Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides

2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the s...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 10; no. 2; pp. 1738 - 1743
Main Authors Du, Ke-zhao, Wang, Xing-zhi, Liu, Yang, Hu, Peng, Utama, M. Iqbal Bakti, Gan, Chee Kwan, Xiong, Qihua, Kloc, Christian
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3–3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.
AbstractList 2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3-3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.
2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3-3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3-3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.
Author Du, Ke-zhao
Hu, Peng
Wang, Xing-zhi
Liu, Yang
Kloc, Christian
Xiong, Qihua
Utama, M. Iqbal Bakti
Gan, Chee Kwan
AuthorAffiliation School of Materials Science & Engineering
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences
Institute of High Performance Computing, Agency for Science, Technology and Research
NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering
Nanyang Technological University
AuthorAffiliation_xml – name: Institute of High Performance Computing, Agency for Science, Technology and Research
– name: School of Materials Science & Engineering
– name: NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering
– name: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences
– name: Nanyang Technological University
Author_xml – sequence: 1
  givenname: Ke-zhao
  surname: Du
  fullname: Du, Ke-zhao
– sequence: 2
  givenname: Xing-zhi
  surname: Wang
  fullname: Wang, Xing-zhi
– sequence: 3
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 4
  givenname: Peng
  surname: Hu
  fullname: Hu, Peng
– sequence: 5
  givenname: M. Iqbal Bakti
  surname: Utama
  fullname: Utama, M. Iqbal Bakti
– sequence: 6
  givenname: Chee Kwan
  surname: Gan
  fullname: Gan, Chee Kwan
– sequence: 7
  givenname: Qihua
  surname: Xiong
  fullname: Xiong, Qihua
  email: qihua@ntu.edu.sg
– sequence: 8
  givenname: Christian
  surname: Kloc
  fullname: Kloc, Christian
  email: ckloc@ntu.edu.sg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26607168$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtvEzEUhS1U1Bdds0NeItFp_Rh7nCWtoCAFteqDsLNubE_idmIH27MIvx5XSVkgdXWvrs93LJ1zhPZCDA6h95ScUcLoOZgcIMQzMSdiwro36JBOuGyIkr_2_u2CHqCjnB8JEZ3q5D46YFKSjkp1iP7MHDzhnxCwdQnPAIaM7wqYJx8Wp3jmrWtuISwcvoBg8RWsT_HzcgurityV0W5wDPhhKAnK0gc8hY1LGcce_3AFBnyzjHm9jGnM-D55s4TBxIUL1Te_Q2_7-p072c1j9PD1y_3lt2Z6ffX98vO0Ac55aYRVbMJbRxhpGev6XvB6AaW4odaptmeKgxEt7UTLuLS9nfeKMaKcMWCo4sfo49Z3neLv0eWiVz4bNwwQXByzpp3sJpRTSar0w046zlfO6nXyK0gb_ZJXFYitwKSYc3K9Nr5A8THUAPygKdHPvehdL3rXS-XO_-NerF8nPm2J-qAf45hCzehV9V-Gt5_C
CitedBy_id crossref_primary_10_1038_s44306_024_00065_w
crossref_primary_10_1021_acsami_4c22204
crossref_primary_10_1002_adfm_202204230
crossref_primary_10_1016_j_jmmm_2023_171456
crossref_primary_10_1063_5_0138415
crossref_primary_10_1016_j_ssc_2022_114764
crossref_primary_10_1016_j_jechem_2017_11_023
crossref_primary_10_1088_1367_2630_ad26b9
crossref_primary_10_1039_C7NR08745D
crossref_primary_10_1002_advs_202002284
crossref_primary_10_1103_PhysRevB_96_075402
crossref_primary_10_1021_acs_nanolett_3c00351
crossref_primary_10_1063_5_0010487
crossref_primary_10_1016_j_apmt_2024_102129
crossref_primary_10_1039_D0TC03065A
crossref_primary_10_1039_D3NR01475D
crossref_primary_10_1088_2053_1583_ad6ba3
crossref_primary_10_1103_PhysRevB_97_035125
crossref_primary_10_1021_acsaem_8b01357
crossref_primary_10_1038_s41699_024_00441_4
crossref_primary_10_1021_acs_jpcc_8b03254
crossref_primary_10_1002_admi_202100491
crossref_primary_10_1039_C9TA03256H
crossref_primary_10_1063_5_0096814
crossref_primary_10_1021_acs_jpclett_3c00883
crossref_primary_10_1103_PhysRevB_98_035417
crossref_primary_10_1088_1361_6528_acf6c5
crossref_primary_10_1021_acs_chemmater_2c00163
crossref_primary_10_1002_adom_202402318
crossref_primary_10_1016_j_ijhydene_2023_03_044
crossref_primary_10_1002_adfm_202308422
crossref_primary_10_1002_adma_201804682
crossref_primary_10_1007_s40820_020_0381_y
crossref_primary_10_1103_PhysRevB_108_085435
crossref_primary_10_1002_smtd_202001068
crossref_primary_10_1016_j_cplett_2020_137627
crossref_primary_10_1002_admi_201900666
crossref_primary_10_1103_PhysRevB_94_184428
crossref_primary_10_1021_acsaelm_2c00563
crossref_primary_10_1021_acsnano_8b07290
crossref_primary_10_1007_s12274_020_2943_1
crossref_primary_10_1103_PhysRevB_97_014425
crossref_primary_10_1021_acsnano_1c06864
crossref_primary_10_1088_1361_648X_ace0ad
crossref_primary_10_1088_1361_648X_ad3da5
crossref_primary_10_1002_adom_202402549
crossref_primary_10_1021_acs_jpclett_2c03492
crossref_primary_10_1039_C9NR03964C
crossref_primary_10_1021_acs_jpclett_1c00394
crossref_primary_10_1002_adfm_202305386
crossref_primary_10_1002_adom_202002214
crossref_primary_10_1021_acsami_6b16553
crossref_primary_10_1002_smll_201801606
crossref_primary_10_1016_j_physe_2023_115666
crossref_primary_10_1021_acs_jpclett_0c00710
crossref_primary_10_1039_D3TA01629C
crossref_primary_10_1021_acs_nanolett_3c03415
crossref_primary_10_1016_j_jpcs_2022_110607
crossref_primary_10_1021_acs_jpcc_3c07112
crossref_primary_10_1016_j_apsusc_2021_151208
crossref_primary_10_1038_s42254_022_00490_y
crossref_primary_10_1063_5_0056798
crossref_primary_10_1007_s40843_021_1633_5
crossref_primary_10_1016_j_flatc_2021_100290
crossref_primary_10_1002_admi_202101769
crossref_primary_10_1016_j_biomaterials_2025_123182
crossref_primary_10_1002_adom_202400481
crossref_primary_10_1002_aenm_201801127
crossref_primary_10_1002_adom_202102489
crossref_primary_10_1016_j_nanoen_2017_09_017
crossref_primary_10_1103_PhysRevMaterials_5_064413
crossref_primary_10_1515_nanoph_2020_0336
crossref_primary_10_1016_j_rinp_2024_107330
crossref_primary_10_1016_j_yofte_2020_102434
crossref_primary_10_1039_D3NR04656G
crossref_primary_10_1007_s40820_018_0220_6
crossref_primary_10_1021_acsnano_3c01119
crossref_primary_10_1021_acsnano_7b07436
crossref_primary_10_1002_adfm_201910036
crossref_primary_10_1002_adfm_202310942
crossref_primary_10_1021_acs_jpcc_4c02349
crossref_primary_10_1016_j_nanoen_2017_09_008
crossref_primary_10_1103_PhysRevB_109_184407
crossref_primary_10_1002_pssb_202300496
crossref_primary_10_1002_adts_202000228
crossref_primary_10_1016_j_fmre_2022_04_002
crossref_primary_10_1007_s12274_021_3790_4
crossref_primary_10_1039_D2TA04174J
crossref_primary_10_1038_s41535_024_00651_5
crossref_primary_10_1038_s41563_021_00968_7
crossref_primary_10_3390_nano14211759
crossref_primary_10_1038_s41535_021_00334_5
crossref_primary_10_1088_1361_648X_ab2b1c
crossref_primary_10_1103_PhysRevB_100_174102
crossref_primary_10_1364_OE_542204
crossref_primary_10_1021_acs_jpcc_0c09938
crossref_primary_10_1088_1674_1056_ac1e0f
crossref_primary_10_1021_acs_nanolett_2c00401
crossref_primary_10_1002_apxr_202400101
crossref_primary_10_1007_s40843_020_1641_9
crossref_primary_10_1021_acscatal_7b02134
crossref_primary_10_1021_acsami_0c17818
crossref_primary_10_1021_acsami_1c21848
crossref_primary_10_1039_C6RA14101C
crossref_primary_10_1002_batt_202100310
crossref_primary_10_1063_1_5123442
crossref_primary_10_1039_D4NR01577K
crossref_primary_10_1039_D0RA08115A
crossref_primary_10_1063_5_0089478
crossref_primary_10_1002_smll_202105215
crossref_primary_10_1103_PhysRevB_102_214417
crossref_primary_10_1002_advs_202003041
crossref_primary_10_1038_s41598_017_18880_z
crossref_primary_10_1103_PhysRevMaterials_8_084005
crossref_primary_10_1088_1361_648X_ad06ef
crossref_primary_10_1002_smll_202207249
crossref_primary_10_1063_5_0013107
crossref_primary_10_1088_1674_1056_28_5_056301
crossref_primary_10_1088_1361_648X_ab5be8
crossref_primary_10_1021_acs_jpcc_4c02377
crossref_primary_10_1038_s41535_023_00560_z
crossref_primary_10_1016_j_cej_2025_160266
crossref_primary_10_1002_jcc_26416
crossref_primary_10_1002_adma_201900065
crossref_primary_10_1007_s10854_022_08019_w
crossref_primary_10_1039_D2NR03469G
crossref_primary_10_1007_s10854_021_07386_0
crossref_primary_10_1021_acsnano_7b05856
crossref_primary_10_1002_cssc_201801829
crossref_primary_10_1063_1_4962956
crossref_primary_10_1021_acsnano_1c09150
crossref_primary_10_1039_D2NJ02303B
crossref_primary_10_1088_1361_651X_ad16ef
crossref_primary_10_1021_acs_nanolett_2c02395
crossref_primary_10_1039_D4CP04582C
crossref_primary_10_1088_2053_1583_aca9dc
crossref_primary_10_1002_adfm_201800548
crossref_primary_10_1038_s41467_024_51643_9
crossref_primary_10_1002_aelm_202100408
crossref_primary_10_1016_j_apsusc_2019_04_029
crossref_primary_10_1007_s11082_022_04172_y
crossref_primary_10_1002_adfm_201910171
crossref_primary_10_1063_5_0218916
crossref_primary_10_1002_smtd_202301294
crossref_primary_10_1039_D1QI00390A
crossref_primary_10_1021_acsaelm_0c00105
crossref_primary_10_1038_s41467_018_04953_8
crossref_primary_10_1039_D0QM00789G
crossref_primary_10_1063_10_0002477
crossref_primary_10_1021_acs_nanolett_9b01417
crossref_primary_10_1039_C6TC00409A
crossref_primary_10_3390_mi9060292
crossref_primary_10_1002_advs_202401048
crossref_primary_10_1039_D2NR03770J
crossref_primary_10_1016_j_nantod_2020_100902
crossref_primary_10_1002_solr_202301010
crossref_primary_10_1039_D3TC03804A
crossref_primary_10_1002_aenm_202003553
crossref_primary_10_1038_s41598_021_04557_1
crossref_primary_10_1088_2053_1583_ac9c15
crossref_primary_10_1016_j_matchemphys_2017_06_006
crossref_primary_10_1088_1674_1056_28_5_056102
crossref_primary_10_1021_acsnano_7b04679
crossref_primary_10_1002_smll_202404346
crossref_primary_10_1002_adom_202000201
crossref_primary_10_1093_nsr_nww026
crossref_primary_10_1021_acsaelm_4c01547
crossref_primary_10_1007_s10854_021_05810_z
crossref_primary_10_1002_smtd_201700304
crossref_primary_10_1039_C7TA06971E
crossref_primary_10_1002_adma_202307237
crossref_primary_10_1021_acsami_1c02361
crossref_primary_10_1039_C8TC02443J
crossref_primary_10_1016_j_scib_2023_05_007
crossref_primary_10_1063_5_0205946
crossref_primary_10_1016_j_nanoms_2021_05_002
crossref_primary_10_7498_aps_71_20220301
crossref_primary_10_1002_advs_201600177
crossref_primary_10_1021_acsanm_4c06340
crossref_primary_10_1021_acs_chemmater_4c00393
crossref_primary_10_1063_5_0022097
crossref_primary_10_1016_j_apsusc_2019_144405
crossref_primary_10_1088_2053_1583_acba2c
crossref_primary_10_1103_PhysRevB_103_L140406
crossref_primary_10_1021_acs_jpcc_1c01938
crossref_primary_10_1126_sciadv_abl7707
crossref_primary_10_1002_aelm_202100207
crossref_primary_10_1016_j_jallcom_2023_173252
crossref_primary_10_1103_PhysRevResearch_4_023256
crossref_primary_10_1103_PhysRevMaterials_8_014007
crossref_primary_10_1103_PhysRevB_106_214408
crossref_primary_10_1126_sciadv_abf3096
crossref_primary_10_1088_1361_6528_ab646d
crossref_primary_10_1002_advs_201600062
crossref_primary_10_1039_D3CP01317K
crossref_primary_10_1021_acsnano_2c11654
crossref_primary_10_3390_nano15010063
crossref_primary_10_1021_acsmaterialslett_3c00011
crossref_primary_10_1016_j_ijhydene_2017_10_103
crossref_primary_10_1016_j_nxmate_2023_100053
crossref_primary_10_1002_anie_201810309
crossref_primary_10_1002_adfm_202101625
crossref_primary_10_1016_j_commatsci_2020_109592
crossref_primary_10_1360_nso_20230002
crossref_primary_10_1038_s41565_019_0438_6
crossref_primary_10_1039_D5TA00330J
crossref_primary_10_1016_j_apsusc_2019_143534
crossref_primary_10_1039_D4CP01941E
crossref_primary_10_1364_PRJ_510142
crossref_primary_10_1002_pssb_202400517
crossref_primary_10_1063_5_0039979
crossref_primary_10_1021_acsaelm_2c01681
crossref_primary_10_1007_s11664_024_11510_1
crossref_primary_10_1016_j_jcrysgro_2020_125799
crossref_primary_10_1103_PhysRevB_102_085408
crossref_primary_10_1021_acs_jpclett_2c02992
crossref_primary_10_1103_PhysRevApplied_21_044011
crossref_primary_10_1103_PhysRevB_107_L140501
crossref_primary_10_1038_s41598_021_00544_8
crossref_primary_10_1515_zkri_2017_2100
crossref_primary_10_1063_5_0222472
crossref_primary_10_3390_catal10101111
crossref_primary_10_1038_s42254_019_0110_y
crossref_primary_10_1103_PhysRevLett_132_236302
crossref_primary_10_1103_PhysRevMaterials_7_054801
crossref_primary_10_1063_1_4961211
crossref_primary_10_1080_10408436_2023_2289928
crossref_primary_10_1016_j_ccr_2020_213516
crossref_primary_10_1021_acsnano_2c05600
crossref_primary_10_1002_smll_201804404
crossref_primary_10_1039_C9RA09030D
crossref_primary_10_1016_j_jmmm_2020_166813
crossref_primary_10_7498_aps_69_20200342
crossref_primary_10_1021_acs_nanolett_6b03052
crossref_primary_10_1038_s41598_017_10145_z
crossref_primary_10_1088_1674_1056_28_8_084208
crossref_primary_10_1021_acsanm_3c00455
crossref_primary_10_1021_acsnano_7b09146
crossref_primary_10_1007_s10853_023_08998_z
crossref_primary_10_1016_j_surfin_2024_105319
crossref_primary_10_1088_2516_1075_ab942a
crossref_primary_10_1039_C9TA06044H
crossref_primary_10_15541_jim20200751
crossref_primary_10_1002_advs_202306494
crossref_primary_10_1088_1361_6463_ad865f
crossref_primary_10_1088_1361_6528_ac1719
crossref_primary_10_1039_D0NR07987A
crossref_primary_10_1016_j_ssc_2023_115116
crossref_primary_10_1039_D1NR03640H
crossref_primary_10_1007_s11771_021_4851_2
crossref_primary_10_1021_acs_chemrev_6b00558
crossref_primary_10_1002_adma_201707433
crossref_primary_10_1002_adfm_201805975
crossref_primary_10_1088_1674_4926_40_8_081508
crossref_primary_10_1021_acsami_0c21411
crossref_primary_10_1007_s12274_020_2860_3
crossref_primary_10_1039_D4TC01532K
crossref_primary_10_1039_D3CP02196C
crossref_primary_10_1021_acs_chemrev_1c00370
crossref_primary_10_1002_adpr_202100221
crossref_primary_10_1016_j_nantod_2021_101338
crossref_primary_10_1103_PhysRevB_104_134437
crossref_primary_10_1002_smll_202304518
crossref_primary_10_1021_acs_chemmater_9b02243
crossref_primary_10_1007_s10934_023_01516_1
crossref_primary_10_1103_PhysRevMaterials_8_074803
crossref_primary_10_1021_acsami_4c01189
crossref_primary_10_1007_s40843_020_1616_4
crossref_primary_10_1039_D2NR04710A
crossref_primary_10_1038_s41928_019_0232_3
crossref_primary_10_1103_PhysRevB_107_L220407
crossref_primary_10_1039_D0TA09752G
crossref_primary_10_1016_j_cplett_2024_141634
crossref_primary_10_1002_adom_201800058
crossref_primary_10_1021_acs_jpcc_2c03800
crossref_primary_10_3390_sym16020140
crossref_primary_10_1039_C9TA06461C
crossref_primary_10_1088_2053_1591_ac96d3
crossref_primary_10_1103_PhysRevB_107_115104
crossref_primary_10_1088_1572_9494_ad3955
crossref_primary_10_1016_j_snb_2021_130633
crossref_primary_10_1021_acs_jpcc_7b09634
crossref_primary_10_1021_acs_jpcc_8b09566
crossref_primary_10_1021_acsami_0c16396
crossref_primary_10_1002_advs_202001431
crossref_primary_10_1038_s41598_024_62175_z
crossref_primary_10_7498_aps_70_20202146
crossref_primary_10_1016_j_jpowsour_2021_229712
crossref_primary_10_1021_acs_nanolett_9b05165
crossref_primary_10_1103_PhysRevB_96_045404
crossref_primary_10_1021_acs_jpclett_4c00321
crossref_primary_10_1039_D0NR07867K
crossref_primary_10_1039_D4NR04743E
crossref_primary_10_1021_acs_nanolett_3c02906
crossref_primary_10_1109_JQE_2022_3141388
crossref_primary_10_1002_aelm_201900726
crossref_primary_10_1021_acsaem_1c01259
crossref_primary_10_1021_acs_nanolett_8b03315
crossref_primary_10_1002_adfm_202404320
crossref_primary_10_1039_C9NR04348A
crossref_primary_10_1002_adfm_202312322
crossref_primary_10_1063_5_0083272
crossref_primary_10_1016_j_est_2023_109737
crossref_primary_10_1016_j_flatc_2019_100133
crossref_primary_10_1039_D0NR00306A
crossref_primary_10_1016_j_cjph_2024_12_016
crossref_primary_10_1038_s41563_019_0532_z
crossref_primary_10_1088_0256_307X_40_7_077301
crossref_primary_10_1103_PhysRevB_94_214407
crossref_primary_10_1016_j_coco_2021_100988
crossref_primary_10_1080_01614940_2021_1899605
crossref_primary_10_1039_D0CE01487G
crossref_primary_10_1039_D2DT01194H
crossref_primary_10_1002_celc_202200018
crossref_primary_10_1021_acs_nanolett_4c05724
crossref_primary_10_1088_1361_6528_aab9d2
crossref_primary_10_1021_acs_nanolett_1c00870
crossref_primary_10_1021_acs_nanolett_4c05729
crossref_primary_10_1103_PhysRevB_108_054418
crossref_primary_10_1016_j_rinp_2021_104750
crossref_primary_10_1021_acs_chemrev_3c00132
crossref_primary_10_1021_acs_chemmater_3c00342
crossref_primary_10_1021_acs_jpclett_9b00758
crossref_primary_10_1021_acs_jpcc_2c00646
crossref_primary_10_1103_PhysRevB_101_085415
crossref_primary_10_1016_j_mejo_2020_104924
crossref_primary_10_1002_smtd_202101348
crossref_primary_10_1002_inf2_12048
crossref_primary_10_1088_1674_1056_ac5c34
crossref_primary_10_1103_PhysRevB_108_054401
crossref_primary_10_1016_j_apsadv_2025_100718
crossref_primary_10_1039_C7RA13519J
crossref_primary_10_1038_s41524_024_01318_2
crossref_primary_10_1063_5_0107065
crossref_primary_10_1002_cphc_202400039
crossref_primary_10_1016_j_physe_2020_114390
crossref_primary_10_1016_j_jmmm_2022_169959
crossref_primary_10_1002_adfm_201701342
crossref_primary_10_1016_j_sna_2024_115837
crossref_primary_10_1021_jacs_7b05133
crossref_primary_10_1021_acs_jpclett_3c02688
crossref_primary_10_1002_qute_202200105
crossref_primary_10_1039_D3GC01806G
crossref_primary_10_1002_adfm_202417282
crossref_primary_10_1016_j_flatc_2018_11_003
crossref_primary_10_1016_j_flatc_2023_100536
crossref_primary_10_1039_D3RA07237A
crossref_primary_10_1016_j_mattod_2018_01_034
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1038_s41565_018_0135_x
crossref_primary_10_1109_MNANO_2017_2676185
crossref_primary_10_1002_adts_202100182
crossref_primary_10_1039_D0NJ04680A
crossref_primary_10_1364_OE_523489
crossref_primary_10_1021_acsomega_3c04677
crossref_primary_10_1088_2053_1591_acca68
crossref_primary_10_1039_D0NA00270D
crossref_primary_10_1002_adma_202208355
crossref_primary_10_1002_cssc_202001302
crossref_primary_10_1080_21663831_2022_2130717
crossref_primary_10_1063_5_0235822
crossref_primary_10_1088_1361_648X_ad098e
crossref_primary_10_1007_s11433_021_1727_6
crossref_primary_10_1021_acsnano_9b09839
crossref_primary_10_1016_j_physrep_2023_09_002
crossref_primary_10_1002_smll_202303165
crossref_primary_10_1016_j_mtcomm_2023_106661
crossref_primary_10_1002_eem2_12205
crossref_primary_10_1016_j_jallcom_2024_174360
crossref_primary_10_1103_PhysRevB_103_014106
crossref_primary_10_1103_PhysRevB_110_165424
crossref_primary_10_1021_acsami_2c10216
crossref_primary_10_1002_adma_202306920
crossref_primary_10_1002_adma_202302568
crossref_primary_10_1021_acsaelm_2c00965
crossref_primary_10_1021_acs_jpcc_0c09064
crossref_primary_10_1039_D0RA09350E
crossref_primary_10_1002_lpor_202100431
crossref_primary_10_1038_s41565_019_0565_0
crossref_primary_10_1103_PhysRevB_93_245307
crossref_primary_10_52396_JUSTC_2023_0024
crossref_primary_10_1103_PhysRevB_111_024413
crossref_primary_10_1021_acsnano_6b05063
crossref_primary_10_1039_D1MH01155C
crossref_primary_10_1021_jacs_0c04101
crossref_primary_10_1088_2053_1583_abf251
crossref_primary_10_1021_acs_nanolett_2c01771
crossref_primary_10_1088_2516_1075_acfa4e
crossref_primary_10_1103_PhysRevB_99_184428
crossref_primary_10_1088_1402_4896_ad9e49
crossref_primary_10_1063_1_5044595
crossref_primary_10_1021_acs_jpclett_2c00023
crossref_primary_10_1002_advs_201902576
crossref_primary_10_1002_chem_201704284
crossref_primary_10_1016_j_jcis_2022_12_082
crossref_primary_10_1016_j_jallcom_2020_154432
crossref_primary_10_1088_1361_648X_acbb49
crossref_primary_10_1039_D3CS00815K
crossref_primary_10_1038_s41597_019_0097_3
crossref_primary_10_1039_D0CS01138J
crossref_primary_10_1039_D1CS00323B
crossref_primary_10_1088_1361_6528_ac0a16
crossref_primary_10_1364_OME_525626
crossref_primary_10_1063_5_0223945
crossref_primary_10_1002_smtd_202401551
crossref_primary_10_1016_j_pmatsci_2020_100763
crossref_primary_10_1021_acs_nanolett_0c01493
crossref_primary_10_1021_acs_inorgchem_2c01116
crossref_primary_10_1021_acs_nanolett_4c00772
crossref_primary_10_1002_smll_202006866
crossref_primary_10_1021_acs_inorgchem_1c02635
crossref_primary_10_1103_PhysRevApplied_23_024041
crossref_primary_10_1002_apxr_202400169
crossref_primary_10_1021_acs_chemrev_9b00600
crossref_primary_10_1002_adfm_202112169
crossref_primary_10_1088_1361_6528_aab5ab
crossref_primary_10_1002_cssc_201900789
crossref_primary_10_1038_s41699_021_00199_z
crossref_primary_10_1103_PhysRevB_109_235417
crossref_primary_10_1016_j_commatsci_2023_112501
crossref_primary_10_1039_D0MH00802H
crossref_primary_10_1088_1674_1056_ad9e97
crossref_primary_10_3390_magnetochemistry8090101
crossref_primary_10_1021_acs_jpcc_4c00562
crossref_primary_10_1039_C8CS00255J
crossref_primary_10_1063_1_5112130
crossref_primary_10_1103_PhysRevB_103_L121108
crossref_primary_10_1002_adfm_202407432
crossref_primary_10_1002_admi_202100294
crossref_primary_10_1002_pssb_202300448
crossref_primary_10_1021_acsnano_2c05895
crossref_primary_10_1021_acs_chemmater_3c02829
crossref_primary_10_1002_ange_201810309
crossref_primary_10_1016_j_physleta_2023_128699
crossref_primary_10_7498_aps_70_20202197
crossref_primary_10_1038_s41598_018_26522_1
crossref_primary_10_1039_C6RA03480B
crossref_primary_10_1103_PhysRevB_109_224411
crossref_primary_10_1103_PhysRevB_106_115403
crossref_primary_10_3390_physchem2040025
crossref_primary_10_1007_s10948_021_05980_1
crossref_primary_10_1002_smll_201905924
crossref_primary_10_1038_s41467_018_04018_w
crossref_primary_10_1021_acsnano_8b08229
crossref_primary_10_1088_2053_1583_3_3_031009
crossref_primary_10_1039_C8CC01076E
crossref_primary_10_1016_j_rinp_2023_106455
crossref_primary_10_1021_acs_chemrev_7b00633
crossref_primary_10_1103_PhysRevB_107_075436
crossref_primary_10_1016_j_jlumin_2022_119348
crossref_primary_10_1088_0953_8984_28_30_301001
crossref_primary_10_1002_adfm_201802151
crossref_primary_10_1021_acs_chemmater_9b04626
crossref_primary_10_1063_5_0206584
crossref_primary_10_1021_acs_nanolett_1c03992
crossref_primary_10_1103_PhysRevMaterials_8_104412
crossref_primary_10_1021_acssensors_9b02064
crossref_primary_10_1021_acs_jpcc_5c00330
crossref_primary_10_1021_acsanm_0c01273
crossref_primary_10_1039_C8TC05011B
crossref_primary_10_1016_j_mtelec_2023_100061
Cites_doi 10.1021/acsnano.5b03591
10.1021/nl4010089
10.1002/jcc.20495
10.1103/PhysRevB.35.7097
10.1021/nn500064s
10.1126/science.1250564
10.1103/PhysRevB.90.245428
10.1038/nnano.2014.35
10.1016/0925-8388(92)90626-K
10.1103/PhysRevB.46.5425
10.1557/JMR.2005.0161
10.1038/nature12385
10.1039/C4NR01600A
10.1002/anie.201411246
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.49.14251
10.1038/522274a
10.1002/adma.201201361
10.1021/cm00045a016
10.1103/PhysRevX.3.031002
10.1021/nn500508c
10.1021/nl304169w
10.1021/nn300889c
10.1126/science.1226419
10.1126/science.1102896
10.1063/1.4863695
10.1016/S0038-1098(00)00257-X
10.1007/978-94-011-3190-2_5
10.1016/0022-4596(83)90107-X
10.1021/nl400107k
10.1002/zaac.200900004
10.1021/nn1003937
10.1103/PhysRevLett.77.3865
10.1016/0927-0256(96)00008-0
10.1002/adma.201501086
10.1103/PhysRevB.50.17953
10.1021/ja505097m
10.1103/PhysRevB.76.134402
10.1073/pnas.1405435111
10.1016/0025-5408(70)90080-2
10.1103/PhysRevLett.105.136805
10.1103/PhysRevB.74.094422
10.1103/PhysRevB.91.235425
10.1021/jp510308a
10.1038/nmat4374
10.1016/0167-2738(86)90055-X
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.5b05927
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 1743
ExternalDocumentID 26607168
10_1021_acsnano_5b05927
a17851498
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a333t-5d82934e0204227ff53d82a883c1de84f283ac541754236dfdbf82208eccac183
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 08:18:06 EDT 2025
Mon Jul 21 06:03:24 EDT 2025
Tue Jul 01 01:33:57 EDT 2025
Thu Apr 24 23:11:35 EDT 2025
Thu Aug 27 13:42:39 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords two-dimensional semiconductors
cleavage energy
metal phosphorus trichalcogenides
Raman spectroscopy
band gap
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-5d82934e0204227ff53d82a883c1de84f283ac541754236dfdbf82208eccac183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26607168
PQID 1767913160
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1767913160
pubmed_primary_26607168
crossref_citationtrail_10_1021_acsnano_5b05927
crossref_primary_10_1021_acsnano_5b05927
acs_journals_10_1021_acsnano_5b05927
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-23
PublicationDateYYYYMMDD 2016-02-23
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
Kuch W. (ref15/cit15) 2014
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
Balkanski M. (ref29/cit29) 1992; 13
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref20/cit20
  doi: 10.1021/acsnano.5b03591
– ident: ref8/cit8
  doi: 10.1021/nl4010089
– ident: ref48/cit48
  doi: 10.1002/jcc.20495
– ident: ref38/cit38
  doi: 10.1103/PhysRevB.35.7097
– ident: ref14/cit14
  doi: 10.1021/nn500064s
– ident: ref2/cit2
  doi: 10.1126/science.1250564
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.90.245428
– ident: ref5/cit5
  doi: 10.1038/nnano.2014.35
– ident: ref24/cit24
  doi: 10.1016/0925-8388(92)90626-K
– ident: ref28/cit28
  doi: 10.1103/PhysRevB.46.5425
– ident: ref36/cit36
  doi: 10.1557/JMR.2005.0161
– ident: ref16/cit16
  doi: 10.1038/nature12385
– ident: ref19/cit19
  doi: 10.1039/C4NR01600A
– ident: ref6/cit6
  doi: 10.1002/anie.201411246
– ident: ref18/cit18
– ident: ref45/cit45
  doi: 10.1103/PhysRevB.59.1758
– ident: ref44/cit44
  doi: 10.1103/PhysRevB.49.14251
– ident: ref17/cit17
  doi: 10.1038/522274a
– ident: ref10/cit10
  doi: 10.1002/adma.201201361
– ident: ref31/cit31
  doi: 10.1021/cm00045a016
– ident: ref34/cit34
  doi: 10.1103/PhysRevX.3.031002
– ident: ref4/cit4
  doi: 10.1021/nn500508c
– ident: ref40/cit40
  doi: 10.1021/nl304169w
– ident: ref9/cit9
  doi: 10.1021/nn300889c
– ident: ref22/cit22
  doi: 10.1126/science.1226419
– ident: ref1/cit1
  doi: 10.1126/science.1102896
– ident: ref33/cit33
  doi: 10.1063/1.4863695
– ident: ref30/cit30
  doi: 10.1016/S0038-1098(00)00257-X
– volume: 13
  start-page: 71
  volume-title: New Horizons in Low-Dimensional Electron Systems
  year: 1992
  ident: ref29/cit29
  doi: 10.1007/978-94-011-3190-2_5
– ident: ref37/cit37
  doi: 10.1016/0022-4596(83)90107-X
– ident: ref7/cit7
  doi: 10.1021/nl400107k
– ident: ref23/cit23
  doi: 10.1002/zaac.200900004
– ident: ref42/cit42
  doi: 10.1021/nn1003937
– ident: ref46/cit46
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref43/cit43
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref39/cit39
  doi: 10.1002/adma.201501086
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.50.17953
– ident: ref32/cit32
  doi: 10.1021/ja505097m
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.76.134402
– ident: ref13/cit13
  doi: 10.1073/pnas.1405435111
– volume-title: Magnetic Microscopy of Layered Structures
  year: 2014
  ident: ref15/cit15
– ident: ref35/cit35
  doi: 10.1016/0025-5408(70)90080-2
– ident: ref3/cit3
  doi: 10.1103/PhysRevLett.105.136805
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.74.094422
– ident: ref11/cit11
  doi: 10.1103/PhysRevB.91.235425
– ident: ref12/cit12
  doi: 10.1021/jp510308a
– ident: ref21/cit21
  doi: 10.1038/nmat4374
– ident: ref25/cit25
  doi: 10.1016/0167-2738(86)90055-X
SSID ssj0057876
Score 2.6480567
Snippet 2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn)...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1738
Title Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides
URI http://dx.doi.org/10.1021/acsnano.5b05927
https://www.ncbi.nlm.nih.gov/pubmed/26607168
https://www.proquest.com/docview/1767913160
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3bb9MwFMYtGC_wwJ1RbjpIe-BhKUmcOO7jmBgTYgiNle4tOvFFnVacqmkf2F_POUlaLlMFb1EUW47z2f45Pv4sxF7mbZy5kY98bOIo04jRyBgVWR1jXimCfMubk08-q-Nx9vE8P_9lFv33Cn6avEXTBAz1MK-IBNLipriVKl3wPOvg8Ou602XdqW4BmSbIRBEbF59rGfAwZJo_h6EtbNmOMUf3uuisprUm5NCSy-FqWQ3N1XXjxn8X_76425MmHHTSeCBuuPBQ3PnNf_CRuJo4vIRvGMC6BUyQpAhEn4Z_n-_D5MK66JQ3H8A7DBY-4Hwf-OIUv1MSjkD8AXWA8YwdbqcXAT4hAzzUHk4cQT18mdbNfFovVg2cLTg-f2ZqEizl2zwW46P3Z4fHUX8YQ4RSymWUW01kkDneTJumhfe5pDuotTSJdTrzxClo8izhI3Wlst5WnuAj1qwRQx3HE7ET6uCeCoiNK6SReWzR0PO68o6pTvmcVKNNNRB7VGtl35iasl0nT5Oyr8qyr8qBGK4_YWl6Q3M-V2O2PcGbTYJ55-Wx_dHXa02U1N54EQWDq1dUmEIVo0QmKh6I3U4sm8wIdojYlH72fy_wXNwm_GpjwFP5QuwsFyv3khBnWb1qxf0TPa_2tw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcoAeeEPDc5CKxKEOttePzYFDKZSUJhUqSdObWe9DqRrWUZwItb-Gv8I_Y9ZxwkuRuFTiZq28o92dmZ1vNI8F2IqM8iPdMp7xpe9FXAivJWXiKe6LOE8I5CtXnNw9TNr96MNJfLIG3xa1MLSIkiiVVRD_Z3eB4BWNWWGLZpwTIAjTOo3yQJ9_JSetfL3_ljj6Igz33vV22179joAnGGNTL1acjFqkXR1oGKbGxIxGBOdMBkrzyJCJFTKOAvcaLEuUUbkhu-lztz1JMk90r8BVgj6hc-92dj8t7non7sk8bk1-OYGXZfOgvxbsrJ8sf7d-KyBtZdr2bsL35aFUGS1nzdk0b8qLP_pF_s-ndgtu1Lgad-aKcBvWtL0DG790W7wLFwMtzvBYWFR6ggNBioeEtaULFmzj4FRp78iVWuAbYRW-F-NtdB9H4gtNcfmW51hY7I9cP9_hqcWOcO4KFga7mlwY_DgsyvGwmMxK7E1cNcJIFqSeRLe8B_1L2fx9WLeF1ZuAvtQpkyz2lZD0P8-Ndhg2MTHpCJd5A7aIS1l9dZRZlRUQBlnNuqxmXQOaC8nJZN2-3b0iMlo94eVywnjeuWT1r88XopjR7eJCRsLqYkaLSZO0FbAg8RvwYC6jS2IE7QifJvzhv23gGVxr97qdrLN_ePAIrhPwrLLfQ_YY1qeTmX5C4G6aP630C-HzZYvmD70eV9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Zb9NAEB6VIiF44D7CuUhF4qEOttdebx54KC2hpYeq0pC-mfUeStWwjuJEqP09_BX-FzOOE3EoEi-VeLNW3tHuzszON5pjAdYSZ8LEdlzgQh0GiVQq6GgtAiNDlRYCQb6h4uT9A7HdSz6epCcr8H1eC4OLqJBSVQfxSatHxjUdBqI3OO6VL9tpgaAgzppUyl17_g0dtertzhZy9VUcd98fb24HzVsCgeKcT4LUSDRsiaVa0DjOnEs5jigpuY6MlYlDM6t0mkT0IiwXxpnCoe0MJW1Ro9wj3StwlYKE5OJtbH6a3_ck8mIWu0bfHAHMooHQXwsmC6ir3y3gElhbm7fuLfixOJg6q-WsPZ0UbX3xR8_I__3kbsPNBl-zjZlC3IEV6-_CjV-6Lt6Di75VZ-yz8szYMesrVECGmFtT0GCd9U-NDY6o5IK9U96wD2q0zujjSH3FKZR3ec5Kz3pD6us7OPVsT5HbwkrH9i26MuxwUFajQTmeVux4TFUJQ12imiLd6j70LmXzD2DVl94-AhZqm3HN09Aojf_LwlnCssKlqCtSFy1YQy7lzRVS5XV2QBzlDevyhnUtaM-lJ9dNG3d6TWS4fMLrxYTRrIPJ8l9fzsUxx1uGQkfK23KKi8lE1ol4JMIWPJzJ6YIYQjzEqUI-_rcNvIBrh1vdfG_nYPcJXEf8WSfBx_wprE7GU_sMMd6keF6rGIMvly2ZPwEjwFpf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+Van+der+Waals+Stacking%2C+Wide-Range+Band+Gap%2C+and+Raman+Study+on+Ultrathin+Layers+of+Metal+Phosphorus+Trichalcogenides&rft.jtitle=ACS+nano&rft.au=Du%2C+Ke-zhao&rft.au=Wang%2C+Xing-zhi&rft.au=Liu%2C+Yang&rft.au=Hu%2C+Peng&rft.date=2016-02-23&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=10&rft.issue=2&rft.spage=1738&rft.epage=1743&rft_id=info:doi/10.1021%2Facsnano.5b05927&rft.externalDocID=a17851498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon