Revealing the Structure Evolution of Heterogeneous Pd Catalyst in Suzuki Reaction via the Identical Location Transmission Electron Microscopy
The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together wi...
Saved in:
Published in | ACS nano Vol. 15; no. 5; pp. 8621 - 8637 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki–Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications. |
---|---|
AbstractList | The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki–Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications. The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki-Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications.The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki-Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications. |
Author | Botton, Gianluigi A Wan, Ying Zhang, Ying Shi, Wen Niu, Yiming Zhang, Liyun Li, Shunlin Zhang, Bingsen |
AuthorAffiliation | University of Science and Technology of China Shenyang National Laboratory for Materials Science School of Materials Science and Engineering McMaster University Department of Materials Science and Engineering Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Shenyang National Laboratory for Materials Science – name: McMaster University – name: Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry – name: School of Materials Science and Engineering – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Wen surname: Shi fullname: Shi, Wen organization: University of Science and Technology of China – sequence: 2 givenname: Yiming surname: Niu fullname: Niu, Yiming organization: University of Science and Technology of China – sequence: 3 givenname: Shunlin surname: Li fullname: Li, Shunlin organization: Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry – sequence: 4 givenname: Liyun surname: Zhang fullname: Zhang, Liyun organization: Shenyang National Laboratory for Materials Science – sequence: 5 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: Shenyang National Laboratory for Materials Science – sequence: 6 givenname: Gianluigi A orcidid: 0000-0002-8746-1146 surname: Botton fullname: Botton, Gianluigi A organization: McMaster University – sequence: 7 givenname: Ying orcidid: 0000-0002-6898-6748 surname: Wan fullname: Wan, Ying email: ywan@shnu.edu.cn organization: Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry – sequence: 8 givenname: Bingsen orcidid: 0000-0002-2607-2999 surname: Zhang fullname: Zhang, Bingsen email: bszhang@imr.ac.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33960778$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1rGzEQhkVJaT7ac29Fx0Jxol15d7XHYpwm4NCSpNCbGEuzqVJZcvVhcP9D_3PktdNDISeNmOd9mXfmlBw575CQ9xU7r1hdXYCKDpw_rxRjU9G-IidVz9sJE-2Po391Ux2T0xgfGWs60bVvyDHnfcu6TpyQv7e4QbDGPdD0E-ldClmlHJDON97mZLyjfqBXmDD4B3Toc6TfNJ1BAruNiRpH7_Kf_MvQWwQ18hsDo9e1RpeMAksXXsHYug_g4srEuPvMLaoUSnFjVPBR-fX2LXk9gI347vCeke-X8_vZ1WTx9cv17PNiApzzNOk0F33DSxaNve7V0GpRaz6wetkzAUuFU44V62qhOoAyF4OB84FrsWwRh46fkY9733XwvzPGJMtQCq2FMaGsm3rKm6LvC_rhgOblCrVcB7OCsJXPKyxAswd2IWLAQSqTxrgpgLGyYnJ3Knk4lTycqugu_tM9W7-s-LRXlIZ89Dm4sqMX6SdGGaq9 |
CitedBy_id | crossref_primary_10_1016_j_mcat_2022_112452 crossref_primary_10_1016_j_colsurfa_2022_128343 crossref_primary_10_34133_research_0043 crossref_primary_10_1039_D2CY01857H crossref_primary_10_1016_j_apsusc_2025_162637 crossref_primary_10_1039_D2RA02799B crossref_primary_10_1016_j_mcat_2021_111928 crossref_primary_10_31857_S0453881124020071 crossref_primary_10_3390_molecules30030656 crossref_primary_10_1016_j_jcat_2024_115535 crossref_primary_10_2139_ssrn_4185367 crossref_primary_10_1016_j_partic_2025_01_015 crossref_primary_10_1021_acscatal_3c03889 crossref_primary_10_1016_j_nanoms_2022_05_001 crossref_primary_10_1021_acsanm_4c03572 crossref_primary_10_1016_j_jorganchem_2024_123444 crossref_primary_10_1016_j_xcrp_2022_100984 crossref_primary_10_1021_acsanm_1c02311 crossref_primary_10_1016_j_jiec_2024_06_035 crossref_primary_10_1016_j_micromeso_2022_112329 crossref_primary_10_1021_acsapm_4c03248 crossref_primary_10_1016_j_molstruc_2023_137136 crossref_primary_10_1021_acsami_2c10530 crossref_primary_10_1039_D4CY01100G crossref_primary_10_1016_j_apsusc_2024_159904 crossref_primary_10_1016_j_inoche_2024_112405 crossref_primary_10_1134_S002315842360116X |
Cites_doi | 10.1021/ar400168s 10.1021/jo048531j 10.1021/ja308139s 10.1002/chem.201201224 10.1021/jacs.7b09314 10.1021/ja808481g 10.1002/cctc.201402175 10.1016/j.jcat.2007.07.005 10.1016/0304-5102(92)80048-L 10.1039/C3CS60197H 10.1021/acscatal.5b02147 10.1021/acscatal.6b02207 10.1002/anie.200800153 10.1016/j.jcat.2018.09.014 10.1021/acsanm.9b02017 10.1039/C9CY02121C 10.1002/anie.201301737 10.1021/cr100355b 10.1016/S0925-9635(96)00668-1 10.1021/jacs.0c04804 10.1021/am506916y 10.1002/anie.201511558 10.1021/cr0505674 10.1021/cs5008014 10.1021/acs.jpclett.9b00351 10.1021/jo052409i 10.1021/ol050218w 10.1016/j.jcat.2010.05.009 10.1126/sciadv.aao6657 10.1038/35084046 10.1016/S0040-4020(02)01188-2 10.1039/C7CY01201B 10.1021/ic062183h 10.1016/j.jcat.2020.03.011 10.1021/cm0103895 10.1016/S1387-1811(01)00232-3 10.1002/anie.200906675 10.1039/C0EE00248H 10.1016/j.ccr.2016.12.021 10.1038/nmat2380 10.1038/s41565-018-0167-2 10.1021/acs.chemrev.7b00443 10.1021/ja057704z 10.1002/anie.200703067 10.1021/ar980063a 10.1002/anie.201103465 10.1016/j.jcat.2004.11.003 10.1002/anie.200504321 10.1016/1381-1169(94)00021-2 10.1002/chem.200700105 10.1038/s41929-020-0442-0 10.1039/C8NR05267K 10.1002/anie.201001699 10.1021/ar9700163 10.1021/ja206846p 10.1039/b406719n 10.1021/ja0430954 10.1021/ja003191e 10.1021/ja901105a 10.1021/ar800036s 10.1002/chem.201300177 10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C 10.1002/anie.201400483 10.1016/j.jpowsour.2008.08.003 10.1002/anie.201609663 10.1016/j.carbon.2004.08.029 10.1016/j.elecom.2008.05.032 10.1038/nmat2711 10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N 10.1016/S0926-860X(00)00885-1 10.1002/adsc.200505473 10.1021/ja026032z 10.1021/ja042491j 10.1016/j.apcatb.2017.11.057 10.1002/(SICI)1521-3765(20000303)6:5<843::AID-CHEM843>3.0.CO;2-G 10.1016/j.jcat.2007.06.004 10.1134/S0023158412060109 10.1021/ol048972p 10.1021/jo051501b 10.1038/33823 10.1039/B206691B 10.1016/j.apcata.2007.03.010 10.1002/chem.201400018 |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.1c00486 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 8637 |
ExternalDocumentID | 33960778 10_1021_acsnano_1c00486 b998174511 |
Genre | Journal Article |
GroupedDBID | - .K2 23M 3RI 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ NPM 7X8 |
ID | FETCH-LOGICAL-a333t-7d38953876de9d9cf6d82d3f02b908abce43e10728c7aaeac0af33f3d8b6eef73 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 18:54:18 EDT 2025 Thu Apr 03 07:01:43 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Tue Jul 01 03:37:10 EDT 2025 Thu May 27 05:45:54 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | pallidum nanoparticle heterogeneous catalysis structure evolution Suzuki−Miyaura reaction identical location transmission electron microscopy (IL-TEM) |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-7d38953876de9d9cf6d82d3f02b908abce43e10728c7aaeac0af33f3d8b6eef73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2607-2999 0000-0002-6898-6748 0000-0002-8746-1146 |
PMID | 33960778 |
PQID | 2524357289 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2524357289 pubmed_primary_33960778 crossref_citationtrail_10_1021_acsnano_1c00486 crossref_primary_10_1021_acsnano_1c00486 acs_journals_10_1021_acsnano_1c00486 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 3RI GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-25 |
PublicationDateYYYYMMDD | 2021-05-25 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref27/cit27 doi: 10.1021/ar400168s – ident: ref30/cit30 doi: 10.1021/jo048531j – ident: ref80/cit80 doi: 10.1021/ja308139s – ident: ref61/cit61 doi: 10.1002/chem.201201224 – ident: ref22/cit22 doi: 10.1021/jacs.7b09314 – ident: ref76/cit76 doi: 10.1021/ja808481g – ident: ref13/cit13 doi: 10.1002/cctc.201402175 – ident: ref43/cit43 doi: 10.1016/j.jcat.2007.07.005 – ident: ref60/cit60 doi: 10.1016/0304-5102(92)80048-L – ident: ref5/cit5 doi: 10.1039/C3CS60197H – ident: ref44/cit44 doi: 10.1021/acscatal.5b02147 – ident: ref53/cit53 doi: 10.1021/acscatal.6b02207 – ident: ref74/cit74 doi: 10.1002/anie.200800153 – ident: ref63/cit63 doi: 10.1016/j.jcat.2018.09.014 – ident: ref23/cit23 doi: 10.1021/acsanm.9b02017 – ident: ref64/cit64 doi: 10.1039/C9CY02121C – ident: ref35/cit35 doi: 10.1002/anie.201301737 – ident: ref10/cit10 doi: 10.1021/cr100355b – ident: ref71/cit71 doi: 10.1016/S0925-9635(96)00668-1 – ident: ref28/cit28 doi: 10.1021/jacs.0c04804 – ident: ref78/cit78 doi: 10.1021/am506916y – ident: ref79/cit79 doi: 10.1002/anie.201511558 – ident: ref9/cit9 doi: 10.1021/cr0505674 – ident: ref32/cit32 doi: 10.1021/cs5008014 – ident: ref45/cit45 doi: 10.1021/acs.jpclett.9b00351 – ident: ref49/cit49 doi: 10.1021/jo052409i – ident: ref21/cit21 doi: 10.1021/ol050218w – ident: ref18/cit18 doi: 10.1016/j.jcat.2010.05.009 – ident: ref81/cit81 doi: 10.1126/sciadv.aao6657 – ident: ref73/cit73 doi: 10.1038/35084046 – ident: ref1/cit1 doi: 10.1016/S0040-4020(02)01188-2 – ident: ref62/cit62 doi: 10.1039/C7CY01201B – ident: ref2/cit2 doi: 10.1021/ic062183h – ident: ref14/cit14 doi: 10.1016/j.jcat.2020.03.011 – ident: ref57/cit57 doi: 10.1021/cm0103895 – ident: ref17/cit17 doi: 10.1016/S1387-1811(01)00232-3 – ident: ref26/cit26 doi: 10.1002/anie.200906675 – ident: ref52/cit52 doi: 10.1039/C0EE00248H – ident: ref40/cit40 doi: 10.1016/j.ccr.2016.12.021 – ident: ref83/cit83 doi: 10.1038/nmat2380 – ident: ref66/cit66 doi: 10.1038/s41565-018-0167-2 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.7b00443 – ident: ref7/cit7 doi: 10.1021/ja057704z – ident: ref25/cit25 doi: 10.1002/anie.200703067 – ident: ref33/cit33 doi: 10.1021/ar980063a – ident: ref39/cit39 doi: 10.1002/anie.201103465 – ident: ref58/cit58 doi: 10.1016/j.jcat.2004.11.003 – ident: ref36/cit36 doi: 10.1002/anie.200504321 – ident: ref67/cit67 doi: 10.1016/1381-1169(94)00021-2 – ident: ref38/cit38 doi: 10.1002/chem.200700105 – ident: ref46/cit46 doi: 10.1038/s41929-020-0442-0 – ident: ref54/cit54 doi: 10.1039/C8NR05267K – ident: ref77/cit77 doi: 10.1002/anie.201001699 – ident: ref41/cit41 doi: 10.1021/ar9700163 – ident: ref16/cit16 doi: 10.1021/ja206846p – ident: ref29/cit29 doi: 10.1039/b406719n – ident: ref42/cit42 doi: 10.1021/ja0430954 – ident: ref48/cit48 doi: 10.1021/ja003191e – ident: ref12/cit12 doi: 10.1021/ja901105a – ident: ref8/cit8 doi: 10.1021/ar800036s – ident: ref34/cit34 doi: 10.1002/chem.201300177 – ident: ref75/cit75 doi: 10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C – ident: ref31/cit31 doi: 10.1002/anie.201400483 – ident: ref50/cit50 doi: 10.1016/j.jpowsour.2008.08.003 – ident: ref56/cit56 doi: 10.1002/anie.201609663 – ident: ref68/cit68 doi: 10.1016/j.carbon.2004.08.029 – ident: ref51/cit51 doi: 10.1016/j.elecom.2008.05.032 – ident: ref72/cit72 doi: 10.1038/nmat2711 – ident: ref4/cit4 doi: 10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N – ident: ref55/cit55 doi: 10.1016/S0926-860X(00)00885-1 – ident: ref24/cit24 doi: 10.1002/adsc.200505473 – ident: ref19/cit19 doi: 10.1021/ja026032z – ident: ref6/cit6 doi: 10.1021/ja042491j – ident: ref65/cit65 doi: 10.1016/j.apcatb.2017.11.057 – ident: ref59/cit59 doi: 10.1002/(SICI)1521-3765(20000303)6:5<843::AID-CHEM843>3.0.CO;2-G – ident: ref15/cit15 doi: 10.1016/j.jcat.2007.06.004 – ident: ref47/cit47 doi: 10.1134/S0023158412060109 – ident: ref20/cit20 doi: 10.1021/ol048972p – ident: ref11/cit11 doi: 10.1021/jo051501b – ident: ref82/cit82 doi: 10.1038/33823 – ident: ref70/cit70 doi: 10.1039/B206691B – ident: ref37/cit37 doi: 10.1016/j.apcata.2007.03.010 – ident: ref69/cit69 doi: 10.1002/chem.201400018 |
SSID | ssj0057876 |
Score | 2.4843638 |
Snippet | The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8621 |
Title | Revealing the Structure Evolution of Heterogeneous Pd Catalyst in Suzuki Reaction via the Identical Location Transmission Electron Microscopy |
URI | http://dx.doi.org/10.1021/acsnano.1c00486 https://www.ncbi.nlm.nih.gov/pubmed/33960778 https://www.proquest.com/docview/2524357289 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELdG9wIPwPgYHWw6pD7wkpLYTZw8VlWrahoTolTqW-SvSFVRMpGmEvwP_M87O2nHhqrxlofYss8_--58dz8T0gl8YzKVKM_nIvJwJ0ovkSzycHPwUOtYx64W5uZnNJ72vs_C2R-y6H8j-DS4FqrMRV50A-Xo4XbIRxrF3PpZ_cFkfeha3EV1ABkdZLQiNiw-bzqwakiVf6uhLbal0zGjgzo7q3TUhDa1ZNGtlrKrnt8SN_5_-Idkv7E0oV9D4xP5YPIjsveKf_CYvNyZFRqK-A1oB8LEcclWjwaGqwaRUGQwthkzBQLNFFUJtxoG9srnqVzCPIdJ9Vwt5nBn6gIJWM2F66suAEYAwI-ivhUEpxYRVvZ-DobN8ztwYzMCbW3M0wmZjob3g7HXvM_gCcbY0uMarR08MHmkTaITlUU6ppplPpWJHwupTI8ZdC9prLgQOA5fZIxlTMcyQoRwdkpaeZGbMwK0p_yeEKGgTNhIrVSSSoruueJKB5q2SQcFmTb7q0xd6JwGaSPdtJFum3TXq5qqhuPcPrXxsL3B1abBr5reY_uvl2uYpCgrG1cRTvApDSkanTjNpE0-1_jZdMYYuoicx1_eN4Fzsktt0owfejS8IC1cd_MVrZ6l_Obw_htXHQDc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Jb9NAFH4q5QAcKDtpWQapSFwc7JnYYx84VCFVSpMKNa3UmzubpajIRjgOSv9D_wN_hX_Gm_EkbIrEpRI3y_I8ed4y8715ywDsRqExhcpUEHKRBGiJMsgkSwI0Dh5rnerU1cKMj5Lhae_DWXy2Ad-WtTD4EzVSql0Q_2d3gegtvitFWXUj5brE-TTKQ7P4ik5a_e7gPUr0NaX7g5P-MPD3CASCMTYLuMZdGQ2bJ9pkOlNFolOqWRFSmYWpkMr0mEE3iKaKC4ErUSgKxgqmU5ngTDhDujfgJkIfat27vf5kudZbdU_auDX65QheVs2D_vphu_up-vfdbw2kdVvb_hZ8XzHFZbRcdJuZ7KrLP_pF_s9cuwd3Pa4me60h3IcNUz6AO790W3wIV8dmjrAYnwmiXjJxnXObL4YM5t7-SFWQoc0PqtCsTNXU5KMmfXvAtahnZFqSSXPZXEzJsWnLQch8KhytttwZ1Z2MqvYMlDgQgEZkTyPJwF82RMY2_9FWAi0ewem18OMxbJZVaZ4CoT0V9oSIBWXCxqWlklRSnuJIpSNNO7CLgsv9alLnLlGARrmXZu6l2YHuUply5Tu624tFPq0f8GY14HPbzGT9p6-W2pkjr2wUSTjG5zSmCLFxmlkHnrRquyLGGDrEnKfb_zaBl3BreDIe5aODo8MduE1tulAYBzR-BpuoA-Y54r2ZfOFMjsD5dWvrD1bEZhs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9tAEB7SFEp7SJ9J3OcWUuhFrrRraaVDD8GxcZoHIW4gN3VfApMihchycP5D_0X_Sv9XZ1dr0weGXgK9CaEdtDPz7c7sPBZgJwqNKVSmgpCLJEAkyiCTLAkQHDzWOtWpq4U5Ok5GZ71P5_H5Gnxf1MLgT9RIqXZBfIvqS134DgPRB3xfirLqRsp1ivOplAdmfo2OWv1xfw-l-o7S4eBzfxT4uwQCwRibBlzjzozg5ok2mc5UkeiUalaEVGZhKqQyPWbQFaKp4kLgahSKgrGC6VQmOBvOkO4duGuDhNbF2-2PF-u9VfmkjV2jb44GzLKB0F8_bHdAVf--A64wa932NnwIP5aMcVktF91mKrvq5o-ekf875x7BhrevyW4LiMewZson8OCXrotP4dupmaF5jM8ErV8ydh10mytDBjOPQ1IVZGTzhCqEl6mampxo0rcHXfN6SiYlGTc3zcWEnJq2LITMJsLRasueUe3JYdWehRJnDCCY7KkkGfhLh8iRzYO0FUHzZ3B2K_zYhPWyKs02ENpTYU-IWFAmbHxaKkkl5SmOVDrStAM7KLjcryp17hIGaJR7aeZemh3oLhQqV76zu71g5OvqAe-XAy7bpiarP3270NAceWWjScIxPqcxRVMbp5l1YKtV3SUxxtAx5jx9_m8TeAP3TvaG-eH-8cELuE9t1lAYBzR-CeuoAuYVmn1T-dqhjsCX21bWn-b1aJ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Structure+Evolution+of+Heterogeneous+Pd+Catalyst+in+Suzuki+Reaction+via+the+Identical+Location+Transmission+Electron+Microscopy&rft.jtitle=ACS+nano&rft.au=Shi%2C+Wen&rft.au=Niu%2C+Yiming&rft.au=Li%2C+Shunlin&rft.au=Zhang%2C+Liyun&rft.date=2021-05-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=5&rft.spage=8621&rft.epage=8637&rft_id=info:doi/10.1021%2Facsnano.1c00486&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_1c00486 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |