Extravasating Neutrophils Open Vascular Barrier and Improve Liposomes Delivery to Tumors
Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasa...
Saved in:
Published in | ACS nano Vol. 13; no. 11; pp. 12599 - 12612 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor–host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy. |
---|---|
AbstractList | Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor-host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy.Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor-host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy. Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor-host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy. |
Author | Naumenko, Victor A Potashnikova, Daria M Vodopyanov, Stepan S Vlasova, Kseniya Yu Melnikov, Pavel A Chekhonin, Vladimir P Abakumov, Maxim A Garanina, Anastasiia S Vishnevskiy, Daniil A Majouga, Alexander G |
AuthorAffiliation | Department of Medical Nanobiotechnology D. Mendeleev University of Chemical Technology of Russia M. V. Lomonosov Moscow State University School of Chemistry School of Biology, Department of Cell Biology and Histology |
AuthorAffiliation_xml | – name: M. V. Lomonosov Moscow State University – name: Department of Medical Nanobiotechnology – name: School of Biology, Department of Cell Biology and Histology – name: D. Mendeleev University of Chemical Technology of Russia – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Victor A orcidid: 0000-0003-0192-4574 surname: Naumenko fullname: Naumenko, Victor A email: naumenko.vict@gmail.com – sequence: 2 givenname: Kseniya Yu orcidid: 0000-0003-3774-1323 surname: Vlasova fullname: Vlasova, Kseniya Yu organization: School of Chemistry – sequence: 3 givenname: Anastasiia S surname: Garanina fullname: Garanina, Anastasiia S – sequence: 4 givenname: Pavel A surname: Melnikov fullname: Melnikov, Pavel A organization: Department of Medical Nanobiotechnology – sequence: 5 givenname: Daria M surname: Potashnikova fullname: Potashnikova, Daria M organization: M. V. Lomonosov Moscow State University – sequence: 6 givenname: Daniil A surname: Vishnevskiy fullname: Vishnevskiy, Daniil A organization: Department of Medical Nanobiotechnology – sequence: 7 givenname: Stepan S surname: Vodopyanov fullname: Vodopyanov, Stepan S – sequence: 8 givenname: Vladimir P surname: Chekhonin fullname: Chekhonin, Vladimir P organization: Department of Medical Nanobiotechnology – sequence: 9 givenname: Maxim A surname: Abakumov fullname: Abakumov, Maxim A organization: Department of Medical Nanobiotechnology – sequence: 10 givenname: Alexander G orcidid: 0000-0002-5184-5551 surname: Majouga fullname: Majouga, Alexander G organization: D. Mendeleev University of Chemical Technology of Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31609576$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1LAzEQhoNUtH6cvUmOglQ3zW6yOWr9hKKXIt7CdDPVlN1kTXaL_nsjrR6EnmZgnneYeQ7IwHmHhJyw7IJlY3YJVXTg_IWaZ7zMyx0yZIqLUVaK18FfX7B9chDjMssKWUqxR_Y5E5kqpBiS19vPLsAKInTWvdEn7Lvg23dbR_rcoqMvEKu-hkCvIQSLgYIz9LFpg18hndrWR99gpDdY2xWGL9p5OusbH-IR2V1AHfF4Uw_J7O52NnkYTZ_vHydX0xFwzruRyZWRRmCpsFrkEowxIKEw41xypZiQIFgJshqbBUpWcYWFnHNIvzKBrOSH5Gy9Nl300WPsdGNjhXUNDn0f9Zinp1UuJUvo6Qbt5w0a3QbbQPjSvzISUKyBKvgYAy50ZbvkxbukyNaaZfpHut5I1xvpKXf5L_e7envifJ1IA730fXBJ0Vb6Gxt3lhU |
CitedBy_id | crossref_primary_10_1002_slct_202104045 crossref_primary_10_1038_s41571_024_00883_1 crossref_primary_10_1038_s44222_024_00154_9 crossref_primary_10_1016_j_bbcan_2022_188703 crossref_primary_10_1016_j_jconrel_2023_05_018 crossref_primary_10_1016_j_nantod_2024_102300 crossref_primary_10_1021_acsnano_1c04510 crossref_primary_10_1016_j_addr_2022_114528 crossref_primary_10_1002_adhm_202002071 crossref_primary_10_1016_j_nantod_2024_102301 crossref_primary_10_1002_smll_202103751 crossref_primary_10_1016_j_bbrc_2020_02_086 crossref_primary_10_1039_D1TB00788B crossref_primary_10_1134_S1061933X23600744 crossref_primary_10_1021_acssensors_4c01464 crossref_primary_10_34133_bmef_0016 crossref_primary_10_1016_j_ebiom_2020_102958 crossref_primary_10_1016_j_mtbio_2022_100460 crossref_primary_10_3389_fimmu_2020_571085 crossref_primary_10_1002_adfm_201910369 crossref_primary_10_1016_j_jconrel_2024_12_056 crossref_primary_10_1016_j_addr_2022_114380 crossref_primary_10_3390_ph16111564 crossref_primary_10_1002_adma_202310318 crossref_primary_10_1016_j_addr_2025_115550 crossref_primary_10_1039_D2NR06621A crossref_primary_10_31857_S0023291223600463 crossref_primary_10_1002_advs_202103148 crossref_primary_10_1158_1541_7786_MCR_24_0110 crossref_primary_10_1016_j_actbio_2020_01_011 crossref_primary_10_1038_s41563_019_0566_2 crossref_primary_10_1007_s13346_022_01204_8 crossref_primary_10_1016_j_jconrel_2020_12_014 crossref_primary_10_1007_s13346_021_01039_9 crossref_primary_10_1016_j_nantod_2024_102552 crossref_primary_10_1016_j_ajps_2021_06_001 crossref_primary_10_1186_s13046_025_03359_x crossref_primary_10_3390_ijms24010627 crossref_primary_10_1038_s41563_023_01630_0 crossref_primary_10_1016_j_biomaterials_2021_121224 crossref_primary_10_1080_1061186X_2022_2104299 crossref_primary_10_1016_j_jid_2020_07_028 crossref_primary_10_1021_acsnano_4c06638 crossref_primary_10_3390_cells12131806 crossref_primary_10_1016_j_engreg_2022_03_001 crossref_primary_10_1038_s41565_023_01498_w crossref_primary_10_3390_biomedicines12102180 crossref_primary_10_3390_pharmaceutics12090837 |
Cites_doi | 10.1021/acsnano.5b05583 10.1021/nn402644g 10.1038/427695a 10.1021/acsnano.5b02028 10.1021/nl204175t 10.7150/thno.16307 10.1021/acsnano.7b06524 10.1016/j.yexmp.2006.06.007 10.1021/mp300240m 10.1038/ncomms3516 10.1016/j.addr.2016.05.023 10.1002/smll.201001022 10.1038/nnano.2014.17 10.1016/j.jconrel.2017.01.006 10.1073/pnas.0611660104 10.1016/j.jconrel.2016.02.016 10.1002/anie.201104449 10.1038/nrclinonc.2010.139 10.2165/00003088-200342050-00002 10.4110/in.2013.13.3.102 10.1016/j.nantod.2013.02.004 10.1038/ncomms9692 10.1038/nnano.2017.54 10.1038/s41571-018-0007-1 10.1038/nnano.2017.67 10.1186/s12645-016-0016-7 10.1016/j.jconrel.2013.03.011 10.1080/713773925 10.1146/annurev-chembioeng-061010-114300 10.1002/adhm.201500998 10.1038/nnano.2015.342 10.1007/s11095-015-1815-y 10.1038/nnano.2011.166 10.1016/j.biomaterials.2010.11.010 10.1002/jps.21848 10.1002/smll.201300161 10.1007/s11051-018-4273-8 10.4110/in.2016.16.6.317 10.1021/mp100038h 10.1016/j.jconrel.2015.12.050 10.1126/scitranslmed.aac6522 10.1186/s12943-017-0707-7 10.1038/nnano.2012.45 10.1152/ajpcell.00520.2008 10.1016/j.jconrel.2017.07.021 10.3390/pharmaceutics9020012 10.1016/j.nano.2015.12.382 10.1038/nnano.2014.62 10.1016/j.jconrel.2013.08.034 10.1007/978-1-4939-3801-8_16 10.1016/S0168-3659(03)00240-2 10.1172/JCI66895 10.1002/adma.201701021 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.9b03848 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 12612 |
ExternalDocumentID | 31609576 10_1021_acsnano_9b03848 c003894834 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a333t-d49d7d6e89ecf47addda7a5d247399167a618a7c2dfe71c39e57b3a84816e183 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 19:14:58 EDT 2025 Thu Apr 03 07:05:14 EDT 2025 Tue Jul 01 01:34:30 EDT 2025 Thu Apr 24 22:50:25 EDT 2025 Thu Aug 27 13:44:03 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | extravasation intravital microscopy tumor microenvironment liposomes neutrophil |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-d49d7d6e89ecf47addda7a5d247399167a618a7c2dfe71c39e57b3a84816e183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5184-5551 0000-0003-0192-4574 0000-0003-3774-1323 |
PMID | 31609576 |
PQID | 2305794771 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2305794771 pubmed_primary_31609576 crossref_citationtrail_10_1021_acsnano_9b03848 crossref_primary_10_1021_acsnano_9b03848 acs_journals_10_1021_acsnano_9b03848 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-26 |
PublicationDateYYYYMMDD | 2019-11-26 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref23/cit23 doi: 10.1021/acsnano.5b05583 – ident: ref18/cit18 doi: 10.1021/nn402644g – ident: ref44/cit44 doi: 10.1038/427695a – ident: ref7/cit7 doi: 10.1021/acsnano.5b02028 – ident: ref12/cit12 doi: 10.1021/nl204175t – ident: ref38/cit38 doi: 10.7150/thno.16307 – ident: ref28/cit28 doi: 10.1021/acsnano.7b06524 – ident: ref39/cit39 doi: 10.1016/j.yexmp.2006.06.007 – ident: ref14/cit14 doi: 10.1021/mp300240m – ident: ref43/cit43 doi: 10.1038/ncomms3516 – ident: ref6/cit6 doi: 10.1016/j.addr.2016.05.023 – ident: ref19/cit19 doi: 10.1002/smll.201001022 – ident: ref24/cit24 doi: 10.1038/nnano.2014.17 – ident: ref5/cit5 doi: 10.1016/j.jconrel.2017.01.006 – ident: ref4/cit4 doi: 10.1073/pnas.0611660104 – ident: ref21/cit21 doi: 10.1016/j.jconrel.2016.02.016 – ident: ref13/cit13 doi: 10.1002/anie.201104449 – ident: ref2/cit2 doi: 10.1038/nrclinonc.2010.139 – ident: ref36/cit36 doi: 10.2165/00003088-200342050-00002 – ident: ref41/cit41 doi: 10.4110/in.2013.13.3.102 – ident: ref26/cit26 doi: 10.1016/j.nantod.2013.02.004 – ident: ref33/cit33 doi: 10.1038/ncomms9692 – ident: ref37/cit37 doi: 10.1038/nnano.2017.54 – ident: ref48/cit48 doi: 10.1038/s41571-018-0007-1 – ident: ref1/cit1 doi: 10.1038/nnano.2017.67 – ident: ref9/cit9 doi: 10.1186/s12645-016-0016-7 – ident: ref11/cit11 doi: 10.1016/j.jconrel.2013.03.011 – ident: ref40/cit40 doi: 10.1080/713773925 – ident: ref45/cit45 doi: 10.1146/annurev-chembioeng-061010-114300 – ident: ref22/cit22 doi: 10.1002/adhm.201500998 – ident: ref15/cit15 doi: 10.1038/nnano.2015.342 – ident: ref10/cit10 doi: 10.1007/s11095-015-1815-y – ident: ref16/cit16 doi: 10.1038/nnano.2011.166 – ident: ref17/cit17 doi: 10.1016/j.biomaterials.2010.11.010 – ident: ref20/cit20 doi: 10.1002/jps.21848 – ident: ref52/cit52 doi: 10.1002/smll.201300161 – ident: ref49/cit49 doi: 10.1007/s11051-018-4273-8 – ident: ref50/cit50 doi: 10.4110/in.2016.16.6.317 – ident: ref29/cit29 doi: 10.1021/mp100038h – ident: ref34/cit34 doi: 10.1016/j.jconrel.2015.12.050 – ident: ref47/cit47 doi: 10.1126/scitranslmed.aac6522 – ident: ref51/cit51 doi: 10.1186/s12943-017-0707-7 – ident: ref8/cit8 doi: 10.1038/nnano.2012.45 – ident: ref42/cit42 doi: 10.1152/ajpcell.00520.2008 – ident: ref3/cit3 doi: 10.1016/j.jconrel.2017.07.021 – ident: ref30/cit30 doi: 10.3390/pharmaceutics9020012 – ident: ref46/cit46 doi: 10.1016/j.nano.2015.12.382 – ident: ref27/cit27 doi: 10.1038/nnano.2014.62 – ident: ref31/cit31 doi: 10.1016/j.jconrel.2013.08.034 – ident: ref53/cit53 doi: 10.1007/978-1-4939-3801-8_16 – ident: ref32/cit32 doi: 10.1016/S0168-3659(03)00240-2 – ident: ref35/cit35 doi: 10.1172/JCI66895 – ident: ref25/cit25 doi: 10.1002/adma.201701021 |
SSID | ssj0057876 |
Score | 2.5106764 |
Snippet | Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12599 |
Title | Extravasating Neutrophils Open Vascular Barrier and Improve Liposomes Delivery to Tumors |
URI | http://dx.doi.org/10.1021/acsnano.9b03848 https://www.ncbi.nlm.nih.gov/pubmed/31609576 https://www.proquest.com/docview/2305794771 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoudADlEfLQkFG6oFLlsZ27ORY-lCFoBcWtLdoYs-2q26TVZwg4NfXs8kulGpF77HljOfx2TP-hrF9IVViA06O0NFtlUQVFaTLMYo0gVQeTIBeI38512ff1KdxMv5DFv1vBl_EH8D6EspqmBUHMlXpBnsodDBhQkFHX5dOl_ROdwnkcEAOKGLF4nNnAgpD1t8OQ2uw5SLGnD7pqrP8gpqQSkuuhm1TDO3vu8SN_1_-NnvcI01-2KnGU_YAy2ds6y_-wedsfPKzqeEHUEVPecHPsW3qan45nXlOhSb8e1-myj9CTZ3tOJSOd9cQyD9P55WvrtHzY5xRdccv3lR81F5XtX_BRqcno6OzqG-1EIGUsomcypxxGtMM7USZ4PQcGEicUEYSgjSg4xSMFW6CJrYyw8QUEoiLX2PwCjtss6xKfMm4NaiCj0BlClSZEEWqXWZk6hSARa0GbD-IJO8txeeLJLiI815OeS-nARsu9ye3PVs5Nc2YrR_wfjVg3hF1rP_03XLD82BMlCGBEqvW5-E8lgQHZUw8YLudJqwmkzFx8xn96n4_8Jo9Ctgqo2eLQu-xzaZu8U3AL03xdqG5N_Aj7Ao |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N7QF4gPG7jIGR9sBLSmM7dvI4xqYCXSVEQX2LHPu6TXRJFSeI7a-fnaTdGKoEr1F8ss_nu8--82eAPcp4pB1ODtD40yqGPMi8LYdI40jFbDBT_jby8VgMv_PP02i6AYPlXRjXCesk2SaJf80uEL5333KVF_0kG7CYx3dgy0ER6m16_-Db0vd68xNtHtntkx2YWJH5_CXARyNt_4xGayBmE2qOHsLXVSebCpOf_brK-vryFn_j_4xiGx50uJPst4byCDYwfwz3b7ARPoHp4e-qVL-Ur-_JT8gY66osFqdnc0t82Qn50RWtkg-q9O_cEZUb0h5KIBmdLQpbnKMlH3Huaz0uSFWQSX1elPYpTI4OJwfDoHt4IVCMsSowPDHSCIwT1DMunQs0SqrIUC6Zx5NSiTBWUlMzQxlqlmAkM6Y8M79A5yOewWZe5PgCiJbIncdALjPkCaVZLEwiWWy4UhoF78GeU0narRubNilxGqadntJOTz3oL6cp1R13uX9CY76-wbtVg0VL27H-17fLeU_d0vL5EpVjUdvU7c4i566kDHvwvDWIlTAWeqY-KV7-2wDewN3h5HiUjj6Nv-zAPYe6En-hkYpXsFmVNe46ZFNlrxtjvgKc9PRr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAceD-Wp5F64JJtEzt2cixtVwXKCokt2lvk2LNQsU1WcYKAX48n8a54aCW4RrHlx3jms2fmG4DdhIvUeJwcoaXXKo4iKkmWY0yyVGd8f6EpG_ndVJ6ciTfzdB6SwigXxg_C-Z5c78SnU72yi8AwEO_575Wu6nFe7vNMZJfhCjntSK4PDj-s9S-JoBx8yf6u7AHFhtDnrw7IIhn3u0XaAjN7czO5CWebgfZRJl_GXVuOzY8_OBz_dya34EbAn-xgEJjbcAmrO3D9F1bCuzA__tY2-qumOJ_qE5ti1zb16vP50jEKP2EfQ_Aqe6UbqnfHdGXZ8DiB7PR8Vbv6Ah07wiXFfHxnbc1m3UXduHswmxzPDk-iUIAh0pzzNrIit8pKzHI0C6G8KrRa6dQmQnHClUrLONPKJHaBKjY8x1SVXBNDv0SvK-7DTlVX-BCYUSi85kChShR5kpSZtLnimRVaG5RiBLt-SYpwflzRu8aTuAjrVIR1GsF4vVWFCRzmVEpjub3By02D1UDfsf3XF-u9L_wRI7-JrrDuXOFvaalXW0rFI3gwCMWmMx4TY5-Sj_5tAs_h6vujSXH6evr2MVzz4CunvMZEPoGdtunwqQc4bfmsl-efhYn27g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extravasating+Neutrophils+Open+Vascular+Barrier+and+Improve+Liposomes+Delivery+to+Tumors&rft.jtitle=ACS+nano&rft.au=Naumenko%2C+Victor+A&rft.au=Vlasova%2C+Kseniya+Yu&rft.au=Garanina%2C+Anastasiia+S&rft.au=Melnikov%2C+Pavel+A&rft.date=2019-11-26&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=13&rft.issue=11&rft.spage=12599&rft.epage=12612&rft_id=info:doi/10.1021%2Facsnano.9b03848&rft.externalDocID=c003894834 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |