Formation and Stability of Lipid Membrane Nanotubes

Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how t...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 11; no. 9; pp. 9558 - 9565
Main Authors Bahrami, Amir Houshang, Hummer, Gerhard
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid–elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures.
AbstractList Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures.
Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures.Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane elastic theory, the tubular endoplasmic reticulum (ER), with its high area-to-volume ratio, appears to be particularly unstable. We explore how tubular membrane structures can nevertheless be induced and why they persist. In Monte Carlo simulations of a fluid-elastic membrane model subject to thermal fluctuations and without constraints on symmetry, we find that a steady increase in the area-to-volume ratio readily induces tubular structures. In simulations mimicking the ER wrapped around the cell nucleus, tubules emerge naturally as the membrane area increases. Once formed, a high energy barrier separates tubules from the thermodynamically favored sheet-like membrane structures. Remarkably, this barrier persists even at large area-to-volume ratios, protecting tubules against shape transformations despite enormous driving forces toward sheet-like structures. Molecular dynamics simulations of a molecular membrane model confirm the metastability of tubular structures. Volume reduction by osmotic regulation and membrane area growth by lipid production and by fusion of small vesicles emerge as powerful factors in the induction and stabilization of tubular membrane structures.
Author Bahrami, Amir Houshang
Hummer, Gerhard
AuthorAffiliation Institute for Biophysics
Goethe University Frankfurt
Department of Theoretical Biophysics
Max Planck Institute of Biophysics
AuthorAffiliation_xml – name: Institute for Biophysics
– name: Department of Theoretical Biophysics
– name: Goethe University Frankfurt
– name: Max Planck Institute of Biophysics
Author_xml – sequence: 1
  givenname: Amir Houshang
  surname: Bahrami
  fullname: Bahrami, Amir Houshang
  organization: Max Planck Institute of Biophysics
– sequence: 2
  givenname: Gerhard
  orcidid: 0000-0001-7768-746X
  surname: Hummer
  fullname: Hummer, Gerhard
  email: gerhard.hummer@biophys.mpg.de
  organization: Goethe University Frankfurt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28873296$$D View this record in MEDLINE/PubMed
BookMark eNp1kL1PwzAQxS1URD9gZkMZkVBaf8ROMqKKAlKBAZDYrEtiS64Su9jJ0P-elKYMSJ3upPu9u3tvikbWWYXQNcFzgilZQBksWDdPC8x5Qs_QhORMxDgTX6O_npMxmoawwZinWSou0JhmWcpoLiaIrZxvoDXORmCr6L2FwtSm3UVOR2uzNVX0oprCg1XRa3-o7QoVLtG5hjqoq6HO0Ofq4WP5FK_fHp-X9-sYGGNtnKuKC6aZhkrwMhFYEYwLSnheaVUlOKW0yhmIrCyBAgBRrIRUJzrXglBG2AzdHvZuvfvuVGhlY0Kp6rr_xnVB7u1RgTnlPXozoF3RqEpuvWnA7-TRaA_wA1B6F4JXWpam_fXdejC1JFjuA5VDoHIItNct_umOq08r7g6KfiA3rvO2z-gk_QNmo4fN
CitedBy_id crossref_primary_10_1016_j_jmps_2020_103867
crossref_primary_10_1002_ange_201807372
crossref_primary_10_1063_5_0061623
crossref_primary_10_1039_D2CS00985D
crossref_primary_10_1002_anie_201807372
crossref_primary_10_1016_j_bpr_2022_100062
crossref_primary_10_1021_acsnano_8b00640
crossref_primary_10_1103_PhysRevLett_130_148401
crossref_primary_10_1016_j_bpj_2022_11_028
crossref_primary_10_1039_C9NR05885K
crossref_primary_10_1039_C9SM00854C
crossref_primary_10_1098_rspa_2021_0246
crossref_primary_10_1063_1_5009107
crossref_primary_10_1039_C9SM00399A
crossref_primary_10_1088_1361_648X_aac702
crossref_primary_10_3390_biom8040120
crossref_primary_10_1371_journal_pcbi_1005817
crossref_primary_10_1038_s41598_020_59221_x
crossref_primary_10_1038_s41467_020_14696_0
crossref_primary_10_1126_science_abq5209
crossref_primary_10_1063_5_0101118
crossref_primary_10_1039_C8SM01711E
crossref_primary_10_1073_pnas_2321579121
crossref_primary_10_1039_D4NR04674A
crossref_primary_10_1016_j_colsurfb_2022_112362
crossref_primary_10_1016_j_colsurfb_2021_112160
crossref_primary_10_1063_5_0238898
crossref_primary_10_1016_j_bpj_2021_04_029
crossref_primary_10_1039_D2RA05855C
crossref_primary_10_1088_1674_1056_ab892b
crossref_primary_10_1063_5_0208749
Cites_doi 10.1038/ncb1682
10.1051/jp2:1996161
10.1103/PhysRevE.71.051602
10.1021/nl203983e
10.1038/ncomms9529
10.1091/mbc.E09-04-0327
10.1209/0295-5075/13/7/015
10.1073/pnas.0406598101
10.1016/S0092-8674(02)01283-7
10.1039/C2FD20105D
10.1021/acsnano.5b05377
10.1073/pnas.1415882112
10.1103/PhysRevE.80.031901
10.1038/embor.2010.92
10.1091/mbc.10.5.1445
10.1103/PhysRevA.44.1182
10.1021/jacs.6b03984
10.1083/jcb.148.5.883
10.1126/science.220.4598.671
10.1126/science.aaf3928
10.1016/j.cell.2005.11.047
10.1103/PhysRevE.51.514
10.1101/cshperspect.a013227
10.1073/pnas.0910074107
10.1021/jp071097f
10.1016/S0955-0674(03)00073-5
10.1016/j.ceb.2009.04.004
10.1038/nature04923
10.1083/jcb.103.4.1557
10.1103/PhysRevLett.109.188101
10.1073/pnas.1015892108
10.1073/pnas.0600997103
10.1083/jcb.201011039
10.1103/PhysRevE.93.052404
10.1083/jcb.200907074
10.1073/pnas.1525430113
10.1089/ars.2007.2000
10.1021/nn5004088
10.1073/pnas.2531786100
10.1080/00018739700101488
10.1093/embo-reports/kvf202
10.1103/PhysRevLett.109.188102
10.1103/PhysRevLett.100.148102
10.7554/eLife.18605
10.1103/PhysRevE.92.042715
10.1088/0022-3727/47/28/282001
10.1038/ncomms12606
10.1016/j.cell.2010.11.007
10.1021/ct700301q
10.1083/jcb.150.3.461
10.1126/science.262.5140.1669
10.1038/nrm2378
10.1126/science.1153634
10.1021/nn303729r
10.1038/nature05840
10.1021/acs.chemrev.5b00241
10.1073/pnas.1419997111
10.1038/nature21387
10.1103/PhysRevLett.88.238101
10.1074/jbc.M800986200
10.1016/j.cis.2014.02.006
10.1083/jcb.200705112
10.1073/pnas.1102358108
10.1016/j.cub.2008.04.031
10.1209/epl/i2004-10527-4
10.1146/annurev-biochem-072711-163501
10.1515/znc-1973-11-1209
10.1038/nrm2119
10.1073/pnas.1606943113
10.1146/annurev.cellbio.042308.113324
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.7b05542
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 9565
ExternalDocumentID 28873296
10_1021_acsnano_7b05542
b061780754
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a333t-9ed563f3fad65c460e100b2159dfed40722d93a68cca2aaa1e3ca7f4f9f612313
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 01:29:04 EDT 2025
Thu Jan 02 23:01:36 EST 2025
Tue Jul 01 01:34:11 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Thu Aug 27 13:41:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords internal volume
MARTINI molecular dynamics
Monte Carlo simulations
lipid nanotube
nanotube stability
endoplasmic reticulum
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-9ed563f3fad65c460e100b2159dfed40722d93a68cca2aaa1e3ca7f4f9f612313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7768-746X
PMID 28873296
PQID 1936260525
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1936260525
pubmed_primary_28873296
crossref_citationtrail_10_1021_acsnano_7b05542
crossref_primary_10_1021_acsnano_7b05542
acs_journals_10_1021_acsnano_7b05542
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-26
PublicationDateYYYYMMDD 2017-09-26
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1038/ncb1682
– ident: ref55/cit55
  doi: 10.1051/jp2:1996161
– ident: ref58/cit58
  doi: 10.1103/PhysRevE.71.051602
– ident: ref65/cit65
  doi: 10.1021/nl203983e
– ident: ref64/cit64
  doi: 10.1038/ncomms9529
– ident: ref34/cit34
  doi: 10.1091/mbc.E09-04-0327
– ident: ref57/cit57
  doi: 10.1209/0295-5075/13/7/015
– ident: ref29/cit29
  doi: 10.1073/pnas.0406598101
– ident: ref52/cit52
  doi: 10.1016/S0092-8674(02)01283-7
– ident: ref39/cit39
  doi: 10.1039/C2FD20105D
– ident: ref4/cit4
  doi: 10.1021/acsnano.5b05377
– ident: ref25/cit25
  doi: 10.1073/pnas.1415882112
– ident: ref61/cit61
  doi: 10.1103/PhysRevE.80.031901
– ident: ref35/cit35
  doi: 10.1038/embor.2010.92
– ident: ref48/cit48
  doi: 10.1091/mbc.10.5.1445
– ident: ref14/cit14
  doi: 10.1103/PhysRevA.44.1182
– ident: ref5/cit5
  doi: 10.1021/jacs.6b03984
– ident: ref51/cit51
  doi: 10.1083/jcb.148.5.883
– ident: ref70/cit70
  doi: 10.1126/science.220.4598.671
– ident: ref13/cit13
  doi: 10.1126/science.aaf3928
– ident: ref22/cit22
  doi: 10.1016/j.cell.2005.11.047
– ident: ref16/cit16
  doi: 10.1103/PhysRevE.51.514
– ident: ref23/cit23
  doi: 10.1101/cshperspect.a013227
– ident: ref12/cit12
  doi: 10.1073/pnas.0910074107
– ident: ref60/cit60
  doi: 10.1021/jp071097f
– ident: ref38/cit38
  doi: 10.1016/S0955-0674(03)00073-5
– ident: ref31/cit31
  doi: 10.1016/j.ceb.2009.04.004
– ident: ref53/cit53
  doi: 10.1038/nature04923
– ident: ref32/cit32
  doi: 10.1083/jcb.103.4.1557
– ident: ref47/cit47
  doi: 10.1103/PhysRevLett.109.188101
– ident: ref40/cit40
  doi: 10.1073/pnas.1015892108
– ident: ref67/cit67
  doi: 10.1073/pnas.0600997103
– ident: ref26/cit26
  doi: 10.1083/jcb.201011039
– ident: ref44/cit44
  doi: 10.1103/PhysRevE.93.052404
– ident: ref66/cit66
  doi: 10.1083/jcb.200907074
– ident: ref9/cit9
  doi: 10.1073/pnas.1525430113
– ident: ref8/cit8
  doi: 10.1089/ars.2007.2000
– ident: ref3/cit3
  doi: 10.1021/nn5004088
– ident: ref28/cit28
  doi: 10.1073/pnas.2531786100
– ident: ref15/cit15
  doi: 10.1080/00018739700101488
– ident: ref18/cit18
  doi: 10.1093/embo-reports/kvf202
– ident: ref46/cit46
  doi: 10.1103/PhysRevLett.109.188102
– ident: ref36/cit36
  doi: 10.1103/PhysRevLett.100.148102
– ident: ref27/cit27
  doi: 10.7554/eLife.18605
– ident: ref42/cit42
  doi: 10.1103/PhysRevE.92.042715
– ident: ref62/cit62
  doi: 10.1088/0022-3727/47/28/282001
– ident: ref68/cit68
  doi: 10.1038/ncomms12606
– ident: ref19/cit19
  doi: 10.1016/j.cell.2010.11.007
– ident: ref59/cit59
  doi: 10.1021/ct700301q
– ident: ref30/cit30
  doi: 10.1083/jcb.150.3.461
– ident: ref2/cit2
  doi: 10.1126/science.262.5140.1669
– ident: ref7/cit7
  doi: 10.1038/nrm2378
– ident: ref20/cit20
  doi: 10.1126/science.1153634
– ident: ref11/cit11
  doi: 10.1021/nn303729r
– ident: ref45/cit45
  doi: 10.1038/nature05840
– ident: ref69/cit69
  doi: 10.1021/acs.chemrev.5b00241
– ident: ref24/cit24
  doi: 10.1073/pnas.1419997111
– ident: ref54/cit54
  doi: 10.1038/nature21387
– ident: ref63/cit63
  doi: 10.1103/PhysRevLett.88.238101
– ident: ref33/cit33
  doi: 10.1074/jbc.M800986200
– ident: ref41/cit41
  doi: 10.1016/j.cis.2014.02.006
– ident: ref49/cit49
  doi: 10.1083/jcb.200705112
– ident: ref37/cit37
  doi: 10.1073/pnas.1102358108
– ident: ref50/cit50
  doi: 10.1016/j.cub.2008.04.031
– ident: ref56/cit56
  doi: 10.1209/epl/i2004-10527-4
– ident: ref6/cit6
  doi: 10.1146/annurev-biochem-072711-163501
– ident: ref17/cit17
  doi: 10.1515/znc-1973-11-1209
– ident: ref1/cit1
  doi: 10.1038/nrm2119
– ident: ref43/cit43
  doi: 10.1073/pnas.1606943113
– ident: ref21/cit21
  doi: 10.1146/annurev.cellbio.042308.113324
SSID ssj0057876
Score 2.4029844
Snippet Lipid membrane nanotubes are abundant in living cells, even though tubules are energetically less stable than sheet-like structures. According to membrane...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9558
SubjectTerms Membrane Lipids - chemistry
Molecular Dynamics Simulation
Monte Carlo Method
Nanotechnology - methods
Nanotubes - chemistry
Nanotubes - ultrastructure
Thermodynamics
Title Formation and Stability of Lipid Membrane Nanotubes
URI http://dx.doi.org/10.1021/acsnano.7b05542
https://www.ncbi.nlm.nih.gov/pubmed/28873296
https://www.proquest.com/docview/1936260525
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQWWDg_SgvGakDS0JjJ048VhVVhQQLVOoW-bkACSLJAL-ecx7lUVWwx5Z9d77vTnf5DqGBiYgQSRR6hMfWC1VEPUlC7QlOQ6sUo0TXXb73bDoLb-fR_Iss-ncFnwTXQhWZyHI_lkOAPvC264QlscuzRuOHzuk6u2NNARkSZIgiFiw-Sxs4GFLFTxhaEVvWGDPZbrqzipqa0LWWPPlVKX31sUzc-Pfxd9BWG2niUWMau2jNZHto8xv_4D6ik-7XRSwyjSHwrFtl33FusRtqrfGdeYF0OjMYvHBeVtIUB2g2uXkcT712ioInKKWlx42OGLXUCs0iFbKhCYZDCUjPtTXa8aMRzalgCegS9CYCQ5WIbWi5ddQsAT1EvSzPzDHCiWaCWq6lI5XRbkw5DbRmUsZMxESLPhrAddP2FRRpXeAmQdrKIG1l0Ed-J_tUtUzkbiDG8-oFV4sFrw0Jx-pPLztlpvBQXPUDhJRXcBhO6-SNRH101Gh5sRkBV0sJZyf_u8Ap2iAO3V1xip2hXvlWmXOITUp5UVvlJx443jc
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5VZQAG3o_yDFIHlpTETpx6RBVVgYKEKFK3yI7tBUgQSQf49ZzTpLxUCdYotu5h30N3_g6grUMiRDcMXMIj4wZJSF1JAuUKTgOTJIwSVXb53rLBQ3A1DscN8Oq3MEhEjjvlZRH_E13AP8NvqUizTiQ99IBodBcwFCE23Trv3de21x4_Nq0jY56MwcQMzOfXBtYbJfl3bzQnxCxdTX8V7mZElh0mj51JITvJ-w_8xv9wsQYrVdzpnE8Pyjo0dLoBy1_QCDeB9uuHjI5IlYNhaNk4--ZkxrEjrpVzo58xuU61gzY5KyZS51vw0L8Y9QZuNVPBFZTSwuVahYwaaoRiYRIwT_ueJ9Hvc2W0smhpRHEqWBc1i1oUvqaJiExguLFALT7dhmaapXoXnK5ighqupIWYUXZoOfWVYlJGTEREiRa0kd24uhN5XJa7iR9XMogrGbSgU6sgTipccjse42n-gtPZgpcpJMf8X09qncZ4bWwtBIWUTZAYTstUjoQt2Jkqe7YZQcNLCWd7f2PgGBYHo5thPLy8vd6HJWL9vi1bsQNoFq8TfYhRSyGPyoP6AWT05pg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA6iIHpwX8a1why8dGyTNp0ch9EyboOgA3MrSZNc1Haw7UF_vS_dcGFAr6UJeUvewsv7HkJd5WPO-75nYxZo24t9YgvsSZsz4uk4pgTL8pXvmI4m3s3Un9ZNYaYXBg6RwU5ZWcQ3t3omdY0w4F7A94QnaS8QDnhBMLxLpmhnUq7B8LGxv0YFaVVLhlwZAooW0OfXBsYjxdl3jzQnzCzdTbiOJu1By1cmz70iF7344weG438p2UBrdfxpDSqF2UQLKtlCq19QCbcRCZuGRosn0oJwtHxA-26l2jKjrqV1r14hyU6UBbY5zQuhsh00Ca-ehiO7nq1gc0JIbjMlfUo00VxSP_aoo1zHEeD_mdRKGtQ0LBnhtA8SBmlyV5GYB9rTTBvAFpfsosUkTdQ-svqScqKZFAZqRprh5cSVkgoRUB5gyTuoC-RG9d3IorLsjd2o5kFU86CDeo0YorjGJzdjMl7mLzhvF8wqaI75v541co3g-piaCDApLeAwjJQpHfY7aK8SeLsZBgNMMKMHfyPgFC0_XIbR3fX49hCtYOP-TfWKHqHF_K1QxxC85OKk1NVP9sLpGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+and+Stability+of+Lipid+Membrane+Nanotubes&rft.jtitle=ACS+nano&rft.au=Bahrami%2C+Amir+Houshang&rft.au=Hummer%2C+Gerhard&rft.date=2017-09-26&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=11&rft.issue=9&rft.spage=9558&rft.epage=9565&rft_id=info:doi/10.1021%2Facsnano.7b05542&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_7b05542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon