Extravasating Neutrophils Open Vascular Barrier and Improve Liposomes Delivery to Tumors

Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasa...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 13; no. 11; pp. 12599 - 12612
Main Authors Naumenko, Victor A, Vlasova, Kseniya Yu, Garanina, Anastasiia S, Melnikov, Pavel A, Potashnikova, Daria M, Vishnevskiy, Daniil A, Vodopyanov, Stepan S, Chekhonin, Vladimir P, Abakumov, Maxim A, Majouga, Alexander G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor–host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy.
AbstractList Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor-host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy.Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor-host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy.
Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor-host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy.
Author Naumenko, Victor A
Potashnikova, Daria M
Vodopyanov, Stepan S
Vlasova, Kseniya Yu
Melnikov, Pavel A
Chekhonin, Vladimir P
Abakumov, Maxim A
Garanina, Anastasiia S
Vishnevskiy, Daniil A
Majouga, Alexander G
AuthorAffiliation Department of Medical Nanobiotechnology
D. Mendeleev University of Chemical Technology of Russia
M. V. Lomonosov Moscow State University
School of Chemistry
School of Biology, Department of Cell Biology and Histology
AuthorAffiliation_xml – name: M. V. Lomonosov Moscow State University
– name: Department of Medical Nanobiotechnology
– name: School of Biology, Department of Cell Biology and Histology
– name: D. Mendeleev University of Chemical Technology of Russia
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Victor A
  orcidid: 0000-0003-0192-4574
  surname: Naumenko
  fullname: Naumenko, Victor A
  email: naumenko.vict@gmail.com
– sequence: 2
  givenname: Kseniya Yu
  orcidid: 0000-0003-3774-1323
  surname: Vlasova
  fullname: Vlasova, Kseniya Yu
  organization: School of Chemistry
– sequence: 3
  givenname: Anastasiia S
  surname: Garanina
  fullname: Garanina, Anastasiia S
– sequence: 4
  givenname: Pavel A
  surname: Melnikov
  fullname: Melnikov, Pavel A
  organization: Department of Medical Nanobiotechnology
– sequence: 5
  givenname: Daria M
  surname: Potashnikova
  fullname: Potashnikova, Daria M
  organization: M. V. Lomonosov Moscow State University
– sequence: 6
  givenname: Daniil A
  surname: Vishnevskiy
  fullname: Vishnevskiy, Daniil A
  organization: Department of Medical Nanobiotechnology
– sequence: 7
  givenname: Stepan S
  surname: Vodopyanov
  fullname: Vodopyanov, Stepan S
– sequence: 8
  givenname: Vladimir P
  surname: Chekhonin
  fullname: Chekhonin, Vladimir P
  organization: Department of Medical Nanobiotechnology
– sequence: 9
  givenname: Maxim A
  surname: Abakumov
  fullname: Abakumov, Maxim A
  organization: Department of Medical Nanobiotechnology
– sequence: 10
  givenname: Alexander G
  orcidid: 0000-0002-5184-5551
  surname: Majouga
  fullname: Majouga, Alexander G
  organization: D. Mendeleev University of Chemical Technology of Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31609576$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LAzEQhoNUtH6cvUmOglQ3zW6yOWr9hKKXIt7CdDPVlN1kTXaL_nsjrR6EnmZgnneYeQ7IwHmHhJyw7IJlY3YJVXTg_IWaZ7zMyx0yZIqLUVaK18FfX7B9chDjMssKWUqxR_Y5E5kqpBiS19vPLsAKInTWvdEn7Lvg23dbR_rcoqMvEKu-hkCvIQSLgYIz9LFpg18hndrWR99gpDdY2xWGL9p5OusbH-IR2V1AHfF4Uw_J7O52NnkYTZ_vHydX0xFwzruRyZWRRmCpsFrkEowxIKEw41xypZiQIFgJshqbBUpWcYWFnHNIvzKBrOSH5Gy9Nl300WPsdGNjhXUNDn0f9Zinp1UuJUvo6Qbt5w0a3QbbQPjSvzISUKyBKvgYAy50ZbvkxbukyNaaZfpHut5I1xvpKXf5L_e7envifJ1IA730fXBJ0Vb6Gxt3lhU
CitedBy_id crossref_primary_10_1002_slct_202104045
crossref_primary_10_1038_s41571_024_00883_1
crossref_primary_10_1038_s44222_024_00154_9
crossref_primary_10_1016_j_bbcan_2022_188703
crossref_primary_10_1016_j_jconrel_2023_05_018
crossref_primary_10_1016_j_nantod_2024_102300
crossref_primary_10_1021_acsnano_1c04510
crossref_primary_10_1016_j_addr_2022_114528
crossref_primary_10_1002_adhm_202002071
crossref_primary_10_1016_j_nantod_2024_102301
crossref_primary_10_1002_smll_202103751
crossref_primary_10_1016_j_bbrc_2020_02_086
crossref_primary_10_1039_D1TB00788B
crossref_primary_10_1134_S1061933X23600744
crossref_primary_10_1021_acssensors_4c01464
crossref_primary_10_34133_bmef_0016
crossref_primary_10_1016_j_ebiom_2020_102958
crossref_primary_10_1016_j_mtbio_2022_100460
crossref_primary_10_3389_fimmu_2020_571085
crossref_primary_10_1002_adfm_201910369
crossref_primary_10_1016_j_jconrel_2024_12_056
crossref_primary_10_1016_j_addr_2022_114380
crossref_primary_10_3390_ph16111564
crossref_primary_10_1002_adma_202310318
crossref_primary_10_1016_j_addr_2025_115550
crossref_primary_10_1039_D2NR06621A
crossref_primary_10_31857_S0023291223600463
crossref_primary_10_1002_advs_202103148
crossref_primary_10_1158_1541_7786_MCR_24_0110
crossref_primary_10_1016_j_actbio_2020_01_011
crossref_primary_10_1038_s41563_019_0566_2
crossref_primary_10_1007_s13346_022_01204_8
crossref_primary_10_1016_j_jconrel_2020_12_014
crossref_primary_10_1007_s13346_021_01039_9
crossref_primary_10_1016_j_nantod_2024_102552
crossref_primary_10_1016_j_ajps_2021_06_001
crossref_primary_10_1186_s13046_025_03359_x
crossref_primary_10_3390_ijms24010627
crossref_primary_10_1038_s41563_023_01630_0
crossref_primary_10_1016_j_biomaterials_2021_121224
crossref_primary_10_1080_1061186X_2022_2104299
crossref_primary_10_1016_j_jid_2020_07_028
crossref_primary_10_1021_acsnano_4c06638
crossref_primary_10_3390_cells12131806
crossref_primary_10_1016_j_engreg_2022_03_001
crossref_primary_10_1038_s41565_023_01498_w
crossref_primary_10_3390_biomedicines12102180
crossref_primary_10_3390_pharmaceutics12090837
Cites_doi 10.1021/acsnano.5b05583
10.1021/nn402644g
10.1038/427695a
10.1021/acsnano.5b02028
10.1021/nl204175t
10.7150/thno.16307
10.1021/acsnano.7b06524
10.1016/j.yexmp.2006.06.007
10.1021/mp300240m
10.1038/ncomms3516
10.1016/j.addr.2016.05.023
10.1002/smll.201001022
10.1038/nnano.2014.17
10.1016/j.jconrel.2017.01.006
10.1073/pnas.0611660104
10.1016/j.jconrel.2016.02.016
10.1002/anie.201104449
10.1038/nrclinonc.2010.139
10.2165/00003088-200342050-00002
10.4110/in.2013.13.3.102
10.1016/j.nantod.2013.02.004
10.1038/ncomms9692
10.1038/nnano.2017.54
10.1038/s41571-018-0007-1
10.1038/nnano.2017.67
10.1186/s12645-016-0016-7
10.1016/j.jconrel.2013.03.011
10.1080/713773925
10.1146/annurev-chembioeng-061010-114300
10.1002/adhm.201500998
10.1038/nnano.2015.342
10.1007/s11095-015-1815-y
10.1038/nnano.2011.166
10.1016/j.biomaterials.2010.11.010
10.1002/jps.21848
10.1002/smll.201300161
10.1007/s11051-018-4273-8
10.4110/in.2016.16.6.317
10.1021/mp100038h
10.1016/j.jconrel.2015.12.050
10.1126/scitranslmed.aac6522
10.1186/s12943-017-0707-7
10.1038/nnano.2012.45
10.1152/ajpcell.00520.2008
10.1016/j.jconrel.2017.07.021
10.3390/pharmaceutics9020012
10.1016/j.nano.2015.12.382
10.1038/nnano.2014.62
10.1016/j.jconrel.2013.08.034
10.1007/978-1-4939-3801-8_16
10.1016/S0168-3659(03)00240-2
10.1172/JCI66895
10.1002/adma.201701021
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.9b03848
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 12612
ExternalDocumentID 31609576
10_1021_acsnano_9b03848
c003894834
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a333t-d49d7d6e89ecf47addda7a5d247399167a618a7c2dfe71c39e57b3a84816e183
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 19:14:58 EDT 2025
Thu Apr 03 07:05:14 EDT 2025
Tue Jul 01 01:34:30 EDT 2025
Thu Apr 24 22:50:25 EDT 2025
Thu Aug 27 13:44:03 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords extravasation
intravital microscopy
tumor microenvironment
liposomes
neutrophil
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-d49d7d6e89ecf47addda7a5d247399167a618a7c2dfe71c39e57b3a84816e183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5184-5551
0000-0003-0192-4574
0000-0003-3774-1323
PMID 31609576
PQID 2305794771
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2305794771
pubmed_primary_31609576
crossref_citationtrail_10_1021_acsnano_9b03848
crossref_primary_10_1021_acsnano_9b03848
acs_journals_10_1021_acsnano_9b03848
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-26
PublicationDateYYYYMMDD 2019-11-26
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1021/acsnano.5b05583
– ident: ref18/cit18
  doi: 10.1021/nn402644g
– ident: ref44/cit44
  doi: 10.1038/427695a
– ident: ref7/cit7
  doi: 10.1021/acsnano.5b02028
– ident: ref12/cit12
  doi: 10.1021/nl204175t
– ident: ref38/cit38
  doi: 10.7150/thno.16307
– ident: ref28/cit28
  doi: 10.1021/acsnano.7b06524
– ident: ref39/cit39
  doi: 10.1016/j.yexmp.2006.06.007
– ident: ref14/cit14
  doi: 10.1021/mp300240m
– ident: ref43/cit43
  doi: 10.1038/ncomms3516
– ident: ref6/cit6
  doi: 10.1016/j.addr.2016.05.023
– ident: ref19/cit19
  doi: 10.1002/smll.201001022
– ident: ref24/cit24
  doi: 10.1038/nnano.2014.17
– ident: ref5/cit5
  doi: 10.1016/j.jconrel.2017.01.006
– ident: ref4/cit4
  doi: 10.1073/pnas.0611660104
– ident: ref21/cit21
  doi: 10.1016/j.jconrel.2016.02.016
– ident: ref13/cit13
  doi: 10.1002/anie.201104449
– ident: ref2/cit2
  doi: 10.1038/nrclinonc.2010.139
– ident: ref36/cit36
  doi: 10.2165/00003088-200342050-00002
– ident: ref41/cit41
  doi: 10.4110/in.2013.13.3.102
– ident: ref26/cit26
  doi: 10.1016/j.nantod.2013.02.004
– ident: ref33/cit33
  doi: 10.1038/ncomms9692
– ident: ref37/cit37
  doi: 10.1038/nnano.2017.54
– ident: ref48/cit48
  doi: 10.1038/s41571-018-0007-1
– ident: ref1/cit1
  doi: 10.1038/nnano.2017.67
– ident: ref9/cit9
  doi: 10.1186/s12645-016-0016-7
– ident: ref11/cit11
  doi: 10.1016/j.jconrel.2013.03.011
– ident: ref40/cit40
  doi: 10.1080/713773925
– ident: ref45/cit45
  doi: 10.1146/annurev-chembioeng-061010-114300
– ident: ref22/cit22
  doi: 10.1002/adhm.201500998
– ident: ref15/cit15
  doi: 10.1038/nnano.2015.342
– ident: ref10/cit10
  doi: 10.1007/s11095-015-1815-y
– ident: ref16/cit16
  doi: 10.1038/nnano.2011.166
– ident: ref17/cit17
  doi: 10.1016/j.biomaterials.2010.11.010
– ident: ref20/cit20
  doi: 10.1002/jps.21848
– ident: ref52/cit52
  doi: 10.1002/smll.201300161
– ident: ref49/cit49
  doi: 10.1007/s11051-018-4273-8
– ident: ref50/cit50
  doi: 10.4110/in.2016.16.6.317
– ident: ref29/cit29
  doi: 10.1021/mp100038h
– ident: ref34/cit34
  doi: 10.1016/j.jconrel.2015.12.050
– ident: ref47/cit47
  doi: 10.1126/scitranslmed.aac6522
– ident: ref51/cit51
  doi: 10.1186/s12943-017-0707-7
– ident: ref8/cit8
  doi: 10.1038/nnano.2012.45
– ident: ref42/cit42
  doi: 10.1152/ajpcell.00520.2008
– ident: ref3/cit3
  doi: 10.1016/j.jconrel.2017.07.021
– ident: ref30/cit30
  doi: 10.3390/pharmaceutics9020012
– ident: ref46/cit46
  doi: 10.1016/j.nano.2015.12.382
– ident: ref27/cit27
  doi: 10.1038/nnano.2014.62
– ident: ref31/cit31
  doi: 10.1016/j.jconrel.2013.08.034
– ident: ref53/cit53
  doi: 10.1007/978-1-4939-3801-8_16
– ident: ref32/cit32
  doi: 10.1016/S0168-3659(03)00240-2
– ident: ref35/cit35
  doi: 10.1172/JCI66895
– ident: ref25/cit25
  doi: 10.1002/adma.201701021
SSID ssj0057876
Score 2.5106764
Snippet Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12599
Title Extravasating Neutrophils Open Vascular Barrier and Improve Liposomes Delivery to Tumors
URI http://dx.doi.org/10.1021/acsnano.9b03848
https://www.ncbi.nlm.nih.gov/pubmed/31609576
https://www.proquest.com/docview/2305794771
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoudADlEfLQkFG6oFLlsZ27ORY-lCFoBcWtLdoYs-2q26TVZwg4NfXs8kulGpF77HljOfx2TP-hrF9IVViA06O0NFtlUQVFaTLMYo0gVQeTIBeI38512ff1KdxMv5DFv1vBl_EH8D6EspqmBUHMlXpBnsodDBhQkFHX5dOl_ROdwnkcEAOKGLF4nNnAgpD1t8OQ2uw5SLGnD7pqrP8gpqQSkuuhm1TDO3vu8SN_1_-NnvcI01-2KnGU_YAy2ds6y_-wedsfPKzqeEHUEVPecHPsW3qan45nXlOhSb8e1-myj9CTZ3tOJSOd9cQyD9P55WvrtHzY5xRdccv3lR81F5XtX_BRqcno6OzqG-1EIGUsomcypxxGtMM7USZ4PQcGEicUEYSgjSg4xSMFW6CJrYyw8QUEoiLX2PwCjtss6xKfMm4NaiCj0BlClSZEEWqXWZk6hSARa0GbD-IJO8txeeLJLiI815OeS-nARsu9ye3PVs5Nc2YrR_wfjVg3hF1rP_03XLD82BMlCGBEqvW5-E8lgQHZUw8YLudJqwmkzFx8xn96n4_8Jo9Ctgqo2eLQu-xzaZu8U3AL03xdqG5N_Aj7Ao
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N7QF4gPG7jIGR9sBLSmM7dvI4xqYCXSVEQX2LHPu6TXRJFSeI7a-fnaTdGKoEr1F8ss_nu8--82eAPcp4pB1ODtD40yqGPMi8LYdI40jFbDBT_jby8VgMv_PP02i6AYPlXRjXCesk2SaJf80uEL5333KVF_0kG7CYx3dgy0ER6m16_-Db0vd68xNtHtntkx2YWJH5_CXARyNt_4xGayBmE2qOHsLXVSebCpOf_brK-vryFn_j_4xiGx50uJPst4byCDYwfwz3b7ARPoHp4e-qVL-Ur-_JT8gY66osFqdnc0t82Qn50RWtkg-q9O_cEZUb0h5KIBmdLQpbnKMlH3Huaz0uSFWQSX1elPYpTI4OJwfDoHt4IVCMsSowPDHSCIwT1DMunQs0SqrIUC6Zx5NSiTBWUlMzQxlqlmAkM6Y8M79A5yOewWZe5PgCiJbIncdALjPkCaVZLEwiWWy4UhoF78GeU0narRubNilxGqadntJOTz3oL6cp1R13uX9CY76-wbtVg0VL27H-17fLeU_d0vL5EpVjUdvU7c4i566kDHvwvDWIlTAWeqY-KV7-2wDewN3h5HiUjj6Nv-zAPYe6En-hkYpXsFmVNe46ZFNlrxtjvgKc9PRr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAceD-Wp5F64JJtEzt2cixtVwXKCokt2lvk2LNQsU1WcYKAX48n8a54aCW4RrHlx3jms2fmG4DdhIvUeJwcoaXXKo4iKkmWY0yyVGd8f6EpG_ndVJ6ciTfzdB6SwigXxg_C-Z5c78SnU72yi8AwEO_575Wu6nFe7vNMZJfhCjntSK4PDj-s9S-JoBx8yf6u7AHFhtDnrw7IIhn3u0XaAjN7czO5CWebgfZRJl_GXVuOzY8_OBz_dya34EbAn-xgEJjbcAmrO3D9F1bCuzA__tY2-qumOJ_qE5ti1zb16vP50jEKP2EfQ_Aqe6UbqnfHdGXZ8DiB7PR8Vbv6Ah07wiXFfHxnbc1m3UXduHswmxzPDk-iUIAh0pzzNrIit8pKzHI0C6G8KrRa6dQmQnHClUrLONPKJHaBKjY8x1SVXBNDv0SvK-7DTlVX-BCYUSi85kChShR5kpSZtLnimRVaG5RiBLt-SYpwflzRu8aTuAjrVIR1GsF4vVWFCRzmVEpjub3By02D1UDfsf3XF-u9L_wRI7-JrrDuXOFvaalXW0rFI3gwCMWmMx4TY5-Sj_5tAs_h6vujSXH6evr2MVzz4CunvMZEPoGdtunwqQc4bfmsl-efhYn27g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extravasating+Neutrophils+Open+Vascular+Barrier+and+Improve+Liposomes+Delivery+to+Tumors&rft.jtitle=ACS+nano&rft.au=Naumenko%2C+Victor+A&rft.au=Vlasova%2C+Kseniya+Yu&rft.au=Garanina%2C+Anastasiia+S&rft.au=Melnikov%2C+Pavel+A&rft.date=2019-11-26&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=13&rft.issue=11&rft.spage=12599&rft.epage=12612&rft_id=info:doi/10.1021%2Facsnano.9b03848&rft.externalDocID=c003894834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon