Formation and Stability of Lipid Membrane Nanotubes
Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how t...
Saved in:
Published in | ACS nano Vol. 11; no. 9; pp. 9558 - 9565 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid–elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures. |
---|---|
AbstractList | Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures. Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures.Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures. |
Author | Bahrami, Amir Houshang Hummer, Gerhard |
AuthorAffiliation | Institute for Biophysics Goethe University Frankfurt Department of Theoretical Biophysics Max Planck Institute of Biophysics |
AuthorAffiliation_xml | – name: Institute for Biophysics – name: Department of Theoretical Biophysics – name: Goethe University Frankfurt – name: Max Planck Institute of Biophysics |
Author_xml | – sequence: 1 givenname: Amir Houshang surname: Bahrami fullname: Bahrami, Amir Houshang organization: Max Planck Institute of Biophysics – sequence: 2 givenname: Gerhard orcidid: 0000-0001-7768-746X surname: Hummer fullname: Hummer, Gerhard email: gerhard.hummer@biophys.mpg.de organization: Goethe University Frankfurt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28873296$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kL1PwzAQxS1URD9gZkMZkVBaf8ROMqKKAlKBAZDYrEtiS64Su9jJ0P-elKYMSJ3upPu9u3tvikbWWYXQNcFzgilZQBksWDdPC8x5Qs_QhORMxDgTX6O_npMxmoawwZinWSou0JhmWcpoLiaIrZxvoDXORmCr6L2FwtSm3UVOR2uzNVX0oprCg1XRa3-o7QoVLtG5hjqoq6HO0Ofq4WP5FK_fHp-X9-sYGGNtnKuKC6aZhkrwMhFYEYwLSnheaVUlOKW0yhmIrCyBAgBRrIRUJzrXglBG2AzdHvZuvfvuVGhlY0Kp6rr_xnVB7u1RgTnlPXozoF3RqEpuvWnA7-TRaA_wA1B6F4JXWpam_fXdejC1JFjuA5VDoHIItNct_umOq08r7g6KfiA3rvO2z-gk_QNmo4fN |
CitedBy_id | crossref_primary_10_1016_j_jmps_2020_103867 crossref_primary_10_1002_ange_201807372 crossref_primary_10_1063_5_0061623 crossref_primary_10_1039_D2CS00985D crossref_primary_10_1002_anie_201807372 crossref_primary_10_1016_j_bpr_2022_100062 crossref_primary_10_1021_acsnano_8b00640 crossref_primary_10_1103_PhysRevLett_130_148401 crossref_primary_10_1016_j_bpj_2022_11_028 crossref_primary_10_1039_C9NR05885K crossref_primary_10_1039_C9SM00854C crossref_primary_10_1098_rspa_2021_0246 crossref_primary_10_1063_1_5009107 crossref_primary_10_1039_C9SM00399A crossref_primary_10_1088_1361_648X_aac702 crossref_primary_10_3390_biom8040120 crossref_primary_10_1371_journal_pcbi_1005817 crossref_primary_10_1038_s41598_020_59221_x crossref_primary_10_1038_s41467_020_14696_0 crossref_primary_10_1126_science_abq5209 crossref_primary_10_1063_5_0101118 crossref_primary_10_1039_C8SM01711E crossref_primary_10_1073_pnas_2321579121 crossref_primary_10_1039_D4NR04674A crossref_primary_10_1016_j_colsurfb_2022_112362 crossref_primary_10_1016_j_colsurfb_2021_112160 crossref_primary_10_1063_5_0238898 crossref_primary_10_1016_j_bpj_2021_04_029 crossref_primary_10_1039_D2RA05855C crossref_primary_10_1088_1674_1056_ab892b crossref_primary_10_1063_5_0208749 |
Cites_doi | 10.1038/ncb1682 10.1051/jp2:1996161 10.1103/PhysRevE.71.051602 10.1021/nl203983e 10.1038/ncomms9529 10.1091/mbc.E09-04-0327 10.1209/0295-5075/13/7/015 10.1073/pnas.0406598101 10.1016/S0092-8674(02)01283-7 10.1039/C2FD20105D 10.1021/acsnano.5b05377 10.1073/pnas.1415882112 10.1103/PhysRevE.80.031901 10.1038/embor.2010.92 10.1091/mbc.10.5.1445 10.1103/PhysRevA.44.1182 10.1021/jacs.6b03984 10.1083/jcb.148.5.883 10.1126/science.220.4598.671 10.1126/science.aaf3928 10.1016/j.cell.2005.11.047 10.1103/PhysRevE.51.514 10.1101/cshperspect.a013227 10.1073/pnas.0910074107 10.1021/jp071097f 10.1016/S0955-0674(03)00073-5 10.1016/j.ceb.2009.04.004 10.1038/nature04923 10.1083/jcb.103.4.1557 10.1103/PhysRevLett.109.188101 10.1073/pnas.1015892108 10.1073/pnas.0600997103 10.1083/jcb.201011039 10.1103/PhysRevE.93.052404 10.1083/jcb.200907074 10.1073/pnas.1525430113 10.1089/ars.2007.2000 10.1021/nn5004088 10.1073/pnas.2531786100 10.1080/00018739700101488 10.1093/embo-reports/kvf202 10.1103/PhysRevLett.109.188102 10.1103/PhysRevLett.100.148102 10.7554/eLife.18605 10.1103/PhysRevE.92.042715 10.1088/0022-3727/47/28/282001 10.1038/ncomms12606 10.1016/j.cell.2010.11.007 10.1021/ct700301q 10.1083/jcb.150.3.461 10.1126/science.262.5140.1669 10.1038/nrm2378 10.1126/science.1153634 10.1021/nn303729r 10.1038/nature05840 10.1021/acs.chemrev.5b00241 10.1073/pnas.1419997111 10.1038/nature21387 10.1103/PhysRevLett.88.238101 10.1074/jbc.M800986200 10.1016/j.cis.2014.02.006 10.1083/jcb.200705112 10.1073/pnas.1102358108 10.1016/j.cub.2008.04.031 10.1209/epl/i2004-10527-4 10.1146/annurev-biochem-072711-163501 10.1515/znc-1973-11-1209 10.1038/nrm2119 10.1073/pnas.1606943113 10.1146/annurev.cellbio.042308.113324 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.7b05542 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 9565 |
ExternalDocumentID | 28873296 10_1021_acsnano_7b05542 b061780754 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a333t-9ed563f3fad65c460e100b2159dfed40722d93a68cca2aaa1e3ca7f4f9f612313 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 01:29:04 EDT 2025 Thu Jan 02 23:01:36 EST 2025 Tue Jul 01 01:34:11 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Thu Aug 27 13:41:58 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | internal volume MARTINI molecular dynamics Monte Carlo simulations lipid nanotube nanotube stability endoplasmic reticulum |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-9ed563f3fad65c460e100b2159dfed40722d93a68cca2aaa1e3ca7f4f9f612313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7768-746X |
PMID | 28873296 |
PQID | 1936260525 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1936260525 pubmed_primary_28873296 crossref_citationtrail_10_1021_acsnano_7b05542 crossref_primary_10_1021_acsnano_7b05542 acs_journals_10_1021_acsnano_7b05542 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-26 |
PublicationDateYYYYMMDD | 2017-09-26 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref10/cit10 doi: 10.1038/ncb1682 – ident: ref55/cit55 doi: 10.1051/jp2:1996161 – ident: ref58/cit58 doi: 10.1103/PhysRevE.71.051602 – ident: ref65/cit65 doi: 10.1021/nl203983e – ident: ref64/cit64 doi: 10.1038/ncomms9529 – ident: ref34/cit34 doi: 10.1091/mbc.E09-04-0327 – ident: ref57/cit57 doi: 10.1209/0295-5075/13/7/015 – ident: ref29/cit29 doi: 10.1073/pnas.0406598101 – ident: ref52/cit52 doi: 10.1016/S0092-8674(02)01283-7 – ident: ref39/cit39 doi: 10.1039/C2FD20105D – ident: ref4/cit4 doi: 10.1021/acsnano.5b05377 – ident: ref25/cit25 doi: 10.1073/pnas.1415882112 – ident: ref61/cit61 doi: 10.1103/PhysRevE.80.031901 – ident: ref35/cit35 doi: 10.1038/embor.2010.92 – ident: ref48/cit48 doi: 10.1091/mbc.10.5.1445 – ident: ref14/cit14 doi: 10.1103/PhysRevA.44.1182 – ident: ref5/cit5 doi: 10.1021/jacs.6b03984 – ident: ref51/cit51 doi: 10.1083/jcb.148.5.883 – ident: ref70/cit70 doi: 10.1126/science.220.4598.671 – ident: ref13/cit13 doi: 10.1126/science.aaf3928 – ident: ref22/cit22 doi: 10.1016/j.cell.2005.11.047 – ident: ref16/cit16 doi: 10.1103/PhysRevE.51.514 – ident: ref23/cit23 doi: 10.1101/cshperspect.a013227 – ident: ref12/cit12 doi: 10.1073/pnas.0910074107 – ident: ref60/cit60 doi: 10.1021/jp071097f – ident: ref38/cit38 doi: 10.1016/S0955-0674(03)00073-5 – ident: ref31/cit31 doi: 10.1016/j.ceb.2009.04.004 – ident: ref53/cit53 doi: 10.1038/nature04923 – ident: ref32/cit32 doi: 10.1083/jcb.103.4.1557 – ident: ref47/cit47 doi: 10.1103/PhysRevLett.109.188101 – ident: ref40/cit40 doi: 10.1073/pnas.1015892108 – ident: ref67/cit67 doi: 10.1073/pnas.0600997103 – ident: ref26/cit26 doi: 10.1083/jcb.201011039 – ident: ref44/cit44 doi: 10.1103/PhysRevE.93.052404 – ident: ref66/cit66 doi: 10.1083/jcb.200907074 – ident: ref9/cit9 doi: 10.1073/pnas.1525430113 – ident: ref8/cit8 doi: 10.1089/ars.2007.2000 – ident: ref3/cit3 doi: 10.1021/nn5004088 – ident: ref28/cit28 doi: 10.1073/pnas.2531786100 – ident: ref15/cit15 doi: 10.1080/00018739700101488 – ident: ref18/cit18 doi: 10.1093/embo-reports/kvf202 – ident: ref46/cit46 doi: 10.1103/PhysRevLett.109.188102 – ident: ref36/cit36 doi: 10.1103/PhysRevLett.100.148102 – ident: ref27/cit27 doi: 10.7554/eLife.18605 – ident: ref42/cit42 doi: 10.1103/PhysRevE.92.042715 – ident: ref62/cit62 doi: 10.1088/0022-3727/47/28/282001 – ident: ref68/cit68 doi: 10.1038/ncomms12606 – ident: ref19/cit19 doi: 10.1016/j.cell.2010.11.007 – ident: ref59/cit59 doi: 10.1021/ct700301q – ident: ref30/cit30 doi: 10.1083/jcb.150.3.461 – ident: ref2/cit2 doi: 10.1126/science.262.5140.1669 – ident: ref7/cit7 doi: 10.1038/nrm2378 – ident: ref20/cit20 doi: 10.1126/science.1153634 – ident: ref11/cit11 doi: 10.1021/nn303729r – ident: ref45/cit45 doi: 10.1038/nature05840 – ident: ref69/cit69 doi: 10.1021/acs.chemrev.5b00241 – ident: ref24/cit24 doi: 10.1073/pnas.1419997111 – ident: ref54/cit54 doi: 10.1038/nature21387 – ident: ref63/cit63 doi: 10.1103/PhysRevLett.88.238101 – ident: ref33/cit33 doi: 10.1074/jbc.M800986200 – ident: ref41/cit41 doi: 10.1016/j.cis.2014.02.006 – ident: ref49/cit49 doi: 10.1083/jcb.200705112 – ident: ref37/cit37 doi: 10.1073/pnas.1102358108 – ident: ref50/cit50 doi: 10.1016/j.cub.2008.04.031 – ident: ref56/cit56 doi: 10.1209/epl/i2004-10527-4 – ident: ref6/cit6 doi: 10.1146/annurev-biochem-072711-163501 – ident: ref17/cit17 doi: 10.1515/znc-1973-11-1209 – ident: ref1/cit1 doi: 10.1038/nrm2119 – ident: ref43/cit43 doi: 10.1073/pnas.1606943113 – ident: ref21/cit21 doi: 10.1146/annurev.cellbio.042308.113324 |
SSID | ssj0057876 |
Score | 2.4029844 |
Snippet | Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9558 |
SubjectTerms | Membrane Lipids - chemistry Molecular Dynamics Simulation Monte Carlo Method Nanotechnology - methods Nanotubes - chemistry Nanotubes - ultrastructure Thermodynamics |
Title | Formation and Stability of Lipid Membrane Nanotubes |
URI | http://dx.doi.org/10.1021/acsnano.7b05542 https://www.ncbi.nlm.nih.gov/pubmed/28873296 https://www.proquest.com/docview/1936260525 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQWWDg_SgvGakDS0JjJ048VhVVhQQLVOoW-bkACSLJAL-ecx7lUVWwx5Z9d77vTnf5DqGBiYgQSRR6hMfWC1VEPUlC7QlOQ6sUo0TXXb73bDoLb-fR_Iss-ncFnwTXQhWZyHI_lkOAPvC264QlscuzRuOHzuk6u2NNARkSZIgiFiw-Sxs4GFLFTxhaEVvWGDPZbrqzipqa0LWWPPlVKX31sUzc-Pfxd9BWG2niUWMau2jNZHto8xv_4D6ik-7XRSwyjSHwrFtl33FusRtqrfGdeYF0OjMYvHBeVtIUB2g2uXkcT712ioInKKWlx42OGLXUCs0iFbKhCYZDCUjPtTXa8aMRzalgCegS9CYCQ5WIbWi5ddQsAT1EvSzPzDHCiWaCWq6lI5XRbkw5DbRmUsZMxESLPhrAddP2FRRpXeAmQdrKIG1l0Ed-J_tUtUzkbiDG8-oFV4sFrw0Jx-pPLztlpvBQXPUDhJRXcBhO6-SNRH101Gh5sRkBV0sJZyf_u8Ap2iAO3V1xip2hXvlWmXOITUp5UVvlJx443jc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5VZQAG3o_yDFIHlpTETpx6RBVVgYKEKFK3yI7tBUgQSQf49ZzTpLxUCdYotu5h30N3_g6grUMiRDcMXMIj4wZJSF1JAuUKTgOTJIwSVXb53rLBQ3A1DscN8Oq3MEhEjjvlZRH_E13AP8NvqUizTiQ99IBodBcwFCE23Trv3de21x4_Nq0jY56MwcQMzOfXBtYbJfl3bzQnxCxdTX8V7mZElh0mj51JITvJ-w_8xv9wsQYrVdzpnE8Pyjo0dLoBy1_QCDeB9uuHjI5IlYNhaNk4--ZkxrEjrpVzo58xuU61gzY5KyZS51vw0L8Y9QZuNVPBFZTSwuVahYwaaoRiYRIwT_ueJ9Hvc2W0smhpRHEqWBc1i1oUvqaJiExguLFALT7dhmaapXoXnK5ighqupIWYUXZoOfWVYlJGTEREiRa0kd24uhN5XJa7iR9XMogrGbSgU6sgTipccjse42n-gtPZgpcpJMf8X09qncZ4bWwtBIWUTZAYTstUjoQt2Jkqe7YZQcNLCWd7f2PgGBYHo5thPLy8vd6HJWL9vi1bsQNoFq8TfYhRSyGPyoP6AWT05pg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA6iIHpwX8a1why8dGyTNp0ch9EyboOgA3MrSZNc1Haw7UF_vS_dcGFAr6UJeUvewsv7HkJd5WPO-75nYxZo24t9YgvsSZsz4uk4pgTL8pXvmI4m3s3Un9ZNYaYXBg6RwU5ZWcQ3t3omdY0w4F7A94QnaS8QDnhBMLxLpmhnUq7B8LGxv0YFaVVLhlwZAooW0OfXBsYjxdl3jzQnzCzdTbiOJu1By1cmz70iF7344weG438p2UBrdfxpDSqF2UQLKtlCq19QCbcRCZuGRosn0oJwtHxA-26l2jKjrqV1r14hyU6UBbY5zQuhsh00Ca-ehiO7nq1gc0JIbjMlfUo00VxSP_aoo1zHEeD_mdRKGtQ0LBnhtA8SBmlyV5GYB9rTTBvAFpfsosUkTdQ-svqScqKZFAZqRprh5cSVkgoRUB5gyTuoC-RG9d3IorLsjd2o5kFU86CDeo0YorjGJzdjMl7mLzhvF8wqaI75v541co3g-piaCDApLeAwjJQpHfY7aK8SeLsZBgNMMKMHfyPgFC0_XIbR3fX49hCtYOP-TfWKHqHF_K1QxxC85OKk1NVP9sLpGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+and+Stability+of+Lipid+Membrane+Nanotubes&rft.jtitle=ACS+nano&rft.au=Bahrami%2C+Amir+Houshang&rft.au=Hummer%2C+Gerhard&rft.date=2017-09-26&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=11&rft.issue=9&rft.spage=9558&rft.epage=9565&rft_id=info:doi/10.1021%2Facsnano.7b05542&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_7b05542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |