA9E2Pi9kUfZj7fJjda6U-3b5ERW16tXeCEf1RRyPX58MJ0GbSyCQlNI6sBZVISoM3oJmmVSh4ZFhBi8aZiaSTk4mXGlcrFGCCuOyRqKwHIQZF1wZinQvwWVnJHQq3u7wuFvvHcvzxnaNujkCmFUAob8q7CSgrn6XgGtgrRdv4xvwfdUx3qvlQ39Rq77-9EfMyP-9527C9RZfk91mQtyCDVvchmu_RF28A18PbO3cDWZuL0kTvyfaHO8IDnziEmvI5NwdzPZ5YpBYVdmpypdEFoacNLG88mDYOPnnWHq0LOQUSQ3fn8-9XkNc-BK_EUnKjPj__fj8pTn3qsnxYjaX0y4vMTkq86WzHtyF0wvpmXuwWZSFfQBEi0HClNYq1CGzWuEM4lyGieRJgihD9mALhzBt15cq9a4DcZS245q249qDfsdaqW5jvLtUI_n6D16uPpg14U3WF33e8WqKS5CzK8nClosqjROOuBZxI-vB_YaJV8QovhLYgof_1oBncOVoNE7f7h3uP4KrMQJK5yEfscewWc8X9gkCwFo99fOPwLuLZtuft1BohQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metallophilic+Interaction-Mediated+Hierarchical+Assembly+and+Temporal-Controlled+Dynamic+Chirality+Inversion+of+Metal%E2%80%93Organic+Supramolecular+Polymers&rft.jtitle=ACS+nano&rft.au=Yao%2C+Longfei&rft.au=Fu%2C+Kuo&rft.au=Wang%2C+Xuejuan&rft.au=He%2C+Menglu&rft.date=2023-02-14&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=17&rft.issue=3&rft.spage=2159&rft.epage=2169&rft_id=info:doi/10.1021%2Facsnano.2c08315&rft.externalDocID=h02286038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |