Revealing the Structure Evolution of Heterogeneous Pd Catalyst in Suzuki Reaction via the Identical Location Transmission Electron Microscopy

The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together wi...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 5; pp. 8621 - 8637
Main Authors Shi, Wen, Niu, Yiming, Li, Shunlin, Zhang, Liyun, Zhang, Ying, Botton, Gianluigi A, Wan, Ying, Zhang, Bingsen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki–Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications.
AbstractList The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki–Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications.
The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki-Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications.The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki-Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications.
Author Botton, Gianluigi A
Wan, Ying
Zhang, Ying
Shi, Wen
Niu, Yiming
Zhang, Liyun
Li, Shunlin
Zhang, Bingsen
AuthorAffiliation University of Science and Technology of China
Shenyang National Laboratory for Materials Science
School of Materials Science and Engineering
McMaster University
Department of Materials Science and Engineering
Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Shenyang National Laboratory for Materials Science
– name: McMaster University
– name: Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry
– name: School of Materials Science and Engineering
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Wen
  surname: Shi
  fullname: Shi, Wen
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Yiming
  surname: Niu
  fullname: Niu, Yiming
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Shunlin
  surname: Li
  fullname: Li, Shunlin
  organization: Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry
– sequence: 4
  givenname: Liyun
  surname: Zhang
  fullname: Zhang, Liyun
  organization: Shenyang National Laboratory for Materials Science
– sequence: 5
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: Shenyang National Laboratory for Materials Science
– sequence: 6
  givenname: Gianluigi A
  orcidid: 0000-0002-8746-1146
  surname: Botton
  fullname: Botton, Gianluigi A
  organization: McMaster University
– sequence: 7
  givenname: Ying
  orcidid: 0000-0002-6898-6748
  surname: Wan
  fullname: Wan, Ying
  email: ywan@shnu.edu.cn
  organization: Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry
– sequence: 8
  givenname: Bingsen
  orcidid: 0000-0002-2607-2999
  surname: Zhang
  fullname: Zhang, Bingsen
  email: bszhang@imr.ac.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33960778$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1rGzEQhkVJaT7ac29Fx0Jxol15d7XHYpwm4NCSpNCbGEuzqVJZcvVhcP9D_3PktdNDISeNmOd9mXfmlBw575CQ9xU7r1hdXYCKDpw_rxRjU9G-IidVz9sJE-2Po391Ux2T0xgfGWs60bVvyDHnfcu6TpyQv7e4QbDGPdD0E-ldClmlHJDON97mZLyjfqBXmDD4B3Toc6TfNJ1BAruNiRpH7_Kf_MvQWwQ18hsDo9e1RpeMAksXXsHYug_g4srEuPvMLaoUSnFjVPBR-fX2LXk9gI347vCeke-X8_vZ1WTx9cv17PNiApzzNOk0F33DSxaNve7V0GpRaz6wetkzAUuFU44V62qhOoAyF4OB84FrsWwRh46fkY9733XwvzPGJMtQCq2FMaGsm3rKm6LvC_rhgOblCrVcB7OCsJXPKyxAswd2IWLAQSqTxrgpgLGyYnJ3Knk4lTycqugu_tM9W7-s-LRXlIZ89Dm4sqMX6SdGGaq9
CitedBy_id crossref_primary_10_1016_j_mcat_2022_112452
crossref_primary_10_1016_j_colsurfa_2022_128343
crossref_primary_10_34133_research_0043
crossref_primary_10_1039_D2CY01857H
crossref_primary_10_1016_j_apsusc_2025_162637
crossref_primary_10_1039_D2RA02799B
crossref_primary_10_1016_j_mcat_2021_111928
crossref_primary_10_31857_S0453881124020071
crossref_primary_10_3390_molecules30030656
crossref_primary_10_1016_j_jcat_2024_115535
crossref_primary_10_2139_ssrn_4185367
crossref_primary_10_1016_j_partic_2025_01_015
crossref_primary_10_1021_acscatal_3c03889
crossref_primary_10_1016_j_nanoms_2022_05_001
crossref_primary_10_1021_acsanm_4c03572
crossref_primary_10_1016_j_jorganchem_2024_123444
crossref_primary_10_1016_j_xcrp_2022_100984
crossref_primary_10_1021_acsanm_1c02311
crossref_primary_10_1016_j_jiec_2024_06_035
crossref_primary_10_1016_j_micromeso_2022_112329
crossref_primary_10_1021_acsapm_4c03248
crossref_primary_10_1016_j_molstruc_2023_137136
crossref_primary_10_1021_acsami_2c10530
crossref_primary_10_1039_D4CY01100G
crossref_primary_10_1016_j_apsusc_2024_159904
crossref_primary_10_1016_j_inoche_2024_112405
crossref_primary_10_1134_S002315842360116X
Cites_doi 10.1021/ar400168s
10.1021/jo048531j
10.1021/ja308139s
10.1002/chem.201201224
10.1021/jacs.7b09314
10.1021/ja808481g
10.1002/cctc.201402175
10.1016/j.jcat.2007.07.005
10.1016/0304-5102(92)80048-L
10.1039/C3CS60197H
10.1021/acscatal.5b02147
10.1021/acscatal.6b02207
10.1002/anie.200800153
10.1016/j.jcat.2018.09.014
10.1021/acsanm.9b02017
10.1039/C9CY02121C
10.1002/anie.201301737
10.1021/cr100355b
10.1016/S0925-9635(96)00668-1
10.1021/jacs.0c04804
10.1021/am506916y
10.1002/anie.201511558
10.1021/cr0505674
10.1021/cs5008014
10.1021/acs.jpclett.9b00351
10.1021/jo052409i
10.1021/ol050218w
10.1016/j.jcat.2010.05.009
10.1126/sciadv.aao6657
10.1038/35084046
10.1016/S0040-4020(02)01188-2
10.1039/C7CY01201B
10.1021/ic062183h
10.1016/j.jcat.2020.03.011
10.1021/cm0103895
10.1016/S1387-1811(01)00232-3
10.1002/anie.200906675
10.1039/C0EE00248H
10.1016/j.ccr.2016.12.021
10.1038/nmat2380
10.1038/s41565-018-0167-2
10.1021/acs.chemrev.7b00443
10.1021/ja057704z
10.1002/anie.200703067
10.1021/ar980063a
10.1002/anie.201103465
10.1016/j.jcat.2004.11.003
10.1002/anie.200504321
10.1016/1381-1169(94)00021-2
10.1002/chem.200700105
10.1038/s41929-020-0442-0
10.1039/C8NR05267K
10.1002/anie.201001699
10.1021/ar9700163
10.1021/ja206846p
10.1039/b406719n
10.1021/ja0430954
10.1021/ja003191e
10.1021/ja901105a
10.1021/ar800036s
10.1002/chem.201300177
10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
10.1002/anie.201400483
10.1016/j.jpowsour.2008.08.003
10.1002/anie.201609663
10.1016/j.carbon.2004.08.029
10.1016/j.elecom.2008.05.032
10.1038/nmat2711
10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N
10.1016/S0926-860X(00)00885-1
10.1002/adsc.200505473
10.1021/ja026032z
10.1021/ja042491j
10.1016/j.apcatb.2017.11.057
10.1002/(SICI)1521-3765(20000303)6:5<843::AID-CHEM843>3.0.CO;2-G
10.1016/j.jcat.2007.06.004
10.1134/S0023158412060109
10.1021/ol048972p
10.1021/jo051501b
10.1038/33823
10.1039/B206691B
10.1016/j.apcata.2007.03.010
10.1002/chem.201400018
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.1c00486
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 8637
ExternalDocumentID 33960778
10_1021_acsnano_1c00486
b998174511
Genre Journal Article
GroupedDBID -
.K2
23M
3RI
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
NPM
7X8
ID FETCH-LOGICAL-a333t-7d38953876de9d9cf6d82d3f02b908abce43e10728c7aaeac0af33f3d8b6eef73
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 18:54:18 EDT 2025
Thu Apr 03 07:01:43 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Tue Jul 01 03:37:10 EDT 2025
Thu May 27 05:45:54 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords pallidum nanoparticle
heterogeneous catalysis
structure evolution
Suzuki−Miyaura reaction
identical location transmission electron microscopy (IL-TEM)
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-7d38953876de9d9cf6d82d3f02b908abce43e10728c7aaeac0af33f3d8b6eef73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2607-2999
0000-0002-6898-6748
0000-0002-8746-1146
PMID 33960778
PQID 2524357289
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2524357289
pubmed_primary_33960778
crossref_citationtrail_10_1021_acsnano_1c00486
crossref_primary_10_1021_acsnano_1c00486
acs_journals_10_1021_acsnano_1c00486
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
3RI
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-25
PublicationDateYYYYMMDD 2021-05-25
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1021/ar400168s
– ident: ref30/cit30
  doi: 10.1021/jo048531j
– ident: ref80/cit80
  doi: 10.1021/ja308139s
– ident: ref61/cit61
  doi: 10.1002/chem.201201224
– ident: ref22/cit22
  doi: 10.1021/jacs.7b09314
– ident: ref76/cit76
  doi: 10.1021/ja808481g
– ident: ref13/cit13
  doi: 10.1002/cctc.201402175
– ident: ref43/cit43
  doi: 10.1016/j.jcat.2007.07.005
– ident: ref60/cit60
  doi: 10.1016/0304-5102(92)80048-L
– ident: ref5/cit5
  doi: 10.1039/C3CS60197H
– ident: ref44/cit44
  doi: 10.1021/acscatal.5b02147
– ident: ref53/cit53
  doi: 10.1021/acscatal.6b02207
– ident: ref74/cit74
  doi: 10.1002/anie.200800153
– ident: ref63/cit63
  doi: 10.1016/j.jcat.2018.09.014
– ident: ref23/cit23
  doi: 10.1021/acsanm.9b02017
– ident: ref64/cit64
  doi: 10.1039/C9CY02121C
– ident: ref35/cit35
  doi: 10.1002/anie.201301737
– ident: ref10/cit10
  doi: 10.1021/cr100355b
– ident: ref71/cit71
  doi: 10.1016/S0925-9635(96)00668-1
– ident: ref28/cit28
  doi: 10.1021/jacs.0c04804
– ident: ref78/cit78
  doi: 10.1021/am506916y
– ident: ref79/cit79
  doi: 10.1002/anie.201511558
– ident: ref9/cit9
  doi: 10.1021/cr0505674
– ident: ref32/cit32
  doi: 10.1021/cs5008014
– ident: ref45/cit45
  doi: 10.1021/acs.jpclett.9b00351
– ident: ref49/cit49
  doi: 10.1021/jo052409i
– ident: ref21/cit21
  doi: 10.1021/ol050218w
– ident: ref18/cit18
  doi: 10.1016/j.jcat.2010.05.009
– ident: ref81/cit81
  doi: 10.1126/sciadv.aao6657
– ident: ref73/cit73
  doi: 10.1038/35084046
– ident: ref1/cit1
  doi: 10.1016/S0040-4020(02)01188-2
– ident: ref62/cit62
  doi: 10.1039/C7CY01201B
– ident: ref2/cit2
  doi: 10.1021/ic062183h
– ident: ref14/cit14
  doi: 10.1016/j.jcat.2020.03.011
– ident: ref57/cit57
  doi: 10.1021/cm0103895
– ident: ref17/cit17
  doi: 10.1016/S1387-1811(01)00232-3
– ident: ref26/cit26
  doi: 10.1002/anie.200906675
– ident: ref52/cit52
  doi: 10.1039/C0EE00248H
– ident: ref40/cit40
  doi: 10.1016/j.ccr.2016.12.021
– ident: ref83/cit83
  doi: 10.1038/nmat2380
– ident: ref66/cit66
  doi: 10.1038/s41565-018-0167-2
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.7b00443
– ident: ref7/cit7
  doi: 10.1021/ja057704z
– ident: ref25/cit25
  doi: 10.1002/anie.200703067
– ident: ref33/cit33
  doi: 10.1021/ar980063a
– ident: ref39/cit39
  doi: 10.1002/anie.201103465
– ident: ref58/cit58
  doi: 10.1016/j.jcat.2004.11.003
– ident: ref36/cit36
  doi: 10.1002/anie.200504321
– ident: ref67/cit67
  doi: 10.1016/1381-1169(94)00021-2
– ident: ref38/cit38
  doi: 10.1002/chem.200700105
– ident: ref46/cit46
  doi: 10.1038/s41929-020-0442-0
– ident: ref54/cit54
  doi: 10.1039/C8NR05267K
– ident: ref77/cit77
  doi: 10.1002/anie.201001699
– ident: ref41/cit41
  doi: 10.1021/ar9700163
– ident: ref16/cit16
  doi: 10.1021/ja206846p
– ident: ref29/cit29
  doi: 10.1039/b406719n
– ident: ref42/cit42
  doi: 10.1021/ja0430954
– ident: ref48/cit48
  doi: 10.1021/ja003191e
– ident: ref12/cit12
  doi: 10.1021/ja901105a
– ident: ref8/cit8
  doi: 10.1021/ar800036s
– ident: ref34/cit34
  doi: 10.1002/chem.201300177
– ident: ref75/cit75
  doi: 10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
– ident: ref31/cit31
  doi: 10.1002/anie.201400483
– ident: ref50/cit50
  doi: 10.1016/j.jpowsour.2008.08.003
– ident: ref56/cit56
  doi: 10.1002/anie.201609663
– ident: ref68/cit68
  doi: 10.1016/j.carbon.2004.08.029
– ident: ref51/cit51
  doi: 10.1016/j.elecom.2008.05.032
– ident: ref72/cit72
  doi: 10.1038/nmat2711
– ident: ref4/cit4
  doi: 10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N
– ident: ref55/cit55
  doi: 10.1016/S0926-860X(00)00885-1
– ident: ref24/cit24
  doi: 10.1002/adsc.200505473
– ident: ref19/cit19
  doi: 10.1021/ja026032z
– ident: ref6/cit6
  doi: 10.1021/ja042491j
– ident: ref65/cit65
  doi: 10.1016/j.apcatb.2017.11.057
– ident: ref59/cit59
  doi: 10.1002/(SICI)1521-3765(20000303)6:5<843::AID-CHEM843>3.0.CO;2-G
– ident: ref15/cit15
  doi: 10.1016/j.jcat.2007.06.004
– ident: ref47/cit47
  doi: 10.1134/S0023158412060109
– ident: ref20/cit20
  doi: 10.1021/ol048972p
– ident: ref11/cit11
  doi: 10.1021/jo051501b
– ident: ref82/cit82
  doi: 10.1038/33823
– ident: ref70/cit70
  doi: 10.1039/B206691B
– ident: ref37/cit37
  doi: 10.1016/j.apcata.2007.03.010
– ident: ref69/cit69
  doi: 10.1002/chem.201400018
SSID ssj0057876
Score 2.4843638
Snippet The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8621
Title Revealing the Structure Evolution of Heterogeneous Pd Catalyst in Suzuki Reaction via the Identical Location Transmission Electron Microscopy
URI http://dx.doi.org/10.1021/acsnano.1c00486
https://www.ncbi.nlm.nih.gov/pubmed/33960778
https://www.proquest.com/docview/2524357289
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELdG9wIPwPgYHWw6pD7wkpLYTZw8VlWrahoTolTqW-SvSFVRMpGmEvwP_M87O2nHhqrxlofYss8_--58dz8T0gl8YzKVKM_nIvJwJ0ovkSzycHPwUOtYx64W5uZnNJ72vs_C2R-y6H8j-DS4FqrMRV50A-Xo4XbIRxrF3PpZ_cFkfeha3EV1ABkdZLQiNiw-bzqwakiVf6uhLbal0zGjgzo7q3TUhDa1ZNGtlrKrnt8SN_5_-Idkv7E0oV9D4xP5YPIjsveKf_CYvNyZFRqK-A1oB8LEcclWjwaGqwaRUGQwthkzBQLNFFUJtxoG9srnqVzCPIdJ9Vwt5nBn6gIJWM2F66suAEYAwI-ivhUEpxYRVvZ-DobN8ztwYzMCbW3M0wmZjob3g7HXvM_gCcbY0uMarR08MHmkTaITlUU6ppplPpWJHwupTI8ZdC9prLgQOA5fZIxlTMcyQoRwdkpaeZGbMwK0p_yeEKGgTNhIrVSSSoruueJKB5q2SQcFmTb7q0xd6JwGaSPdtJFum3TXq5qqhuPcPrXxsL3B1abBr5reY_uvl2uYpCgrG1cRTvApDSkanTjNpE0-1_jZdMYYuoicx1_eN4Fzsktt0owfejS8IC1cd_MVrZ6l_Obw_htXHQDc
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Jb9NAFH4q5QAcKDtpWQapSFwc7JnYYx84VCFVSpMKNa3UmzubpajIRjgOSv9D_wN_hX_Gm_EkbIrEpRI3y_I8ed4y8715ywDsRqExhcpUEHKRBGiJMsgkSwI0Dh5rnerU1cKMj5Lhae_DWXy2Ad-WtTD4EzVSql0Q_2d3gegtvitFWXUj5brE-TTKQ7P4ik5a_e7gPUr0NaX7g5P-MPD3CASCMTYLuMZdGQ2bJ9pkOlNFolOqWRFSmYWpkMr0mEE3iKaKC4ErUSgKxgqmU5ngTDhDujfgJkIfat27vf5kudZbdU_auDX65QheVs2D_vphu_up-vfdbw2kdVvb_hZ8XzHFZbRcdJuZ7KrLP_pF_s9cuwd3Pa4me60h3IcNUz6AO790W3wIV8dmjrAYnwmiXjJxnXObL4YM5t7-SFWQoc0PqtCsTNXU5KMmfXvAtahnZFqSSXPZXEzJsWnLQch8KhytttwZ1Z2MqvYMlDgQgEZkTyPJwF82RMY2_9FWAi0ewem18OMxbJZVaZ4CoT0V9oSIBWXCxqWlklRSnuJIpSNNO7CLgsv9alLnLlGARrmXZu6l2YHuUply5Tu624tFPq0f8GY14HPbzGT9p6-W2pkjr2wUSTjG5zSmCLFxmlkHnrRquyLGGDrEnKfb_zaBl3BreDIe5aODo8MduE1tulAYBzR-BpuoA-Y54r2ZfOFMjsD5dWvrD1bEZhs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9tAEB7SFEp7SJ9J3OcWUuhFrrRraaVDD8GxcZoHIW4gN3VfApMihchycP5D_0X_Sv9XZ1dr0weGXgK9CaEdtDPz7c7sPBZgJwqNKVSmgpCLJEAkyiCTLAkQHDzWOtWpq4U5Ok5GZ71P5_H5Gnxf1MLgT9RIqXZBfIvqS134DgPRB3xfirLqRsp1ivOplAdmfo2OWv1xfw-l-o7S4eBzfxT4uwQCwRibBlzjzozg5ok2mc5UkeiUalaEVGZhKqQyPWbQFaKp4kLgahSKgrGC6VQmOBvOkO4duGuDhNbF2-2PF-u9VfmkjV2jb44GzLKB0F8_bHdAVf--A64wa932NnwIP5aMcVktF91mKrvq5o-ekf875x7BhrevyW4LiMewZson8OCXrotP4dupmaF5jM8ErV8ydh10mytDBjOPQ1IVZGTzhCqEl6mampxo0rcHXfN6SiYlGTc3zcWEnJq2LITMJsLRasueUe3JYdWehRJnDCCY7KkkGfhLh8iRzYO0FUHzZ3B2K_zYhPWyKs02ENpTYU-IWFAmbHxaKkkl5SmOVDrStAM7KLjcryp17hIGaJR7aeZemh3oLhQqV76zu71g5OvqAe-XAy7bpiarP3270NAceWWjScIxPqcxRVMbp5l1YKtV3SUxxtAx5jx9_m8TeAP3TvaG-eH-8cELuE9t1lAYBzR-CeuoAuYVmn1T-dqhjsCX21bWn-b1aJ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revealing+the+Structure+Evolution+of+Heterogeneous+Pd+Catalyst+in+Suzuki+Reaction+via+the+Identical+Location+Transmission+Electron+Microscopy&rft.jtitle=ACS+nano&rft.au=Shi%2C+Wen&rft.au=Niu%2C+Yiming&rft.au=Li%2C+Shunlin&rft.au=Zhang%2C+Liyun&rft.date=2021-05-25&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=15&rft.issue=5&rft.spage=8621&rft.epage=8637&rft_id=info:doi/10.1021%2Facsnano.1c00486&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_1c00486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon