Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery
To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profi...
Saved in:
Published in | ACS nano Vol. 14; no. 1; pp. 488 - 497 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems. |
---|---|
AbstractList | To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems. To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems. To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems. |
Author | Matranga, Morgan A Cortinas, Abel B Daniel, Kevin B Delcassian, Derfogail Anderson, Daniel G Langer, Robert Volpatti, Lisa R |
AuthorAffiliation | Harvard−Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science David H. Koch Institute for Integrative Cancer Research Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy Department of Chemical Engineering Department of Anesthesiology University of Nottingham Boston Children’s Hospital |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy – name: Harvard−Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science – name: Department of Anesthesiology – name: Boston Children’s Hospital – name: David H. Koch Institute for Integrative Cancer Research – name: University of Nottingham |
Author_xml | – sequence: 1 givenname: Lisa R surname: Volpatti fullname: Volpatti, Lisa R organization: David H. Koch Institute for Integrative Cancer Research – sequence: 2 givenname: Morgan A surname: Matranga fullname: Matranga, Morgan A organization: Department of Chemical Engineering – sequence: 3 givenname: Abel B surname: Cortinas fullname: Cortinas, Abel B organization: David H. Koch Institute for Integrative Cancer Research – sequence: 4 givenname: Derfogail surname: Delcassian fullname: Delcassian, Derfogail organization: University of Nottingham – sequence: 5 givenname: Kevin B surname: Daniel fullname: Daniel, Kevin B organization: David H. Koch Institute for Integrative Cancer Research – sequence: 6 givenname: Robert orcidid: 0000-0003-4255-0492 surname: Langer fullname: Langer, Robert organization: Harvard−Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science – sequence: 7 givenname: Daniel G orcidid: 0000-0003-0151-4903 surname: Anderson fullname: Anderson, Daniel G email: dgander@mit.edu organization: Harvard−Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31765558$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1LHTEUhkNR9Pqx7q7MsiCjyZxmJrMsau2Fi4IK7S7k40yJ5CbTZEb035ty7-1CcJUTzvO-JM8R2QsxICGfGT1ntGEXyuSgQjzvNW2h55_IgvXQ1lS0v_f-z5wdkqOcnyjlnejaA3IIrGs552JBft342cSM9T3mMYbsnrG6LY2jSpMzHnM1xFTdq9HZSgVbXb9MGCza6gH9UEJ_Zq-mcl2GPHsXqiv0pSK9npD9QfmMp9vzmDz8uH68_Fmv7m6Wl99XtQKAqbbaDpQa0RjLGQ4AWglqW8XLdzRrOmZAl0eD1j2i-NarloFB0IDCcgXH5OumdUzx74x5kmuXDXqvAsY5ywaY6AD6RhT0yxad9RqtHJNbq_QqdyoKwDeASTHnhIM0blKTi2FKynnJqPynXG6Vy63ykrt4l9tVf5w42yTKQj7FOYVi6EP6DXsElUg |
CitedBy_id | crossref_primary_10_1016_j_addr_2022_114308 crossref_primary_10_3390_ijms24065474 crossref_primary_10_1016_j_bioactmat_2022_02_025 crossref_primary_10_1021_acs_nanolett_3c00917 crossref_primary_10_1039_D4NR00635F crossref_primary_10_3390_molecules27123836 crossref_primary_10_1007_s00210_024_03469_x crossref_primary_10_1246_cl_230322 crossref_primary_10_1016_j_jconrel_2020_02_014 crossref_primary_10_1016_j_addr_2024_115239 crossref_primary_10_1039_D0CB00022A crossref_primary_10_3390_ijms21176380 crossref_primary_10_1038_s41598_021_01216_3 crossref_primary_10_1002_EXP_20210110 crossref_primary_10_1016_j_jconrel_2020_09_008 crossref_primary_10_2217_nnm_2021_0338 crossref_primary_10_1002_advs_202301771 crossref_primary_10_3390_pharmaceutics14030644 crossref_primary_10_1002_anie_202303097 crossref_primary_10_1002_adma_202210392 crossref_primary_10_1016_j_ijbiomac_2024_135988 crossref_primary_10_1016_j_molliq_2024_126117 crossref_primary_10_1021_acsbiomaterials_1c00830 crossref_primary_10_3389_fbioe_2022_845779 crossref_primary_10_1039_D1RA08373B crossref_primary_10_1063_5_0232274 crossref_primary_10_1080_10667857_2021_1898717 crossref_primary_10_1039_D4BM01210K crossref_primary_10_1016_j_jconrel_2024_03_001 crossref_primary_10_1016_j_jconrel_2025_01_070 crossref_primary_10_2217_nnm_2023_0194 crossref_primary_10_1002_ddr_21903 crossref_primary_10_1016_j_eurpolymj_2022_111670 crossref_primary_10_1155_2022_4133562 crossref_primary_10_1002_wnan_2013 crossref_primary_10_1021_acsnano_0c09115 crossref_primary_10_1002_smll_202409501 crossref_primary_10_1021_acsmaterialsau_4c00138 crossref_primary_10_1038_s41573_020_0090_8 crossref_primary_10_1016_j_apmt_2021_101059 crossref_primary_10_3390_nano10040789 crossref_primary_10_1021_acsnano_0c07291 crossref_primary_10_1016_j_jconrel_2021_01_002 crossref_primary_10_1016_j_device_2023_100092 crossref_primary_10_1021_acsmaterialslett_2c01175 crossref_primary_10_1021_acs_energyfuels_2c00113 crossref_primary_10_1208_s12249_021_02088_6 crossref_primary_10_3390_gels10070440 crossref_primary_10_1002_adma_202312939 crossref_primary_10_1007_s00018_021_04039_7 crossref_primary_10_22159_ijap_2023v15i1_46511 crossref_primary_10_3390_pharmaceutics16081076 crossref_primary_10_1016_j_addr_2020_09_013 crossref_primary_10_1016_j_jconrel_2021_08_017 crossref_primary_10_34133_bdr_0004 crossref_primary_10_1002_mabi_202300014 crossref_primary_10_1186_s12951_022_01605_4 crossref_primary_10_3390_gels9090718 crossref_primary_10_1016_j_matt_2021_08_011 crossref_primary_10_1016_j_jconrel_2020_04_013 crossref_primary_10_3390_nano11020396 crossref_primary_10_1016_j_microc_2022_108051 crossref_primary_10_1016_j_ccr_2023_215530 crossref_primary_10_1016_j_colsurfb_2023_113598 crossref_primary_10_1038_s41467_021_25856_1 crossref_primary_10_1016_j_carbpol_2022_119378 crossref_primary_10_3390_gels10010061 crossref_primary_10_1021_acs_biomac_1c01496 crossref_primary_10_1002_idm2_12210 crossref_primary_10_3390_pharmaceutics16101343 crossref_primary_10_1002_ange_202303097 crossref_primary_10_1016_j_ijpharm_2025_125487 crossref_primary_10_1097_CM9_0000000000001516 crossref_primary_10_3389_fviro_2023_1184095 crossref_primary_10_3390_cancers14051198 crossref_primary_10_1021_acs_biomac_2c00016 crossref_primary_10_3390_life13081663 crossref_primary_10_2174_1389557521666211116123002 crossref_primary_10_1016_j_carpta_2021_100067 crossref_primary_10_1016_j_nantod_2022_101582 crossref_primary_10_1002_mabi_202100474 crossref_primary_10_1016_j_molmet_2020_101107 crossref_primary_10_3390_pharmaceutics15030998 crossref_primary_10_1016_j_jconrel_2022_11_032 crossref_primary_10_1021_acs_iecr_2c00432 crossref_primary_10_1002_adtp_202300127 crossref_primary_10_1002_adfm_202103347 crossref_primary_10_2174_0122103031304556240430161553 crossref_primary_10_3390_coatings13091660 crossref_primary_10_1007_s12274_020_3273_z crossref_primary_10_1016_j_addr_2023_114871 crossref_primary_10_1124_pharmrev_124_001074 crossref_primary_10_1016_j_biomaterials_2024_122478 crossref_primary_10_1016_j_addr_2025_115561 crossref_primary_10_1016_j_biomaterials_2020_120458 crossref_primary_10_1016_j_mtbio_2022_100450 crossref_primary_10_1021_acsnano_2c07953 crossref_primary_10_3389_fbioe_2022_1052436 crossref_primary_10_3390_life12122078 crossref_primary_10_1021_acsomega_4c09806 crossref_primary_10_1002_advs_202104884 crossref_primary_10_1039_D2NR05744A crossref_primary_10_1021_jacsau_4c00776 crossref_primary_10_1039_D2CS00435F crossref_primary_10_3390_ijms23042237 crossref_primary_10_1021_acsami_2c19877 crossref_primary_10_1039_D4NJ00073K crossref_primary_10_1002_adhm_202201822 crossref_primary_10_1208_s12248_023_00839_w crossref_primary_10_3390_pharmaceutics14010081 crossref_primary_10_1080_17425247_2023_2214362 crossref_primary_10_1039_D3MA00159H crossref_primary_10_1002_adbi_202300161 crossref_primary_10_1021_acs_molpharmaceut_2c00936 crossref_primary_10_2147_IJN_S283416 crossref_primary_10_1002_adma_202202169 crossref_primary_10_1016_j_cej_2024_159048 crossref_primary_10_3390_ph17070945 crossref_primary_10_1021_acs_chemmater_1c00897 crossref_primary_10_1016_j_phanu_2021_100280 crossref_primary_10_3390_pharmaceutics16091218 crossref_primary_10_1016_j_tips_2020_11_002 crossref_primary_10_1039_D1CC00811K crossref_primary_10_1016_j_cej_2022_134929 |
Cites_doi | 10.2337/diacare.25.3.593 10.1016/S0168-3659(02)00409-1 10.1016/j.jconrel.2008.08.009 10.1093/qjmed/hcm031 10.1073/pnas.0901592106 10.2337/diacare.28.1.78 10.2337/dc11-0996 10.1038/nrd4477 10.1021/acs.nanolett.6b03848 10.1021/nn400630x 10.1016/S0149-2918(01)80109-0 10.1111/j.1464-5491.2012.03605.x 10.1185/030079906X154178 10.1073/pnas.1505405112 10.1021/acsnano.6b06892 10.1021/nn1008319 10.1111/j.1463-1326.2012.01636.x 10.1038/nbt.3462 10.1021/ja803947s 10.1016/j.jfda.2014.12.001 10.1007/s002160051556 10.1016/j.arcontrol.2012.09.007 10.2337/diacare.17.8.882 10.1021/nn401617u 10.1056/NEJM199309303291401 10.1002/jbm.820190920 10.1001/jamainternmed.2014.136 10.1016/j.aca.2011.07.024 10.2337/dc11-2054 10.2337/dc09-1348 10.1016/0168-8227(95)01064-K 10.3109/1061186X.2015.1055749 10.1185/03007995.2011.621416 10.1172/JCI31669 10.1016/S0032-3861(99)00620-5 10.1021/bm401050j 10.1056/NEJM199306103282306 10.1038/nrendo.2011.32 10.3322/caac.20078 10.1023/B:PHAM.0000036926.54824.37 10.1185/03007995.2012.743458 10.1042/bj3120725 10.1002/14651858.CD003287.pub3 10.1002/14651858.CD005613.pub3 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.9b06395 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 497 |
ExternalDocumentID | 31765558 10_1021_acsnano_9b06395 a588166985 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a333t-dbdf00c82cd51ef33ba80d6a5063b1271c3b5783bb9ee849a613ce3b3e8d5a3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 15:14:21 EDT 2025 Thu Jan 02 22:58:37 EST 2025 Thu Apr 24 23:06:00 EDT 2025 Tue Jul 01 02:21:02 EDT 2025 Thu Aug 27 22:10:37 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | nanoparticles biomaterials drug delivery insulin stimuli-responsive diabetes |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-dbdf00c82cd51ef33ba80d6a5063b1271c3b5783bb9ee849a613ce3b3e8d5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4255-0492 0000-0003-0151-4903 |
PMID | 31765558 |
PQID | 2318733928 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2318733928 pubmed_primary_31765558 crossref_citationtrail_10_1021_acsnano_9b06395 crossref_primary_10_1021_acsnano_9b06395 acs_journals_10_1021_acsnano_9b06395 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-28 |
PublicationDateYYYYMMDD | 2020-01-28 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.2337/diacare.25.3.593 – ident: ref24/cit24 doi: 10.1016/S0168-3659(02)00409-1 – ident: ref18/cit18 doi: 10.1016/j.jconrel.2008.08.009 – ident: ref37/cit37 doi: 10.1093/qjmed/hcm031 – ident: ref31/cit31 doi: 10.1073/pnas.0901592106 – ident: ref36/cit36 doi: 10.2337/diacare.28.1.78 – ident: ref7/cit7 doi: 10.2337/dc11-0996 – ident: ref19/cit19 doi: 10.1038/nrd4477 – ident: ref29/cit29 doi: 10.1021/acs.nanolett.6b03848 – ident: ref25/cit25 doi: 10.1021/nn400630x – ident: ref5/cit5 doi: 10.1016/S0149-2918(01)80109-0 – ident: ref6/cit6 doi: 10.1111/j.1464-5491.2012.03605.x – ident: ref11/cit11 doi: 10.1185/030079906X154178 – ident: ref27/cit27 doi: 10.1073/pnas.1505405112 – ident: ref28/cit28 doi: 10.1021/acsnano.6b06892 – ident: ref23/cit23 doi: 10.1021/nn1008319 – ident: ref39/cit39 doi: 10.1111/j.1463-1326.2012.01636.x – ident: ref32/cit32 doi: 10.1038/nbt.3462 – ident: ref30/cit30 doi: 10.1021/ja803947s – ident: ref43/cit43 doi: 10.1016/j.jfda.2014.12.001 – ident: ref16/cit16 doi: 10.1007/s002160051556 – ident: ref17/cit17 doi: 10.1016/j.arcontrol.2012.09.007 – ident: ref15/cit15 doi: 10.2337/diacare.17.8.882 – ident: ref26/cit26 doi: 10.1021/nn401617u – ident: ref3/cit3 doi: 10.1056/NEJM199309303291401 – ident: ref21/cit21 doi: 10.1002/jbm.820190920 – ident: ref42/cit42 doi: 10.1001/jamainternmed.2014.136 – ident: ref44/cit44 doi: 10.1016/j.aca.2011.07.024 – ident: ref9/cit9 doi: 10.2337/dc11-2054 – ident: ref40/cit40 doi: 10.2337/dc09-1348 – ident: ref4/cit4 doi: 10.1016/0168-8227(95)01064-K – ident: ref20/cit20 doi: 10.3109/1061186X.2015.1055749 – ident: ref41/cit41 doi: 10.1185/03007995.2011.621416 – ident: ref8/cit8 doi: 10.1172/JCI31669 – ident: ref22/cit22 doi: 10.1016/S0032-3861(99)00620-5 – ident: ref33/cit33 doi: 10.1021/bm401050j – ident: ref1/cit1 doi: 10.1056/NEJM199306103282306 – ident: ref14/cit14 doi: 10.1038/nrendo.2011.32 – ident: ref2/cit2 doi: 10.3322/caac.20078 – ident: ref35/cit35 doi: 10.1023/B:PHAM.0000036926.54824.37 – ident: ref38/cit38 doi: 10.1185/03007995.2012.743458 – ident: ref34/cit34 doi: 10.1042/bj3120725 – ident: ref10/cit10 doi: 10.1002/14651858.CD003287.pub3 – ident: ref12/cit12 doi: 10.1002/14651858.CD005613.pub3 |
SSID | ssj0057876 |
Score | 2.614985 |
Snippet | To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 488 |
SubjectTerms | Animals Cell Line Dextrans - chemical synthesis Dextrans - chemistry Dextrans - metabolism Drug Delivery Systems Glucose - chemistry Glucose - metabolism Humans Insulin - blood Insulin - chemistry Insulin - metabolism Mice Nanoparticles - chemistry Particle Size Surface Properties |
Title | Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery |
URI | http://dx.doi.org/10.1021/acsnano.9b06395 https://www.ncbi.nlm.nih.gov/pubmed/31765558 https://www.proquest.com/docview/2318733928 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XvTg-1FfrNCDl9Qk2ySbo9TWKuihVewt7GMCYkmLaQX99c4m2_ooRS-BQHbZzM7sfJOZfENILQ7QqQcQOyBcjQEKXtDPpA5EEYZuiADc0PzvfHcfdh4bt_2g_0UW_TuD73sXQuWZyIb1WBpvGiyTFT9EEzYoqNmbHrpG78IygYwBMqKIGYvP3ATGDan8pxtagC0LH9PeKKuz8oKa0JSWvNQnY1lXH_PEjX8vf5OsW6RJL0vV2CJLkG2TtW_8gzvk6bosWHe6tlL2DSgetxhH23I5ipCWdsXoWVORadqyX8xpDwYpDira2OPtTVnQTq9gYMo83ndJr916aHYc22nBEYyxsaOlTl1XcV_pwIOUMSm4q0MR4Jql50eeYhJFzKSMAXgjFggCFDDJgOtAsD1SyYYZHBCqZKRMe3XgEDZiaeI5HoOvvTQNOaS8SmookMTaSZ4UKXDfS6yUEiulKqlPdydRlqvctMwYLB5wPhswKmk6Fj96Nt3uBE3J5EdEBsNJniDU5RFDwIjL3C_1YDYZwqzQUKMd_u8FjsiqbwJz13N8fkwq49cJnCB6GcvTQm8_AaYG60k |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5dByAPoAlkfrShx6yZLEm8Q5rpbH0gJSWapyi_yYSIhVFpFdJPrrO06ctIBWai-REsXWeDz2fOMZzwDspxEp9QhTD6VvyEChB-mZ3MMkIdONEIAf2_vO5xfx6Ef_63V0vQR-cxeGiCipp7Jy4v_JLhAc0LdCFtNeqqxSjV7BMkGR0Mr0YDhu9l4rfnHtRyY7mcBEm8znRQdWG-nyqTZaADErVXO8Bt9bIqsIk9vefKZ6-tez_I3_M4p1WHW4kw1qQXkLS1i8g5W_shG-h58ndfi6d-niZh-Q0eZLVrULnmMEcNmlvLsxTBaGHbnzczbGSU6NqqL29Hpah7ezQ5zYoI_HDzA-ProajjxXd8GTnPOZZ5TJfV-LUJsowJxzJYVvYhkRzSoIk0BzRZzmSqWIop9KggQaueIoTCT5BnSKaYFbwLRKtC22jgLjfqqsdSdSDE2Q57HAXHRhnxiSuVVTZpVDPAwyx6XMcakLvWaSMu0yl9sCGpPFDb60De7qpB2Lf_3czHpGC8t6S2SB03mZEfAVCSf4SGRu1uLQdkagK7aJ0rb_bQCf4PXo6vwsOzu9-LYDb0JrsvuBF4pd6Mzu57hHuGamPlai_Bs_B_Oq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8MwDI44JAQP3Mc4g7QHXjraZm3TRwQb94Q2ELxVOVwJMXUT3ZDg1-O02cShSfBSqVUTOY4Tf44dm5BqHKBSDyB2QLgaDRR8oJ5JHYgiNN0QAbihue982wovHupXT8GTvRRm7sIgETn2lBdOfLOq-zq1GQa8Y_yeiaxXi6VRrME0mTVOOyPXJ6ed0f5rRDAsfcloKyOgGCf0-dWB0Ugq_66RJsDMQt00l8jDmNAiyuSlNhzImvr4kcPxvyNZJosWf9KTUmBWyBRkq2ThS1bCNfJ4XoaxO20bP_sGFDdhtK5tEB1FoEvbov-sqcg0bdhzdNqBboqNiuL2-HpZhrnTM-ia4I_3ddJpNu5PLxxbf8ERjLGBo6VOXVdxX-nAg5QxKbirQxEgzdLzI08xidxmUsYAvB4LhAYKmGTAdSDYBpnJehlsEapkpEzRdeAQ1mNprDweg6-9NA05pLxCqsiQxK6ePCkc476XWC4llksVUhtNVKJsBnNTSKM7ucHRuEG_TN4x-dfD0cwnuMCM10Rk0BvmCQJgHjGEkUjmZikS484QfIUmYdr23wZwQObuzprJzWXreofM-8Zydz3H57tkZvA6hD2ENwO5X0jzJyKA9i0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glucose-Responsive+Nanoparticles+for+Rapid+and+Extended+Self-Regulated+Insulin+Delivery&rft.jtitle=ACS+nano&rft.au=Volpatti%2C+Lisa+R.&rft.au=Matranga%2C+Morgan+A.&rft.au=Cortinas%2C+Abel+B.&rft.au=Delcassian%2C+Derfogail&rft.date=2020-01-28&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=14&rft.issue=1&rft.spage=488&rft.epage=497&rft_id=info:doi/10.1021%2Facsnano.9b06395&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_9b06395 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |