Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery

To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profi...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 14; no. 1; pp. 488 - 497
Main Authors Volpatti, Lisa R, Matranga, Morgan A, Cortinas, Abel B, Delcassian, Derfogail, Daniel, Kevin B, Langer, Robert, Anderson, Daniel G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.
AbstractList To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.
To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.
To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.
Author Matranga, Morgan A
Cortinas, Abel B
Daniel, Kevin B
Delcassian, Derfogail
Anderson, Daniel G
Langer, Robert
Volpatti, Lisa R
AuthorAffiliation Harvard−Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science
David H. Koch Institute for Integrative Cancer Research
Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy
Department of Chemical Engineering
Department of Anesthesiology
University of Nottingham
Boston Children’s Hospital
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy
– name: Harvard−Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science
– name: Department of Anesthesiology
– name: Boston Children’s Hospital
– name: David H. Koch Institute for Integrative Cancer Research
– name: University of Nottingham
Author_xml – sequence: 1
  givenname: Lisa R
  surname: Volpatti
  fullname: Volpatti, Lisa R
  organization: David H. Koch Institute for Integrative Cancer Research
– sequence: 2
  givenname: Morgan A
  surname: Matranga
  fullname: Matranga, Morgan A
  organization: Department of Chemical Engineering
– sequence: 3
  givenname: Abel B
  surname: Cortinas
  fullname: Cortinas, Abel B
  organization: David H. Koch Institute for Integrative Cancer Research
– sequence: 4
  givenname: Derfogail
  surname: Delcassian
  fullname: Delcassian, Derfogail
  organization: University of Nottingham
– sequence: 5
  givenname: Kevin B
  surname: Daniel
  fullname: Daniel, Kevin B
  organization: David H. Koch Institute for Integrative Cancer Research
– sequence: 6
  givenname: Robert
  orcidid: 0000-0003-4255-0492
  surname: Langer
  fullname: Langer, Robert
  organization: Harvard−Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science
– sequence: 7
  givenname: Daniel G
  orcidid: 0000-0003-0151-4903
  surname: Anderson
  fullname: Anderson, Daniel G
  email: dgander@mit.edu
  organization: Harvard−Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31765558$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LHTEUhkNR9Pqx7q7MsiCjyZxmJrMsau2Fi4IK7S7k40yJ5CbTZEb035ty7-1CcJUTzvO-JM8R2QsxICGfGT1ntGEXyuSgQjzvNW2h55_IgvXQ1lS0v_f-z5wdkqOcnyjlnejaA3IIrGs552JBft342cSM9T3mMYbsnrG6LY2jSpMzHnM1xFTdq9HZSgVbXb9MGCza6gH9UEJ_Zq-mcl2GPHsXqiv0pSK9npD9QfmMp9vzmDz8uH68_Fmv7m6Wl99XtQKAqbbaDpQa0RjLGQ4AWglqW8XLdzRrOmZAl0eD1j2i-NarloFB0IDCcgXH5OumdUzx74x5kmuXDXqvAsY5ywaY6AD6RhT0yxad9RqtHJNbq_QqdyoKwDeASTHnhIM0blKTi2FKynnJqPynXG6Vy63ykrt4l9tVf5w42yTKQj7FOYVi6EP6DXsElUg
CitedBy_id crossref_primary_10_1016_j_addr_2022_114308
crossref_primary_10_3390_ijms24065474
crossref_primary_10_1016_j_bioactmat_2022_02_025
crossref_primary_10_1021_acs_nanolett_3c00917
crossref_primary_10_1039_D4NR00635F
crossref_primary_10_3390_molecules27123836
crossref_primary_10_1007_s00210_024_03469_x
crossref_primary_10_1246_cl_230322
crossref_primary_10_1016_j_jconrel_2020_02_014
crossref_primary_10_1016_j_addr_2024_115239
crossref_primary_10_1039_D0CB00022A
crossref_primary_10_3390_ijms21176380
crossref_primary_10_1038_s41598_021_01216_3
crossref_primary_10_1002_EXP_20210110
crossref_primary_10_1016_j_jconrel_2020_09_008
crossref_primary_10_2217_nnm_2021_0338
crossref_primary_10_1002_advs_202301771
crossref_primary_10_3390_pharmaceutics14030644
crossref_primary_10_1002_anie_202303097
crossref_primary_10_1002_adma_202210392
crossref_primary_10_1016_j_ijbiomac_2024_135988
crossref_primary_10_1016_j_molliq_2024_126117
crossref_primary_10_1021_acsbiomaterials_1c00830
crossref_primary_10_3389_fbioe_2022_845779
crossref_primary_10_1039_D1RA08373B
crossref_primary_10_1063_5_0232274
crossref_primary_10_1080_10667857_2021_1898717
crossref_primary_10_1039_D4BM01210K
crossref_primary_10_1016_j_jconrel_2024_03_001
crossref_primary_10_1016_j_jconrel_2025_01_070
crossref_primary_10_2217_nnm_2023_0194
crossref_primary_10_1002_ddr_21903
crossref_primary_10_1016_j_eurpolymj_2022_111670
crossref_primary_10_1155_2022_4133562
crossref_primary_10_1002_wnan_2013
crossref_primary_10_1021_acsnano_0c09115
crossref_primary_10_1002_smll_202409501
crossref_primary_10_1021_acsmaterialsau_4c00138
crossref_primary_10_1038_s41573_020_0090_8
crossref_primary_10_1016_j_apmt_2021_101059
crossref_primary_10_3390_nano10040789
crossref_primary_10_1021_acsnano_0c07291
crossref_primary_10_1016_j_jconrel_2021_01_002
crossref_primary_10_1016_j_device_2023_100092
crossref_primary_10_1021_acsmaterialslett_2c01175
crossref_primary_10_1021_acs_energyfuels_2c00113
crossref_primary_10_1208_s12249_021_02088_6
crossref_primary_10_3390_gels10070440
crossref_primary_10_1002_adma_202312939
crossref_primary_10_1007_s00018_021_04039_7
crossref_primary_10_22159_ijap_2023v15i1_46511
crossref_primary_10_3390_pharmaceutics16081076
crossref_primary_10_1016_j_addr_2020_09_013
crossref_primary_10_1016_j_jconrel_2021_08_017
crossref_primary_10_34133_bdr_0004
crossref_primary_10_1002_mabi_202300014
crossref_primary_10_1186_s12951_022_01605_4
crossref_primary_10_3390_gels9090718
crossref_primary_10_1016_j_matt_2021_08_011
crossref_primary_10_1016_j_jconrel_2020_04_013
crossref_primary_10_3390_nano11020396
crossref_primary_10_1016_j_microc_2022_108051
crossref_primary_10_1016_j_ccr_2023_215530
crossref_primary_10_1016_j_colsurfb_2023_113598
crossref_primary_10_1038_s41467_021_25856_1
crossref_primary_10_1016_j_carbpol_2022_119378
crossref_primary_10_3390_gels10010061
crossref_primary_10_1021_acs_biomac_1c01496
crossref_primary_10_1002_idm2_12210
crossref_primary_10_3390_pharmaceutics16101343
crossref_primary_10_1002_ange_202303097
crossref_primary_10_1016_j_ijpharm_2025_125487
crossref_primary_10_1097_CM9_0000000000001516
crossref_primary_10_3389_fviro_2023_1184095
crossref_primary_10_3390_cancers14051198
crossref_primary_10_1021_acs_biomac_2c00016
crossref_primary_10_3390_life13081663
crossref_primary_10_2174_1389557521666211116123002
crossref_primary_10_1016_j_carpta_2021_100067
crossref_primary_10_1016_j_nantod_2022_101582
crossref_primary_10_1002_mabi_202100474
crossref_primary_10_1016_j_molmet_2020_101107
crossref_primary_10_3390_pharmaceutics15030998
crossref_primary_10_1016_j_jconrel_2022_11_032
crossref_primary_10_1021_acs_iecr_2c00432
crossref_primary_10_1002_adtp_202300127
crossref_primary_10_1002_adfm_202103347
crossref_primary_10_2174_0122103031304556240430161553
crossref_primary_10_3390_coatings13091660
crossref_primary_10_1007_s12274_020_3273_z
crossref_primary_10_1016_j_addr_2023_114871
crossref_primary_10_1124_pharmrev_124_001074
crossref_primary_10_1016_j_biomaterials_2024_122478
crossref_primary_10_1016_j_addr_2025_115561
crossref_primary_10_1016_j_biomaterials_2020_120458
crossref_primary_10_1016_j_mtbio_2022_100450
crossref_primary_10_1021_acsnano_2c07953
crossref_primary_10_3389_fbioe_2022_1052436
crossref_primary_10_3390_life12122078
crossref_primary_10_1021_acsomega_4c09806
crossref_primary_10_1002_advs_202104884
crossref_primary_10_1039_D2NR05744A
crossref_primary_10_1021_jacsau_4c00776
crossref_primary_10_1039_D2CS00435F
crossref_primary_10_3390_ijms23042237
crossref_primary_10_1021_acsami_2c19877
crossref_primary_10_1039_D4NJ00073K
crossref_primary_10_1002_adhm_202201822
crossref_primary_10_1208_s12248_023_00839_w
crossref_primary_10_3390_pharmaceutics14010081
crossref_primary_10_1080_17425247_2023_2214362
crossref_primary_10_1039_D3MA00159H
crossref_primary_10_1002_adbi_202300161
crossref_primary_10_1021_acs_molpharmaceut_2c00936
crossref_primary_10_2147_IJN_S283416
crossref_primary_10_1002_adma_202202169
crossref_primary_10_1016_j_cej_2024_159048
crossref_primary_10_3390_ph17070945
crossref_primary_10_1021_acs_chemmater_1c00897
crossref_primary_10_1016_j_phanu_2021_100280
crossref_primary_10_3390_pharmaceutics16091218
crossref_primary_10_1016_j_tips_2020_11_002
crossref_primary_10_1039_D1CC00811K
crossref_primary_10_1016_j_cej_2022_134929
Cites_doi 10.2337/diacare.25.3.593
10.1016/S0168-3659(02)00409-1
10.1016/j.jconrel.2008.08.009
10.1093/qjmed/hcm031
10.1073/pnas.0901592106
10.2337/diacare.28.1.78
10.2337/dc11-0996
10.1038/nrd4477
10.1021/acs.nanolett.6b03848
10.1021/nn400630x
10.1016/S0149-2918(01)80109-0
10.1111/j.1464-5491.2012.03605.x
10.1185/030079906X154178
10.1073/pnas.1505405112
10.1021/acsnano.6b06892
10.1021/nn1008319
10.1111/j.1463-1326.2012.01636.x
10.1038/nbt.3462
10.1021/ja803947s
10.1016/j.jfda.2014.12.001
10.1007/s002160051556
10.1016/j.arcontrol.2012.09.007
10.2337/diacare.17.8.882
10.1021/nn401617u
10.1056/NEJM199309303291401
10.1002/jbm.820190920
10.1001/jamainternmed.2014.136
10.1016/j.aca.2011.07.024
10.2337/dc11-2054
10.2337/dc09-1348
10.1016/0168-8227(95)01064-K
10.3109/1061186X.2015.1055749
10.1185/03007995.2011.621416
10.1172/JCI31669
10.1016/S0032-3861(99)00620-5
10.1021/bm401050j
10.1056/NEJM199306103282306
10.1038/nrendo.2011.32
10.3322/caac.20078
10.1023/B:PHAM.0000036926.54824.37
10.1185/03007995.2012.743458
10.1042/bj3120725
10.1002/14651858.CD003287.pub3
10.1002/14651858.CD005613.pub3
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.9b06395
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 497
ExternalDocumentID 31765558
10_1021_acsnano_9b06395
a588166985
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a333t-dbdf00c82cd51ef33ba80d6a5063b1271c3b5783bb9ee849a613ce3b3e8d5a3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 15:14:21 EDT 2025
Thu Jan 02 22:58:37 EST 2025
Thu Apr 24 23:06:00 EDT 2025
Tue Jul 01 02:21:02 EDT 2025
Thu Aug 27 22:10:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords nanoparticles
biomaterials
drug delivery
insulin
stimuli-responsive
diabetes
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-dbdf00c82cd51ef33ba80d6a5063b1271c3b5783bb9ee849a613ce3b3e8d5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4255-0492
0000-0003-0151-4903
PMID 31765558
PQID 2318733928
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2318733928
pubmed_primary_31765558
crossref_citationtrail_10_1021_acsnano_9b06395
crossref_primary_10_1021_acsnano_9b06395
acs_journals_10_1021_acsnano_9b06395
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-28
PublicationDateYYYYMMDD 2020-01-28
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.2337/diacare.25.3.593
– ident: ref24/cit24
  doi: 10.1016/S0168-3659(02)00409-1
– ident: ref18/cit18
  doi: 10.1016/j.jconrel.2008.08.009
– ident: ref37/cit37
  doi: 10.1093/qjmed/hcm031
– ident: ref31/cit31
  doi: 10.1073/pnas.0901592106
– ident: ref36/cit36
  doi: 10.2337/diacare.28.1.78
– ident: ref7/cit7
  doi: 10.2337/dc11-0996
– ident: ref19/cit19
  doi: 10.1038/nrd4477
– ident: ref29/cit29
  doi: 10.1021/acs.nanolett.6b03848
– ident: ref25/cit25
  doi: 10.1021/nn400630x
– ident: ref5/cit5
  doi: 10.1016/S0149-2918(01)80109-0
– ident: ref6/cit6
  doi: 10.1111/j.1464-5491.2012.03605.x
– ident: ref11/cit11
  doi: 10.1185/030079906X154178
– ident: ref27/cit27
  doi: 10.1073/pnas.1505405112
– ident: ref28/cit28
  doi: 10.1021/acsnano.6b06892
– ident: ref23/cit23
  doi: 10.1021/nn1008319
– ident: ref39/cit39
  doi: 10.1111/j.1463-1326.2012.01636.x
– ident: ref32/cit32
  doi: 10.1038/nbt.3462
– ident: ref30/cit30
  doi: 10.1021/ja803947s
– ident: ref43/cit43
  doi: 10.1016/j.jfda.2014.12.001
– ident: ref16/cit16
  doi: 10.1007/s002160051556
– ident: ref17/cit17
  doi: 10.1016/j.arcontrol.2012.09.007
– ident: ref15/cit15
  doi: 10.2337/diacare.17.8.882
– ident: ref26/cit26
  doi: 10.1021/nn401617u
– ident: ref3/cit3
  doi: 10.1056/NEJM199309303291401
– ident: ref21/cit21
  doi: 10.1002/jbm.820190920
– ident: ref42/cit42
  doi: 10.1001/jamainternmed.2014.136
– ident: ref44/cit44
  doi: 10.1016/j.aca.2011.07.024
– ident: ref9/cit9
  doi: 10.2337/dc11-2054
– ident: ref40/cit40
  doi: 10.2337/dc09-1348
– ident: ref4/cit4
  doi: 10.1016/0168-8227(95)01064-K
– ident: ref20/cit20
  doi: 10.3109/1061186X.2015.1055749
– ident: ref41/cit41
  doi: 10.1185/03007995.2011.621416
– ident: ref8/cit8
  doi: 10.1172/JCI31669
– ident: ref22/cit22
  doi: 10.1016/S0032-3861(99)00620-5
– ident: ref33/cit33
  doi: 10.1021/bm401050j
– ident: ref1/cit1
  doi: 10.1056/NEJM199306103282306
– ident: ref14/cit14
  doi: 10.1038/nrendo.2011.32
– ident: ref2/cit2
  doi: 10.3322/caac.20078
– ident: ref35/cit35
  doi: 10.1023/B:PHAM.0000036926.54824.37
– ident: ref38/cit38
  doi: 10.1185/03007995.2012.743458
– ident: ref34/cit34
  doi: 10.1042/bj3120725
– ident: ref10/cit10
  doi: 10.1002/14651858.CD003287.pub3
– ident: ref12/cit12
  doi: 10.1002/14651858.CD005613.pub3
SSID ssj0057876
Score 2.614985
Snippet To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 488
SubjectTerms Animals
Cell Line
Dextrans - chemical synthesis
Dextrans - chemistry
Dextrans - metabolism
Drug Delivery Systems
Glucose - chemistry
Glucose - metabolism
Humans
Insulin - blood
Insulin - chemistry
Insulin - metabolism
Mice
Nanoparticles - chemistry
Particle Size
Surface Properties
Title Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery
URI http://dx.doi.org/10.1021/acsnano.9b06395
https://www.ncbi.nlm.nih.gov/pubmed/31765558
https://www.proquest.com/docview/2318733928
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XvTg-1FfrNCDl9Qk2ySbo9TWKuihVewt7GMCYkmLaQX99c4m2_ooRS-BQHbZzM7sfJOZfENILQ7QqQcQOyBcjQEKXtDPpA5EEYZuiADc0PzvfHcfdh4bt_2g_0UW_TuD73sXQuWZyIb1WBpvGiyTFT9EEzYoqNmbHrpG78IygYwBMqKIGYvP3ATGDan8pxtagC0LH9PeKKuz8oKa0JSWvNQnY1lXH_PEjX8vf5OsW6RJL0vV2CJLkG2TtW_8gzvk6bosWHe6tlL2DSgetxhH23I5ipCWdsXoWVORadqyX8xpDwYpDira2OPtTVnQTq9gYMo83ndJr916aHYc22nBEYyxsaOlTl1XcV_pwIOUMSm4q0MR4Jql50eeYhJFzKSMAXgjFggCFDDJgOtAsD1SyYYZHBCqZKRMe3XgEDZiaeI5HoOvvTQNOaS8SmookMTaSZ4UKXDfS6yUEiulKqlPdydRlqvctMwYLB5wPhswKmk6Fj96Nt3uBE3J5EdEBsNJniDU5RFDwIjL3C_1YDYZwqzQUKMd_u8FjsiqbwJz13N8fkwq49cJnCB6GcvTQm8_AaYG60k
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R5dByAPoAlkfrShx6yZLEm8Q5rpbH0gJSWapyi_yYSIhVFpFdJPrrO06ctIBWai-REsXWeDz2fOMZzwDspxEp9QhTD6VvyEChB-mZ3MMkIdONEIAf2_vO5xfx6Ef_63V0vQR-cxeGiCipp7Jy4v_JLhAc0LdCFtNeqqxSjV7BMkGR0Mr0YDhu9l4rfnHtRyY7mcBEm8znRQdWG-nyqTZaADErVXO8Bt9bIqsIk9vefKZ6-tez_I3_M4p1WHW4kw1qQXkLS1i8g5W_shG-h58ndfi6d-niZh-Q0eZLVrULnmMEcNmlvLsxTBaGHbnzczbGSU6NqqL29Hpah7ezQ5zYoI_HDzA-ProajjxXd8GTnPOZZ5TJfV-LUJsowJxzJYVvYhkRzSoIk0BzRZzmSqWIop9KggQaueIoTCT5BnSKaYFbwLRKtC22jgLjfqqsdSdSDE2Q57HAXHRhnxiSuVVTZpVDPAwyx6XMcakLvWaSMu0yl9sCGpPFDb60De7qpB2Lf_3czHpGC8t6S2SB03mZEfAVCSf4SGRu1uLQdkagK7aJ0rb_bQCf4PXo6vwsOzu9-LYDb0JrsvuBF4pd6Mzu57hHuGamPlai_Bs_B_Oq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8MwDI44JAQP3Mc4g7QHXjraZm3TRwQb94Q2ELxVOVwJMXUT3ZDg1-O02cShSfBSqVUTOY4Tf44dm5BqHKBSDyB2QLgaDRR8oJ5JHYgiNN0QAbihue982wovHupXT8GTvRRm7sIgETn2lBdOfLOq-zq1GQa8Y_yeiaxXi6VRrME0mTVOOyPXJ6ed0f5rRDAsfcloKyOgGCf0-dWB0Ugq_66RJsDMQt00l8jDmNAiyuSlNhzImvr4kcPxvyNZJosWf9KTUmBWyBRkq2ThS1bCNfJ4XoaxO20bP_sGFDdhtK5tEB1FoEvbov-sqcg0bdhzdNqBboqNiuL2-HpZhrnTM-ia4I_3ddJpNu5PLxxbf8ERjLGBo6VOXVdxX-nAg5QxKbirQxEgzdLzI08xidxmUsYAvB4LhAYKmGTAdSDYBpnJehlsEapkpEzRdeAQ1mNprDweg6-9NA05pLxCqsiQxK6ePCkc476XWC4llksVUhtNVKJsBnNTSKM7ucHRuEG_TN4x-dfD0cwnuMCM10Rk0BvmCQJgHjGEkUjmZikS484QfIUmYdr23wZwQObuzprJzWXreofM-8Zydz3H57tkZvA6hD2ENwO5X0jzJyKA9i0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glucose-Responsive+Nanoparticles+for+Rapid+and+Extended+Self-Regulated+Insulin+Delivery&rft.jtitle=ACS+nano&rft.au=Volpatti%2C+Lisa+R.&rft.au=Matranga%2C+Morgan+A.&rft.au=Cortinas%2C+Abel+B.&rft.au=Delcassian%2C+Derfogail&rft.date=2020-01-28&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=14&rft.issue=1&rft.spage=488&rft.epage=497&rft_id=info:doi/10.1021%2Facsnano.9b06395&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_9b06395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon