Emerging Delivery Systems for Enabling Precision Nucleic Acid Therapeutics
Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and...
Saved in:
Published in | ACS nano Vol. 19; no. 4; pp. 4039 - 4083 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems’ current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine. |
---|---|
AbstractList | Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems’ current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine. Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems' current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine.Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems' current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine. |
Author | Li, Fengyong Bian, Xiaochun Li, Haohao Zhou, Liping Wen, Yongqiang Luo, Zhiwei Hang, Zhongci Liu, Guotao |
AuthorAffiliation | Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering Plastic Surgery Hospital, Peking Union Medical College |
AuthorAffiliation_xml | – name: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering – name: Plastic Surgery Hospital, Peking Union Medical College |
Author_xml | – sequence: 1 givenname: Xiaochun surname: Bian fullname: Bian, Xiaochun organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering – sequence: 2 givenname: Liping orcidid: 0009-0001-9293-2766 surname: Zhou fullname: Zhou, Liping email: Liping-Zhou@ustb.edu.cn organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering – sequence: 3 givenname: Zhiwei surname: Luo fullname: Luo, Zhiwei organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering – sequence: 4 givenname: Guotao surname: Liu fullname: Liu, Guotao organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering – sequence: 5 givenname: Zhongci surname: Hang fullname: Hang, Zhongci organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering – sequence: 6 givenname: Haohao surname: Li fullname: Li, Haohao organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering – sequence: 7 givenname: Fengyong surname: Li fullname: Li, Fengyong email: lify202108@163.com organization: Plastic Surgery Hospital, Peking Union Medical College – sequence: 8 givenname: Yongqiang orcidid: 0000-0002-1924-4166 surname: Wen fullname: Wen, Yongqiang email: wyq_wen@ustb.edu.cn organization: Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39834294$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LxDAQhoMorl9nb9KjIOsmTdIkR9H1i0UFFbyVaTpdI226Jq2w_97Krh4EPc3A-7wD8-ySTd96JOSQ0VNGUzYBGz349lRYxrTUG2SHGZ6Nqc5eNn92yUZkN8Y3SqXSKtsmI240F6kRO-R22mCYOz9PLrB2HxiWyeMydtjEpGpDMvVQ1F_pQ0Dromt9ctfbGp1Nzqwrk6dXDLDAvnM27pOtCuqIB-u5R54vp0_n1-PZ_dXN-dlsDJzzbqy0UQaVNVSCMFkGJVWgSlHw1KYpgFWgtRKlYqIwRaYESE4rlAVUholM8j1yvLq7CO17j7HLGxct1jV4bPuYcyaVlEJpPaBHa7QvGizzRXANhGX-_f8ATFaADW2MAasfhNH8y3C-NpyvDQ8N-athXQfdYKYL4Op_eier3hDkb20f_ODoT_oTjSmP5g |
CitedBy_id | crossref_primary_10_3390_ijms26062491 crossref_primary_10_1016_j_ijbiomac_2025_142136 |
Cites_doi | 10.1038/nbt.3330 10.1039/D3AN01871G 10.1016/j.ejpb.2024.114474 10.1042/BJ20120146 10.1021/jacs.4c03651 10.1002/adma.202303718 10.1093/narcan/zcad059 10.1002/adma.202305300 10.1002/admi.202101246 10.1016/j.cell.2020.02.001 10.1007/s13346-022-01138-1 10.1038/s41578-021-00358-0 10.1146/annurev-cellbio-100617-062608 10.1016/j.jconrel.2019.01.009 10.1016/j.biomaterials.2023.122464 10.1182/blood-2020-139575 10.3390/biomedicines9050583 10.1016/j.omtn.2022.09.017 10.1016/j.ajps.2022.05.003 10.1038/s41573-020-0075-7 10.1002/adma.202309225 10.1186/s40779-024-00528-5 10.1038/s41467-021-23250-5 10.1016/j.tibtech.2020.07.005 10.1002/anie.202316323 10.1016/j.addr.2012.03.006 10.1093/nar/gkad415 10.1016/j.omtm.2024.101223 10.1146/annurev-biophys-062215-010822 10.1021/acs.chemrev.3c00705 10.1016/j.omtn.2023.09.004 10.1021/acsabm.2c00500 10.1002/anie.202315093 10.1093/nar/gkad259 10.1038/s41559-022-01907-8 10.1056/NEJMoa2034577 10.1021/acsnano.2c12584 10.1002/smll.201902232 10.1016/j.ijbiomac.2022.04.094 10.1007/s40265-021-01473-6 10.1038/s41565-024-01785-0 10.1038/s41573-019-0012-9 10.1016/j.addr.2021.113834 10.1016/j.biotechadv.2020.107534 10.1038/mt.2012.261 10.1002/advs.202309748 10.1002/adfm.202207466 10.1126/science.adk9428 10.1016/j.jconrel.2024.01.060 10.1016/j.compbiomed.2016.08.002 10.1002/adfm.202400837 10.1016/j.pharmthera.2021.108106 10.1038/s41598-019-42523-0 10.1038/nrd1632 10.1016/j.tins.2020.12.002 10.1016/j.addr.2020.12.014 10.1016/j.omtm.2021.03.025 10.1038/s41577-020-0306-5 10.1016/j.cocis.2017.06.003 10.1038/s41551-023-01082-6 10.1039/D2BM02152H 10.1089/crispr.2020.0110 10.1016/j.jconrel.2023.01.017 10.1021/acs.chemrev.8b00570 10.1039/D0CS00560F 10.3866/PKU.WHXB201708311 10.3390/jcm10040838 10.1038/s41556-022-00880-5 10.1038/s41565-023-01548-3 10.1007/s13346-021-00938-1 10.1021/acsnano.4c03626 10.1002/anie.201403236 10.1038/s41541-024-00894-0 10.3390/polym11040745 10.1038/s41578-018-0077-9 10.1002/adfm.202314898 10.1002/adhm.202300549 10.1126/sciadv.adn9961 10.1002/adfm.202401563 10.1002/adhm.202400114 10.1002/adhm.202303510 10.1016/j.jconrel.2020.06.002 10.1016/j.addr.2020.06.014 10.1038/nbt.3765 10.1126/scirobotics.ade3311 10.1016/j.nantod.2017.12.007 10.1038/s41591-019-0598-9 10.3389/fphar.2020.598175 10.1126/science.aau6977 10.1038/s41587-019-0164-5 10.1093/infdis/jiab368 10.1093/nar/gkaa299 10.1081/CNV-120014883 10.1038/nature24648 10.3390/ijms241813743 10.1002/adma.202104362 10.1038/s41551-021-00786-x 10.1038/s41573-023-00775-6 10.1038/nrc1456 10.3892/ijmm.2023.5284 10.1016/j.jconrel.2022.09.025 10.3390/pharmaceutics11020050 10.1038/s41587-021-01024-0 10.1038/s41565-024-01769-0 10.1016/j.jddst.2022.103729 10.1038/s41568-023-00586-2 10.1016/j.cis.2019.102060 10.1016/S0140-6736(23)01514-3 10.1038/s41573-021-00283-5 10.1039/D1CB00038A 10.1002/adhm.202304675 10.1021/acs.jmedchem.4c00802 10.1016/j.mattod.2023.04.011 10.1007/s13346-012-0116-9 10.1002/adma.202107506 10.2165/11318190-000000000-00000 10.1039/D4PY00298A 10.1038/s41563-023-01472-w 10.1111/j.1440-1681.2006.04403.x 10.1002/smtd.202300812 10.1016/j.kjms.2018.05.008 10.1016/j.jconrel.2020.03.040 10.1016/j.omtn.2022.06.011 10.1016/j.biomaterials.2022.121645 10.1186/s12951-018-0392-8 10.1111/cns.14392 10.1007/978-1-60761-609-2_3 10.1016/j.vaccine.2019.02.052 10.1016/j.immuni.2022.10.014 10.1016/j.ajps.2024.100891 10.1016/j.actbio.2021.07.029 10.1038/s41392-024-01745-z 10.1016/j.copbio.2021.09.016 10.1038/s41583-024-00829-7 10.1039/C9NR05783H 10.1021/acsami.8b04613 10.1038/nrd3978 10.1056/NEJMoa2107454 10.1016/j.jconrel.2022.10.050 10.1016/j.jconrel.2019.02.009 10.1038/s41573-020-0090-8 10.1038/s41598-019-52142-4 10.1038/s41467-019-08647-7 10.1016/j.cub.2020.07.003 10.1056/NEJMoa1913805 10.1016/j.addr.2021.113885 10.1038/s41572-021-00255-4 10.1016/j.nantod.2023.102061 10.1038/s41467-018-03705-y 10.1056/NEJMoa2113017 10.7150/thno.14858 10.1016/j.expneurol.2021.113710 10.1038/s41565-021-00898-0 10.1016/j.cej.2024.150271 10.1002/adfm.202310749 10.1038/s41551-023-01150-x 10.1038/s41598-020-72122-3 10.1016/j.jacl.2023.09.005 10.1007/s40256-023-00568-7 10.1093/ehjci/ehaa946.2129 10.1038/s12276-023-00998-y 10.1021/jacs.3c02756 10.1177/2633105520973985 10.1021/jacs.3c09143 10.1016/j.cej.2024.150706 10.3390/nano11030746 10.1016/j.nantod.2024.102518 10.1016/j.cell.2009.01.035 10.7150/thno.21630 10.1002/advs.202307761 10.1016/j.cell.2024.04.003 10.1039/D2NA00530A 10.1021/acsnano.2c09772 10.1158/1535-7163.MCT-21-0017 10.1038/s41573-024-00977-6 10.1021/acs.chemrev.2c00915 10.1002/med.21737 10.1016/j.nantod.2022.101564 10.1002/adfm.202312499 10.1038/s41580-024-00715-1 10.1016/j.addr.2019.07.010 10.1038/s41392-022-01298-z 10.1002/anie.202310401 10.1016/j.bioactmat.2017.07.002 10.1186/s12951-022-01717-x 10.1016/j.mtbio.2022.100364 10.1038/d41573-021-00213-5 10.1038/s41467-024-49933-3 10.3390/vaccines9010065 10.1021/acs.chemrev.0c00997 10.1182/bloodadvances.2020001996 10.1002/adhm.202302375 10.1089/hum.2017.140 10.1016/j.trecan.2024.06.006 10.1016/j.jconrel.2022.12.052 10.4161/gmic.1.4.12706 10.1016/j.drudis.2023.103505 10.1038/mt.2010.76 10.3390/nano11010171 10.1021/acsnano.2c09093 10.1007/s40265-018-0983-6 10.1016/j.jconrel.2023.10.034 10.3390/ijms25073810 10.1016/j.biomaterials.2020.120560 10.1056/NEJMoa1716153 10.1002/adma.202303614 10.1208/s12249-019-1325-z 10.1016/j.mam.2021.101003 10.1016/j.jconrel.2021.01.014 10.1073/pnas.2109256118 10.1016/j.addr.2020.06.020 10.1016/j.jconrel.2023.08.019 10.1186/s12951-022-01625-0 10.1007/s13346-022-01281-9 10.1002/adma.202311574 10.1021/acs.biomac.5b01518 10.1016/j.ejpn.2023.06.010 10.1038/gt.2017.34 10.1038/nrd.2017.86 10.1038/s41565-020-0669-6 10.3390/molecules27041372 10.1016/j.molcel.2021.12.002 10.1002/9781119305101.ch3 10.1002/anie.202311698 10.1016/j.jcis.2018.04.084 10.1016/j.actbio.2021.01.013 10.1038/s41392-024-02035-4 10.1002/advs.202402178 10.1039/D4BM00558A 10.1016/j.nantod.2023.102110 10.1016/j.isci.2024.109804 10.1016/j.cell.2017.10.025 10.1038/s41586-021-03944-y 10.1002/adfm.202106167 10.1002/smtd.202400278 10.1002/adfm.202306634 10.1016/j.msec.2016.07.066 10.1016/j.drudis.2023.103507 10.1039/D2SC01672A 10.1039/C4MD00184B 10.1016/j.ymthe.2023.10.023 10.1093/nar/gky703 10.1016/j.cell.2024.07.021 10.3390/pharmaceutics15020484 10.1002/anie.201916390 10.1016/j.apmt.2023.101952 10.1021/acsnano.3c13150 10.1016/j.ijpharm.2024.123856 10.1016/j.addr.2024.115419 10.1039/D2LC00305H 10.1016/j.tips.2021.10.012 10.3390/pharmaceutics13071075 10.1021/acs.accounts.1c00544 10.1016/j.addr.2012.10.002 10.1038/s41467-024-45628-x 10.1016/j.jddst.2024.105427 10.1016/j.eurpolymj.2024.113286 10.1016/j.ijpharm.2021.120994 10.1038/nrd3625 10.1016/j.electacta.2021.137994 10.1126/science.adn4955 10.3892/ijo.2024.5626 10.1126/scitranslmed.aaf6413 10.1016/j.biomaterials.2017.06.001 10.1021/acsnano.1c01845 10.7150/thno.70853 10.3390/pharmaceutics15030846 10.1021/acs.molpharmaceut.2c00653 10.1038/s41571-021-00552-7 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.4c11858 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 4083 |
ExternalDocumentID | 39834294 10_1021_acsnano_4c11858 f92078775 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACBEA ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAYXX ABBLG ABLBI ADHGD CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a333t-78979e7c905a4966ad07a7d4b32c22aac7a8874d714b9b674a530fe5baf914653 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 10:33:51 EDT 2025 Tue May 06 01:31:51 EDT 2025 Tue Jul 01 00:37:53 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Wed Feb 05 03:28:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Drug delivery barriers Precision medicine Targeted delivery Clinical applications Delivery systems Nucleic acid therapeutics Nucleic acid drugs Gene therapy |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-78979e7c905a4966ad07a7d4b32c22aac7a8874d714b9b674a530fe5baf914653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0009-0001-9293-2766 0000-0002-1924-4166 |
PMID | 39834294 |
PQID | 3157554788 |
PQPubID | 23479 |
PageCount | 45 |
ParticipantIDs | proquest_miscellaneous_3157554788 pubmed_primary_39834294 crossref_primary_10_1021_acsnano_4c11858 crossref_citationtrail_10_1021_acsnano_4c11858 acs_journals_10_1021_acsnano_4c11858 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-04 |
PublicationDateYYYYMMDD | 2025-02-04 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 Greish K. (ref51/cit51) 2010 ref185/cit185 ref23/cit23 ref115/cit115 ref259/cit259 ref187/cit187 ref181/cit181 ref111/cit111 ref255/cit255 ref113/cit113 ref183/cit183 ref257/cit257 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref251/cit251 ref253/cit253 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref248/cit248 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref240/cit240 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref244/cit244 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref203/cit203 ref233/cit233 ref148/cit148 ref55/cit55 ref144/cit144 ref218/cit218 ref167/cit167 ref163/cit163 ref237/cit237 ref66/cit66 ref264/cit264 ref22/cit22 ref260/cit260 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref210/cit210 ref268/cit268 ref153/cit153 ref227/cit227 ref222/cit222 ref150/cit150 ref63/cit63 ref224/cit224 ref56/cit56 ref155/cit155 ref229/cit229 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref221/cit221 ref60/cit60 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref232/cit232 ref230/cit230 ref145/cit145 ref238/cit238 ref21/cit21 ref166/cit166 ref164/cit164 ref213/cit213 ref78/cit78 ref211/cit211 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref246/cit246 ref243/cit243 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref134/cit134 ref208/cit208 ref40/cit40 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref216/cit216 ref15/cit15 ref180/cit180 ref235/cit235 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref262/cit262 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref258/cit258 ref186/cit186 ref116/cit116 ref110/cit110 ref254/cit254 ref182/cit182 ref2/cit2 ref112/cit112 ref256/cit256 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref265/cit265 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref261/cit261 ref263/cit263 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref267/cit267 ref195/cit195 ref269/cit269 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref245/cit245 ref241/cit241 ref76/cit76 ref32/cit32 ref39/cit39 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref91/cit91 ref252/cit252 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref249/cit249 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref225/cit225 ref226/cit226 ref154/cit154 ref27/cit27 ref228/cit228 ref223/cit223 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref31/cit31 ref220/cit220 ref88/cit88 ref160/cit160 ref234/cit234 ref143/cit143 ref217/cit217 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref236/cit236 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref215/cit215 ref50/cit50 ref209/cit209 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref247/cit247 ref72/cit72 ref242/cit242 ref201/cit201 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref204/cit204 ref146/cit146 ref26/cit26 ref73/cit73 ref231/cit231 ref69/cit69 ref165/cit165 ref239/cit239 ref250/cit250 ref95/cit95 ref108/cit108 ref192/cit192 ref266/cit266 ref4/cit4 ref30/cit30 ref212/cit212 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref53/cit53 doi: 10.1038/nbt.3330 – ident: ref179/cit179 doi: 10.1039/D3AN01871G – ident: ref61/cit61 doi: 10.1016/j.ejpb.2024.114474 – ident: ref85/cit85 doi: 10.1042/BJ20120146 – ident: ref221/cit221 doi: 10.1021/jacs.4c03651 – ident: ref156/cit156 doi: 10.1002/adma.202303718 – ident: ref159/cit159 doi: 10.1093/narcan/zcad059 – ident: ref103/cit103 doi: 10.1002/adma.202305300 – ident: ref94/cit94 doi: 10.1002/admi.202101246 – ident: ref44/cit44 doi: 10.1016/j.cell.2020.02.001 – ident: ref76/cit76 doi: 10.1007/s13346-022-01138-1 – ident: ref105/cit105 doi: 10.1038/s41578-021-00358-0 – ident: ref232/cit232 doi: 10.1146/annurev-cellbio-100617-062608 – ident: ref267/cit267 doi: 10.1016/j.jconrel.2019.01.009 – ident: ref150/cit150 doi: 10.1016/j.biomaterials.2023.122464 – ident: ref40/cit40 doi: 10.1182/blood-2020-139575 – ident: ref157/cit157 doi: 10.3390/biomedicines9050583 – ident: ref249/cit249 doi: 10.1016/j.omtn.2022.09.017 – ident: ref19/cit19 doi: 10.1016/j.ajps.2022.05.003 – ident: ref34/cit34 doi: 10.1038/s41573-020-0075-7 – ident: ref235/cit235 doi: 10.1002/adma.202309225 – ident: ref241/cit241 doi: 10.1186/s40779-024-00528-5 – ident: ref148/cit148 doi: 10.1038/s41467-021-23250-5 – ident: ref24/cit24 doi: 10.1016/j.tibtech.2020.07.005 – ident: ref130/cit130 doi: 10.1002/anie.202316323 – ident: ref57/cit57 doi: 10.1016/j.addr.2012.03.006 – ident: ref175/cit175 doi: 10.1093/nar/gkad415 – ident: ref91/cit91 doi: 10.1016/j.omtm.2024.101223 – ident: ref41/cit41 doi: 10.1146/annurev-biophys-062215-010822 – ident: ref123/cit123 doi: 10.1021/acs.chemrev.3c00705 – ident: ref83/cit83 doi: 10.1016/j.omtn.2023.09.004 – ident: ref240/cit240 doi: 10.1021/acsabm.2c00500 – ident: ref226/cit226 doi: 10.1002/anie.202315093 – ident: ref209/cit209 doi: 10.1093/nar/gkad259 – ident: ref27/cit27 doi: 10.1038/s41559-022-01907-8 – ident: ref195/cit195 doi: 10.1056/NEJMoa2034577 – ident: ref22/cit22 doi: 10.1021/acsnano.2c12584 – ident: ref137/cit137 doi: 10.1002/smll.201902232 – ident: ref42/cit42 doi: 10.1016/j.ijbiomac.2022.04.094 – ident: ref219/cit219 doi: 10.1007/s40265-021-01473-6 – ident: ref168/cit168 doi: 10.1038/s41565-024-01785-0 – ident: ref84/cit84 doi: 10.1038/s41573-019-0012-9 – ident: ref49/cit49 doi: 10.1016/j.addr.2021.113834 – ident: ref38/cit38 doi: 10.1016/j.biotechadv.2020.107534 – ident: ref208/cit208 doi: 10.1038/mt.2012.261 – ident: ref46/cit46 doi: 10.1002/advs.202309748 – ident: ref242/cit242 doi: 10.1002/adfm.202207466 – ident: ref117/cit117 doi: 10.1126/science.adk9428 – ident: ref7/cit7 doi: 10.1016/j.jconrel.2024.01.060 – ident: ref70/cit70 doi: 10.1016/j.compbiomed.2016.08.002 – ident: ref144/cit144 doi: 10.1002/adfm.202400837 – ident: ref173/cit173 doi: 10.1016/j.pharmthera.2021.108106 – ident: ref256/cit256 doi: 10.1038/s41598-019-42523-0 – ident: ref95/cit95 doi: 10.1038/nrd1632 – ident: ref234/cit234 doi: 10.1016/j.tins.2020.12.002 – ident: ref23/cit23 doi: 10.1016/j.addr.2020.12.014 – ident: ref9/cit9 doi: 10.1016/j.omtm.2021.03.025 – ident: ref223/cit223 doi: 10.1038/s41577-020-0306-5 – ident: ref75/cit75 doi: 10.1016/j.cocis.2017.06.003 – ident: ref194/cit194 doi: 10.1038/s41551-023-01082-6 – ident: ref263/cit263 doi: 10.1039/D2BM02152H – ident: ref82/cit82 doi: 10.1089/crispr.2020.0110 – ident: ref161/cit161 doi: 10.1016/j.jconrel.2023.01.017 – ident: ref178/cit178 doi: 10.1021/acs.chemrev.8b00570 – ident: ref210/cit210 doi: 10.1039/D0CS00560F – ident: ref28/cit28 doi: 10.3866/PKU.WHXB201708311 – ident: ref174/cit174 doi: 10.3390/jcm10040838 – ident: ref15/cit15 doi: 10.1038/s41556-022-00880-5 – ident: ref99/cit99 doi: 10.1038/s41565-023-01548-3 – ident: ref68/cit68 doi: 10.1007/s13346-021-00938-1 – ident: ref244/cit244 doi: 10.1021/acsnano.4c03626 – ident: ref181/cit181 doi: 10.1002/anie.201403236 – ident: ref93/cit93 doi: 10.1038/s41541-024-00894-0 – ident: ref125/cit125 doi: 10.3390/polym11040745 – ident: ref133/cit133 doi: 10.1038/s41578-018-0077-9 – ident: ref261/cit261 doi: 10.1002/adfm.202314898 – ident: ref100/cit100 doi: 10.1002/adhm.202300549 – ident: ref121/cit121 doi: 10.1126/sciadv.adn9961 – ident: ref225/cit225 doi: 10.1002/adfm.202401563 – ident: ref131/cit131 doi: 10.1002/adhm.202400114 – ident: ref167/cit167 doi: 10.1002/adhm.202303510 – ident: ref96/cit96 doi: 10.1016/j.jconrel.2020.06.002 – ident: ref124/cit124 doi: 10.1016/j.addr.2020.06.014 – ident: ref11/cit11 doi: 10.1038/nbt.3765 – ident: ref66/cit66 doi: 10.1126/scirobotics.ade3311 – ident: ref259/cit259 doi: 10.1016/j.nantod.2017.12.007 – ident: ref69/cit69 doi: 10.1038/s41591-019-0598-9 – ident: ref104/cit104 doi: 10.3389/fphar.2020.598175 – ident: ref162/cit162 doi: 10.1126/science.aau6977 – ident: ref190/cit190 doi: 10.1038/s41587-019-0164-5 – ident: ref197/cit197 doi: 10.1093/infdis/jiab368 – ident: ref255/cit255 doi: 10.1093/nar/gkaa299 – ident: ref97/cit97 doi: 10.1081/CNV-120014883 – ident: ref183/cit183 doi: 10.1038/nature24648 – ident: ref204/cit204 doi: 10.3390/ijms241813743 – ident: ref138/cit138 doi: 10.1002/adma.202104362 – ident: ref98/cit98 doi: 10.1038/s41551-021-00786-x – ident: ref214/cit214 doi: 10.1038/s41573-023-00775-6 – ident: ref60/cit60 doi: 10.1038/nrc1456 – ident: ref43/cit43 doi: 10.3892/ijmm.2023.5284 – ident: ref47/cit47 doi: 10.1016/j.jconrel.2022.09.025 – ident: ref102/cit102 doi: 10.3390/pharmaceutics11020050 – ident: ref65/cit65 doi: 10.1038/s41587-021-01024-0 – ident: ref237/cit237 doi: 10.1038/s41565-024-01769-0 – ident: ref141/cit141 doi: 10.1016/j.jddst.2022.103729 – ident: ref231/cit231 doi: 10.1038/s41568-023-00586-2 – ident: ref107/cit107 doi: 10.1016/j.cis.2019.102060 – ident: ref20/cit20 doi: 10.1016/S0140-6736(23)01514-3 – ident: ref39/cit39 doi: 10.1038/s41573-021-00283-5 – ident: ref254/cit254 doi: 10.1039/D1CB00038A – ident: ref129/cit129 doi: 10.1002/adhm.202304675 – ident: ref170/cit170 doi: 10.1021/acs.jmedchem.4c00802 – ident: ref119/cit119 doi: 10.1016/j.mattod.2023.04.011 – ident: ref142/cit142 doi: 10.1007/s13346-012-0116-9 – ident: ref151/cit151 doi: 10.1002/adma.202107506 – ident: ref36/cit36 doi: 10.2165/11318190-000000000-00000 – ident: ref118/cit118 doi: 10.1039/D4PY00298A – ident: ref135/cit135 doi: 10.1038/s41563-023-01472-w – ident: ref33/cit33 doi: 10.1111/j.1440-1681.2006.04403.x – ident: ref140/cit140 doi: 10.1002/smtd.202300812 – ident: ref166/cit166 doi: 10.1016/j.kjms.2018.05.008 – ident: ref5/cit5 doi: 10.1016/j.jconrel.2020.03.040 – ident: ref13/cit13 doi: 10.1016/j.omtn.2022.06.011 – ident: ref6/cit6 doi: 10.1016/j.biomaterials.2022.121645 – ident: ref50/cit50 doi: 10.1186/s12951-018-0392-8 – ident: ref89/cit89 doi: 10.1111/cns.14392 – start-page: 25 volume-title: Cancer Nanotechnology: Methods and Protocols year: 2010 ident: ref51/cit51 doi: 10.1007/978-1-60761-609-2_3 – ident: ref202/cit202 doi: 10.1016/j.vaccine.2019.02.052 – ident: ref8/cit8 doi: 10.1016/j.immuni.2022.10.014 – ident: ref228/cit228 doi: 10.1016/j.ajps.2024.100891 – ident: ref128/cit128 doi: 10.1016/j.actbio.2021.07.029 – ident: ref188/cit188 doi: 10.1038/s41392-024-01745-z – ident: ref191/cit191 doi: 10.1016/j.copbio.2021.09.016 – ident: ref205/cit205 doi: 10.1038/s41583-024-00829-7 – ident: ref59/cit59 doi: 10.1039/C9NR05783H – ident: ref258/cit258 doi: 10.1021/acsami.8b04613 – ident: ref252/cit252 doi: 10.1038/nrd3978 – ident: ref269/cit269 doi: 10.1056/NEJMoa2107454 – ident: ref1/cit1 doi: 10.1016/j.jconrel.2022.10.050 – ident: ref87/cit87 doi: 10.1016/j.jconrel.2019.02.009 – ident: ref139/cit139 doi: 10.1038/s41573-020-0090-8 – ident: ref160/cit160 doi: 10.1038/s41598-019-52142-4 – ident: ref182/cit182 doi: 10.1038/s41467-019-08647-7 – ident: ref26/cit26 doi: 10.1016/j.cub.2020.07.003 – ident: ref216/cit216 doi: 10.1056/NEJMoa1913805 – ident: ref73/cit73 doi: 10.1016/j.addr.2021.113885 – ident: ref213/cit213 doi: 10.1038/s41572-021-00255-4 – ident: ref224/cit224 doi: 10.1016/j.nantod.2023.102061 – ident: ref56/cit56 doi: 10.1038/s41467-018-03705-y – ident: ref192/cit192 doi: 10.1056/NEJMoa2113017 – ident: ref48/cit48 doi: 10.7150/thno.14858 – ident: ref86/cit86 doi: 10.1016/j.expneurol.2021.113710 – ident: ref10/cit10 doi: 10.1038/s41565-021-00898-0 – ident: ref147/cit147 doi: 10.1016/j.cej.2024.150271 – ident: ref185/cit185 doi: 10.1002/adfm.202310749 – ident: ref169/cit169 doi: 10.1038/s41551-023-01150-x – ident: ref260/cit260 doi: 10.1038/s41598-020-72122-3 – ident: ref217/cit217 doi: 10.1016/j.jacl.2023.09.005 – ident: ref218/cit218 doi: 10.1007/s40256-023-00568-7 – ident: ref37/cit37 doi: 10.1093/ehjci/ehaa946.2129 – ident: ref2/cit2 doi: 10.1038/s12276-023-00998-y – ident: ref184/cit184 doi: 10.1021/jacs.3c02756 – ident: ref211/cit211 doi: 10.1177/2633105520973985 – ident: ref112/cit112 doi: 10.1021/jacs.3c09143 – ident: ref154/cit154 doi: 10.1016/j.cej.2024.150706 – ident: ref262/cit262 doi: 10.3390/nano11030746 – ident: ref229/cit229 doi: 10.1016/j.nantod.2024.102518 – ident: ref17/cit17 doi: 10.1016/j.cell.2009.01.035 – ident: ref264/cit264 doi: 10.7150/thno.21630 – ident: ref164/cit164 doi: 10.1002/advs.202307761 – ident: ref230/cit230 doi: 10.1016/j.cell.2024.04.003 – ident: ref77/cit77 doi: 10.1039/D2NA00530A – ident: ref186/cit186 doi: 10.1021/acsnano.2c09772 – ident: ref251/cit251 doi: 10.1158/1535-7163.MCT-21-0017 – ident: ref109/cit109 doi: 10.1038/s41573-024-00977-6 – ident: ref172/cit172 doi: 10.1021/acs.chemrev.2c00915 – ident: ref32/cit32 doi: 10.1002/med.21737 – ident: ref152/cit152 doi: 10.1016/j.nantod.2022.101564 – ident: ref247/cit247 doi: 10.1002/adfm.202312499 – ident: ref239/cit239 doi: 10.1038/s41580-024-00715-1 – ident: ref143/cit143 doi: 10.1016/j.addr.2019.07.010 – ident: ref233/cit233 doi: 10.1038/s41392-022-01298-z – ident: ref106/cit106 doi: 10.1002/anie.202310401 – ident: ref120/cit120 doi: 10.1016/j.bioactmat.2017.07.002 – ident: ref268/cit268 doi: 10.1186/s12951-022-01717-x – ident: ref58/cit58 doi: 10.1016/j.mtbio.2022.100364 – ident: ref171/cit171 doi: 10.1038/d41573-021-00213-5 – ident: ref245/cit245 doi: 10.1038/s41467-024-49933-3 – ident: ref200/cit200 doi: 10.3390/vaccines9010065 – ident: ref52/cit52 doi: 10.1021/acs.chemrev.0c00997 – ident: ref212/cit212 doi: 10.1182/bloodadvances.2020001996 – ident: ref80/cit80 doi: 10.1002/adhm.202302375 – ident: ref90/cit90 doi: 10.1089/hum.2017.140 – ident: ref18/cit18 doi: 10.1016/j.trecan.2024.06.006 – ident: ref149/cit149 doi: 10.1016/j.jconrel.2022.12.052 – ident: ref201/cit201 doi: 10.4161/gmic.1.4.12706 – ident: ref108/cit108 doi: 10.1016/j.drudis.2023.103505 – ident: ref92/cit92 doi: 10.1038/mt.2010.76 – ident: ref110/cit110 doi: 10.3390/nano11010171 – ident: ref31/cit31 doi: 10.1021/acsnano.2c09093 – ident: ref14/cit14 doi: 10.1007/s40265-018-0983-6 – ident: ref163/cit163 doi: 10.1016/j.jconrel.2023.10.034 – ident: ref206/cit206 doi: 10.3390/ijms25073810 – ident: ref180/cit180 doi: 10.1016/j.biomaterials.2020.120560 – ident: ref35/cit35 doi: 10.1056/NEJMoa1716153 – ident: ref111/cit111 doi: 10.1002/adma.202303614 – ident: ref158/cit158 doi: 10.1208/s12249-019-1325-z – ident: ref199/cit199 doi: 10.1016/j.mam.2021.101003 – ident: ref63/cit63 doi: 10.1016/j.jconrel.2021.01.014 – ident: ref115/cit115 doi: 10.1073/pnas.2109256118 – ident: ref146/cit146 doi: 10.1016/j.addr.2020.06.020 – ident: ref266/cit266 doi: 10.1016/j.jconrel.2023.08.019 – ident: ref189/cit189 doi: 10.1186/s12951-022-01625-0 – ident: ref122/cit122 doi: 10.1007/s13346-022-01281-9 – ident: ref113/cit113 doi: 10.1002/adma.202311574 – ident: ref136/cit136 doi: 10.1021/acs.biomac.5b01518 – ident: ref12/cit12 doi: 10.1016/j.ejpn.2023.06.010 – ident: ref207/cit207 doi: 10.1038/gt.2017.34 – ident: ref30/cit30 doi: 10.1038/nrd.2017.86 – ident: ref116/cit116 doi: 10.1038/s41565-020-0669-6 – ident: ref250/cit250 doi: 10.3390/molecules27041372 – ident: ref25/cit25 doi: 10.1016/j.molcel.2021.12.002 – ident: ref78/cit78 doi: 10.1002/9781119305101.ch3 – ident: ref246/cit246 doi: 10.1002/anie.202311698 – ident: ref62/cit62 doi: 10.1016/j.jcis.2018.04.084 – ident: ref132/cit132 doi: 10.1016/j.actbio.2021.01.013 – ident: ref248/cit248 doi: 10.1038/s41392-024-02035-4 – ident: ref238/cit238 doi: 10.1002/advs.202402178 – ident: ref165/cit165 doi: 10.1039/D4BM00558A – ident: ref220/cit220 doi: 10.1016/j.nantod.2023.102110 – ident: ref114/cit114 doi: 10.1016/j.isci.2024.109804 – ident: ref215/cit215 doi: 10.1016/j.cell.2017.10.025 – ident: ref196/cit196 doi: 10.1038/s41586-021-03944-y – ident: ref243/cit243 doi: 10.1002/adfm.202106167 – ident: ref265/cit265 doi: 10.1002/smtd.202400278 – ident: ref227/cit227 doi: 10.1002/adfm.202306634 – ident: ref126/cit126 doi: 10.1016/j.msec.2016.07.066 – ident: ref45/cit45 doi: 10.1016/j.drudis.2023.103507 – ident: ref176/cit176 doi: 10.1039/D2SC01672A – ident: ref4/cit4 doi: 10.1039/C4MD00184B – ident: ref88/cit88 doi: 10.1016/j.ymthe.2023.10.023 – ident: ref257/cit257 doi: 10.1093/nar/gky703 – ident: ref21/cit21 doi: 10.1016/j.cell.2024.07.021 – ident: ref64/cit64 doi: 10.3390/pharmaceutics15020484 – ident: ref177/cit177 doi: 10.1002/anie.201916390 – ident: ref145/cit145 doi: 10.1016/j.apmt.2023.101952 – ident: ref236/cit236 doi: 10.1021/acsnano.3c13150 – ident: ref79/cit79 doi: 10.1016/j.ijpharm.2024.123856 – ident: ref187/cit187 doi: 10.1016/j.addr.2024.115419 – ident: ref54/cit54 doi: 10.1039/D2LC00305H – ident: ref3/cit3 doi: 10.1016/j.tips.2021.10.012 – ident: ref127/cit127 doi: 10.3390/pharmaceutics13071075 – ident: ref253/cit253 doi: 10.1021/acs.accounts.1c00544 – ident: ref55/cit55 doi: 10.1016/j.addr.2012.10.002 – ident: ref198/cit198 doi: 10.1038/s41467-024-45628-x – ident: ref153/cit153 doi: 10.1016/j.jddst.2024.105427 – ident: ref155/cit155 doi: 10.1016/j.eurpolymj.2024.113286 – ident: ref71/cit71 doi: 10.1016/j.ijpharm.2021.120994 – ident: ref16/cit16 doi: 10.1038/nrd3625 – ident: ref29/cit29 doi: 10.1016/j.electacta.2021.137994 – ident: ref203/cit203 doi: 10.1126/science.adn4955 – ident: ref74/cit74 doi: 10.3892/ijo.2024.5626 – ident: ref67/cit67 doi: 10.1126/scitranslmed.aaf6413 – ident: ref134/cit134 doi: 10.1016/j.biomaterials.2017.06.001 – ident: ref193/cit193 doi: 10.1021/acsnano.1c01845 – ident: ref101/cit101 doi: 10.7150/thno.70853 – ident: ref81/cit81 doi: 10.3390/pharmaceutics15030846 – ident: ref72/cit72 doi: 10.1021/acs.molpharmaceut.2c00653 – ident: ref222/cit222 doi: 10.1038/s41571-021-00552-7 |
SSID | ssj0057876 |
Score | 2.525463 |
SecondaryResourceType | review_article |
Snippet | Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4039 |
SubjectTerms | Animals Drug Carriers - chemistry Drug Delivery Systems Humans Nanoparticles - chemistry Nucleic Acids - administration & dosage Nucleic Acids - chemistry Nucleic Acids - therapeutic use Precision Medicine |
Title | Emerging Delivery Systems for Enabling Precision Nucleic Acid Therapeutics |
URI | http://dx.doi.org/10.1021/acsnano.4c11858 https://www.ncbi.nlm.nih.gov/pubmed/39834294 https://www.proquest.com/docview/3157554788 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELZaurRD3w_6kisxdAlNbCeOR0RBCKmoUkFii2zHkVBRqEgY2l9fXxLoA6F2js9yfLbvO9_5O4QaofQC1_iuoxPuO4wo1wmNYo6wptvVSSB4DPcdT4OgN2L9sT_-Iov-HcEn3oPUWSrTWZNpi4X9cBvtkMBuYUBB7ZfloQvrLigDyNZBtihixeKz1gGYIZ39NEMbsGVhY7oHZXZWVlATQmrJa3ORq6b-WCdu_Hv4h2i_Qpq4VS6NI7Rl0mO0941_8AT14UoKqhThRzOFBI13XDGYY4tlcQfeVcHX53lViQcPgP54onFLT2I8_Hq7lZ2iUbczbPecqriCIymlucNDwYXhWri-ZNbnkbHLJY-ZokQTIqXm0p4_LOYeU0IFnEmfuonxlUyEB6RsZ6iWzlJzgbAMmdJ-Av5twhJKrGwoTMhI7KlYaFFHDTsLUbU5sqiIexMvqqYmqqamjppLlUS6IiiHOhnTzQL3K4G3kptjc9O7pY4ju38gKCJTM1tkEfUsYAVSM9vmvFT-qjMqQmrtNbv83w9coV0C1YEhp5tdo1o-X5gbC1lydVss1k-V_eX- |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BeYA9bHxtFBgzEg97SUlsJ44fKz5UGFSgFYm3yHYcqRpKEWkftr9-d2laBqgSe03skz_Ovp99598BHKUmSkIfh4ErVBxIbsMg9VYGGk136IpEq5zuO677Se9OXt7H90sQzt7CYCMqlFTVTvxndoHoGL-Vphx1pENIHKfLsIJQhJNOd09-zvZeUr9k6kfGczKCiTmZzxsBZI1c9dIaLYCYtak5_wS380bWESa_OpOx7bg_r_gb_6cX6_CxwZ2sO1WUDVjy5SZ8-IeNcAsu6YKKchaxU_9A4Rq_WcNnzhDZsjN6ZUV_b56avDysT2TIQ8e6bpizwfNLrmob7s7PBie9oEm1EBghxDhQqVbaK6fD2Eg8AZk8VEbl0gruODfGKYO7kcxVJK22iZImFmHhY2sKHRFF22dolaPS7wAzqbQuLui0W8hCcKybap9Knkc210634QhHIWuWSpXVXnAeZc3QZM3QtKEzm5nMNXTllDXjYXGF7_MKj1OmjsVFD2dTneFqIheJKf1oUmUiQvhKFGdY5stUB-bChE4FWm-5-74OfIPV3uD6Kru66P_YgzVOeYMp2lvuQ2v8NPFfEcyM7UGtv38Bs4buXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJAQH9n0zUg9cUpLYieNjBVSsVSWoxC2yHUdCoLRq2gN8PTOpWzZVgmtiW_Z47Hn2eN4QUktUEPs28j2Ti8jjofa9xGruSTDdvsljKTK877hvxVcdfvMUPbmgMIyFgU6U0FJZOfFxVfey3DEMBGfwvVBFt84NwOIomSXz6LRDvW6cP4z3X1TBeORLhrMyAIoJoc-vBtAimfK7RZoCMytz01whnUlHq1cmL_XhQNfN-w8Ox_-OZJUsO_xJGyOFWSMztlgnS19YCTfIDV5UYe4iemFf8dnGG3W85hQQLr3EaCv82-67_Dy0haTIz4Y2zHNGHz8juspN0mlePp5feS7lgqcYYwNPJFJIK4z0I8XhJKQyXyiRcc1CE4ZKGaFgV-KZCLiWOhZcRczPbaRVLgOkatsic0W3sDuEqoRrE-V46s15zkKom0ib8DALdCaN3CU1kELqlkyZVt7wMEidaFInml1SH89OahxtOWbPeJ1e4XRSoTdi7Jhe9GQ83SmsKnSVqMJ2h2XKAoCxSHUGZbZHejBpjMmEgRXne38bwDFZaF8007vr1u0-WQwxfTA--uYHZG7QH9pDwDQDfVSp8Ad81fDi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Delivery+Systems+for+Enabling+Precision+Nucleic+Acid+Therapeutics&rft.jtitle=ACS+nano&rft.au=Bian%2C+Xiaochun&rft.au=Zhou%2C+Liping&rft.au=Luo%2C+Zhiwei&rft.au=Liu%2C+Guotao&rft.date=2025-02-04&rft.eissn=1936-086X&rft.volume=19&rft.issue=4&rft.spage=4039&rft_id=info:doi/10.1021%2Facsnano.4c11858&rft_id=info%3Apmid%2F39834294&rft.externalDocID=39834294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |