Tailoring the Electronic Structure and Properties of Graphdiyne by Cyano Groups
Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoele...
Saved in:
Published in | ACS nano Vol. 18; no. 44; pp. 30368 - 30377 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY. Three kinds of cyano-modified GDY have been synthesized, namely, bearing one cyano group (CNGDY), two CN in meta (m-CNGDY), and two in para (p-CNGDY) positions. A variety of experimental data as well as first-principles calculations allowed us to elucidate the role of the cyano groups in tuning the structural and functional properties of GDYs. We found that an increase in the number of cyano groups reduces the interlayer spacing between GDY layers, increases the lithium adsorption amount, as well as impacts the lithium diffusion rate, while changes in meta- or para-position impact the energy band gap. |
---|---|
AbstractList | Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY. Three kinds of cyano-modified GDY have been synthesized, namely, bearing one cyano group (CNGDY), two CN in meta (m-CNGDY), and two in para (p-CNGDY) positions. A variety of experimental data as well as first-principles calculations allowed us to elucidate the role of the cyano groups in tuning the structural and functional properties of GDYs. We found that an increase in the number of cyano groups reduces the interlayer spacing between GDY layers, increases the lithium adsorption amount, as well as impacts the lithium diffusion rate, while changes in meta- or para-position impact the energy band gap. Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY. Three kinds of cyano-modified GDY have been synthesized, namely, bearing one cyano group (CNGDY), two CN in meta ( -CNGDY), and two in para ( -CNGDY) positions. A variety of experimental data as well as first-principles calculations allowed us to elucidate the role of the cyano groups in tuning the structural and functional properties of GDYs. We found that an increase in the number of cyano groups reduces the interlayer spacing between GDY layers, increases the lithium adsorption amount, as well as impacts the lithium diffusion rate, while changes in meta- or para-position impact the energy band gap. Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY. Three kinds of cyano-modified GDY have been synthesized, namely, bearing one cyano group (CNGDY), two CN in meta (m-CNGDY), and two in para (p-CNGDY) positions. A variety of experimental data as well as first-principles calculations allowed us to elucidate the role of the cyano groups in tuning the structural and functional properties of GDYs. We found that an increase in the number of cyano groups reduces the interlayer spacing between GDY layers, increases the lithium adsorption amount, as well as impacts the lithium diffusion rate, while changes in meta- or para-position impact the energy band gap.Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY. Three kinds of cyano-modified GDY have been synthesized, namely, bearing one cyano group (CNGDY), two CN in meta (m-CNGDY), and two in para (p-CNGDY) positions. A variety of experimental data as well as first-principles calculations allowed us to elucidate the role of the cyano groups in tuning the structural and functional properties of GDYs. We found that an increase in the number of cyano groups reduces the interlayer spacing between GDY layers, increases the lithium adsorption amount, as well as impacts the lithium diffusion rate, while changes in meta- or para-position impact the energy band gap. |
Author | Fazzi, Daniele Gao, Lei Wang, Xuebin Gao, Jingchi Yang, Ze Li, Xiaodong Wang, Shuailong Wang, Fan Huang, Changshui Ye, Xiang |
AuthorAffiliation | Shandong University of Science and Technology Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science College of Energy Storage Technology Department of Chemistry “Giacomo Ciamician National Laboratory of Solid-State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory Department of Physics University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: National Laboratory of Solid-State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences – name: Shandong University of Science and Technology – name: Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science – name: College of Energy Storage Technology – name: Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory – name: Department of Physics – name: Department of Chemistry “Giacomo Ciamician – name: University of Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Lei surname: Gao fullname: Gao, Lei organization: National Laboratory of Solid-State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences – sequence: 2 givenname: Shuailong surname: Wang fullname: Wang, Shuailong organization: Department of Chemistry “Giacomo Ciamician″ – sequence: 3 givenname: Fan surname: Wang fullname: Wang, Fan organization: Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science – sequence: 4 givenname: Ze surname: Yang fullname: Yang, Ze email: yangze@sdust.edu.cn organization: Shandong University of Science and Technology – sequence: 5 givenname: Xiaodong surname: Li fullname: Li, Xiaodong organization: Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory – sequence: 6 givenname: Jingchi surname: Gao fullname: Gao, Jingchi organization: Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory – sequence: 7 givenname: Daniele orcidid: 0000-0002-8515-4214 surname: Fazzi fullname: Fazzi, Daniele organization: Department of Chemistry “Giacomo Ciamician″ – sequence: 8 givenname: Xiang orcidid: 0000-0002-9034-0046 surname: Ye fullname: Ye, Xiang email: yexiang@shnu.edu.cn organization: Department of Physics – sequence: 9 givenname: Xuebin orcidid: 0000-0002-7894-1922 surname: Wang fullname: Wang, Xuebin organization: National Laboratory of Solid-State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences – sequence: 10 givenname: Changshui orcidid: 0000-0001-5169-0855 surname: Huang fullname: Huang, Changshui email: huangcs@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39447069$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoNU7IeevUmOgrTN1-52j1JqFQoV7MHbks1ObMo2WZPsof_eldYeBD3NMPO8w_AMUc86CwjdUjKhhNGpVMFK6yZCkUzMkgs0oDlPx2SWvvfOfUL7aBjCjpAkm2XpFerzXIiMpPkArTfS1M4b-4HjFvCiBhW9s0bht-hbFVsPWNoKv3rXgI8GAnYaL71stpU5WMDlAc8P3QvdzLVNuEaXWtYBbk51hDZPi838ebxaL1_mj6ux5JzHcUUgpyBlqUqtBJCcS5bxLCuVpoIpwkqtZ0qzShJINa-YSEXFZMqpZGmm-QjdH8823n22EGKxN0FBXUsLrg0Fp4wkuUgS2qF3J7Qt91AVjTd76Q_Fj4MOmB4B5V0IHvQZoaT4tlycLBcny10i-ZVQJsponI2-0_lP7uGY6xbFzrXedor-pL8A_G2S7g |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_11_054 |
Cites_doi | 10.1002/ange.201800453 10.1002/anie.202217378 10.1038/s44160-022-00068-7 10.1016/j.cej.2019.05.086 10.1021/acsami.8b03311 10.1002/ange.202307874 10.1016/j.carbon.2021.08.012 10.1021/acs.nanolett.0c02728 10.1002/anie.202216530 10.1038/s41557-018-0129-1 10.1021/acscentsci.0c00348 10.1002/celc.201800300 10.1002/adma.201803762 10.1126/science.1102896 10.1002/adfm.202005933 10.1016/j.chempr.2021.01.021 10.1103/PhysRevB.93.205426 10.1002/asia.202100579 10.1021/acs.jpclett.0c00113 10.1007/s40242-021-1350-9 10.1021/acs.chemmater.3c00983 10.1039/c3cs60388a 10.1016/j.chempr.2019.12.006 10.1016/j.mseb.2021.115425 10.1002/ange.202004454 10.1002/anie.202104167 10.1021/acsami.8b01823 10.1038/s41467-021-21319-9 10.1016/j.matt.2022.06.045 10.1016/j.mattod.2020.04.010 10.1016/j.nanoen.2021.106024 10.1002/anie.202216739 10.1016/j.electacta.2015.08.025 10.1039/b922733d 10.1038/s41467-023-37989-6 10.1021/jacs.2c09209 10.1002/adma.202212159 10.1002/adma.202001755 10.1002/adma.201804672 10.1002/anie.202113313 10.1002/adma.201805121 10.1016/j.electacta.2011.02.119 10.1002/adma.201807981 10.1002/ange.202216397 10.1002/adfm.201707564 10.1039/C8EE01642A 10.1039/C8CS00773J 10.1038/s41467-018-05878-y 10.1021/acs.chemrev.8b00288 10.1088/2053-1583/ab70eb 10.1038/s41557-018-0100-1 10.1016/j.cej.2022.138734 10.1021/acs.jctc.6b00523 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.4c07485 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 30377 |
ExternalDocumentID | 39447069 10_1021_acsnano_4c07485 h30592655 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACBEA ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAYXX ABBLG ABLBI ADHGD CITATION NPM 7X8 |
ID | FETCH-LOGICAL-a333t-d0e91eaabcbfc4e093a27377bcf142c02bff8cf2da0e6f3d2464d2a631a267f3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 10:23:18 EDT 2025 Thu Apr 03 06:55:13 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Sun Jul 06 05:03:45 EDT 2025 Wed Feb 26 08:40:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | graphdiyne energy gap regulation functional group editing lithium-ion battery cyano groups |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-d0e91eaabcbfc4e093a27377bcf142c02bff8cf2da0e6f3d2464d2a631a267f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9034-0046 0000-0002-8515-4214 0000-0002-7894-1922 0000-0001-5169-0855 |
PMID | 39447069 |
PQID | 3120594551 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3120594551 pubmed_primary_39447069 crossref_primary_10_1021_acsnano_4c07485 crossref_citationtrail_10_1021_acsnano_4c07485 acs_journals_10_1021_acsnano_4c07485 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-05 |
PublicationDateYYYYMMDD | 2024-11-05 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 Li X. (ref33/cit33) 2023; 39 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref31/cit31 doi: 10.1002/ange.201800453 – ident: ref5/cit5 doi: 10.1002/anie.202217378 – ident: ref15/cit15 doi: 10.1038/s44160-022-00068-7 – ident: ref24/cit24 doi: 10.1016/j.cej.2019.05.086 – ident: ref34/cit34 doi: 10.1021/acsami.8b03311 – ident: ref44/cit44 doi: 10.1002/ange.202307874 – ident: ref50/cit50 doi: 10.1016/j.carbon.2021.08.012 – ident: ref52/cit52 doi: 10.1021/acs.nanolett.0c02728 – ident: ref9/cit9 doi: 10.1002/anie.202216530 – ident: ref28/cit28 doi: 10.1038/s41557-018-0129-1 – ident: ref37/cit37 doi: 10.1021/acscentsci.0c00348 – ident: ref26/cit26 doi: 10.1002/celc.201800300 – ident: ref14/cit14 doi: 10.1002/adma.201803762 – ident: ref1/cit1 doi: 10.1126/science.1102896 – ident: ref32/cit32 doi: 10.1002/adfm.202005933 – ident: ref12/cit12 doi: 10.1016/j.chempr.2021.01.021 – ident: ref49/cit49 doi: 10.1103/PhysRevB.93.205426 – ident: ref18/cit18 doi: 10.1002/asia.202100579 – ident: ref48/cit48 doi: 10.1021/acs.jpclett.0c00113 – ident: ref17/cit17 doi: 10.1007/s40242-021-1350-9 – ident: ref42/cit42 doi: 10.1021/acs.chemmater.3c00983 – ident: ref39/cit39 doi: 10.1039/c3cs60388a – ident: ref43/cit43 doi: 10.1016/j.chempr.2019.12.006 – ident: ref47/cit47 doi: 10.1016/j.mseb.2021.115425 – ident: ref40/cit40 doi: 10.1002/ange.202004454 – ident: ref51/cit51 doi: 10.1002/anie.202104167 – ident: ref35/cit35 doi: 10.1021/acsami.8b01823 – ident: ref11/cit11 doi: 10.1038/s41467-021-21319-9 – ident: ref10/cit10 doi: 10.1016/j.matt.2022.06.045 – ident: ref22/cit22 doi: 10.1016/j.mattod.2020.04.010 – ident: ref27/cit27 doi: 10.1016/j.nanoen.2021.106024 – ident: ref8/cit8 doi: 10.1002/anie.202216739 – ident: ref25/cit25 doi: 10.1016/j.electacta.2015.08.025 – ident: ref2/cit2 doi: 10.1039/b922733d – volume: 39 start-page: 2206029 year: 2023 ident: ref33/cit33 publication-title: Acta Phys.-Chim. Sin. – ident: ref53/cit53 doi: 10.1038/s41467-023-37989-6 – ident: ref38/cit38 doi: 10.1021/jacs.2c09209 – ident: ref7/cit7 doi: 10.1002/adma.202212159 – ident: ref16/cit16 doi: 10.1002/adma.202001755 – ident: ref23/cit23 doi: 10.1002/adma.201804672 – ident: ref45/cit45 doi: 10.1002/anie.202113313 – ident: ref29/cit29 doi: 10.1002/adma.201805121 – ident: ref54/cit54 doi: 10.1016/j.electacta.2011.02.119 – ident: ref13/cit13 doi: 10.1002/adma.201807981 – ident: ref6/cit6 doi: 10.1002/ange.202216397 – ident: ref21/cit21 doi: 10.1002/adfm.201707564 – ident: ref30/cit30 doi: 10.1039/C8EE01642A – ident: ref3/cit3 doi: 10.1039/C8CS00773J – ident: ref19/cit19 doi: 10.1038/s41467-018-05878-y – ident: ref4/cit4 doi: 10.1021/acs.chemrev.8b00288 – ident: ref36/cit36 doi: 10.1088/2053-1583/ab70eb – ident: ref20/cit20 doi: 10.1038/s41557-018-0100-1 – ident: ref41/cit41 doi: 10.1016/j.cej.2022.138734 – ident: ref46/cit46 doi: 10.1021/acs.jctc.6b00523 |
SSID | ssj0057876 |
Score | 2.4881258 |
Snippet | Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 30368 |
Title | Tailoring the Electronic Structure and Properties of Graphdiyne by Cyano Groups |
URI | http://dx.doi.org/10.1021/acsnano.4c07485 https://www.ncbi.nlm.nih.gov/pubmed/39447069 https://www.proquest.com/docview/3120594551 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwfpSXjNSBJSGxXScZq6qlQuIhtUjdootjSwjkoKYdyq_HTtLwqCpYMuWc5O6c-853_oxQy49AEiEDh0keOsxcHSCKOlHoCS8AaEfSLg3cP_DBM7sbt8dfZNG_K_jEvwGRa9CZy4wsC9vraIPwMLB5Vqc7XPx0rd_xsoBsEmSDImoWn6UBbBgS-c8wtAJbFjGmv1N2Z-UFNaFtLXl1Z9PEFR_LxI1_v_4u2q6QJu6UrrGH1qTeR1vf-AcP0OMIXsoOPGxwIO7VR-LgYUErO5tIDDrFT3bFfmKpV3Gm8K3luE5f5lriZI67c_NcXCxh5Ydo1O-NugOnOmHBAUrp1Ek9GfkSIBGJEkx6EQUDZ4IgEcpnRHgkUSoUiqTgSa5oShhnKQFOfSA8UPQINXSm5QnCNk2kBj4xAMmYJRyQEIiQ20mfcEGbqGU0EVcTJI-L2jfx40o9caWeJnIXZolFRVJuz8p4Wy1wXQu8l_wcq2-9Wtg5NnPIFkZAy2yWx9QnlrbGgMcmOi4doB7MbhwOPB6d_u8DztAmMbCn2K3YPkcNYy15YWDLNLksHPYTpe3o8Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4BewAO--KxZVnWK3HgkpLYrpMcq6pseYMoErdo4thSBUpXpD10fz3jJA0vVdq95BDFEz_G9ucZzzcA-0GMhmsTetKoyJP09JBb4cWRr_0QsRMbZxo4v1CDW3ly17lbAn8eC0OVKEhSUTrxn9kFgkN6l2M-bksSIaPOMnwgKMLdcavbu5mvvU79VOVHpnMygYmGzOedALcb6eL1brQAYpZbzdEnuG4qWd4wuW9PJ2lb_33D3_g_rfgMH2vcybqVonyBJZN_hfUXbIQbcDnEUXUfjxEqZP0mQQ67KUlmp4-GYZ6xK2e_f3RErGxs2W_HeJ2NZrlh6Yz1ZvRfVhq0ik0YHvWHvYFX51vwUAgx8TLfxIFBTHVqtTR-LJDATRim2gaSa5-n1kba8gx9o6zIuFQy46hEgFyFVmzBSj7OzTdg7tAoCExJRCOlox8wGOpIuSUgVVq0YJ96IqmnS5GUnnAeJHX3JHX3tKA9H51E15TlLnPGw-ICB02BPxVbx-JPf82HO6EZ5dwkmJvxtEhEwB2JDUHJFmxXetAIc2HEoa_inX9rwE9YHQzPz5Kz44vT77DGCRCVcYydXVihkTM_CNBM0r1Sh58AAlLxUg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VKiE49AG0bB_USBy4ZElsr5Mc0ZYttLwkFolbNHFsCbXKIrJ72P76ziTZqFCtRC85RPHE9oztzx7PNwD7UYpOWhcH2pkk0PQMUHoVpElowxhxkDo-Gji_MCc3-vvt4LYNCuNYGKpERZKq2onPo_q-8C3DQHRI70ssJ31NYnQyWIGX7LTjLdfR8Hox_7IJmsaXTHtlAhQdoc8_AnhFstXjFWkJzKyXm9FruOkqWt8y-dmfTfO-_f2Ew_F_W_IGXrX4Uxw1BvMWXrhyEzb-YiXcgssx3jX38gShQ3HcJcoR1zXZ7OzBCSwLccXn-A9MyComXnxj5uvibl46kc_FcE7_FfXBVrUN49HxeHgStHkXAlRKTYMidGnkEHObe6tdmCokkBPHufWRljaUufeJ9bLA0BmvCqmNLiQaFaE0sVfvYLWclG4HBG8eFYEqjei0ZhoCh7FNDE8FubGqB_vUE1k7bKqs9ojLKGu7J2u7pwf9hYYy21KXcwaNX8sLHHQF7hvWjuWf7i1UntHIYncJlm4yqzIVSSazIUjZg_eNLXTCOJw4Dk364XkN-AJrV19H2dnpxY-PsC4JF9XhjINPsEqKc58J10zz3dqM_wDXR_PV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+the+Electronic+Structure+and+Properties+of+Graphdiyne+by+Cyano+Groups&rft.jtitle=ACS+nano&rft.au=Gao%2C+Lei&rft.au=Wang%2C+Shuailong&rft.au=Wang%2C+Fan&rft.au=Yang%2C+Ze&rft.date=2024-11-05&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=18&rft.issue=44&rft.spage=30368&rft.epage=30377&rft_id=info:doi/10.1021%2Facsnano.4c07485&rft.externalDocID=h30592655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |