Emerging Delivery Systems for Enabling Precision Nucleic Acid Therapeutics

Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 19; no. 4; pp. 4039 - 4083
Main Authors Bian, Xiaochun, Zhou, Liping, Luo, Zhiwei, Liu, Guotao, Hang, Zhongci, Li, Haohao, Li, Fengyong, Wen, Yongqiang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems’ current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine.
AbstractList Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems’ current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine.
Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems' current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine.Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems' current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine.
Author Li, Fengyong
Bian, Xiaochun
Li, Haohao
Zhou, Liping
Wen, Yongqiang
Luo, Zhiwei
Hang, Zhongci
Liu, Guotao
AuthorAffiliation Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering
Plastic Surgery Hospital, Peking Union Medical College
AuthorAffiliation_xml – name: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering
– name: Plastic Surgery Hospital, Peking Union Medical College
Author_xml – sequence: 1
  givenname: Xiaochun
  surname: Bian
  fullname: Bian, Xiaochun
  organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering
– sequence: 2
  givenname: Liping
  orcidid: 0009-0001-9293-2766
  surname: Zhou
  fullname: Zhou, Liping
  email: Liping-Zhou@ustb.edu.cn
  organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering
– sequence: 3
  givenname: Zhiwei
  surname: Luo
  fullname: Luo, Zhiwei
  organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering
– sequence: 4
  givenname: Guotao
  surname: Liu
  fullname: Liu, Guotao
  organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering
– sequence: 5
  givenname: Zhongci
  surname: Hang
  fullname: Hang, Zhongci
  organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering
– sequence: 6
  givenname: Haohao
  surname: Li
  fullname: Li, Haohao
  organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering
– sequence: 7
  givenname: Fengyong
  surname: Li
  fullname: Li, Fengyong
  email: lify202108@163.com
  organization: Plastic Surgery Hospital, Peking Union Medical College
– sequence: 8
  givenname: Yongqiang
  orcidid: 0000-0002-1924-4166
  surname: Wen
  fullname: Wen, Yongqiang
  email: wyq_wen@ustb.edu.cn
  organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39834294$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LxDAQhoMorl9nb9KjIOsmTdIkR9H1i0UFFbyVaTpdI226Jq2w_97Krh4EPc3A-7wD8-ySTd96JOSQ0VNGUzYBGz349lRYxrTUG2SHGZ6Nqc5eNn92yUZkN8Y3SqXSKtsmI240F6kRO-R22mCYOz9PLrB2HxiWyeMydtjEpGpDMvVQ1F_pQ0Dromt9ctfbGp1Nzqwrk6dXDLDAvnM27pOtCuqIB-u5R54vp0_n1-PZ_dXN-dlsDJzzbqy0UQaVNVSCMFkGJVWgSlHw1KYpgFWgtRKlYqIwRaYESE4rlAVUholM8j1yvLq7CO17j7HLGxct1jV4bPuYcyaVlEJpPaBHa7QvGizzRXANhGX-_f8ATFaADW2MAasfhNH8y3C-NpyvDQ8N-athXQfdYKYL4Op_eier3hDkb20f_ODoT_oTjSmP5g
CitedBy_id crossref_primary_10_3390_ijms26062491
crossref_primary_10_1016_j_ijbiomac_2025_142136
Cites_doi 10.1038/nbt.3330
10.1039/D3AN01871G
10.1016/j.ejpb.2024.114474
10.1042/BJ20120146
10.1021/jacs.4c03651
10.1002/adma.202303718
10.1093/narcan/zcad059
10.1002/adma.202305300
10.1002/admi.202101246
10.1016/j.cell.2020.02.001
10.1007/s13346-022-01138-1
10.1038/s41578-021-00358-0
10.1146/annurev-cellbio-100617-062608
10.1016/j.jconrel.2019.01.009
10.1016/j.biomaterials.2023.122464
10.1182/blood-2020-139575
10.3390/biomedicines9050583
10.1016/j.omtn.2022.09.017
10.1016/j.ajps.2022.05.003
10.1038/s41573-020-0075-7
10.1002/adma.202309225
10.1186/s40779-024-00528-5
10.1038/s41467-021-23250-5
10.1016/j.tibtech.2020.07.005
10.1002/anie.202316323
10.1016/j.addr.2012.03.006
10.1093/nar/gkad415
10.1016/j.omtm.2024.101223
10.1146/annurev-biophys-062215-010822
10.1021/acs.chemrev.3c00705
10.1016/j.omtn.2023.09.004
10.1021/acsabm.2c00500
10.1002/anie.202315093
10.1093/nar/gkad259
10.1038/s41559-022-01907-8
10.1056/NEJMoa2034577
10.1021/acsnano.2c12584
10.1002/smll.201902232
10.1016/j.ijbiomac.2022.04.094
10.1007/s40265-021-01473-6
10.1038/s41565-024-01785-0
10.1038/s41573-019-0012-9
10.1016/j.addr.2021.113834
10.1016/j.biotechadv.2020.107534
10.1038/mt.2012.261
10.1002/advs.202309748
10.1002/adfm.202207466
10.1126/science.adk9428
10.1016/j.jconrel.2024.01.060
10.1016/j.compbiomed.2016.08.002
10.1002/adfm.202400837
10.1016/j.pharmthera.2021.108106
10.1038/s41598-019-42523-0
10.1038/nrd1632
10.1016/j.tins.2020.12.002
10.1016/j.addr.2020.12.014
10.1016/j.omtm.2021.03.025
10.1038/s41577-020-0306-5
10.1016/j.cocis.2017.06.003
10.1038/s41551-023-01082-6
10.1039/D2BM02152H
10.1089/crispr.2020.0110
10.1016/j.jconrel.2023.01.017
10.1021/acs.chemrev.8b00570
10.1039/D0CS00560F
10.3866/PKU.WHXB201708311
10.3390/jcm10040838
10.1038/s41556-022-00880-5
10.1038/s41565-023-01548-3
10.1007/s13346-021-00938-1
10.1021/acsnano.4c03626
10.1002/anie.201403236
10.1038/s41541-024-00894-0
10.3390/polym11040745
10.1038/s41578-018-0077-9
10.1002/adfm.202314898
10.1002/adhm.202300549
10.1126/sciadv.adn9961
10.1002/adfm.202401563
10.1002/adhm.202400114
10.1002/adhm.202303510
10.1016/j.jconrel.2020.06.002
10.1016/j.addr.2020.06.014
10.1038/nbt.3765
10.1126/scirobotics.ade3311
10.1016/j.nantod.2017.12.007
10.1038/s41591-019-0598-9
10.3389/fphar.2020.598175
10.1126/science.aau6977
10.1038/s41587-019-0164-5
10.1093/infdis/jiab368
10.1093/nar/gkaa299
10.1081/CNV-120014883
10.1038/nature24648
10.3390/ijms241813743
10.1002/adma.202104362
10.1038/s41551-021-00786-x
10.1038/s41573-023-00775-6
10.1038/nrc1456
10.3892/ijmm.2023.5284
10.1016/j.jconrel.2022.09.025
10.3390/pharmaceutics11020050
10.1038/s41587-021-01024-0
10.1038/s41565-024-01769-0
10.1016/j.jddst.2022.103729
10.1038/s41568-023-00586-2
10.1016/j.cis.2019.102060
10.1016/S0140-6736(23)01514-3
10.1038/s41573-021-00283-5
10.1039/D1CB00038A
10.1002/adhm.202304675
10.1021/acs.jmedchem.4c00802
10.1016/j.mattod.2023.04.011
10.1007/s13346-012-0116-9
10.1002/adma.202107506
10.2165/11318190-000000000-00000
10.1039/D4PY00298A
10.1038/s41563-023-01472-w
10.1111/j.1440-1681.2006.04403.x
10.1002/smtd.202300812
10.1016/j.kjms.2018.05.008
10.1016/j.jconrel.2020.03.040
10.1016/j.omtn.2022.06.011
10.1016/j.biomaterials.2022.121645
10.1186/s12951-018-0392-8
10.1111/cns.14392
10.1007/978-1-60761-609-2_3
10.1016/j.vaccine.2019.02.052
10.1016/j.immuni.2022.10.014
10.1016/j.ajps.2024.100891
10.1016/j.actbio.2021.07.029
10.1038/s41392-024-01745-z
10.1016/j.copbio.2021.09.016
10.1038/s41583-024-00829-7
10.1039/C9NR05783H
10.1021/acsami.8b04613
10.1038/nrd3978
10.1056/NEJMoa2107454
10.1016/j.jconrel.2022.10.050
10.1016/j.jconrel.2019.02.009
10.1038/s41573-020-0090-8
10.1038/s41598-019-52142-4
10.1038/s41467-019-08647-7
10.1016/j.cub.2020.07.003
10.1056/NEJMoa1913805
10.1016/j.addr.2021.113885
10.1038/s41572-021-00255-4
10.1016/j.nantod.2023.102061
10.1038/s41467-018-03705-y
10.1056/NEJMoa2113017
10.7150/thno.14858
10.1016/j.expneurol.2021.113710
10.1038/s41565-021-00898-0
10.1016/j.cej.2024.150271
10.1002/adfm.202310749
10.1038/s41551-023-01150-x
10.1038/s41598-020-72122-3
10.1016/j.jacl.2023.09.005
10.1007/s40256-023-00568-7
10.1093/ehjci/ehaa946.2129
10.1038/s12276-023-00998-y
10.1021/jacs.3c02756
10.1177/2633105520973985
10.1021/jacs.3c09143
10.1016/j.cej.2024.150706
10.3390/nano11030746
10.1016/j.nantod.2024.102518
10.1016/j.cell.2009.01.035
10.7150/thno.21630
10.1002/advs.202307761
10.1016/j.cell.2024.04.003
10.1039/D2NA00530A
10.1021/acsnano.2c09772
10.1158/1535-7163.MCT-21-0017
10.1038/s41573-024-00977-6
10.1021/acs.chemrev.2c00915
10.1002/med.21737
10.1016/j.nantod.2022.101564
10.1002/adfm.202312499
10.1038/s41580-024-00715-1
10.1016/j.addr.2019.07.010
10.1038/s41392-022-01298-z
10.1002/anie.202310401
10.1016/j.bioactmat.2017.07.002
10.1186/s12951-022-01717-x
10.1016/j.mtbio.2022.100364
10.1038/d41573-021-00213-5
10.1038/s41467-024-49933-3
10.3390/vaccines9010065
10.1021/acs.chemrev.0c00997
10.1182/bloodadvances.2020001996
10.1002/adhm.202302375
10.1089/hum.2017.140
10.1016/j.trecan.2024.06.006
10.1016/j.jconrel.2022.12.052
10.4161/gmic.1.4.12706
10.1016/j.drudis.2023.103505
10.1038/mt.2010.76
10.3390/nano11010171
10.1021/acsnano.2c09093
10.1007/s40265-018-0983-6
10.1016/j.jconrel.2023.10.034
10.3390/ijms25073810
10.1016/j.biomaterials.2020.120560
10.1056/NEJMoa1716153
10.1002/adma.202303614
10.1208/s12249-019-1325-z
10.1016/j.mam.2021.101003
10.1016/j.jconrel.2021.01.014
10.1073/pnas.2109256118
10.1016/j.addr.2020.06.020
10.1016/j.jconrel.2023.08.019
10.1186/s12951-022-01625-0
10.1007/s13346-022-01281-9
10.1002/adma.202311574
10.1021/acs.biomac.5b01518
10.1016/j.ejpn.2023.06.010
10.1038/gt.2017.34
10.1038/nrd.2017.86
10.1038/s41565-020-0669-6
10.3390/molecules27041372
10.1016/j.molcel.2021.12.002
10.1002/9781119305101.ch3
10.1002/anie.202311698
10.1016/j.jcis.2018.04.084
10.1016/j.actbio.2021.01.013
10.1038/s41392-024-02035-4
10.1002/advs.202402178
10.1039/D4BM00558A
10.1016/j.nantod.2023.102110
10.1016/j.isci.2024.109804
10.1016/j.cell.2017.10.025
10.1038/s41586-021-03944-y
10.1002/adfm.202106167
10.1002/smtd.202400278
10.1002/adfm.202306634
10.1016/j.msec.2016.07.066
10.1016/j.drudis.2023.103507
10.1039/D2SC01672A
10.1039/C4MD00184B
10.1016/j.ymthe.2023.10.023
10.1093/nar/gky703
10.1016/j.cell.2024.07.021
10.3390/pharmaceutics15020484
10.1002/anie.201916390
10.1016/j.apmt.2023.101952
10.1021/acsnano.3c13150
10.1016/j.ijpharm.2024.123856
10.1016/j.addr.2024.115419
10.1039/D2LC00305H
10.1016/j.tips.2021.10.012
10.3390/pharmaceutics13071075
10.1021/acs.accounts.1c00544
10.1016/j.addr.2012.10.002
10.1038/s41467-024-45628-x
10.1016/j.jddst.2024.105427
10.1016/j.eurpolymj.2024.113286
10.1016/j.ijpharm.2021.120994
10.1038/nrd3625
10.1016/j.electacta.2021.137994
10.1126/science.adn4955
10.3892/ijo.2024.5626
10.1126/scitranslmed.aaf6413
10.1016/j.biomaterials.2017.06.001
10.1021/acsnano.1c01845
10.7150/thno.70853
10.3390/pharmaceutics15030846
10.1021/acs.molpharmaceut.2c00653
10.1038/s41571-021-00552-7
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.4c11858
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 4083
ExternalDocumentID 39834294
10_1021_acsnano_4c11858
f92078775
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAYXX
ABBLG
ABLBI
ADHGD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a333t-78979e7c905a4966ad07a7d4b32c22aac7a8874d714b9b674a530fe5baf914653
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 10:33:51 EDT 2025
Tue May 06 01:31:51 EDT 2025
Tue Jul 01 00:37:53 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Wed Feb 05 03:28:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Drug delivery barriers
Precision medicine
Targeted delivery
Clinical applications
Delivery systems
Nucleic acid therapeutics
Nucleic acid drugs
Gene therapy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-78979e7c905a4966ad07a7d4b32c22aac7a8874d714b9b674a530fe5baf914653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0009-0001-9293-2766
0000-0002-1924-4166
PMID 39834294
PQID 3157554788
PQPubID 23479
PageCount 45
ParticipantIDs proquest_miscellaneous_3157554788
pubmed_primary_39834294
crossref_primary_10_1021_acsnano_4c11858
crossref_citationtrail_10_1021_acsnano_4c11858
acs_journals_10_1021_acsnano_4c11858
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-04
PublicationDateYYYYMMDD 2025-02-04
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
Greish K. (ref51/cit51) 2010
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref187/cit187
ref181/cit181
ref111/cit111
ref255/cit255
ref113/cit113
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref251/cit251
ref253/cit253
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref248/cit248
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref240/cit240
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref244/cit244
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref203/cit203
ref233/cit233
ref148/cit148
ref55/cit55
ref144/cit144
ref218/cit218
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref264/cit264
ref22/cit22
ref260/cit260
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref268/cit268
ref153/cit153
ref227/cit227
ref222/cit222
ref150/cit150
ref63/cit63
ref224/cit224
ref56/cit56
ref155/cit155
ref229/cit229
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref221/cit221
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
ref230/cit230
ref145/cit145
ref238/cit238
ref21/cit21
ref166/cit166
ref164/cit164
ref213/cit213
ref78/cit78
ref211/cit211
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref246/cit246
ref243/cit243
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref134/cit134
ref208/cit208
ref40/cit40
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref216/cit216
ref15/cit15
ref180/cit180
ref235/cit235
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref262/cit262
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref254/cit254
ref182/cit182
ref2/cit2
ref112/cit112
ref256/cit256
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref265/cit265
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref261/cit261
ref263/cit263
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref267/cit267
ref195/cit195
ref269/cit269
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref245/cit245
ref241/cit241
ref76/cit76
ref32/cit32
ref39/cit39
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref91/cit91
ref252/cit252
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref249/cit249
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref225/cit225
ref226/cit226
ref154/cit154
ref27/cit27
ref228/cit228
ref223/cit223
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
ref220/cit220
ref88/cit88
ref160/cit160
ref234/cit234
ref143/cit143
ref217/cit217
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref236/cit236
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref215/cit215
ref50/cit50
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref247/cit247
ref72/cit72
ref242/cit242
ref201/cit201
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
ref239/cit239
ref250/cit250
ref95/cit95
ref108/cit108
ref192/cit192
ref266/cit266
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
References_xml – ident: ref53/cit53
  doi: 10.1038/nbt.3330
– ident: ref179/cit179
  doi: 10.1039/D3AN01871G
– ident: ref61/cit61
  doi: 10.1016/j.ejpb.2024.114474
– ident: ref85/cit85
  doi: 10.1042/BJ20120146
– ident: ref221/cit221
  doi: 10.1021/jacs.4c03651
– ident: ref156/cit156
  doi: 10.1002/adma.202303718
– ident: ref159/cit159
  doi: 10.1093/narcan/zcad059
– ident: ref103/cit103
  doi: 10.1002/adma.202305300
– ident: ref94/cit94
  doi: 10.1002/admi.202101246
– ident: ref44/cit44
  doi: 10.1016/j.cell.2020.02.001
– ident: ref76/cit76
  doi: 10.1007/s13346-022-01138-1
– ident: ref105/cit105
  doi: 10.1038/s41578-021-00358-0
– ident: ref232/cit232
  doi: 10.1146/annurev-cellbio-100617-062608
– ident: ref267/cit267
  doi: 10.1016/j.jconrel.2019.01.009
– ident: ref150/cit150
  doi: 10.1016/j.biomaterials.2023.122464
– ident: ref40/cit40
  doi: 10.1182/blood-2020-139575
– ident: ref157/cit157
  doi: 10.3390/biomedicines9050583
– ident: ref249/cit249
  doi: 10.1016/j.omtn.2022.09.017
– ident: ref19/cit19
  doi: 10.1016/j.ajps.2022.05.003
– ident: ref34/cit34
  doi: 10.1038/s41573-020-0075-7
– ident: ref235/cit235
  doi: 10.1002/adma.202309225
– ident: ref241/cit241
  doi: 10.1186/s40779-024-00528-5
– ident: ref148/cit148
  doi: 10.1038/s41467-021-23250-5
– ident: ref24/cit24
  doi: 10.1016/j.tibtech.2020.07.005
– ident: ref130/cit130
  doi: 10.1002/anie.202316323
– ident: ref57/cit57
  doi: 10.1016/j.addr.2012.03.006
– ident: ref175/cit175
  doi: 10.1093/nar/gkad415
– ident: ref91/cit91
  doi: 10.1016/j.omtm.2024.101223
– ident: ref41/cit41
  doi: 10.1146/annurev-biophys-062215-010822
– ident: ref123/cit123
  doi: 10.1021/acs.chemrev.3c00705
– ident: ref83/cit83
  doi: 10.1016/j.omtn.2023.09.004
– ident: ref240/cit240
  doi: 10.1021/acsabm.2c00500
– ident: ref226/cit226
  doi: 10.1002/anie.202315093
– ident: ref209/cit209
  doi: 10.1093/nar/gkad259
– ident: ref27/cit27
  doi: 10.1038/s41559-022-01907-8
– ident: ref195/cit195
  doi: 10.1056/NEJMoa2034577
– ident: ref22/cit22
  doi: 10.1021/acsnano.2c12584
– ident: ref137/cit137
  doi: 10.1002/smll.201902232
– ident: ref42/cit42
  doi: 10.1016/j.ijbiomac.2022.04.094
– ident: ref219/cit219
  doi: 10.1007/s40265-021-01473-6
– ident: ref168/cit168
  doi: 10.1038/s41565-024-01785-0
– ident: ref84/cit84
  doi: 10.1038/s41573-019-0012-9
– ident: ref49/cit49
  doi: 10.1016/j.addr.2021.113834
– ident: ref38/cit38
  doi: 10.1016/j.biotechadv.2020.107534
– ident: ref208/cit208
  doi: 10.1038/mt.2012.261
– ident: ref46/cit46
  doi: 10.1002/advs.202309748
– ident: ref242/cit242
  doi: 10.1002/adfm.202207466
– ident: ref117/cit117
  doi: 10.1126/science.adk9428
– ident: ref7/cit7
  doi: 10.1016/j.jconrel.2024.01.060
– ident: ref70/cit70
  doi: 10.1016/j.compbiomed.2016.08.002
– ident: ref144/cit144
  doi: 10.1002/adfm.202400837
– ident: ref173/cit173
  doi: 10.1016/j.pharmthera.2021.108106
– ident: ref256/cit256
  doi: 10.1038/s41598-019-42523-0
– ident: ref95/cit95
  doi: 10.1038/nrd1632
– ident: ref234/cit234
  doi: 10.1016/j.tins.2020.12.002
– ident: ref23/cit23
  doi: 10.1016/j.addr.2020.12.014
– ident: ref9/cit9
  doi: 10.1016/j.omtm.2021.03.025
– ident: ref223/cit223
  doi: 10.1038/s41577-020-0306-5
– ident: ref75/cit75
  doi: 10.1016/j.cocis.2017.06.003
– ident: ref194/cit194
  doi: 10.1038/s41551-023-01082-6
– ident: ref263/cit263
  doi: 10.1039/D2BM02152H
– ident: ref82/cit82
  doi: 10.1089/crispr.2020.0110
– ident: ref161/cit161
  doi: 10.1016/j.jconrel.2023.01.017
– ident: ref178/cit178
  doi: 10.1021/acs.chemrev.8b00570
– ident: ref210/cit210
  doi: 10.1039/D0CS00560F
– ident: ref28/cit28
  doi: 10.3866/PKU.WHXB201708311
– ident: ref174/cit174
  doi: 10.3390/jcm10040838
– ident: ref15/cit15
  doi: 10.1038/s41556-022-00880-5
– ident: ref99/cit99
  doi: 10.1038/s41565-023-01548-3
– ident: ref68/cit68
  doi: 10.1007/s13346-021-00938-1
– ident: ref244/cit244
  doi: 10.1021/acsnano.4c03626
– ident: ref181/cit181
  doi: 10.1002/anie.201403236
– ident: ref93/cit93
  doi: 10.1038/s41541-024-00894-0
– ident: ref125/cit125
  doi: 10.3390/polym11040745
– ident: ref133/cit133
  doi: 10.1038/s41578-018-0077-9
– ident: ref261/cit261
  doi: 10.1002/adfm.202314898
– ident: ref100/cit100
  doi: 10.1002/adhm.202300549
– ident: ref121/cit121
  doi: 10.1126/sciadv.adn9961
– ident: ref225/cit225
  doi: 10.1002/adfm.202401563
– ident: ref131/cit131
  doi: 10.1002/adhm.202400114
– ident: ref167/cit167
  doi: 10.1002/adhm.202303510
– ident: ref96/cit96
  doi: 10.1016/j.jconrel.2020.06.002
– ident: ref124/cit124
  doi: 10.1016/j.addr.2020.06.014
– ident: ref11/cit11
  doi: 10.1038/nbt.3765
– ident: ref66/cit66
  doi: 10.1126/scirobotics.ade3311
– ident: ref259/cit259
  doi: 10.1016/j.nantod.2017.12.007
– ident: ref69/cit69
  doi: 10.1038/s41591-019-0598-9
– ident: ref104/cit104
  doi: 10.3389/fphar.2020.598175
– ident: ref162/cit162
  doi: 10.1126/science.aau6977
– ident: ref190/cit190
  doi: 10.1038/s41587-019-0164-5
– ident: ref197/cit197
  doi: 10.1093/infdis/jiab368
– ident: ref255/cit255
  doi: 10.1093/nar/gkaa299
– ident: ref97/cit97
  doi: 10.1081/CNV-120014883
– ident: ref183/cit183
  doi: 10.1038/nature24648
– ident: ref204/cit204
  doi: 10.3390/ijms241813743
– ident: ref138/cit138
  doi: 10.1002/adma.202104362
– ident: ref98/cit98
  doi: 10.1038/s41551-021-00786-x
– ident: ref214/cit214
  doi: 10.1038/s41573-023-00775-6
– ident: ref60/cit60
  doi: 10.1038/nrc1456
– ident: ref43/cit43
  doi: 10.3892/ijmm.2023.5284
– ident: ref47/cit47
  doi: 10.1016/j.jconrel.2022.09.025
– ident: ref102/cit102
  doi: 10.3390/pharmaceutics11020050
– ident: ref65/cit65
  doi: 10.1038/s41587-021-01024-0
– ident: ref237/cit237
  doi: 10.1038/s41565-024-01769-0
– ident: ref141/cit141
  doi: 10.1016/j.jddst.2022.103729
– ident: ref231/cit231
  doi: 10.1038/s41568-023-00586-2
– ident: ref107/cit107
  doi: 10.1016/j.cis.2019.102060
– ident: ref20/cit20
  doi: 10.1016/S0140-6736(23)01514-3
– ident: ref39/cit39
  doi: 10.1038/s41573-021-00283-5
– ident: ref254/cit254
  doi: 10.1039/D1CB00038A
– ident: ref129/cit129
  doi: 10.1002/adhm.202304675
– ident: ref170/cit170
  doi: 10.1021/acs.jmedchem.4c00802
– ident: ref119/cit119
  doi: 10.1016/j.mattod.2023.04.011
– ident: ref142/cit142
  doi: 10.1007/s13346-012-0116-9
– ident: ref151/cit151
  doi: 10.1002/adma.202107506
– ident: ref36/cit36
  doi: 10.2165/11318190-000000000-00000
– ident: ref118/cit118
  doi: 10.1039/D4PY00298A
– ident: ref135/cit135
  doi: 10.1038/s41563-023-01472-w
– ident: ref33/cit33
  doi: 10.1111/j.1440-1681.2006.04403.x
– ident: ref140/cit140
  doi: 10.1002/smtd.202300812
– ident: ref166/cit166
  doi: 10.1016/j.kjms.2018.05.008
– ident: ref5/cit5
  doi: 10.1016/j.jconrel.2020.03.040
– ident: ref13/cit13
  doi: 10.1016/j.omtn.2022.06.011
– ident: ref6/cit6
  doi: 10.1016/j.biomaterials.2022.121645
– ident: ref50/cit50
  doi: 10.1186/s12951-018-0392-8
– ident: ref89/cit89
  doi: 10.1111/cns.14392
– start-page: 25
  volume-title: Cancer Nanotechnology: Methods and Protocols
  year: 2010
  ident: ref51/cit51
  doi: 10.1007/978-1-60761-609-2_3
– ident: ref202/cit202
  doi: 10.1016/j.vaccine.2019.02.052
– ident: ref8/cit8
  doi: 10.1016/j.immuni.2022.10.014
– ident: ref228/cit228
  doi: 10.1016/j.ajps.2024.100891
– ident: ref128/cit128
  doi: 10.1016/j.actbio.2021.07.029
– ident: ref188/cit188
  doi: 10.1038/s41392-024-01745-z
– ident: ref191/cit191
  doi: 10.1016/j.copbio.2021.09.016
– ident: ref205/cit205
  doi: 10.1038/s41583-024-00829-7
– ident: ref59/cit59
  doi: 10.1039/C9NR05783H
– ident: ref258/cit258
  doi: 10.1021/acsami.8b04613
– ident: ref252/cit252
  doi: 10.1038/nrd3978
– ident: ref269/cit269
  doi: 10.1056/NEJMoa2107454
– ident: ref1/cit1
  doi: 10.1016/j.jconrel.2022.10.050
– ident: ref87/cit87
  doi: 10.1016/j.jconrel.2019.02.009
– ident: ref139/cit139
  doi: 10.1038/s41573-020-0090-8
– ident: ref160/cit160
  doi: 10.1038/s41598-019-52142-4
– ident: ref182/cit182
  doi: 10.1038/s41467-019-08647-7
– ident: ref26/cit26
  doi: 10.1016/j.cub.2020.07.003
– ident: ref216/cit216
  doi: 10.1056/NEJMoa1913805
– ident: ref73/cit73
  doi: 10.1016/j.addr.2021.113885
– ident: ref213/cit213
  doi: 10.1038/s41572-021-00255-4
– ident: ref224/cit224
  doi: 10.1016/j.nantod.2023.102061
– ident: ref56/cit56
  doi: 10.1038/s41467-018-03705-y
– ident: ref192/cit192
  doi: 10.1056/NEJMoa2113017
– ident: ref48/cit48
  doi: 10.7150/thno.14858
– ident: ref86/cit86
  doi: 10.1016/j.expneurol.2021.113710
– ident: ref10/cit10
  doi: 10.1038/s41565-021-00898-0
– ident: ref147/cit147
  doi: 10.1016/j.cej.2024.150271
– ident: ref185/cit185
  doi: 10.1002/adfm.202310749
– ident: ref169/cit169
  doi: 10.1038/s41551-023-01150-x
– ident: ref260/cit260
  doi: 10.1038/s41598-020-72122-3
– ident: ref217/cit217
  doi: 10.1016/j.jacl.2023.09.005
– ident: ref218/cit218
  doi: 10.1007/s40256-023-00568-7
– ident: ref37/cit37
  doi: 10.1093/ehjci/ehaa946.2129
– ident: ref2/cit2
  doi: 10.1038/s12276-023-00998-y
– ident: ref184/cit184
  doi: 10.1021/jacs.3c02756
– ident: ref211/cit211
  doi: 10.1177/2633105520973985
– ident: ref112/cit112
  doi: 10.1021/jacs.3c09143
– ident: ref154/cit154
  doi: 10.1016/j.cej.2024.150706
– ident: ref262/cit262
  doi: 10.3390/nano11030746
– ident: ref229/cit229
  doi: 10.1016/j.nantod.2024.102518
– ident: ref17/cit17
  doi: 10.1016/j.cell.2009.01.035
– ident: ref264/cit264
  doi: 10.7150/thno.21630
– ident: ref164/cit164
  doi: 10.1002/advs.202307761
– ident: ref230/cit230
  doi: 10.1016/j.cell.2024.04.003
– ident: ref77/cit77
  doi: 10.1039/D2NA00530A
– ident: ref186/cit186
  doi: 10.1021/acsnano.2c09772
– ident: ref251/cit251
  doi: 10.1158/1535-7163.MCT-21-0017
– ident: ref109/cit109
  doi: 10.1038/s41573-024-00977-6
– ident: ref172/cit172
  doi: 10.1021/acs.chemrev.2c00915
– ident: ref32/cit32
  doi: 10.1002/med.21737
– ident: ref152/cit152
  doi: 10.1016/j.nantod.2022.101564
– ident: ref247/cit247
  doi: 10.1002/adfm.202312499
– ident: ref239/cit239
  doi: 10.1038/s41580-024-00715-1
– ident: ref143/cit143
  doi: 10.1016/j.addr.2019.07.010
– ident: ref233/cit233
  doi: 10.1038/s41392-022-01298-z
– ident: ref106/cit106
  doi: 10.1002/anie.202310401
– ident: ref120/cit120
  doi: 10.1016/j.bioactmat.2017.07.002
– ident: ref268/cit268
  doi: 10.1186/s12951-022-01717-x
– ident: ref58/cit58
  doi: 10.1016/j.mtbio.2022.100364
– ident: ref171/cit171
  doi: 10.1038/d41573-021-00213-5
– ident: ref245/cit245
  doi: 10.1038/s41467-024-49933-3
– ident: ref200/cit200
  doi: 10.3390/vaccines9010065
– ident: ref52/cit52
  doi: 10.1021/acs.chemrev.0c00997
– ident: ref212/cit212
  doi: 10.1182/bloodadvances.2020001996
– ident: ref80/cit80
  doi: 10.1002/adhm.202302375
– ident: ref90/cit90
  doi: 10.1089/hum.2017.140
– ident: ref18/cit18
  doi: 10.1016/j.trecan.2024.06.006
– ident: ref149/cit149
  doi: 10.1016/j.jconrel.2022.12.052
– ident: ref201/cit201
  doi: 10.4161/gmic.1.4.12706
– ident: ref108/cit108
  doi: 10.1016/j.drudis.2023.103505
– ident: ref92/cit92
  doi: 10.1038/mt.2010.76
– ident: ref110/cit110
  doi: 10.3390/nano11010171
– ident: ref31/cit31
  doi: 10.1021/acsnano.2c09093
– ident: ref14/cit14
  doi: 10.1007/s40265-018-0983-6
– ident: ref163/cit163
  doi: 10.1016/j.jconrel.2023.10.034
– ident: ref206/cit206
  doi: 10.3390/ijms25073810
– ident: ref180/cit180
  doi: 10.1016/j.biomaterials.2020.120560
– ident: ref35/cit35
  doi: 10.1056/NEJMoa1716153
– ident: ref111/cit111
  doi: 10.1002/adma.202303614
– ident: ref158/cit158
  doi: 10.1208/s12249-019-1325-z
– ident: ref199/cit199
  doi: 10.1016/j.mam.2021.101003
– ident: ref63/cit63
  doi: 10.1016/j.jconrel.2021.01.014
– ident: ref115/cit115
  doi: 10.1073/pnas.2109256118
– ident: ref146/cit146
  doi: 10.1016/j.addr.2020.06.020
– ident: ref266/cit266
  doi: 10.1016/j.jconrel.2023.08.019
– ident: ref189/cit189
  doi: 10.1186/s12951-022-01625-0
– ident: ref122/cit122
  doi: 10.1007/s13346-022-01281-9
– ident: ref113/cit113
  doi: 10.1002/adma.202311574
– ident: ref136/cit136
  doi: 10.1021/acs.biomac.5b01518
– ident: ref12/cit12
  doi: 10.1016/j.ejpn.2023.06.010
– ident: ref207/cit207
  doi: 10.1038/gt.2017.34
– ident: ref30/cit30
  doi: 10.1038/nrd.2017.86
– ident: ref116/cit116
  doi: 10.1038/s41565-020-0669-6
– ident: ref250/cit250
  doi: 10.3390/molecules27041372
– ident: ref25/cit25
  doi: 10.1016/j.molcel.2021.12.002
– ident: ref78/cit78
  doi: 10.1002/9781119305101.ch3
– ident: ref246/cit246
  doi: 10.1002/anie.202311698
– ident: ref62/cit62
  doi: 10.1016/j.jcis.2018.04.084
– ident: ref132/cit132
  doi: 10.1016/j.actbio.2021.01.013
– ident: ref248/cit248
  doi: 10.1038/s41392-024-02035-4
– ident: ref238/cit238
  doi: 10.1002/advs.202402178
– ident: ref165/cit165
  doi: 10.1039/D4BM00558A
– ident: ref220/cit220
  doi: 10.1016/j.nantod.2023.102110
– ident: ref114/cit114
  doi: 10.1016/j.isci.2024.109804
– ident: ref215/cit215
  doi: 10.1016/j.cell.2017.10.025
– ident: ref196/cit196
  doi: 10.1038/s41586-021-03944-y
– ident: ref243/cit243
  doi: 10.1002/adfm.202106167
– ident: ref265/cit265
  doi: 10.1002/smtd.202400278
– ident: ref227/cit227
  doi: 10.1002/adfm.202306634
– ident: ref126/cit126
  doi: 10.1016/j.msec.2016.07.066
– ident: ref45/cit45
  doi: 10.1016/j.drudis.2023.103507
– ident: ref176/cit176
  doi: 10.1039/D2SC01672A
– ident: ref4/cit4
  doi: 10.1039/C4MD00184B
– ident: ref88/cit88
  doi: 10.1016/j.ymthe.2023.10.023
– ident: ref257/cit257
  doi: 10.1093/nar/gky703
– ident: ref21/cit21
  doi: 10.1016/j.cell.2024.07.021
– ident: ref64/cit64
  doi: 10.3390/pharmaceutics15020484
– ident: ref177/cit177
  doi: 10.1002/anie.201916390
– ident: ref145/cit145
  doi: 10.1016/j.apmt.2023.101952
– ident: ref236/cit236
  doi: 10.1021/acsnano.3c13150
– ident: ref79/cit79
  doi: 10.1016/j.ijpharm.2024.123856
– ident: ref187/cit187
  doi: 10.1016/j.addr.2024.115419
– ident: ref54/cit54
  doi: 10.1039/D2LC00305H
– ident: ref3/cit3
  doi: 10.1016/j.tips.2021.10.012
– ident: ref127/cit127
  doi: 10.3390/pharmaceutics13071075
– ident: ref253/cit253
  doi: 10.1021/acs.accounts.1c00544
– ident: ref55/cit55
  doi: 10.1016/j.addr.2012.10.002
– ident: ref198/cit198
  doi: 10.1038/s41467-024-45628-x
– ident: ref153/cit153
  doi: 10.1016/j.jddst.2024.105427
– ident: ref155/cit155
  doi: 10.1016/j.eurpolymj.2024.113286
– ident: ref71/cit71
  doi: 10.1016/j.ijpharm.2021.120994
– ident: ref16/cit16
  doi: 10.1038/nrd3625
– ident: ref29/cit29
  doi: 10.1016/j.electacta.2021.137994
– ident: ref203/cit203
  doi: 10.1126/science.adn4955
– ident: ref74/cit74
  doi: 10.3892/ijo.2024.5626
– ident: ref67/cit67
  doi: 10.1126/scitranslmed.aaf6413
– ident: ref134/cit134
  doi: 10.1016/j.biomaterials.2017.06.001
– ident: ref193/cit193
  doi: 10.1021/acsnano.1c01845
– ident: ref101/cit101
  doi: 10.7150/thno.70853
– ident: ref81/cit81
  doi: 10.3390/pharmaceutics15030846
– ident: ref72/cit72
  doi: 10.1021/acs.molpharmaceut.2c00653
– ident: ref222/cit222
  doi: 10.1038/s41571-021-00552-7
SSID ssj0057876
Score 2.525463
SecondaryResourceType review_article
Snippet Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4039
SubjectTerms Animals
Drug Carriers - chemistry
Drug Delivery Systems
Humans
Nanoparticles - chemistry
Nucleic Acids - administration & dosage
Nucleic Acids - chemistry
Nucleic Acids - therapeutic use
Precision Medicine
Title Emerging Delivery Systems for Enabling Precision Nucleic Acid Therapeutics
URI http://dx.doi.org/10.1021/acsnano.4c11858
https://www.ncbi.nlm.nih.gov/pubmed/39834294
https://www.proquest.com/docview/3157554788
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELZaurRD3w_6kisxdAlNbCeOR0RBCKmoUkFii2zHkVBRqEgY2l9fXxLoA6F2js9yfLbvO9_5O4QaofQC1_iuoxPuO4wo1wmNYo6wptvVSSB4DPcdT4OgN2L9sT_-Iov-HcEn3oPUWSrTWZNpi4X9cBvtkMBuYUBB7ZfloQvrLigDyNZBtihixeKz1gGYIZ39NEMbsGVhY7oHZXZWVlATQmrJa3ORq6b-WCdu_Hv4h2i_Qpq4VS6NI7Rl0mO0941_8AT14UoKqhThRzOFBI13XDGYY4tlcQfeVcHX53lViQcPgP54onFLT2I8_Hq7lZ2iUbczbPecqriCIymlucNDwYXhWri-ZNbnkbHLJY-ZokQTIqXm0p4_LOYeU0IFnEmfuonxlUyEB6RsZ6iWzlJzgbAMmdJ-Av5twhJKrGwoTMhI7KlYaFFHDTsLUbU5sqiIexMvqqYmqqamjppLlUS6IiiHOhnTzQL3K4G3kptjc9O7pY4ju38gKCJTM1tkEfUsYAVSM9vmvFT-qjMqQmrtNbv83w9coV0C1YEhp5tdo1o-X5gbC1lydVss1k-V_eX-
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BeYA9bHxtFBgzEg97SUlsJ44fKz5UGFSgFYm3yHYcqRpKEWkftr9-d2laBqgSe03skz_Ovp99598BHKUmSkIfh4ErVBxIbsMg9VYGGk136IpEq5zuO677Se9OXt7H90sQzt7CYCMqlFTVTvxndoHoGL-Vphx1pENIHKfLsIJQhJNOd09-zvZeUr9k6kfGczKCiTmZzxsBZI1c9dIaLYCYtak5_wS380bWESa_OpOx7bg_r_gb_6cX6_CxwZ2sO1WUDVjy5SZ8-IeNcAsu6YKKchaxU_9A4Rq_WcNnzhDZsjN6ZUV_b56avDysT2TIQ8e6bpizwfNLrmob7s7PBie9oEm1EBghxDhQqVbaK6fD2Eg8AZk8VEbl0gruODfGKYO7kcxVJK22iZImFmHhY2sKHRFF22dolaPS7wAzqbQuLui0W8hCcKybap9Knkc210634QhHIWuWSpXVXnAeZc3QZM3QtKEzm5nMNXTllDXjYXGF7_MKj1OmjsVFD2dTneFqIheJKf1oUmUiQvhKFGdY5stUB-bChE4FWm-5-74OfIPV3uD6Kru66P_YgzVOeYMp2lvuQ2v8NPFfEcyM7UGtv38Bs4buXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJAQH9n0zUg9cUpLYieNjBVSsVSWoxC2yHUdCoLRq2gN8PTOpWzZVgmtiW_Z47Hn2eN4QUktUEPs28j2Ti8jjofa9xGruSTDdvsljKTK877hvxVcdfvMUPbmgMIyFgU6U0FJZOfFxVfey3DEMBGfwvVBFt84NwOIomSXz6LRDvW6cP4z3X1TBeORLhrMyAIoJoc-vBtAimfK7RZoCMytz01whnUlHq1cmL_XhQNfN-w8Ox_-OZJUsO_xJGyOFWSMztlgnS19YCTfIDV5UYe4iemFf8dnGG3W85hQQLr3EaCv82-67_Dy0haTIz4Y2zHNGHz8juspN0mlePp5feS7lgqcYYwNPJFJIK4z0I8XhJKQyXyiRcc1CE4ZKGaFgV-KZCLiWOhZcRczPbaRVLgOkatsic0W3sDuEqoRrE-V46s15zkKom0ib8DALdCaN3CU1kELqlkyZVt7wMEidaFInml1SH89OahxtOWbPeJ1e4XRSoTdi7Jhe9GQ83SmsKnSVqMJ2h2XKAoCxSHUGZbZHejBpjMmEgRXne38bwDFZaF8007vr1u0-WQwxfTA--uYHZG7QH9pDwDQDfVSp8Ad81fDi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Delivery+Systems+for+Enabling+Precision+Nucleic+Acid+Therapeutics&rft.jtitle=ACS+nano&rft.au=Bian%2C+Xiaochun&rft.au=Zhou%2C+Liping&rft.au=Luo%2C+Zhiwei&rft.au=Liu%2C+Guotao&rft.date=2025-02-04&rft.eissn=1936-086X&rft.volume=19&rft.issue=4&rft.spage=4039&rft_id=info:doi/10.1021%2Facsnano.4c11858&rft_id=info%3Apmid%2F39834294&rft.externalDocID=39834294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon