USING GENETIC PROGRAMMING TO SELECT THE INFORMATIVE EEG-BASED FEATURES TO DISTINGUISH SCHIZOPHRENIC PATIENTS

There is growing interest to analyze electroencephalogram (EEG) signals with the objective of classifying schizophrenic patients from the control subjects. In this study, EEG signals of 15 schizophrenic patients and 19 age-matched control subjects are recorded using twenty surface electrodes. After...

Full description

Saved in:
Bibliographic Details
Published inNeural Network World Vol. 22; no. 1; pp. 3 - 20
Main Authors Sabeti, Malihe, Boostani, Reza, Zoughi, Toktam
Format Journal Article
LanguageEnglish
Published Prague Institute of Information and Computer Technology 01.01.2012
Institute of Computer Science
Subjects
Online AccessGet full text
ISSN1210-0552
2336-4335
DOI10.14311/NNW.2012.22.001

Cover

Loading…
Abstract There is growing interest to analyze electroencephalogram (EEG) signals with the objective of classifying schizophrenic patients from the control subjects. In this study, EEG signals of 15 schizophrenic patients and 19 age-matched control subjects are recorded using twenty surface electrodes. After the preprocessing phase, several features including autoregressive (AR) model coefficients, band power and fractal dimension were extracted from their recorded signals. Three classifiers including Linear Discriminant Analysis (LDA), Multi-LDA (MLDA) and Adaptive Boosting (Adaboost) were implemented to classify the EEG features of schizophrenic and normal subjects. Leave-one (participant)-out cross validation is performed in the training phase and finally in the test phase; the results of applying the LDA, MLDA and Adaboost respectively provided 78%, 81% and 82% classification accuracies between the two groups. For further improvement, Genetic Programming (GP) is employed to select more informative features and remove the redundant ones. After applying GP on the feature vectors, the results are remarkably improved so that the classification rate of the two groups with LDA, MLDA and Adaboost classifiers yielded 82%, 84% and 93% accuracies, respectively.
AbstractList There is growing interest to analyze electroencephalogram (EEG) signals with the objective of classifying schizophrenic patients from the control subjects. In this study, EEG signals of 15 schizophrenic patients and 19 age-matched control subjects are recorded using twenty surface electrodes. After the preprocessing phase, several features including autoregressive (AR) model coefficients, band power and fractal dimension were extracted from their recorded signals. Three classifiers including Linear Discriminant Analysis (LDA), Multi-LDA (MLDA) and Adaptive Boosting (Adaboost) were implemented to classify the EEG features of schizophrenic and normal subjects. Leave-one (participant)-out cross validation is performed in the training phase and finally in the test phase; the results of applying the LDA, MLDA and Adaboost respectively provided 78%, 81% and 82% classification accuracies between the two groups. For further improvement, Genetic Programming (GP) is employed to select more informative features and remove the redundant ones. After applying GP on the feature vectors, the results are remarkably improved so that the classification rate of the two groups with LDA, MLDA and Adaboost classifiers yielded 82%, 84% and 93% accuracies, respectively.
There is growing interest to analyze electroencephalogram (EEG) signals with the objective of classifying schizophrenic patients from the control subjects. In this study, EEG signals of 15 schizophrenic patients and 19 age-matched control subjects are recorded using twenty surface electrodes. After the preprocessing phase, several features including autoregressive (AR) model coefficients, band power and fractal dimension were extracted from their recorded signals. Three classifiers including Linear Discriminant Analysis (LDA), Multi-LDA (MLDA) and Adaptive Boosting (Adaboost) were implemented to classify the EEG features of schizophrenic and normal subjects. Leave-one (participant)-out cross validation is performed in the training phase and finally in the test phase; the results of applying the LDA, MLDA and Adaboost respectively provided 78%, 81% and 82% classification accuracies between the two groups. For further improvement, Genetic Programming (GP) is employed to select more informative features and remove the redundant ones. After applying GP on the feature vectors, the results are remarkably improved so that the classification rate of the two groups with LDA, MLDA and Adaboost classifiers yielded 82%, 84% and 93% accuracies, respectively. [PUBLICATION ABSTRACT]
Author Reza Boostani
Malihe Sabeti
Toktam Zoughi
Author_xml – sequence: 1
  givenname: Malihe
  surname: Sabeti
  fullname: Sabeti, Malihe
– sequence: 2
  givenname: Reza
  surname: Boostani
  fullname: Boostani, Reza
– sequence: 3
  givenname: Toktam
  surname: Zoughi
  fullname: Zoughi, Toktam
BookMark eNp9kU1Pg0AQhjemJtbq3SOJZ-rsLgv0iHQLJC00sGjihWzoktBUqEAP_nuX1oPpwdN85H1mJu_co0nTNgqhJwxzbFGMX-L4fU4AkzkhcwB8g6aEUtu0KGUTNMUEgwmMkTt03_d7AIstXGuKDnkWxYER8JiLyDe2aRKk3mYz9kRiZHzNfWGIkBtRvErSjSeiN25wHpivXsaXxop7Ik95NoqXUSY0l0dZaGR-GH0k2zDl8ThVYzwW2QO6reShV4-_cYbyFRd-aK6TIPK9tSkppYMpcaWYZRGLOaVktkOc3cJm5Y5QzHaujSWVSuHKdWzKlM4rLcW4kiUrFYAt6Qw9X-Yeu_brpPqh2LenrtErCwwYXAK2XjRD9kVVdm3fd6oqynqQQ902Qyfrg5YWZ2cL7WwxOlsQUmhnNQhX4LGrP2X3_R_CL4isu3qo_9yj_zK-5ayGc3CBUQAgVwXVJf0B-m6F2w
CitedBy_id crossref_primary_10_1007_s10479_016_2331_0
crossref_primary_10_1109_TIM_2021_3070608
crossref_primary_10_1007_s00500_014_1223_y
crossref_primary_10_1109_TNSRE_2023_3336467
crossref_primary_10_3233_IDA_227125
ContentType Journal Article
Copyright Copyright Institute of Computer Science 2012
Copyright_xml – notice: Copyright Institute of Computer Science 2012
DBID 188
AAYXX
CITATION
3V.
4T-
7XB
88I
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
DOI 10.14311/NNW.2012.22.001
DatabaseName Chinese Electronic Periodical Services (CEPS)
CrossRef
ProQuest Central (Corporate)
Docstoc
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Docstoc
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2336-4335
EndPage 20
ExternalDocumentID 2650585611
10_14311_NNW_2012_22_001
12100552_201202_201805300022_201805300022_3_20
Genre Feature
GroupedDBID 123
188
29N
2UF
3V.
53G
88I
8FE
8FG
8R4
8R5
ABUWG
ACGOD
AENEX
AFKRA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CNMHZ
CVCKV
DWQXO
GNUQQ
HCIFZ
K6V
K7-
M0N
M2P
P2P
P62
PQQKQ
PROAC
PSYQQ
Q2X
TUS
TUXDW
UZ4
AAYXX
ADMLS
ATFKH
BYOGL
CITATION
EOJEC
OBODZ
PHGZM
PHGZT
4T-
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-a333t-a1fe5442457ca56727d965cd2315d861a3aee1f87635e3aef42411fac5ce006a3
IEDL.DBID BENPR
ISSN 1210-0552
IngestDate Sun Jul 13 04:32:51 EDT 2025
Tue Jul 01 02:03:02 EDT 2025
Thu Apr 24 23:10:50 EDT 2025
Tue Oct 01 22:53:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Features selection
EEG
LDA
MLDA
GP
schizophrenic
Adaboost
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-a1fe5442457ca56727d965cd2315d861a3aee1f87635e3aef42411fac5ce006a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1010820633
PQPubID 27998
PageCount 18
ParticipantIDs proquest_journals_1010820633
crossref_citationtrail_10_14311_NNW_2012_22_001
crossref_primary_10_14311_NNW_2012_22_001
airiti_journals_12100552_201202_201805300022_201805300022_3_20
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Prague
PublicationPlace_xml – name: Prague
PublicationSubtitle International Journal on Neural and Mass - Parallel Computing and Information Systems
PublicationTitle Neural Network World
PublicationYear 2012
Publisher Institute of Information and Computer Technology
Institute of Computer Science
Publisher_xml – name: Institute of Information and Computer Technology
– name: Institute of Computer Science
SSID ssj0045984
Score 1.9279565
Snippet There is growing interest to analyze electroencephalogram (EEG) signals with the objective of classifying schizophrenic patients from the control subjects. In...
SourceID proquest
crossref
airiti
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Electroencephalography
Genetic algorithms
Schizophrenia
Title USING GENETIC PROGRAMMING TO SELECT THE INFORMATIVE EEG-BASED FEATURES TO DISTINGUISH SCHIZOPHRENIC PATIENTS
URI https://www.airitilibrary.com/Article/Detail/12100552-201202-201805300022-201805300022-3-20
https://www.proquest.com/docview/1010820633
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtswTFjTyy57D8vaFTrssoNXy7IS-bIhTZXYw-IEsbMVuxh6GRhQpF2b_f9IRy6WS0-2bFEwSPEl0iQhH5OxBTPYxJFnHBwU402kXeujVriMp7ER0uDfyItylG_Sb1fiKhy43Ye0yl4mdoLa3Vg8IwfuZqitRpx_vf0TYdcojK6GFhpH5BhEsBQDcnyhytW6l8WpyLqew1glK4qFSEKgErQmOy_Ln5jalXxOsGYnBir1bywkdKihDgV0p3VmL8izYC7SyZ6-L8kTv31FnvetGGjgzNfkGttnzCkmotXFlK7Wy_l6sljgs3pJK_VdTWta54oWJbh9i0ld_FBUqXl0ManUJZ2pLv2hwsmXRVUD3KaoclpN8-LXcpWvVYmrApgq6-oN2cxUPc2j0Egh0pzzXaRZ60WKMc6x1QJjry4bCevAthNOjpjm2nvWdsXpPNy3MJWxVlthPXCl5m_JYHuz9e8IlbH0BnxKN2YutYnRJkut9LFxiWFOZkPyZY_FJvDCfYPIR9w3iOy4u0hg_a70zuGAw3BIznvsNzaUKcduGdcNuitIuAYI163VAAgQbkg-PUDc7kt0PDL3tCfofx_4sLXeP_76hDzFtfYnMKdksLv76z-ATbIzZ-RIzuZnYfv9A7td0Wc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFXaA1x4owYK7AEOHEy9Xm9iH6BKk01sGjtR7EDVi9n1riWkKi00CPWn-EZm_KjIpbee_NodWTOz89iZnSHknTcowQzWrmMZBwdFW-0oU1mnEibkvqtFoPE0cpL2o5X_5VSc7pC_3VkYTKvsZGItqM1FiXvksLoZaqs-50eXPx3sGoXR1a6FRsMWJ_b6D7hsV5_iMdD3vedNZD6KnLargKM45xtHscoKHwN-g1IJDESasC9KA4aOMEGfKa6sZVVdqc3CfQVDGatUKUoLLKo4wL1H9sDMCGEV7R3LdLHsZL8vwrrHMVblclwhvDYwClqaHabpN0wl8z56WCMUA6PqBxYu2taI2wqh1nKTx-Rha57SYcNPT8iOXT8lj7rWD7SVBM_IObbrmFJMfMvjEV0s59PlMEnwXT6nmZzJUU7zSNI4BTczGebxV0mlnDrHw0yO6UTW6RYZDh7HWQ7zVnEW0WwUxWfzRbSUKUKFaTLNs-dkdScofkF21xdru09o4AZWgw9rBsz4paeVDv0ysK42nmYmCHvkc4PFol17VwUiH3FfILLd-hKAqKlL_Ww_cHjskcMO-0XZlkXH7hznBbpHSLgCCFfDKmAKEK5HPtzMuGxKgtwy9qAj6H8_eMPKL2___Jbcj_JkVszi9OQVeYBwm92fA7K7-fXbvgZ7aKPftExIyfe75vt_OAUNIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFVSCXGB8hIpLewBDhxMvF5vYh-gSpNNbNo4UexAxcXsetdSpSotNAj11_g6ZvyoyKW3nvzaHVkzs_PYmZ0h5J03KMAM1q5jGQcHRVvtKFNapxQm5L6rRaDxNPIs6Ucr_8uZONshf9uzMJhW2crESlCbywL3yGF1M9RWfc57ZZMWsRhPjq5-OthBCiOtbTuNmkVO7M0fcN-uP8VjoPV7z5vIbBQ5TYcBR3HON45ipRU-Bv8GhRIYlDRhXxQGjB5hgj5TXFnLyqpqm4X7EoYyVqpCFBbYVXGA-4DsDkArBh2yeyyTxbLVA74Iq37HWKHLcYXwmiApaGzWS5JvmFbmffSwXigGSdU5FjHa1o7byqHSeJM98rgxVemw5q2nZMeun5EnbRsI2kiF5-QCW3dMKSbBZfGILpbz6XI4m-G7bE5TeSpHGc0iSeMEXM7ZMIu_Sirl1DkepnJMJ7JKvUhx8DhOM5i3itOIpqMo_j5fREuZIFSYJpMsfUFW94Lil6SzvlzbV4QGbmA1-LNmwIxfeFrp0C8C62rjaWaCsEs-11jMm3V4nSPyEfc5ItutLgGInarsz_YDh8cu6bXYz4umRDp26rjI0VVCwuVAuApWDlOAcF3y4XbGVV0e5I6xBy1B__vBW7bev_vzW_IQ-D0_jZOT1-QRgq03gg5IZ_Prtz0E02ij3zQ8SMmP-2b7f1OEEU8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=USING+GENETIC+PROGRAMMING+TO+SELECT+THE+INFORMATIVE+EEG-BASED+FEATURES+TO+DISTINGUISH+SCHIZOPHRENIC+PATIENTS&rft.jtitle=Neural+network+world&rft.au=Sabeti%2C+Malihe&rft.au=Boostani%2C+Reza&rft.au=Zoughi%2C+Toktam&rft.date=2012-01-01&rft.pub=Institute+of+Computer+Science&rft.issn=1210-0552&rft.eissn=2336-4335&rft.volume=22&rft.issue=1&rft.spage=3&rft_id=info:doi/10.14311%2FNNW.2012.22.001&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2650585611
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F12100552-c.jpg