USING GENETIC PROGRAMMING TO SELECT THE INFORMATIVE EEG-BASED FEATURES TO DISTINGUISH SCHIZOPHRENIC PATIENTS
There is growing interest to analyze electroencephalogram (EEG) signals with the objective of classifying schizophrenic patients from the control subjects. In this study, EEG signals of 15 schizophrenic patients and 19 age-matched control subjects are recorded using twenty surface electrodes. After...
Saved in:
Published in | Neural Network World Vol. 22; no. 1; pp. 3 - 20 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Prague
Institute of Information and Computer Technology
01.01.2012
Institute of Computer Science |
Subjects | |
Online Access | Get full text |
ISSN | 1210-0552 2336-4335 |
DOI | 10.14311/NNW.2012.22.001 |
Cover
Loading…
Abstract | There is growing interest to analyze electroencephalogram (EEG) signals with the objective of classifying schizophrenic patients from the control subjects. In this study, EEG signals of 15 schizophrenic patients and 19 age-matched control subjects are recorded using twenty surface electrodes. After the preprocessing phase, several features including autoregressive (AR) model coefficients, band power and fractal dimension were extracted from their recorded signals. Three classifiers including Linear Discriminant Analysis (LDA), Multi-LDA (MLDA) and Adaptive Boosting (Adaboost) were implemented to classify the EEG features of schizophrenic and normal subjects. Leave-one (participant)-out cross validation is performed in the training phase and finally in the test phase; the results of applying the LDA, MLDA and Adaboost respectively provided 78%, 81% and 82% classification accuracies between the two groups. For further improvement, Genetic Programming (GP) is employed to select more informative features and remove the redundant ones. After applying GP on the feature vectors, the results are remarkably improved so that the classification rate of the two groups with LDA, MLDA and Adaboost classifiers yielded 82%, 84% and 93% accuracies, respectively. |
---|---|
AbstractList | There is growing interest to analyze electroencephalogram (EEG) signals with the objective of classifying schizophrenic patients from the control subjects. In this study, EEG signals of 15 schizophrenic patients and 19 age-matched control subjects are recorded using twenty surface electrodes. After the preprocessing phase, several features including autoregressive (AR) model coefficients, band power and fractal dimension were extracted from their recorded signals. Three classifiers including Linear Discriminant Analysis (LDA), Multi-LDA (MLDA) and Adaptive Boosting (Adaboost) were implemented to classify the EEG features of schizophrenic and normal subjects. Leave-one (participant)-out cross validation is performed in the training phase and finally in the test phase; the results of applying the LDA, MLDA and Adaboost respectively provided 78%, 81% and 82% classification accuracies between the two groups. For further improvement, Genetic Programming (GP) is employed to select more informative features and remove the redundant ones. After applying GP on the feature vectors, the results are remarkably improved so that the classification rate of the two groups with LDA, MLDA and Adaboost classifiers yielded 82%, 84% and 93% accuracies, respectively. There is growing interest to analyze electroencephalogram (EEG) signals with the objective of classifying schizophrenic patients from the control subjects. In this study, EEG signals of 15 schizophrenic patients and 19 age-matched control subjects are recorded using twenty surface electrodes. After the preprocessing phase, several features including autoregressive (AR) model coefficients, band power and fractal dimension were extracted from their recorded signals. Three classifiers including Linear Discriminant Analysis (LDA), Multi-LDA (MLDA) and Adaptive Boosting (Adaboost) were implemented to classify the EEG features of schizophrenic and normal subjects. Leave-one (participant)-out cross validation is performed in the training phase and finally in the test phase; the results of applying the LDA, MLDA and Adaboost respectively provided 78%, 81% and 82% classification accuracies between the two groups. For further improvement, Genetic Programming (GP) is employed to select more informative features and remove the redundant ones. After applying GP on the feature vectors, the results are remarkably improved so that the classification rate of the two groups with LDA, MLDA and Adaboost classifiers yielded 82%, 84% and 93% accuracies, respectively. [PUBLICATION ABSTRACT] |
Author | Reza Boostani Malihe Sabeti Toktam Zoughi |
Author_xml | – sequence: 1 givenname: Malihe surname: Sabeti fullname: Sabeti, Malihe – sequence: 2 givenname: Reza surname: Boostani fullname: Boostani, Reza – sequence: 3 givenname: Toktam surname: Zoughi fullname: Zoughi, Toktam |
BookMark | eNp9kU1Pg0AQhjemJtbq3SOJZ-rsLgv0iHQLJC00sGjihWzoktBUqEAP_nuX1oPpwdN85H1mJu_co0nTNgqhJwxzbFGMX-L4fU4AkzkhcwB8g6aEUtu0KGUTNMUEgwmMkTt03_d7AIstXGuKDnkWxYER8JiLyDe2aRKk3mYz9kRiZHzNfWGIkBtRvErSjSeiN25wHpivXsaXxop7Ik95NoqXUSY0l0dZaGR-GH0k2zDl8ThVYzwW2QO6reShV4-_cYbyFRd-aK6TIPK9tSkppYMpcaWYZRGLOaVktkOc3cJm5Y5QzHaujSWVSuHKdWzKlM4rLcW4kiUrFYAt6Qw9X-Yeu_brpPqh2LenrtErCwwYXAK2XjRD9kVVdm3fd6oqynqQQ902Qyfrg5YWZ2cL7WwxOlsQUmhnNQhX4LGrP2X3_R_CL4isu3qo_9yj_zK-5ayGc3CBUQAgVwXVJf0B-m6F2w |
CitedBy_id | crossref_primary_10_1007_s10479_016_2331_0 crossref_primary_10_1109_TIM_2021_3070608 crossref_primary_10_1007_s00500_014_1223_y crossref_primary_10_1109_TNSRE_2023_3336467 crossref_primary_10_3233_IDA_227125 |
ContentType | Journal Article |
Copyright | Copyright Institute of Computer Science 2012 |
Copyright_xml | – notice: Copyright Institute of Computer Science 2012 |
DBID | 188 AAYXX CITATION 3V. 4T- 7XB 88I 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U |
DOI | 10.14311/NNW.2012.22.001 |
DatabaseName | Chinese Electronic Periodical Services (CEPS) CrossRef ProQuest Central (Corporate) Docstoc ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Docstoc ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2336-4335 |
EndPage | 20 |
ExternalDocumentID | 2650585611 10_14311_NNW_2012_22_001 12100552_201202_201805300022_201805300022_3_20 |
Genre | Feature |
GroupedDBID | 123 188 29N 2UF 3V. 53G 88I 8FE 8FG 8R4 8R5 ABUWG ACGOD AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ CCPQU CNMHZ CVCKV DWQXO GNUQQ HCIFZ K6V K7- M0N M2P P2P P62 PQQKQ PROAC PSYQQ Q2X TUS TUXDW UZ4 AAYXX ADMLS ATFKH BYOGL CITATION EOJEC OBODZ PHGZM PHGZT 4T- 7XB 8AL 8FK JQ2 PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-a333t-a1fe5442457ca56727d965cd2315d861a3aee1f87635e3aef42411fac5ce006a3 |
IEDL.DBID | BENPR |
ISSN | 1210-0552 |
IngestDate | Sun Jul 13 04:32:51 EDT 2025 Tue Jul 01 02:03:02 EDT 2025 Thu Apr 24 23:10:50 EDT 2025 Tue Oct 01 22:53:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Features selection EEG LDA MLDA GP schizophrenic Adaboost |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-a1fe5442457ca56727d965cd2315d861a3aee1f87635e3aef42411fac5ce006a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1010820633 |
PQPubID | 27998 |
PageCount | 18 |
ParticipantIDs | proquest_journals_1010820633 crossref_citationtrail_10_14311_NNW_2012_22_001 crossref_primary_10_14311_NNW_2012_22_001 airiti_journals_12100552_201202_201805300022_201805300022_3_20 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Prague |
PublicationPlace_xml | – name: Prague |
PublicationSubtitle | International Journal on Neural and Mass - Parallel Computing and Information Systems |
PublicationTitle | Neural Network World |
PublicationYear | 2012 |
Publisher | Institute of Information and Computer Technology Institute of Computer Science |
Publisher_xml | – name: Institute of Information and Computer Technology – name: Institute of Computer Science |
SSID | ssj0045984 |
Score | 1.9279565 |
Snippet | There is growing interest to analyze electroencephalogram (EEG) signals with the objective of classifying schizophrenic patients from the control subjects. In... |
SourceID | proquest crossref airiti |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Electroencephalography Genetic algorithms Schizophrenia |
Title | USING GENETIC PROGRAMMING TO SELECT THE INFORMATIVE EEG-BASED FEATURES TO DISTINGUISH SCHIZOPHRENIC PATIENTS |
URI | https://www.airitilibrary.com/Article/Detail/12100552-201202-201805300022-201805300022-3-20 https://www.proquest.com/docview/1010820633 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtswTFjTyy57D8vaFTrssoNXy7IS-bIhTZXYw-IEsbMVuxh6GRhQpF2b_f9IRy6WS0-2bFEwSPEl0iQhH5OxBTPYxJFnHBwU402kXeujVriMp7ER0uDfyItylG_Sb1fiKhy43Ye0yl4mdoLa3Vg8IwfuZqitRpx_vf0TYdcojK6GFhpH5BhEsBQDcnyhytW6l8WpyLqew1glK4qFSEKgErQmOy_Ln5jalXxOsGYnBir1bywkdKihDgV0p3VmL8izYC7SyZ6-L8kTv31FnvetGGjgzNfkGttnzCkmotXFlK7Wy_l6sljgs3pJK_VdTWta54oWJbh9i0ld_FBUqXl0ManUJZ2pLv2hwsmXRVUD3KaoclpN8-LXcpWvVYmrApgq6-oN2cxUPc2j0Egh0pzzXaRZ60WKMc6x1QJjry4bCevAthNOjpjm2nvWdsXpPNy3MJWxVlthPXCl5m_JYHuz9e8IlbH0BnxKN2YutYnRJkut9LFxiWFOZkPyZY_FJvDCfYPIR9w3iOy4u0hg_a70zuGAw3BIznvsNzaUKcduGdcNuitIuAYI163VAAgQbkg-PUDc7kt0PDL3tCfofx_4sLXeP_76hDzFtfYnMKdksLv76z-ATbIzZ-RIzuZnYfv9A7td0Wc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFXaA1x4owYK7AEOHEy9Xm9iH6BKk01sGjtR7EDVi9n1riWkKi00CPWn-EZm_KjIpbee_NodWTOz89iZnSHknTcowQzWrmMZBwdFW-0oU1mnEibkvqtFoPE0cpL2o5X_5VSc7pC_3VkYTKvsZGItqM1FiXvksLoZaqs-50eXPx3sGoXR1a6FRsMWJ_b6D7hsV5_iMdD3vedNZD6KnLargKM45xtHscoKHwN-g1IJDESasC9KA4aOMEGfKa6sZVVdqc3CfQVDGatUKUoLLKo4wL1H9sDMCGEV7R3LdLHsZL8vwrrHMVblclwhvDYwClqaHabpN0wl8z56WCMUA6PqBxYu2taI2wqh1nKTx-Rha57SYcNPT8iOXT8lj7rWD7SVBM_IObbrmFJMfMvjEV0s59PlMEnwXT6nmZzJUU7zSNI4BTczGebxV0mlnDrHw0yO6UTW6RYZDh7HWQ7zVnEW0WwUxWfzRbSUKUKFaTLNs-dkdScofkF21xdru09o4AZWgw9rBsz4paeVDv0ysK42nmYmCHvkc4PFol17VwUiH3FfILLd-hKAqKlL_Ww_cHjskcMO-0XZlkXH7hznBbpHSLgCCFfDKmAKEK5HPtzMuGxKgtwy9qAj6H8_eMPKL2___Jbcj_JkVszi9OQVeYBwm92fA7K7-fXbvgZ7aKPftExIyfe75vt_OAUNIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFVSCXGB8hIpLewBDhxMvF5vYh-gSpNNbNo4UexAxcXsetdSpSotNAj11_g6ZvyoyKW3nvzaHVkzs_PYmZ0h5J03KMAM1q5jGQcHRVvtKFNapxQm5L6rRaDxNPIs6Ucr_8uZONshf9uzMJhW2crESlCbywL3yGF1M9RWfc57ZZMWsRhPjq5-OthBCiOtbTuNmkVO7M0fcN-uP8VjoPV7z5vIbBQ5TYcBR3HON45ipRU-Bv8GhRIYlDRhXxQGjB5hgj5TXFnLyqpqm4X7EoYyVqpCFBbYVXGA-4DsDkArBh2yeyyTxbLVA74Iq37HWKHLcYXwmiApaGzWS5JvmFbmffSwXigGSdU5FjHa1o7byqHSeJM98rgxVemw5q2nZMeun5EnbRsI2kiF5-QCW3dMKSbBZfGILpbz6XI4m-G7bE5TeSpHGc0iSeMEXM7ZMIu_Sirl1DkepnJMJ7JKvUhx8DhOM5i3itOIpqMo_j5fREuZIFSYJpMsfUFW94Lil6SzvlzbV4QGbmA1-LNmwIxfeFrp0C8C62rjaWaCsEs-11jMm3V4nSPyEfc5ItutLgGInarsz_YDh8cu6bXYz4umRDp26rjI0VVCwuVAuApWDlOAcF3y4XbGVV0e5I6xBy1B__vBW7bev_vzW_IQ-D0_jZOT1-QRgq03gg5IZ_Prtz0E02ij3zQ8SMmP-2b7f1OEEU8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=USING+GENETIC+PROGRAMMING+TO+SELECT+THE+INFORMATIVE+EEG-BASED+FEATURES+TO+DISTINGUISH+SCHIZOPHRENIC+PATIENTS&rft.jtitle=Neural+network+world&rft.au=Sabeti%2C+Malihe&rft.au=Boostani%2C+Reza&rft.au=Zoughi%2C+Toktam&rft.date=2012-01-01&rft.pub=Institute+of+Computer+Science&rft.issn=1210-0552&rft.eissn=2336-4335&rft.volume=22&rft.issue=1&rft.spage=3&rft_id=info:doi/10.14311%2FNNW.2012.22.001&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2650585611 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F12100552-c.jpg |