Tailoring the Electronic Structure and Properties of Graphdiyne by Cyano Groups

Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoele...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 18; no. 44; pp. 30368 - 30377
Main Authors Gao, Lei, Wang, Shuailong, Wang, Fan, Yang, Ze, Li, Xiaodong, Gao, Jingchi, Fazzi, Daniele, Ye, Xiang, Wang, Xuebin, Huang, Changshui
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY. Three kinds of cyano-modified GDY have been synthesized, namely, bearing one cyano group (CNGDY), two CN in meta (m-CNGDY), and two in para (p-CNGDY) positions. A variety of experimental data as well as first-principles calculations allowed us to elucidate the role of the cyano groups in tuning the structural and functional properties of GDYs. We found that an increase in the number of cyano groups reduces the interlayer spacing between GDY layers, increases the lithium adsorption amount, as well as impacts the lithium diffusion rate, while changes in meta- or para-position impact the energy band gap.
AbstractList Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY. Three kinds of cyano-modified GDY have been synthesized, namely, bearing one cyano group (CNGDY), two CN in meta (m-CNGDY), and two in para (p-CNGDY) positions. A variety of experimental data as well as first-principles calculations allowed us to elucidate the role of the cyano groups in tuning the structural and functional properties of GDYs. We found that an increase in the number of cyano groups reduces the interlayer spacing between GDY layers, increases the lithium adsorption amount, as well as impacts the lithium diffusion rate, while changes in meta- or para-position impact the energy band gap.
Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY. Three kinds of cyano-modified GDY have been synthesized, namely, bearing one cyano group (CNGDY), two CN in meta ( -CNGDY), and two in para ( -CNGDY) positions. A variety of experimental data as well as first-principles calculations allowed us to elucidate the role of the cyano groups in tuning the structural and functional properties of GDYs. We found that an increase in the number of cyano groups reduces the interlayer spacing between GDY layers, increases the lithium adsorption amount, as well as impacts the lithium diffusion rate, while changes in meta- or para-position impact the energy band gap.
Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY. Three kinds of cyano-modified GDY have been synthesized, namely, bearing one cyano group (CNGDY), two CN in meta (m-CNGDY), and two in para (p-CNGDY) positions. A variety of experimental data as well as first-principles calculations allowed us to elucidate the role of the cyano groups in tuning the structural and functional properties of GDYs. We found that an increase in the number of cyano groups reduces the interlayer spacing between GDY layers, increases the lithium adsorption amount, as well as impacts the lithium diffusion rate, while changes in meta- or para-position impact the energy band gap.Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties and promising electronic performances. 2D carbon-based materials such as graphdiyne (GDY) represent an optimal platform for tuning the optoelectronic properties via precise chemical functionalization. Here, we report a synthetic strategy to precisely introduce cyano groups into the 2D GDY backbone in order to tune the electronic properties of GDY. Three kinds of cyano-modified GDY have been synthesized, namely, bearing one cyano group (CNGDY), two CN in meta (m-CNGDY), and two in para (p-CNGDY) positions. A variety of experimental data as well as first-principles calculations allowed us to elucidate the role of the cyano groups in tuning the structural and functional properties of GDYs. We found that an increase in the number of cyano groups reduces the interlayer spacing between GDY layers, increases the lithium adsorption amount, as well as impacts the lithium diffusion rate, while changes in meta- or para-position impact the energy band gap.
Author Fazzi, Daniele
Gao, Lei
Wang, Xuebin
Gao, Jingchi
Yang, Ze
Li, Xiaodong
Wang, Shuailong
Wang, Fan
Huang, Changshui
Ye, Xiang
AuthorAffiliation Shandong University of Science and Technology
Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science
College of Energy Storage Technology
Department of Chemistry “Giacomo Ciamician
National Laboratory of Solid-State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences
Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory
Department of Physics
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: National Laboratory of Solid-State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences
– name: Shandong University of Science and Technology
– name: Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science
– name: College of Energy Storage Technology
– name: Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory
– name: Department of Physics
– name: Department of Chemistry “Giacomo Ciamician
– name: University of Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Lei
  surname: Gao
  fullname: Gao, Lei
  organization: National Laboratory of Solid-State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences
– sequence: 2
  givenname: Shuailong
  surname: Wang
  fullname: Wang, Shuailong
  organization: Department of Chemistry “Giacomo Ciamician″
– sequence: 3
  givenname: Fan
  surname: Wang
  fullname: Wang, Fan
  organization: Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science
– sequence: 4
  givenname: Ze
  surname: Yang
  fullname: Yang, Ze
  email: yangze@sdust.edu.cn
  organization: Shandong University of Science and Technology
– sequence: 5
  givenname: Xiaodong
  surname: Li
  fullname: Li, Xiaodong
  organization: Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory
– sequence: 6
  givenname: Jingchi
  surname: Gao
  fullname: Gao, Jingchi
  organization: Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory
– sequence: 7
  givenname: Daniele
  orcidid: 0000-0002-8515-4214
  surname: Fazzi
  fullname: Fazzi, Daniele
  organization: Department of Chemistry “Giacomo Ciamician″
– sequence: 8
  givenname: Xiang
  orcidid: 0000-0002-9034-0046
  surname: Ye
  fullname: Ye, Xiang
  email: yexiang@shnu.edu.cn
  organization: Department of Physics
– sequence: 9
  givenname: Xuebin
  orcidid: 0000-0002-7894-1922
  surname: Wang
  fullname: Wang, Xuebin
  organization: National Laboratory of Solid-State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences
– sequence: 10
  givenname: Changshui
  orcidid: 0000-0001-5169-0855
  surname: Huang
  fullname: Huang, Changshui
  email: huangcs@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39447069$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNU7IeevUmOgrTN1-52j1JqFQoV7MHbks1ObMo2WZPsof_eldYeBD3NMPO8w_AMUc86CwjdUjKhhNGpVMFK6yZCkUzMkgs0oDlPx2SWvvfOfUL7aBjCjpAkm2XpFerzXIiMpPkArTfS1M4b-4HjFvCiBhW9s0bht-hbFVsPWNoKv3rXgI8GAnYaL71stpU5WMDlAc8P3QvdzLVNuEaXWtYBbk51hDZPi838ebxaL1_mj6ux5JzHcUUgpyBlqUqtBJCcS5bxLCuVpoIpwkqtZ0qzShJINa-YSEXFZMqpZGmm-QjdH8823n22EGKxN0FBXUsLrg0Fp4wkuUgS2qF3J7Qt91AVjTd76Q_Fj4MOmB4B5V0IHvQZoaT4tlycLBcny10i-ZVQJsponI2-0_lP7uGY6xbFzrXedor-pL8A_G2S7g
CitedBy_id crossref_primary_10_1016_j_jcis_2024_11_054
Cites_doi 10.1002/ange.201800453
10.1002/anie.202217378
10.1038/s44160-022-00068-7
10.1016/j.cej.2019.05.086
10.1021/acsami.8b03311
10.1002/ange.202307874
10.1016/j.carbon.2021.08.012
10.1021/acs.nanolett.0c02728
10.1002/anie.202216530
10.1038/s41557-018-0129-1
10.1021/acscentsci.0c00348
10.1002/celc.201800300
10.1002/adma.201803762
10.1126/science.1102896
10.1002/adfm.202005933
10.1016/j.chempr.2021.01.021
10.1103/PhysRevB.93.205426
10.1002/asia.202100579
10.1021/acs.jpclett.0c00113
10.1007/s40242-021-1350-9
10.1021/acs.chemmater.3c00983
10.1039/c3cs60388a
10.1016/j.chempr.2019.12.006
10.1016/j.mseb.2021.115425
10.1002/ange.202004454
10.1002/anie.202104167
10.1021/acsami.8b01823
10.1038/s41467-021-21319-9
10.1016/j.matt.2022.06.045
10.1016/j.mattod.2020.04.010
10.1016/j.nanoen.2021.106024
10.1002/anie.202216739
10.1016/j.electacta.2015.08.025
10.1039/b922733d
10.1038/s41467-023-37989-6
10.1021/jacs.2c09209
10.1002/adma.202212159
10.1002/adma.202001755
10.1002/adma.201804672
10.1002/anie.202113313
10.1002/adma.201805121
10.1016/j.electacta.2011.02.119
10.1002/adma.201807981
10.1002/ange.202216397
10.1002/adfm.201707564
10.1039/C8EE01642A
10.1039/C8CS00773J
10.1038/s41467-018-05878-y
10.1021/acs.chemrev.8b00288
10.1088/2053-1583/ab70eb
10.1038/s41557-018-0100-1
10.1016/j.cej.2022.138734
10.1021/acs.jctc.6b00523
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.4c07485
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 30377
ExternalDocumentID 39447069
10_1021_acsnano_4c07485
h30592655
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAYXX
ABBLG
ABLBI
ADHGD
CITATION
NPM
7X8
ID FETCH-LOGICAL-a333t-d0e91eaabcbfc4e093a27377bcf142c02bff8cf2da0e6f3d2464d2a631a267f3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 10:23:18 EDT 2025
Thu Apr 03 06:55:13 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Sun Jul 06 05:03:45 EDT 2025
Wed Feb 26 08:40:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords graphdiyne
energy gap regulation
functional group editing
lithium-ion battery
cyano groups
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-d0e91eaabcbfc4e093a27377bcf142c02bff8cf2da0e6f3d2464d2a631a267f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9034-0046
0000-0002-8515-4214
0000-0002-7894-1922
0000-0001-5169-0855
PMID 39447069
PQID 3120594551
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3120594551
pubmed_primary_39447069
crossref_primary_10_1021_acsnano_4c07485
crossref_citationtrail_10_1021_acsnano_4c07485
acs_journals_10_1021_acsnano_4c07485
PublicationCentury 2000
PublicationDate 2024-11-05
PublicationDateYYYYMMDD 2024-11-05
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
Li X. (ref33/cit33) 2023; 39
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref31/cit31
  doi: 10.1002/ange.201800453
– ident: ref5/cit5
  doi: 10.1002/anie.202217378
– ident: ref15/cit15
  doi: 10.1038/s44160-022-00068-7
– ident: ref24/cit24
  doi: 10.1016/j.cej.2019.05.086
– ident: ref34/cit34
  doi: 10.1021/acsami.8b03311
– ident: ref44/cit44
  doi: 10.1002/ange.202307874
– ident: ref50/cit50
  doi: 10.1016/j.carbon.2021.08.012
– ident: ref52/cit52
  doi: 10.1021/acs.nanolett.0c02728
– ident: ref9/cit9
  doi: 10.1002/anie.202216530
– ident: ref28/cit28
  doi: 10.1038/s41557-018-0129-1
– ident: ref37/cit37
  doi: 10.1021/acscentsci.0c00348
– ident: ref26/cit26
  doi: 10.1002/celc.201800300
– ident: ref14/cit14
  doi: 10.1002/adma.201803762
– ident: ref1/cit1
  doi: 10.1126/science.1102896
– ident: ref32/cit32
  doi: 10.1002/adfm.202005933
– ident: ref12/cit12
  doi: 10.1016/j.chempr.2021.01.021
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.93.205426
– ident: ref18/cit18
  doi: 10.1002/asia.202100579
– ident: ref48/cit48
  doi: 10.1021/acs.jpclett.0c00113
– ident: ref17/cit17
  doi: 10.1007/s40242-021-1350-9
– ident: ref42/cit42
  doi: 10.1021/acs.chemmater.3c00983
– ident: ref39/cit39
  doi: 10.1039/c3cs60388a
– ident: ref43/cit43
  doi: 10.1016/j.chempr.2019.12.006
– ident: ref47/cit47
  doi: 10.1016/j.mseb.2021.115425
– ident: ref40/cit40
  doi: 10.1002/ange.202004454
– ident: ref51/cit51
  doi: 10.1002/anie.202104167
– ident: ref35/cit35
  doi: 10.1021/acsami.8b01823
– ident: ref11/cit11
  doi: 10.1038/s41467-021-21319-9
– ident: ref10/cit10
  doi: 10.1016/j.matt.2022.06.045
– ident: ref22/cit22
  doi: 10.1016/j.mattod.2020.04.010
– ident: ref27/cit27
  doi: 10.1016/j.nanoen.2021.106024
– ident: ref8/cit8
  doi: 10.1002/anie.202216739
– ident: ref25/cit25
  doi: 10.1016/j.electacta.2015.08.025
– ident: ref2/cit2
  doi: 10.1039/b922733d
– volume: 39
  start-page: 2206029
  year: 2023
  ident: ref33/cit33
  publication-title: Acta Phys.-Chim. Sin.
– ident: ref53/cit53
  doi: 10.1038/s41467-023-37989-6
– ident: ref38/cit38
  doi: 10.1021/jacs.2c09209
– ident: ref7/cit7
  doi: 10.1002/adma.202212159
– ident: ref16/cit16
  doi: 10.1002/adma.202001755
– ident: ref23/cit23
  doi: 10.1002/adma.201804672
– ident: ref45/cit45
  doi: 10.1002/anie.202113313
– ident: ref29/cit29
  doi: 10.1002/adma.201805121
– ident: ref54/cit54
  doi: 10.1016/j.electacta.2011.02.119
– ident: ref13/cit13
  doi: 10.1002/adma.201807981
– ident: ref6/cit6
  doi: 10.1002/ange.202216397
– ident: ref21/cit21
  doi: 10.1002/adfm.201707564
– ident: ref30/cit30
  doi: 10.1039/C8EE01642A
– ident: ref3/cit3
  doi: 10.1039/C8CS00773J
– ident: ref19/cit19
  doi: 10.1038/s41467-018-05878-y
– ident: ref4/cit4
  doi: 10.1021/acs.chemrev.8b00288
– ident: ref36/cit36
  doi: 10.1088/2053-1583/ab70eb
– ident: ref20/cit20
  doi: 10.1038/s41557-018-0100-1
– ident: ref41/cit41
  doi: 10.1016/j.cej.2022.138734
– ident: ref46/cit46
  doi: 10.1021/acs.jctc.6b00523
SSID ssj0057876
Score 2.4881258
Snippet Two-dimensional (2D) materials, such as 2D carbon-based systems, have been recently the subject of intense studies, thanks to their optoelectronic properties...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30368
Title Tailoring the Electronic Structure and Properties of Graphdiyne by Cyano Groups
URI http://dx.doi.org/10.1021/acsnano.4c07485
https://www.ncbi.nlm.nih.gov/pubmed/39447069
https://www.proquest.com/docview/3120594551
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwfpSXjNSBJSGxXScZq6qlQuIhtUjdootjSwjkoKYdyq_HTtLwqCpYMuWc5O6c-853_oxQy49AEiEDh0keOsxcHSCKOlHoCS8AaEfSLg3cP_DBM7sbt8dfZNG_K_jEvwGRa9CZy4wsC9vraIPwMLB5Vqc7XPx0rd_xsoBsEmSDImoWn6UBbBgS-c8wtAJbFjGmv1N2Z-UFNaFtLXl1Z9PEFR_LxI1_v_4u2q6QJu6UrrGH1qTeR1vf-AcP0OMIXsoOPGxwIO7VR-LgYUErO5tIDDrFT3bFfmKpV3Gm8K3luE5f5lriZI67c_NcXCxh5Ydo1O-NugOnOmHBAUrp1Ek9GfkSIBGJEkx6EQUDZ4IgEcpnRHgkUSoUiqTgSa5oShhnKQFOfSA8UPQINXSm5QnCNk2kBj4xAMmYJRyQEIiQ20mfcEGbqGU0EVcTJI-L2jfx40o9caWeJnIXZolFRVJuz8p4Wy1wXQu8l_wcq2-9Wtg5NnPIFkZAy2yWx9QnlrbGgMcmOi4doB7MbhwOPB6d_u8DztAmMbCn2K3YPkcNYy15YWDLNLksHPYTpe3o8Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4BewAO--KxZVnWK3HgkpLYrpMcq6pseYMoErdo4thSBUpXpD10fz3jJA0vVdq95BDFEz_G9ucZzzcA-0GMhmsTetKoyJP09JBb4cWRr_0QsRMbZxo4v1CDW3ly17lbAn8eC0OVKEhSUTrxn9kFgkN6l2M-bksSIaPOMnwgKMLdcavbu5mvvU79VOVHpnMygYmGzOedALcb6eL1brQAYpZbzdEnuG4qWd4wuW9PJ2lb_33D3_g_rfgMH2vcybqVonyBJZN_hfUXbIQbcDnEUXUfjxEqZP0mQQ67KUlmp4-GYZ6xK2e_f3RErGxs2W_HeJ2NZrlh6Yz1ZvRfVhq0ik0YHvWHvYFX51vwUAgx8TLfxIFBTHVqtTR-LJDATRim2gaSa5-n1kba8gx9o6zIuFQy46hEgFyFVmzBSj7OzTdg7tAoCExJRCOlox8wGOpIuSUgVVq0YJ96IqmnS5GUnnAeJHX3JHX3tKA9H51E15TlLnPGw-ICB02BPxVbx-JPf82HO6EZ5dwkmJvxtEhEwB2JDUHJFmxXetAIc2HEoa_inX9rwE9YHQzPz5Kz44vT77DGCRCVcYydXVihkTM_CNBM0r1Sh58AAlLxUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VKiE49AG0bB_USBy4ZElsr5Mc0ZYttLwkFolbNHFsCbXKIrJ72P76ziTZqFCtRC85RPHE9oztzx7PNwD7UYpOWhcH2pkk0PQMUHoVpElowxhxkDo-Gji_MCc3-vvt4LYNCuNYGKpERZKq2onPo_q-8C3DQHRI70ssJ31NYnQyWIGX7LTjLdfR8Hox_7IJmsaXTHtlAhQdoc8_AnhFstXjFWkJzKyXm9FruOkqWt8y-dmfTfO-_f2Ew_F_W_IGXrX4Uxw1BvMWXrhyEzb-YiXcgssx3jX38gShQ3HcJcoR1zXZ7OzBCSwLccXn-A9MyComXnxj5uvibl46kc_FcE7_FfXBVrUN49HxeHgStHkXAlRKTYMidGnkEHObe6tdmCokkBPHufWRljaUufeJ9bLA0BmvCqmNLiQaFaE0sVfvYLWclG4HBG8eFYEqjei0ZhoCh7FNDE8FubGqB_vUE1k7bKqs9ojLKGu7J2u7pwf9hYYy21KXcwaNX8sLHHQF7hvWjuWf7i1UntHIYncJlm4yqzIVSSazIUjZg_eNLXTCOJw4Dk364XkN-AJrV19H2dnpxY-PsC4JF9XhjINPsEqKc58J10zz3dqM_wDXR_PV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+the+Electronic+Structure+and+Properties+of+Graphdiyne+by+Cyano+Groups&rft.jtitle=ACS+nano&rft.au=Gao%2C+Lei&rft.au=Wang%2C+Shuailong&rft.au=Wang%2C+Fan&rft.au=Yang%2C+Ze&rft.date=2024-11-05&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=18&rft.issue=44&rft.spage=30368&rft.epage=30377&rft_id=info:doi/10.1021%2Facsnano.4c07485&rft.externalDocID=h30592655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon