In-situ analysis of sphalerite trace elements and sulfur isotope of the Zhaxikang Pb-Zn-Sb-Ag deposit in southern Tibet: Implications for source and mineralization process
[Display omitted] •A simple (Fe, Mn) or coupled (Cu, Ag coupled with In, Sb, Ga, Ge, Sn) substitution for Zn was observed in sphalerite.•The Zhaxikang is a magmatism-related medium to low-temperature hydrothermal vein deposit.•The sulfur in the Zhaxikang deposit is predominantly sourced from Jurassi...
Saved in:
Published in | Ore geology reviews Vol. 167; p. 105976 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A simple (Fe, Mn) or coupled (Cu, Ag coupled with In, Sb, Ga, Ge, Sn) substitution for Zn was observed in sphalerite.•The Zhaxikang is a magmatism-related medium to low-temperature hydrothermal vein deposit.•The sulfur in the Zhaxikang deposit is predominantly sourced from Jurassic marine sulfate or evaporite rocks.•The metals for the Zhaxikang deposit primarily originated from the basement metamorphic rocks (gneiss) of the Greater Himalayan Crystalline complex.
The metallogenesis of collisional orogen has been a significant research topic for comprehending the linkage between magmatism, metamorphism, hydrothermalism and ore deposition. In Southern Tibet, the Zhaxikang deposit is a super-large Pb-Zn-Sb-Ag polymetallic deposit with metal reserves of 2.367 Mt Zn + Pb (average grade of 6.43 %), 0.2552 Mt Sb (average grade of 1.14 %), and 2960.6 t Ag (average grade of 101.64 g/t), constituting the largest deposit within North Himalayan Metallogenic Belt. However, the metal sources of the ore-forming material and mineralization process in this deposit remain a subject of controversy due to previous studies primarily relying on a bulk analysis of sulfides, which record the mixed results of multistage mineralization and intergrown minerals of different stages. The objective of this study is to constrain the sources and mineralization process of the Zhaxikang deposit through in-situ analyses of trace elements and sulfur isotopes in sphalerite. Based on ore textures and mineral paragenesis, four mineralization stages and three generations of sphalerite deposited respectively in stage 1 (Sp1), stage 2 (Sp2), and stage 4 (Sp3), were identified. The Pb and Zn mineralization mainly occurred in stage 2, while Sb and Ag were dominantly in stage 4. The trace elements characteristics (Cd, Fe, In, Ga, Ag, Cu, Co, and Mn) observed in sphalerite indicate that the Zhaxikang deposit could be a hydrothermal vein-type deposit associated with magmatism. The δ34S values of sulfides (7.7–18.4 ‰) in the deposit generally exhibit a slight elevation compared to those (4.1–12.9 ‰) of the Jurassic Ridang Formation slate, indicating that the sulfur of the deposit primarily originated from seawater sulfate in the slate through thermochemical sulfate reduction, although a small amount of contribution from mafic rocks also existed in stage 4. The Pb isotopes in stage 2 range from 19.662 to 19.705, 15.852 to 15.865, and 40.214 to 40.283 for the ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb, respectively, indicating that the metals primarily from the Greater Himalayan Crystalline complex (GHC) with a minor contribution from host rocks. While, the Pb isotopes in stage 4 range from 19.687 to 19.849 for 206Pb/204Pb, from 15.86022 to 15.885 for 207Pb/204Pb, and from 40.261 to 40.414 for 208Pb/204Pb, respectively, indicating that the metals originated from sulfides in the earlier stage as well as the more radiogenic GHC. |
---|---|
AbstractList | [Display omitted]
•A simple (Fe, Mn) or coupled (Cu, Ag coupled with In, Sb, Ga, Ge, Sn) substitution for Zn was observed in sphalerite.•The Zhaxikang is a magmatism-related medium to low-temperature hydrothermal vein deposit.•The sulfur in the Zhaxikang deposit is predominantly sourced from Jurassic marine sulfate or evaporite rocks.•The metals for the Zhaxikang deposit primarily originated from the basement metamorphic rocks (gneiss) of the Greater Himalayan Crystalline complex.
The metallogenesis of collisional orogen has been a significant research topic for comprehending the linkage between magmatism, metamorphism, hydrothermalism and ore deposition. In Southern Tibet, the Zhaxikang deposit is a super-large Pb-Zn-Sb-Ag polymetallic deposit with metal reserves of 2.367 Mt Zn + Pb (average grade of 6.43 %), 0.2552 Mt Sb (average grade of 1.14 %), and 2960.6 t Ag (average grade of 101.64 g/t), constituting the largest deposit within North Himalayan Metallogenic Belt. However, the metal sources of the ore-forming material and mineralization process in this deposit remain a subject of controversy due to previous studies primarily relying on a bulk analysis of sulfides, which record the mixed results of multistage mineralization and intergrown minerals of different stages. The objective of this study is to constrain the sources and mineralization process of the Zhaxikang deposit through in-situ analyses of trace elements and sulfur isotopes in sphalerite. Based on ore textures and mineral paragenesis, four mineralization stages and three generations of sphalerite deposited respectively in stage 1 (Sp1), stage 2 (Sp2), and stage 4 (Sp3), were identified. The Pb and Zn mineralization mainly occurred in stage 2, while Sb and Ag were dominantly in stage 4. The trace elements characteristics (Cd, Fe, In, Ga, Ag, Cu, Co, and Mn) observed in sphalerite indicate that the Zhaxikang deposit could be a hydrothermal vein-type deposit associated with magmatism. The δ34S values of sulfides (7.7–18.4 ‰) in the deposit generally exhibit a slight elevation compared to those (4.1–12.9 ‰) of the Jurassic Ridang Formation slate, indicating that the sulfur of the deposit primarily originated from seawater sulfate in the slate through thermochemical sulfate reduction, although a small amount of contribution from mafic rocks also existed in stage 4. The Pb isotopes in stage 2 range from 19.662 to 19.705, 15.852 to 15.865, and 40.214 to 40.283 for the ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb, respectively, indicating that the metals primarily from the Greater Himalayan Crystalline complex (GHC) with a minor contribution from host rocks. While, the Pb isotopes in stage 4 range from 19.687 to 19.849 for 206Pb/204Pb, from 15.86022 to 15.885 for 207Pb/204Pb, and from 40.261 to 40.414 for 208Pb/204Pb, respectively, indicating that the metals originated from sulfides in the earlier stage as well as the more radiogenic GHC. |
ArticleNumber | 105976 |
Author | Lan, Qing Hu, Ruizhong Bi, Xianwu Fu, Shanling Zhang, Zhi Xiao, Jiafei |
Author_xml | – sequence: 1 givenname: Qing surname: Lan fullname: Lan, Qing email: lanqing@mail.gyig.ac.cn organization: State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China – sequence: 2 givenname: Ruizhong surname: Hu fullname: Hu, Ruizhong organization: State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China – sequence: 3 givenname: Xianwu surname: Bi fullname: Bi, Xianwu organization: State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China – sequence: 4 givenname: Jiafei surname: Xiao fullname: Xiao, Jiafei organization: State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China – sequence: 5 givenname: Zhi surname: Zhang fullname: Zhang, Zhi organization: Chengdu Center, China Geological Survey, Sichuan 610081, China – sequence: 6 givenname: Shanling surname: Fu fullname: Fu, Shanling organization: State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China |
BookMark | eNqFUMlOwzAQ9aFIlOUb8A-k2HUWh1uFWCohgURPXCzHmbQuqR15XAT8Ej-JQxFXLjPSvG30TsjEeQeEXHA244yXl9uZD7CGNN5mczbP07Woq3JCpgmtMy5KeUxOELeMsZIxPiVfS5ehjXuqne4_0CL1HcVho3sINgKNQRug0MMOXMTEainu-24fqEUf_QAjP26Avmz0u33Vbk2fmuzFZc9NtljTFgaf7Kl1FP0-8YKjK9tAvKLL3dBbo6P1Dmnnw0gIKWuM2FkHQff28wemQ_AGEM_IUad7hPPffUpWtzer6_vs4fFueb14yLQQImZ1XdWSNU1dzGspczBasrzo6sJIY2RpukLwIpeyKkUu2orrHJjWZS5bnkuhxSmpDrYmeMQAnRqC3enwoThTY81qq_5qVmPN6lBzUi4OSkjfvVkICo0FZ6C1AUxUrbf_enwD38-STQ |
Cites_doi | 10.1126/science.1155371 10.1130/G47001.1 10.1016/j.gca.2013.10.052 10.1007/s00531-016-1368-2 10.1016/j.gca.2023.02.011 10.1016/S0012-821X(01)00315-6 10.3749/canmin.1500104 10.1007/BF00211893 10.1180/mgm.2021.29 10.1007/s11004-012-9418-1 10.1007/s00126-017-0752-6 10.1007/s00126-020-01000-9 10.2113/gselements.13.2.97 10.2138/am.2012.4042 10.1016/j.oregeorev.2011.03.001 10.1130/G30001A.1 10.1130/G30723.1 10.1016/j.oregeorev.2015.12.017 10.1016/S0012-821X(02)00482-X 10.2113/gsecongeo.90.5.1167 10.1016/j.oregeorev.2016.08.007 10.1016/j.oregeorev.2019.04.006 10.2113/gsecongeo.99.7.1509 10.1016/j.chemgeo.2013.03.011 10.1016/j.jseaes.2019.02.017 10.2113/gsecongeo.103.4.783 10.1144/gsjgs.149.5.0753 10.1016/j.oregeorev.2009.03.005 10.1016/j.oregeorev.2016.03.019 10.1016/0016-7037(82)90201-0 10.1007/s00126-018-0850-0 10.1007/BF00376888 10.1016/0040-1951(81)90213-4 10.1007/BF02872218 10.1007/s00126-022-01111-5 10.2113/gsecongeo.105.3.593 10.1111/1755-6724.12369_27 10.5194/bg-12-2131-2015 10.1016/S0012-821X(99)00277-0 10.2113/econgeo.110.8.2087 10.1016/j.epsl.2004.09.031 10.1016/j.gr.2011.11.004 10.2113/gsecongeo.95.1.1 10.1016/j.chemgeo.2003.11.013 10.1016/j.earscirev.2005.05.004 10.1016/j.oregeorev.2017.10.010 10.1016/j.gca.2009.05.045 10.1016/0012-821X(85)90023-8 10.1029/1999TC001147 10.1016/j.chemgeo.2012.01.021 10.1016/j.aca.2016.10.040 10.1016/j.oregeorev.2023.105503 10.1144/GSL.SP.1999.164.01.08 10.1016/j.oregeorev.2009.05.001 10.1146/annurev.earth.28.1.211 10.1016/j.gca.2011.05.021 10.1007/s00126-017-0760-6 10.1007/s00126-015-0627-7 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.oregeorev.2024.105976 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
ExternalDocumentID | 10_1016_j_oregeorev_2024_105976 S0169136824001094 |
GroupedDBID | --K --M .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABJNI ABMAC ABQEM ABQYD ABXDB ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADVLN AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a333t-997980bb9529884eca8045f95c8cc86cf531548876343d71a4e0aa648d1483a3 |
IEDL.DBID | .~1 |
ISSN | 0169-1368 |
IngestDate | Tue Jul 01 01:26:46 EDT 2025 Sat Oct 05 15:36:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | In-situ analysis Lead isotope Zhaxikang deposit Tibet Trace elements of sphalerite Sulfur isotope |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-997980bb9529884eca8045f95c8cc86cf531548876343d71a4e0aa648d1483a3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0169136824001094 |
ParticipantIDs | crossref_primary_10_1016_j_oregeorev_2024_105976 elsevier_sciencedirect_doi_10_1016_j_oregeorev_2024_105976 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Ore geology reviews |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yin (b0360) 2006; 76 Zhang, Zheng, Zhang, Gao, Ye, Zhang, Liu, Li (b0390) 2010; 35 Zhu, Gu, Li, Zhang, Cheng, Bian (b0430) 2012; 26 Fontboté, Kouzmanov, Chiaradia, Pokrovski (b0100) 2017; 13 Kelley, Leach, Johnson, Clark, Fayek, Slack, Anderson, Ayuso, Ridley (b0190) 2004; 99 Canfield, Farquhar, Zerkle (b0030) 2010; 38 Zhou, Li, Qing, Lai, Li, Liao, Wu, Wang, Dong, Tian (b0415) 2018; 53 Yin, Harrison (b0365) 2000; 28 Yang, Hou, Gao, Wang, Li, Meng, Qu (b0345) 2006; 80 Danyushevsky, Robinson, Gilbert, Norman, Large, McGoldrick, Shelley (b0080) 2011; 11 Graeser (b0140) 1969; 24 Chen, Ye, Huang, Hu, Wang (b0040) 2021; 85 Searle, Waters, Rex, Wilson (b0285) 1992; 149 Zhou, J., 2018. Study on the Mineralization of Zhaxikang lead-zinc-antimony Polymetallic Deposit in Longzi County, Tibet. Dissertation. China University of Geosciences (in Chinese with English abstract). Belissont, Boiron, Luais, Cathelineau (b0020) 2014; 126 Millet, Baker, Payne (b0260) 2012; 304–305 Sun, Zheng, Yu (b0300) 2014; 88 Leach, Sangster, Kelley, Large, Garven, Allen, Gutzmer, Walters (b0200) 2005; 100 Ciobanu, Cook, Kelson, Guerin, Kalleske, Danyushevsky (b0050) 2013; 347 Frenzel, Hirsch, Gutzmer (b0110) 2016; 76 Royden, Burchfiel, van der Hilst (b0275) 2008; 321 Ye, Cook, Ciobanu, Yuping, Qian, Tiegeng, Wei, Yulong, Danyushevskiy (b0355) 2011; 39 Li, Wang, Chen, Yao, Peng (b0220) 2002; 29 Cook, Ciobanu, Pring, Skinner, Shimizu, Danyushevsky, Saini-Eidukat, Melcher (b0055) 2009; 73 Zheng, Sun, Tian, Zheng, Yu, Yang, Zhou, Geng (b0410) 2014; 38 Zheng, Chen, Zhao (b0400) 2003 Wang, Yin, Harrison, Grove, Zhang, Xie (b0330) 2001; 199 Frenzel, Voudouris, Cook, Ciobanu, Gilbert, Wade (b0115) 2021 Liu, Einsele (b0245) 1994; 83 Pfaff, Koenig, Wenzel, Ridley, Hildebrandt, Leach (b0270) 2011; 286 Cugerone, Cenki-Tok, Muñoz, Kouzmanov, Oliot, Motto-Ros (b0075) 2021; 56 Fu, Li, Wang, Huang, Zhang, Dong, Liang (b0120) 2017; 106 Zhu, Wang, Zhao, Chung, Cawood, Niu, Liu, Wu, Mo (b0435) 2015; 5 Chen, Yuan, Chen, Bao, Zhu, Liang (b0045) 2019; 176 Huston, Sie, Suter, Cooke, Both (b0180) 1995; 90 Lee, Hacker, Dinklage, Wang, Gans, Calvert, Wan, Chen, Blythe, McClelland (b0210) 2000; 19 Grujic, Hollister, Parrish (b0145) 2002; 198 Hou, Qu, Yang, Meng, Li, Yang, Zheng, Zheng, Nie, Gao, Jiang, Li (b0175) 2006; 25 Gariépy, Allègre, Rong Hua (b0125) 1985; 74 Bonnet, Mosser-Ruck, Caumon, Rouer, Andre-Mayer, Cauzid (b0025) 2016; 54 Kampschulte, Strauss (b0185) 2004; 204 Zhang (b0375) 1987; 6 Meng, Yang, Qi, Hou, Li (b0255) 2008; 24 Lin, Tang, Zheng, Leng, Yang, Tang, Hang, Wang, Tan (b0240) 2014; 60 Cook, Ciobanu, Brugger, Etschmann, Howard, Jonge (b0060) 2012; 97 Wang (b0320) 2018 Lan, Zhang, Cao, Li, Cao, Zou (b0195) 2023; 158 Zhang, Harris, Parrish, Kelley, Zhang, Rogers, Argles, King (b0380) 2004; 228 EU Commissim, 2014. Critical raw materials for the EU. Report of the Ad hoc Working Group on Defining Critical Raw Materials. Brussels. Gigon, Deloule, Mercadier, Huston, Richard, Annesley, Wygralak, Skirrow, Mernagh, Masterman (b0135) 2020; 48 Ohmoto, Rye (b0265) 1979 Leach, Bradley, Huston, Pisarevsky, Taylor, Gardoll (b0205) 2010; 105 Cook, Ciobanu, George, Zhu, Wade, Ehrig (b0065) 2016; 6 Hou, Pan, Wang, Mo, Tian, Sun, Ding, Wang, Gao, Xie, Zeng, Qin, Xu, Qu, Yang, Yang, Fei, Meng, Li (b0170) 2006; 25 Fougerouse, Cugerone, Reddy, Luo, Motto-Ros (b0105) 2023; 346 Dehnavi, McFarlane, Lentz, Walker (b0085) 2018; 92 Bauer, Burisch, Ostendorf, Krause, Frenzel, Seifert (b0015) 2019; 54 Searle, Waters, Dransfield, Stephenson, Walker, Walker, Rex (b0290) 1999; 164 Basuki, Taylor, Spooner (b0010) 2008; 103 Hanor (b0150) 1996 Winderbaum, Ciobanu, Cook, Paul, Metcalfe, Gilbert (b0335) 2012; 44 Zhu, Chung, Mo, Zhao, Niu, Song, Yang (b0425) 2009; 37 Zhang, Hu, Günther, Liu, Ling, Zong, Chen, Gao (b0385) 2016; 948 Cooke, Bull, Large, McGoldrick (b0070) 2000; 95 Lin (b0230) 2014 Zheng, Liu, Sun, Yuan, Tian, Zheng, Zhang, Zhang (b0405) 2012 Liu, Einsele (b0250) 1999 Sun, Zheng, Pirajno, McCuaig, Yu, Xia, Song, Chang (b0305) 2017; 53 Vidal, Cocherie, Le Fort (b0315) 1982; 46 Wang, Mathur, Zheng, Wu, Lv, Zhang, Huan, Yu, Li (b0325) 2022 Genna, Gaboury (b0130) 2015; 110 Lin, Tang, Zheng, Leng, Wang, Liu, Yang, Ding, Zhang, Yang (b0235) 2013; 32 Duan, Tang, Lin (b0090) 2016; 78 Fazli, Taghipour, Moore, Lentz (b0095) 2019 Saintilan, Spangenberg, Samankassou, Kouzmanov, Chiaradia, Stephens, Fontboté (b0280) 2016; 51 Sim, Ono, Donovan, Templer, Bosak (b0295) 2011; 75 Hou, Cook (b0155) 2009; 36 Hou, Mo, Yang, Wang, Pan, Qu, Nie (b0160) 2006; 33 Yang, Hou, Meng, Liu, Fei, Tian, Li, Gao (b0350) 2009; 36 Hou, Yang, Xu, Mo, Ding, Gao, Dong, Li, Qu, Li, Zhao, Jiang, Meng, Li, Qing (b0165) 2006; 25 Vaughan, Craig (b0310) 1997 Xie, Li, Wang, Li, Liu, Li, Dong, Zhou (b0340) 2017; 80 Liang, Hou, Yang, Li, Huang, Zhang, Li, Zheng (b0225) 2013; 29 Zartman, Doe (b0370) 1981; 75 Zhang, Santosh, Wang, Guo, Yang, Zhang (b0395) 2012; 21 Algeo, Luo, Song, Lyons, Canfield (b0005) 2015; 12 Li, Hou, Nie, Meng (b0215) 2005; 79 Chemenda, Burg, Mattauer (b0035) 2000; 174 Bonnet (10.1016/j.oregeorev.2024.105976_b0025) 2016; 54 Graeser (10.1016/j.oregeorev.2024.105976_b0140) 1969; 24 Kelley (10.1016/j.oregeorev.2024.105976_b0190) 2004; 99 Sun (10.1016/j.oregeorev.2024.105976_b0300) 2014; 88 Xie (10.1016/j.oregeorev.2024.105976_b0340) 2017; 80 Lin (10.1016/j.oregeorev.2024.105976_b0230) 2014 Canfield (10.1016/j.oregeorev.2024.105976_b0030) 2010; 38 Fontboté (10.1016/j.oregeorev.2024.105976_b0100) 2017; 13 Liu (10.1016/j.oregeorev.2024.105976_b0245) 1994; 83 Vidal (10.1016/j.oregeorev.2024.105976_b0315) 1982; 46 Gigon (10.1016/j.oregeorev.2024.105976_b0135) 2020; 48 Hou (10.1016/j.oregeorev.2024.105976_b0175) 2006; 25 Yin (10.1016/j.oregeorev.2024.105976_b0360) 2006; 76 Zhu (10.1016/j.oregeorev.2024.105976_b0430) 2012; 26 Algeo (10.1016/j.oregeorev.2024.105976_b0005) 2015; 12 Liu (10.1016/j.oregeorev.2024.105976_b0250) 1999 Ohmoto (10.1016/j.oregeorev.2024.105976_b0265) 1979 Zhu (10.1016/j.oregeorev.2024.105976_b0425) 2009; 37 Fougerouse (10.1016/j.oregeorev.2024.105976_b0105) 2023; 346 Liang (10.1016/j.oregeorev.2024.105976_b0225) 2013; 29 Sim (10.1016/j.oregeorev.2024.105976_b0295) 2011; 75 Lin (10.1016/j.oregeorev.2024.105976_b0235) 2013; 32 Royden (10.1016/j.oregeorev.2024.105976_b0275) 2008; 321 Chemenda (10.1016/j.oregeorev.2024.105976_b0035) 2000; 174 Fu (10.1016/j.oregeorev.2024.105976_b0120) 2017; 106 Lee (10.1016/j.oregeorev.2024.105976_b0210) 2000; 19 Searle (10.1016/j.oregeorev.2024.105976_b0285) 1992; 149 Hou (10.1016/j.oregeorev.2024.105976_b0160) 2006; 33 Yin (10.1016/j.oregeorev.2024.105976_b0365) 2000; 28 Grujic (10.1016/j.oregeorev.2024.105976_b0145) 2002; 198 Zheng (10.1016/j.oregeorev.2024.105976_b0410) 2014; 38 10.1016/j.oregeorev.2024.105976_b0420 Zhang (10.1016/j.oregeorev.2024.105976_b0385) 2016; 948 Chen (10.1016/j.oregeorev.2024.105976_b0040) 2021; 85 Li (10.1016/j.oregeorev.2024.105976_b0215) 2005; 79 Zhang (10.1016/j.oregeorev.2024.105976_b0375) 1987; 6 Leach (10.1016/j.oregeorev.2024.105976_b0205) 2010; 105 Genna (10.1016/j.oregeorev.2024.105976_b0130) 2015; 110 Millet (10.1016/j.oregeorev.2024.105976_b0260) 2012; 304–305 Ciobanu (10.1016/j.oregeorev.2024.105976_b0050) 2013; 347 Vaughan (10.1016/j.oregeorev.2024.105976_b0310) 1997 Danyushevsky (10.1016/j.oregeorev.2024.105976_b0080) 2011; 11 Fazli (10.1016/j.oregeorev.2024.105976_b0095) 2019 10.1016/j.oregeorev.2024.105976_bib436 Zhang (10.1016/j.oregeorev.2024.105976_b0395) 2012; 21 Belissont (10.1016/j.oregeorev.2024.105976_b0020) 2014; 126 Cooke (10.1016/j.oregeorev.2024.105976_b0070) 2000; 95 Hou (10.1016/j.oregeorev.2024.105976_b0155) 2009; 36 Lan (10.1016/j.oregeorev.2024.105976_b0195) 2023; 158 Hanor (10.1016/j.oregeorev.2024.105976_b0150) 1996 Pfaff (10.1016/j.oregeorev.2024.105976_b0270) 2011; 286 Cook (10.1016/j.oregeorev.2024.105976_b0065) 2016; 6 Meng (10.1016/j.oregeorev.2024.105976_b0255) 2008; 24 Frenzel (10.1016/j.oregeorev.2024.105976_b0110) 2016; 76 Lin (10.1016/j.oregeorev.2024.105976_b0240) 2014; 60 Cook (10.1016/j.oregeorev.2024.105976_b0060) 2012; 97 Frenzel (10.1016/j.oregeorev.2024.105976_b0115) 2021 Wang (10.1016/j.oregeorev.2024.105976_b0330) 2001; 199 Bauer (10.1016/j.oregeorev.2024.105976_b0015) 2019; 54 Yang (10.1016/j.oregeorev.2024.105976_b0350) 2009; 36 Sun (10.1016/j.oregeorev.2024.105976_b0305) 2017; 53 Zhang (10.1016/j.oregeorev.2024.105976_b0380) 2004; 228 Hou (10.1016/j.oregeorev.2024.105976_b0170) 2006; 25 Li (10.1016/j.oregeorev.2024.105976_b0220) 2002; 29 Winderbaum (10.1016/j.oregeorev.2024.105976_b0335) 2012; 44 Basuki (10.1016/j.oregeorev.2024.105976_b0010) 2008; 103 Huston (10.1016/j.oregeorev.2024.105976_b0180) 1995; 90 Wang (10.1016/j.oregeorev.2024.105976_b0325) 2022 Duan (10.1016/j.oregeorev.2024.105976_b0090) 2016; 78 Searle (10.1016/j.oregeorev.2024.105976_b0290) 1999; 164 Saintilan (10.1016/j.oregeorev.2024.105976_b0280) 2016; 51 Cook (10.1016/j.oregeorev.2024.105976_b0055) 2009; 73 Cugerone (10.1016/j.oregeorev.2024.105976_b0075) 2021; 56 Chen (10.1016/j.oregeorev.2024.105976_b0045) 2019; 176 Zheng (10.1016/j.oregeorev.2024.105976_b0405) 2012 Ye (10.1016/j.oregeorev.2024.105976_b0355) 2011; 39 Zhang (10.1016/j.oregeorev.2024.105976_b0390) 2010; 35 Leach (10.1016/j.oregeorev.2024.105976_b0200) 2005; 100 Zhu (10.1016/j.oregeorev.2024.105976_b0435) 2015; 5 Kampschulte (10.1016/j.oregeorev.2024.105976_b0185) 2004; 204 Zartman (10.1016/j.oregeorev.2024.105976_b0370) 1981; 75 Yang (10.1016/j.oregeorev.2024.105976_b0345) 2006; 80 Zheng (10.1016/j.oregeorev.2024.105976_b0400) 2003 Zhou (10.1016/j.oregeorev.2024.105976_b0415) 2018; 53 Gariépy (10.1016/j.oregeorev.2024.105976_b0125) 1985; 74 Hou (10.1016/j.oregeorev.2024.105976_b0165) 2006; 25 Wang (10.1016/j.oregeorev.2024.105976_b0320) 2018 Dehnavi (10.1016/j.oregeorev.2024.105976_b0085) 2018; 92 |
References_xml | – volume: 51 start-page: 639 year: 2016 end-page: 664 ident: b0280 article-title: A refined genetic model for the Laisvall and Vassbo Mississippi Valley-type sandstone-hosted deposits, Sweden: constraints from paragenetic studies, organic geochemistry, and S, C, N, and Sr isotope data publication-title: Miner. Deposita – volume: 36 start-page: 194 year: 2009 end-page: 212 ident: b0350 article-title: Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen publication-title: Ore Geol. Rev. – volume: 11 start-page: 51 year: 2011 end-page: 60 ident: b0080 article-title: Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects publication-title: Geochem.: Explor. Environ. Anal. – volume: 73 start-page: 4761 year: 2009 end-page: 4791 ident: b0055 article-title: Trace and minor elements in sphalerite: A LA-ICPMS study publication-title: Geochim. Cosmochim. Acta – volume: 75 start-page: 135 year: 1981 end-page: 162 ident: b0370 article-title: Plumbotectonics—the model publication-title: Tectonophysics – volume: 6 start-page: 177 year: 1987 end-page: 190 ident: b0375 article-title: Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits publication-title: Chin. J. Geochem. – volume: 88 start-page: 199 year: 2014 end-page: 201 ident: b0300 article-title: Preliminary understanding of ore genesis of Zhaxikang Pb-Zn-Ag-Sb deposit in the north Himalaya publication-title: Acta Geol. Sin. – volume: 36 start-page: 2 year: 2009 end-page: 24 ident: b0155 article-title: Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue publication-title: Ore Geol. Rev. – volume: 12 start-page: 2131 year: 2015 end-page: 2151 ident: b0005 article-title: Reconstruction of secular variation in seawater sulfate concentrations publication-title: Biogeosciences – volume: 76 start-page: 52 year: 2016 end-page: 78 ident: b0110 article-title: Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — A meta-analysis publication-title: Ore Geol. Rev. – volume: 25 start-page: 337 year: 2006 end-page: 358 ident: b0165 article-title: The Tibetan collisional orogenic belt: I Metallogenesis in main-collisional epoch publication-title: Mineral Deposits – volume: 25 start-page: 521 year: 2006 end-page: 543 ident: b0170 article-title: Metallogenesis in the Tibetan collisional orogenic belt: II. Mineralization in the late-collisional transform structural setting publication-title: Mineral Deposits – volume: 56 start-page: 685 year: 2021 end-page: 705 ident: b0075 article-title: Behavior of critical metals in metamorphosed Pb-Zn ore deposits: example from the Pyrenean Axial Zone publication-title: Miner. Deposita – volume: 24 start-page: 1649 year: 2008 end-page: 1655 ident: b0255 article-title: Silicon-oxygen-hydrogen isotopic compositions of Zaxikang antimony polymetallic deposit in southern Tibet and its responses to the ore-controlling structure publication-title: Acta Petrol. Sin. – volume: 19 start-page: 872 year: 2000 end-page: 895 ident: b0210 article-title: Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints publication-title: Tectonics – volume: 25 start-page: 629 year: 2006 end-page: 651 ident: b0175 article-title: Metallogenesis in the Tibetan collisional orogenic belt: III. Mineralization in the post-collisional extension setting publication-title: Mineral Deposits – start-page: 137 year: 2018 ident: b0320 article-title: The Isotope Geochemistry Research of the Zhaxikang Sb–Pb–Zn–Ag Deposit in Southern Tibet – volume: 90 start-page: 1167 year: 1995 end-page: 1196 ident: b0180 article-title: Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems publication-title: Econ. Geol. – volume: 158 year: 2023 ident: b0195 article-title: Apatite U-Pb geochronological and geochemical constraints on the Mazhala Au-Sb deposit in South Tibet, China publication-title: Ore Geol. Rev. – volume: 54 start-page: 1261 year: 2016 end-page: 1284 ident: b0025 article-title: Trace element distribution (Cu, Ga, Ge, Cd, and Fe) in sphalerite from the Tennessee MVT deposits, USA, By combined EMPA, LA-ICP-MS, Raman spectroscopy, and crystallography publication-title: Can. Mineral. – year: 2022 ident: b0325 article-title: Constraints on ore-forming fluid evolution and guidance for ore exploration in the Zhaxikang Sb–Pb–Zn–Ag deposit in southern Tibet: insights from silver isotope fractionation of galena publication-title: Miner. Deposita – volume: 39 start-page: 188 year: 2011 end-page: 217 ident: b0355 article-title: Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study publication-title: Ore Geol. Rev. – volume: 6 start-page: 111 year: 2016 ident: b0065 article-title: Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: approaches and opportunities publication-title: Minerals-Basel – volume: 54 start-page: 237 year: 2019 end-page: 262 ident: b0015 article-title: Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry publication-title: Miner. Deposita – volume: 198 start-page: 177 year: 2002 end-page: 191 ident: b0145 article-title: Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan publication-title: Earth Planet. Sci. Lett. – volume: 80 start-page: 891 year: 2017 end-page: 909 ident: b0340 article-title: Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China: Evidence for a magmatic link publication-title: Ore Geol. Rev. – volume: 74 start-page: 220 year: 1985 end-page: 234 ident: b0125 article-title: The Pb-isotope geochemistry of granitoids from the Himalaya-Tibet collision zone: implications for crustal evolution publication-title: Earth Planet. Sci. Lett. – volume: 76 start-page: 1 year: 2006 end-page: 131 ident: b0360 article-title: Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation publication-title: Earth Sci. Rev. – start-page: 88 year: 2014 ident: b0230 article-title: Geologic Features and Genesis Discussion of Zhaxikang Zinc Polymetallic Deposit in Tibet – volume: 75 start-page: 4244 year: 2011 end-page: 4259 ident: b0295 article-title: Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp publication-title: Geochim. Cosmochim. Acta – volume: 13 start-page: 97 year: 2017 end-page: 103 ident: b0100 article-title: Sulfide minerals in hydrothermal deposits publication-title: Elements – start-page: 1 year: 2003 end-page: 181 ident: b0400 article-title: Study on the Ore-controlling Factors and Metallogenic Mechanism of the Mazhala Au-Sb Deposit, Cuomei County, South Tibert – volume: 106 start-page: 1581 year: 2017 end-page: 1596 ident: b0120 article-title: First field identification of the Cuonadong dome in southern Tibet: implications for EW extension of the North Himalayan gneiss dome publication-title: Int. J. Earth Sci. (Geol Rundsch) – volume: 99 start-page: 1509 year: 2004 end-page: 1532 ident: b0190 article-title: Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for ore formation publication-title: Econ. Geol. – volume: 35 start-page: 1000 year: 2010 end-page: 1011 ident: b0390 article-title: Genesis of Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: constraints from multi-isotope geochemistry publication-title: Earth Sci. – volume: 97 start-page: 476 year: 2012 end-page: 479 ident: b0060 article-title: Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy publication-title: Am. Mineral. – volume: 228 start-page: 195 year: 2004 end-page: 212 ident: b0380 article-title: Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform publication-title: Earth Planet. Sci. Lett. – volume: 48 start-page: 478 year: 2020 end-page: 482 ident: b0135 article-title: Tracing metal sources for the giant McArthur River Zn-Pb deposit (Australia) using lead isotopes publication-title: Geology – volume: 321 start-page: 1054 year: 2008 end-page: 1058 ident: b0275 article-title: The Geological Evolution of the Tibetan Plateau publication-title: Science – volume: 38 start-page: 415 year: 2010 end-page: 418 ident: b0030 article-title: High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog publication-title: Geology – volume: 199 start-page: 123 year: 2001 end-page: 133 ident: b0330 article-title: A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone publication-title: Earth Planet. Sci. Lett. – start-page: 367 year: 1997 end-page: 434 ident: b0310 article-title: Sulphide ore mineral stabilities, morphologies, and intergrowth textures publication-title: Geochemistry of Hydrothermal Ore Deposites—Third Edition – volume: 948 start-page: 9 year: 2016 end-page: 18 ident: b0385 article-title: Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration publication-title: Anal. Chim. Acta – volume: 37 start-page: 583 year: 2009 end-page: 586 ident: b0425 article-title: The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia publication-title: Geology – volume: 38 start-page: 108 year: 2014 end-page: 118 ident: b0410 article-title: Mineralization, deposit type and metallogenic age of the gold antimony polymetallic belt in the eastern part of north Himalayan publication-title: Geotecton. Metallog. – volume: 110 start-page: 2087 year: 2015 end-page: 2108 ident: b0130 article-title: Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod deposits, Abitibi, Canada, and implications for exploration publication-title: Econ. Geol. – volume: 21 start-page: 939 year: 2012 end-page: 960 ident: b0395 article-title: Tectonics of the northern Himalaya since the India-Asia collision publication-title: Gondw. Res. – volume: 95 start-page: 1 year: 2000 end-page: 18 ident: b0070 article-title: The importance of oxidized brines for the formation of Australian proterozoic stratiform sediment-hosted Pb-Zn (sedex) deposits publication-title: Econ. Geol. – volume: 32 start-page: 899 year: 2013 end-page: 914 ident: b0235 article-title: Geological characteristics and modes of occurrence of silver in Zhaxikang zinc polymetallic deposit publication-title: Mineral Deposits – volume: 164 start-page: 139 year: 1999 end-page: 156 ident: b0290 article-title: Thermal and mechanical models for the structural and metamorphic evolution of the Zanskar High Himalaya publication-title: Geol. Soc. Lond. Spec. Publ. – volume: 28 start-page: 211 year: 2000 end-page: 280 ident: b0365 article-title: Geologic evolution of the Himalayan-Tibetan Orogen publication-title: Annu. Rev. Earth Pl. Sc. – volume: 286 start-page: 118 year: 2011 end-page: 134 ident: b0270 article-title: Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis publication-title: Chem. Geol. – volume: 92 start-page: 656 year: 2018 end-page: 671 ident: b0085 article-title: Assessment of pyrite composition by LA-ICP-MS techniques from massive sulfide deposits of the Bathurst Mining Camp, Canada: From textural and chemical evolution to its application as a vectoring tool for the exploration of VMS deposits publication-title: Ore Geol. Rev. – volume: 105 start-page: 593 year: 2010 end-page: 625 ident: b0205 article-title: Sediment-hosted lead-zinc deposits in earth history publication-title: Econ. Geol. – volume: 204 start-page: 255 year: 2004 end-page: 286 ident: b0185 article-title: The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates publication-title: Chem. Geol. – start-page: 37 year: 2012 ident: b0405 article-title: Type, Discovery Process and Significance of Zhaxikang Antimony Polymetallic Ore Deposit, Tibet – volume: 85 start-page: 364 year: 2021 end-page: 378 ident: b0040 article-title: In situ trace elements and S isotope systematics for growth zoning in sphalerite from MVT deposits: A case study of Nayongzhi, South China publication-title: Mineral Mag. – volume: 60 start-page: 178 year: 2014 end-page: 189 ident: b0240 article-title: Petrochemical features, zircon U-Pb dating and Hf isotopic composition of the rhyolite in Zhaxikang deposit, Southern Xizang (Tibet) publication-title: Geol. Rev. – start-page: 509 year: 1979 end-page: 567 ident: b0265 article-title: Isotopes of sulfur and carbon publication-title: Geochemistry of Hydrothermal Ore Deposits – volume: 103 start-page: 783 year: 2008 end-page: 799 ident: b0010 article-title: Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi valley-type zinc-lead mineralization, Bongara Area, Northern Peru publication-title: Econ. Geol. – volume: 346 start-page: 223 year: 2023 end-page: 230 ident: b0105 article-title: Nanoscale distribution of Ge in Cu-rich sphalerite publication-title: Geochim. Cosmochim. Acta – volume: 29 start-page: 3828 year: 2013 end-page: 3842 ident: b0225 article-title: Remobilization and overprinting in the Zhaxikang Pb-Zn-Ag-Sb polymetal ore deposit, Southern Tibet: Implications for its metallogenesis publication-title: Acta Petrol. Sin. – reference: EU Commissim, 2014. Critical raw materials for the EU. Report of the Ad hoc Working Group on Defining Critical Raw Materials. Brussels. – volume: 44 start-page: 823 year: 2012 end-page: 842 ident: b0335 article-title: Multivariate analysis of an LA-ICP-MS trace element dataset for pyrite publication-title: Math. Geosci. – reference: Zhou, J., 2018. Study on the Mineralization of Zhaxikang lead-zinc-antimony Polymetallic Deposit in Longzi County, Tibet. Dissertation. China University of Geosciences (in Chinese with English abstract). – year: 2021 ident: b0115 article-title: Evolution of a hydrothermal ore-forming system recorded by sulfide mineral chemistry: a case study from the Plaka Pb–Zn–Ag Deposit, Lavrion, Greece publication-title: Miner Deposita – year: 2019 ident: b0095 article-title: Fluid inclusion, S isotope, and in situ Pb isotope characteristics of the Kuh-e-Surmeh carbonate-hosted Zn–Pb deposit in Zagros Simply Folded Belt, southwest Iran: Implications for the source of metals and sulfur and MVT genetic model publication-title: Ore Geol. Rev. – year: 1996 ident: b0150 article-title: Controls on the Solubilization of Lead and Zinc in Basinal Brines Carbonate-Hosted Lead-Zinc Deposits: 75th Anniversary Volume – volume: 347 start-page: 175 year: 2013 end-page: 189 ident: b0050 article-title: Trace element heterogeneity in molybdenite fingerprints stages of mineralization publication-title: Chem. Geol. – volume: 33 start-page: 340 year: 2006 end-page: 351 ident: b0160 article-title: Metallogeneses in the collisional Orogen of the Qinghai-Tibet Plateau: Tectonic setting, tempo-spatial distribution and ore deposit types publication-title: Geol. China – volume: 83 start-page: 32 year: 1994 end-page: 61 ident: b0245 article-title: Sedimentary history of the Tethyan basin in the Tibetan Himalayas publication-title: Geol. Rundsch. – volume: 46 start-page: 2279 year: 1982 end-page: 2292 ident: b0315 article-title: Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal) publication-title: Geochim. Cosmochim. Acta – volume: 24 start-page: 156 year: 1969 end-page: 163 ident: b0140 article-title: Minor elements in sphalerite and galena from Binnatal publication-title: Contrib. Mineral. Petr. – volume: 304–305 start-page: 18 year: 2012 end-page: 25 ident: b0260 article-title: Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe–58Fe double spike publication-title: Chem. Geol. – volume: 100 start-page: 561 year: 2005 end-page: 607 ident: b0200 article-title: Sediment-hosted lead-Zink deposit: A global perspective publication-title: Econ. Geol. – volume: 149 start-page: 753 year: 1992 end-page: 773 ident: b0285 article-title: Pressure, temperature and time constraints on Himalayan metamorphism from eastern Kashmir and western Zanskar publication-title: J. Geol. Soc. Lond. – volume: 53 start-page: 435 year: 2017 end-page: 458 ident: b0305 article-title: Geology, S-Pb isotopes, and 40 Ar/39 Ar geochronology of the Zhaxikang Sb–Pb–Zn–Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang publication-title: Miner. Deposita – volume: 79 start-page: 68 year: 2005 end-page: 77 ident: b0215 article-title: Characteristic and distribution of the partial melting layers in the upper crust: evidence from active hydrothermal fluid in the south Tibet publication-title: Acta Geol. Sin. – volume: 176 start-page: 325 year: 2019 end-page: 336 ident: b0045 article-title: In situ sulfur isotope analysis by laser ablation MC-ICPMS and a case study of the Erlihe Zn-Pb ore deposit, Qinling orogenic belt, Central China publication-title: J. Asian Earth Sci. – start-page: 75 year: 1999 end-page: 108 ident: b0250 article-title: Jurassic sedimentary facies and paleogeography of the former Indian passive margin in southern Tibet publication-title: Special Pap.-Geol. Soc. Am. – volume: 29 start-page: 533 year: 2002 end-page: 538 ident: b0220 article-title: Study of metallogenic and prospecting models for the Shalagang antimony deposit, Gyangze, Tibet publication-title: J.-Chengdu Univ. Technol. – volume: 80 start-page: 1377 year: 2006 end-page: 1391 ident: b0345 article-title: Metallogenic characteristics and genetic model of antimony and gold deposits in south Tibetan detachment system publication-title: Acta Geol. Sin. – volume: 5 start-page: 1 year: 2015 end-page: 9 ident: b0435 article-title: Magmatic record of India-Asia collision publication-title: Sci. Rep.-Uk – volume: 53 start-page: 585 year: 2018 end-page: 600 ident: b0415 article-title: Origin and tectonic implications of the Zhaxikang Pb–Zn–Sb–Ag deposit in northern Himalaya: Evidence from structures, Re–Os–Pb–S isotopes, and fluid inclusions publication-title: Miner. Deposita – volume: 174 start-page: 397 year: 2000 end-page: 409 ident: b0035 article-title: Evolutionary model of the Himalaya-Tibet system: geopoem: based on new modelling, geological and geophysical data publication-title: Earth Planet. Sci. Lett. – volume: 26 start-page: 453 year: 2012 ident: b0430 article-title: Fluid inclusions in the Zhaxikang Pb-Zn-Sb polymetallic deposit, south Tibet, and its geological significance publication-title: Geoscience – volume: 78 start-page: 58 year: 2016 end-page: 68 ident: b0090 article-title: Zinc and lead isotope signatures of the Zhaxikang PbZn deposit, South Tibet: Implications for the source of the ore-forming metals publication-title: Ore Geol. Rev. – volume: 126 start-page: 518 year: 2014 end-page: 540 ident: b0020 article-title: LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac – Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes publication-title: Geochim. Cosmochim. Acta – year: 2021 ident: 10.1016/j.oregeorev.2024.105976_b0115 article-title: Evolution of a hydrothermal ore-forming system recorded by sulfide mineral chemistry: a case study from the Plaka Pb–Zn–Ag Deposit, Lavrion, Greece publication-title: Miner Deposita – volume: 321 start-page: 1054 year: 2008 ident: 10.1016/j.oregeorev.2024.105976_b0275 article-title: The Geological Evolution of the Tibetan Plateau publication-title: Science doi: 10.1126/science.1155371 – volume: 25 start-page: 521 year: 2006 ident: 10.1016/j.oregeorev.2024.105976_b0170 article-title: Metallogenesis in the Tibetan collisional orogenic belt: II. Mineralization in the late-collisional transform structural setting publication-title: Mineral Deposits – volume: 38 start-page: 108 year: 2014 ident: 10.1016/j.oregeorev.2024.105976_b0410 article-title: Mineralization, deposit type and metallogenic age of the gold antimony polymetallic belt in the eastern part of north Himalayan publication-title: Geotecton. Metallog. – volume: 48 start-page: 478 year: 2020 ident: 10.1016/j.oregeorev.2024.105976_b0135 article-title: Tracing metal sources for the giant McArthur River Zn-Pb deposit (Australia) using lead isotopes publication-title: Geology doi: 10.1130/G47001.1 – volume: 126 start-page: 518 year: 2014 ident: 10.1016/j.oregeorev.2024.105976_b0020 article-title: LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac – Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.10.052 – start-page: 75 year: 1999 ident: 10.1016/j.oregeorev.2024.105976_b0250 article-title: Jurassic sedimentary facies and paleogeography of the former Indian passive margin in southern Tibet publication-title: Special Pap.-Geol. Soc. Am. – volume: 25 start-page: 337 year: 2006 ident: 10.1016/j.oregeorev.2024.105976_b0165 article-title: The Tibetan collisional orogenic belt: I Metallogenesis in main-collisional epoch publication-title: Mineral Deposits – volume: 106 start-page: 1581 year: 2017 ident: 10.1016/j.oregeorev.2024.105976_b0120 article-title: First field identification of the Cuonadong dome in southern Tibet: implications for EW extension of the North Himalayan gneiss dome publication-title: Int. J. Earth Sci. (Geol Rundsch) doi: 10.1007/s00531-016-1368-2 – volume: 346 start-page: 223 year: 2023 ident: 10.1016/j.oregeorev.2024.105976_b0105 article-title: Nanoscale distribution of Ge in Cu-rich sphalerite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2023.02.011 – volume: 199 start-page: 123 year: 2001 ident: 10.1016/j.oregeorev.2024.105976_b0330 article-title: A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(01)00315-6 – volume: 54 start-page: 1261 year: 2016 ident: 10.1016/j.oregeorev.2024.105976_b0025 article-title: Trace element distribution (Cu, Ga, Ge, Cd, and Fe) in sphalerite from the Tennessee MVT deposits, USA, By combined EMPA, LA-ICP-MS, Raman spectroscopy, and crystallography publication-title: Can. Mineral. doi: 10.3749/canmin.1500104 – volume: 83 start-page: 32 year: 1994 ident: 10.1016/j.oregeorev.2024.105976_b0245 article-title: Sedimentary history of the Tethyan basin in the Tibetan Himalayas publication-title: Geol. Rundsch. doi: 10.1007/BF00211893 – volume: 85 start-page: 364 year: 2021 ident: 10.1016/j.oregeorev.2024.105976_b0040 article-title: In situ trace elements and S isotope systematics for growth zoning in sphalerite from MVT deposits: A case study of Nayongzhi, South China publication-title: Mineral Mag. doi: 10.1180/mgm.2021.29 – volume: 29 start-page: 3828 year: 2013 ident: 10.1016/j.oregeorev.2024.105976_b0225 article-title: Remobilization and overprinting in the Zhaxikang Pb-Zn-Ag-Sb polymetal ore deposit, Southern Tibet: Implications for its metallogenesis publication-title: Acta Petrol. Sin. – volume: 35 start-page: 1000 year: 2010 ident: 10.1016/j.oregeorev.2024.105976_b0390 article-title: Genesis of Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: constraints from multi-isotope geochemistry publication-title: Earth Sci. – volume: 44 start-page: 823 year: 2012 ident: 10.1016/j.oregeorev.2024.105976_b0335 article-title: Multivariate analysis of an LA-ICP-MS trace element dataset for pyrite publication-title: Math. Geosci. doi: 10.1007/s11004-012-9418-1 – start-page: 37 year: 2012 ident: 10.1016/j.oregeorev.2024.105976_b0405 – volume: 53 start-page: 435 year: 2017 ident: 10.1016/j.oregeorev.2024.105976_b0305 article-title: Geology, S-Pb isotopes, and 40 Ar/39 Ar geochronology of the Zhaxikang Sb–Pb–Zn–Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang publication-title: Miner. Deposita doi: 10.1007/s00126-017-0752-6 – volume: 56 start-page: 685 year: 2021 ident: 10.1016/j.oregeorev.2024.105976_b0075 article-title: Behavior of critical metals in metamorphosed Pb-Zn ore deposits: example from the Pyrenean Axial Zone publication-title: Miner. Deposita doi: 10.1007/s00126-020-01000-9 – ident: 10.1016/j.oregeorev.2024.105976_b0420 – volume: 13 start-page: 97 year: 2017 ident: 10.1016/j.oregeorev.2024.105976_b0100 article-title: Sulfide minerals in hydrothermal deposits publication-title: Elements doi: 10.2113/gselements.13.2.97 – volume: 29 start-page: 533 year: 2002 ident: 10.1016/j.oregeorev.2024.105976_b0220 article-title: Study of metallogenic and prospecting models for the Shalagang antimony deposit, Gyangze, Tibet publication-title: J.-Chengdu Univ. Technol. – volume: 97 start-page: 476 year: 2012 ident: 10.1016/j.oregeorev.2024.105976_b0060 article-title: Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via μ-XANES spectroscopy publication-title: Am. Mineral. doi: 10.2138/am.2012.4042 – volume: 39 start-page: 188 year: 2011 ident: 10.1016/j.oregeorev.2024.105976_b0355 article-title: Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2011.03.001 – volume: 37 start-page: 583 year: 2009 ident: 10.1016/j.oregeorev.2024.105976_b0425 article-title: The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia publication-title: Geology doi: 10.1130/G30001A.1 – start-page: 137 year: 2018 ident: 10.1016/j.oregeorev.2024.105976_b0320 – volume: 24 start-page: 1649 year: 2008 ident: 10.1016/j.oregeorev.2024.105976_b0255 article-title: Silicon-oxygen-hydrogen isotopic compositions of Zaxikang antimony polymetallic deposit in southern Tibet and its responses to the ore-controlling structure publication-title: Acta Petrol. Sin. – volume: 38 start-page: 415 year: 2010 ident: 10.1016/j.oregeorev.2024.105976_b0030 article-title: High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog publication-title: Geology doi: 10.1130/G30723.1 – ident: 10.1016/j.oregeorev.2024.105976_bib436 – volume: 76 start-page: 52 year: 2016 ident: 10.1016/j.oregeorev.2024.105976_b0110 article-title: Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — A meta-analysis publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.12.017 – volume: 198 start-page: 177 year: 2002 ident: 10.1016/j.oregeorev.2024.105976_b0145 article-title: Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(02)00482-X – volume: 90 start-page: 1167 year: 1995 ident: 10.1016/j.oregeorev.2024.105976_b0180 publication-title: Econ. Geol. doi: 10.2113/gsecongeo.90.5.1167 – volume: 80 start-page: 891 year: 2017 ident: 10.1016/j.oregeorev.2024.105976_b0340 article-title: Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China: Evidence for a magmatic link publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2016.08.007 – year: 2019 ident: 10.1016/j.oregeorev.2024.105976_b0095 article-title: Fluid inclusion, S isotope, and in situ Pb isotope characteristics of the Kuh-e-Surmeh carbonate-hosted Zn–Pb deposit in Zagros Simply Folded Belt, southwest Iran: Implications for the source of metals and sulfur and MVT genetic model publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2019.04.006 – volume: 99 start-page: 1509 year: 2004 ident: 10.1016/j.oregeorev.2024.105976_b0190 article-title: Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for ore formation publication-title: Econ. Geol. doi: 10.2113/gsecongeo.99.7.1509 – volume: 347 start-page: 175 year: 2013 ident: 10.1016/j.oregeorev.2024.105976_b0050 article-title: Trace element heterogeneity in molybdenite fingerprints stages of mineralization publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2013.03.011 – volume: 176 start-page: 325 year: 2019 ident: 10.1016/j.oregeorev.2024.105976_b0045 article-title: In situ sulfur isotope analysis by laser ablation MC-ICPMS and a case study of the Erlihe Zn-Pb ore deposit, Qinling orogenic belt, Central China publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2019.02.017 – start-page: 1 year: 2003 ident: 10.1016/j.oregeorev.2024.105976_b0400 – volume: 103 start-page: 783 year: 2008 ident: 10.1016/j.oregeorev.2024.105976_b0010 article-title: Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi valley-type zinc-lead mineralization, Bongara Area, Northern Peru publication-title: Econ. Geol. doi: 10.2113/gsecongeo.103.4.783 – volume: 149 start-page: 753 year: 1992 ident: 10.1016/j.oregeorev.2024.105976_b0285 article-title: Pressure, temperature and time constraints on Himalayan metamorphism from eastern Kashmir and western Zanskar publication-title: J. Geol. Soc. Lond. doi: 10.1144/gsjgs.149.5.0753 – volume: 36 start-page: 194 year: 2009 ident: 10.1016/j.oregeorev.2024.105976_b0350 article-title: Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2009.03.005 – volume: 78 start-page: 58 year: 2016 ident: 10.1016/j.oregeorev.2024.105976_b0090 article-title: Zinc and lead isotope signatures of the Zhaxikang PbZn deposit, South Tibet: Implications for the source of the ore-forming metals publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2016.03.019 – volume: 46 start-page: 2279 year: 1982 ident: 10.1016/j.oregeorev.2024.105976_b0315 article-title: Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal) publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(82)90201-0 – volume: 54 start-page: 237 year: 2019 ident: 10.1016/j.oregeorev.2024.105976_b0015 publication-title: Miner. Deposita doi: 10.1007/s00126-018-0850-0 – volume: 24 start-page: 156 year: 1969 ident: 10.1016/j.oregeorev.2024.105976_b0140 article-title: Minor elements in sphalerite and galena from Binnatal publication-title: Contrib. Mineral. Petr. doi: 10.1007/BF00376888 – volume: 75 start-page: 135 year: 1981 ident: 10.1016/j.oregeorev.2024.105976_b0370 article-title: Plumbotectonics—the model publication-title: Tectonophysics doi: 10.1016/0040-1951(81)90213-4 – volume: 6 start-page: 177 year: 1987 ident: 10.1016/j.oregeorev.2024.105976_b0375 article-title: Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits publication-title: Chin. J. Geochem. doi: 10.1007/BF02872218 – year: 2022 ident: 10.1016/j.oregeorev.2024.105976_b0325 article-title: Constraints on ore-forming fluid evolution and guidance for ore exploration in the Zhaxikang Sb–Pb–Zn–Ag deposit in southern Tibet: insights from silver isotope fractionation of galena publication-title: Miner. Deposita doi: 10.1007/s00126-022-01111-5 – volume: 105 start-page: 593 year: 2010 ident: 10.1016/j.oregeorev.2024.105976_b0205 article-title: Sediment-hosted lead-zinc deposits in earth history publication-title: Econ. Geol. doi: 10.2113/gsecongeo.105.3.593 – volume: 26 start-page: 453 year: 2012 ident: 10.1016/j.oregeorev.2024.105976_b0430 article-title: Fluid inclusions in the Zhaxikang Pb-Zn-Sb polymetallic deposit, south Tibet, and its geological significance publication-title: Geoscience – volume: 6 start-page: 111 year: 2016 ident: 10.1016/j.oregeorev.2024.105976_b0065 article-title: Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: approaches and opportunities publication-title: Minerals-Basel – volume: 88 start-page: 199 year: 2014 ident: 10.1016/j.oregeorev.2024.105976_b0300 article-title: Preliminary understanding of ore genesis of Zhaxikang Pb-Zn-Ag-Sb deposit in the north Himalaya publication-title: Acta Geol. Sin. doi: 10.1111/1755-6724.12369_27 – volume: 12 start-page: 2131 year: 2015 ident: 10.1016/j.oregeorev.2024.105976_b0005 article-title: Reconstruction of secular variation in seawater sulfate concentrations publication-title: Biogeosciences doi: 10.5194/bg-12-2131-2015 – volume: 32 start-page: 899 year: 2013 ident: 10.1016/j.oregeorev.2024.105976_b0235 article-title: Geological characteristics and modes of occurrence of silver in Zhaxikang zinc polymetallic deposit publication-title: Mineral Deposits – volume: 174 start-page: 397 year: 2000 ident: 10.1016/j.oregeorev.2024.105976_b0035 article-title: Evolutionary model of the Himalaya-Tibet system: geopoem: based on new modelling, geological and geophysical data publication-title: Earth Planet. Sci. Lett. doi: 10.1016/S0012-821X(99)00277-0 – volume: 25 start-page: 629 year: 2006 ident: 10.1016/j.oregeorev.2024.105976_b0175 article-title: Metallogenesis in the Tibetan collisional orogenic belt: III. Mineralization in the post-collisional extension setting publication-title: Mineral Deposits – volume: 79 start-page: 68 year: 2005 ident: 10.1016/j.oregeorev.2024.105976_b0215 article-title: Characteristic and distribution of the partial melting layers in the upper crust: evidence from active hydrothermal fluid in the south Tibet publication-title: Acta Geol. Sin. – volume: 110 start-page: 2087 year: 2015 ident: 10.1016/j.oregeorev.2024.105976_b0130 article-title: Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod deposits, Abitibi, Canada, and implications for exploration publication-title: Econ. Geol. doi: 10.2113/econgeo.110.8.2087 – volume: 228 start-page: 195 year: 2004 ident: 10.1016/j.oregeorev.2024.105976_b0380 article-title: Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2004.09.031 – start-page: 509 year: 1979 ident: 10.1016/j.oregeorev.2024.105976_b0265 article-title: Isotopes of sulfur and carbon – volume: 21 start-page: 939 year: 2012 ident: 10.1016/j.oregeorev.2024.105976_b0395 article-title: Tectonics of the northern Himalaya since the India-Asia collision publication-title: Gondw. Res. doi: 10.1016/j.gr.2011.11.004 – volume: 11 start-page: 51 year: 2011 ident: 10.1016/j.oregeorev.2024.105976_b0080 article-title: Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects publication-title: Geochem.: Explor. Environ. Anal. – volume: 5 start-page: 1 year: 2015 ident: 10.1016/j.oregeorev.2024.105976_b0435 article-title: Magmatic record of India-Asia collision publication-title: Sci. Rep.-Uk – volume: 286 start-page: 118 year: 2011 ident: 10.1016/j.oregeorev.2024.105976_b0270 article-title: Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis publication-title: Chem. Geol. – start-page: 367 year: 1997 ident: 10.1016/j.oregeorev.2024.105976_b0310 article-title: Sulphide ore mineral stabilities, morphologies, and intergrowth textures – volume: 95 start-page: 1 year: 2000 ident: 10.1016/j.oregeorev.2024.105976_b0070 article-title: The importance of oxidized brines for the formation of Australian proterozoic stratiform sediment-hosted Pb-Zn (sedex) deposits publication-title: Econ. Geol. doi: 10.2113/gsecongeo.95.1.1 – year: 1996 ident: 10.1016/j.oregeorev.2024.105976_b0150 – volume: 204 start-page: 255 year: 2004 ident: 10.1016/j.oregeorev.2024.105976_b0185 article-title: The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2003.11.013 – volume: 76 start-page: 1 year: 2006 ident: 10.1016/j.oregeorev.2024.105976_b0360 article-title: Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2005.05.004 – volume: 92 start-page: 656 year: 2018 ident: 10.1016/j.oregeorev.2024.105976_b0085 article-title: Assessment of pyrite composition by LA-ICP-MS techniques from massive sulfide deposits of the Bathurst Mining Camp, Canada: From textural and chemical evolution to its application as a vectoring tool for the exploration of VMS deposits publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2017.10.010 – volume: 73 start-page: 4761 year: 2009 ident: 10.1016/j.oregeorev.2024.105976_b0055 article-title: Trace and minor elements in sphalerite: A LA-ICPMS study publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.05.045 – volume: 74 start-page: 220 year: 1985 ident: 10.1016/j.oregeorev.2024.105976_b0125 article-title: The Pb-isotope geochemistry of granitoids from the Himalaya-Tibet collision zone: implications for crustal evolution publication-title: Earth Planet. Sci. Lett. doi: 10.1016/0012-821X(85)90023-8 – volume: 19 start-page: 872 year: 2000 ident: 10.1016/j.oregeorev.2024.105976_b0210 article-title: Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints publication-title: Tectonics doi: 10.1029/1999TC001147 – volume: 304–305 start-page: 18 year: 2012 ident: 10.1016/j.oregeorev.2024.105976_b0260 article-title: Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe–58Fe double spike publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2012.01.021 – volume: 948 start-page: 9 year: 2016 ident: 10.1016/j.oregeorev.2024.105976_b0385 article-title: Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.10.040 – volume: 158 year: 2023 ident: 10.1016/j.oregeorev.2024.105976_b0195 article-title: Apatite U-Pb geochronological and geochemical constraints on the Mazhala Au-Sb deposit in South Tibet, China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2023.105503 – volume: 164 start-page: 139 year: 1999 ident: 10.1016/j.oregeorev.2024.105976_b0290 article-title: Thermal and mechanical models for the structural and metamorphic evolution of the Zanskar High Himalaya publication-title: Geol. Soc. Lond. Spec. Publ. doi: 10.1144/GSL.SP.1999.164.01.08 – volume: 36 start-page: 2 year: 2009 ident: 10.1016/j.oregeorev.2024.105976_b0155 article-title: Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2009.05.001 – volume: 28 start-page: 211 year: 2000 ident: 10.1016/j.oregeorev.2024.105976_b0365 article-title: Geologic evolution of the Himalayan-Tibetan Orogen publication-title: Annu. Rev. Earth Pl. Sc. doi: 10.1146/annurev.earth.28.1.211 – start-page: 88 year: 2014 ident: 10.1016/j.oregeorev.2024.105976_b0230 – volume: 75 start-page: 4244 year: 2011 ident: 10.1016/j.oregeorev.2024.105976_b0295 article-title: Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.05.021 – volume: 100 start-page: 561 year: 2005 ident: 10.1016/j.oregeorev.2024.105976_b0200 article-title: Sediment-hosted lead-Zink deposit: A global perspective publication-title: Econ. Geol. – volume: 60 start-page: 178 year: 2014 ident: 10.1016/j.oregeorev.2024.105976_b0240 article-title: Petrochemical features, zircon U-Pb dating and Hf isotopic composition of the rhyolite in Zhaxikang deposit, Southern Xizang (Tibet) publication-title: Geol. Rev. – volume: 80 start-page: 1377 year: 2006 ident: 10.1016/j.oregeorev.2024.105976_b0345 article-title: Metallogenic characteristics and genetic model of antimony and gold deposits in south Tibetan detachment system publication-title: Acta Geol. Sin. – volume: 53 start-page: 585 year: 2018 ident: 10.1016/j.oregeorev.2024.105976_b0415 article-title: Origin and tectonic implications of the Zhaxikang Pb–Zn–Sb–Ag deposit in northern Himalaya: Evidence from structures, Re–Os–Pb–S isotopes, and fluid inclusions publication-title: Miner. Deposita doi: 10.1007/s00126-017-0760-6 – volume: 51 start-page: 639 year: 2016 ident: 10.1016/j.oregeorev.2024.105976_b0280 article-title: A refined genetic model for the Laisvall and Vassbo Mississippi Valley-type sandstone-hosted deposits, Sweden: constraints from paragenetic studies, organic geochemistry, and S, C, N, and Sr isotope data publication-title: Miner. Deposita doi: 10.1007/s00126-015-0627-7 – volume: 33 start-page: 340 year: 2006 ident: 10.1016/j.oregeorev.2024.105976_b0160 article-title: Metallogeneses in the collisional Orogen of the Qinghai-Tibet Plateau: Tectonic setting, tempo-spatial distribution and ore deposit types publication-title: Geol. China |
SSID | ssj0006001 |
Score | 2.378062 |
Snippet | [Display omitted]
•A simple (Fe, Mn) or coupled (Cu, Ag coupled with In, Sb, Ga, Ge, Sn) substitution for Zn was observed in sphalerite.•The Zhaxikang is a... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 105976 |
SubjectTerms | In-situ analysis Lead isotope Sulfur isotope Tibet Trace elements of sphalerite Zhaxikang deposit |
Title | In-situ analysis of sphalerite trace elements and sulfur isotope of the Zhaxikang Pb-Zn-Sb-Ag deposit in southern Tibet: Implications for source and mineralization process |
URI | https://dx.doi.org/10.1016/j.oregeorev.2024.105976 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhodAeSpq2NE27zKFXdW1LWku5LSHpbktDIVsIuRjJkhP3wza2F9JL_1D_ZEaWt91AoYcebSRsNON5M_jNG0LeaET93MaMFrHQlEvNqckji1UK99pDiS2E73f-eD5bfObvL8XlDjnZ9MJ4WuUY-0NMH6L1eGc6nua0KcvphdcRidlMehZkjFWK72Dnqffytz__0Dw8oAd9b0X96nscr7rF0rz2w14SxCo_81Z58ZG_IdQW6pztk8djugjz8EZPyI6rDsijLRHBA_Lg3TCc98dT8mtZ0a7s16BHpRGoC-iaG8SAFjNL6FudO3CBMN7hKgvd-luxbqHs6r5unF-PCSFc3ejb8quuruGToVcVvTB0fg3WDQwvKCvo6oEYX8GqNK4_huUWLx0wDYbwT2B4xPdyELYe-z2hCZ0Jz8jq7HR1sqDjMAaqGWM9VSpVMjJGiURJyV2uJWaDhRK5zHM5ywv8mLH68QJ3nNk01txFWs-4tFhwMc2ek92qrtwLAsbwxKaRksIKjBhORTqV6DMiMYpZoQ9JtDn_rAmSG9mGi_Yl-22yzJssCyY7JMcbO2X3vCdDYPjX5pf_s_mIPPRXgcvziuz27dq9xjSlN5PBDydkb778sDifDMX-HbaG65w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrRBwQFCoKJ9z4GptEtu7dm-rirJL2xVSF6nqJbJjpw20SZRkJfhN_EnsOFttJSQOXBNbiTyTeTPKmzcAH5VD_czElOQxV4QJxYjOIuOqFOa1hxKTc9_vfLaczL-xLxf8YgeONr0wnlY5xP4Q0_toPVwZD6c5rotifO51RGI6EZ4FGbsq5QHsenUqPoLd2eJkvrwLyB7Tg8S3JH7DPZpX1bjqvPLzXhIHV37srfT6I38DqS3gOX4GT4eMEWfhpZ7Dji334MmWjuAePPzcz-f99QJ-L0rSFt0a1SA2glWObX3tYKBxySV2jcos2sAZb90qg-36Jl83WLRVV9XWr3c5IV5eq5_FD1Ve4VdNLktyrsnsCo3tSV5YlNhWPTe-xFWhbXeIiy1qOrpMGMNvgf4Rt0WvbT20fGIdmhNewur40-poToZ5DERRSjsi5VSKSGvJEykEs5kSLiHMJc9ElolJlrvv2RVAXuOOUTONFbORUhMmjKu5qKL7MCqr0r4C1JolZhpJwQ13QcPKSE2FcxueaEkNVwcQbc4_rYPqRrqho31P70yWepOlwWQHcLixU3rPgVKHDf_a_Pp_Nn-AR_PV2Wl6ulievIHH_k6g9ryFUdes7TuXtXT6_eCVfwA63O1Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+analysis+of+sphalerite+trace+elements+and+sulfur+isotope+of+the+Zhaxikang+Pb-Zn-Sb-Ag+deposit+in+southern+Tibet%3A+Implications+for+source+and+mineralization+process&rft.jtitle=Ore+geology+reviews&rft.au=Lan%2C+Qing&rft.au=Hu%2C+Ruizhong&rft.au=Bi%2C+Xianwu&rft.au=Xiao%2C+Jiafei&rft.date=2024-04-01&rft.pub=Elsevier+B.V&rft.issn=0169-1368&rft.volume=167&rft_id=info:doi/10.1016%2Fj.oregeorev.2024.105976&rft.externalDocID=S0169136824001094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-1368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-1368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-1368&client=summon |