Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback Enabled by Materials’ Multifunctionalities

Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback fu...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 16; no. 9; pp. 14097 - 14110
Main Authors Zhu, Minglu, Sun, Zhongda, Lee, Chengkuo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback functions by exploring and utilizing the multiple properties of glove materials. With a single design of basic structure, the main functional unit possesses triboelectric-based sensing of static and dynamic contact, vibration, strain, and pneumatic actuation. Additionally, the same unit is also capable of offering pneumatic tactile haptic feedback and electroresistive thermal haptic feedback. Together with a machine learning algorithm, the proposed glove not only performs real-time detection of dexterous hand motion and direct feedback but also realizes intelligent object recognition and augmented feedback, which significantly enhance the communication and perception of more comprehensive information. In general, this glove utilizes a facile designed sensing and feedback device to achieve dual-way and multimodal communication among humans, machines, and the virtual world via smart perceptions.
AbstractList Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback functions by exploring and utilizing the multiple properties of glove materials. With a single design of basic structure, the main functional unit possesses triboelectric-based sensing of static and dynamic contact, vibration, strain, and pneumatic actuation. Additionally, the same unit is also capable of offering pneumatic tactile haptic feedback and electroresistive thermal haptic feedback. Together with a machine learning algorithm, the proposed glove not only performs real-time detection of dexterous hand motion and direct feedback but also realizes intelligent object recognition and augmented feedback, which significantly enhance the communication and perception of more comprehensive information. In general, this glove utilizes a facile designed sensing and feedback device to achieve dual-way and multimodal communication among humans, machines, and the virtual world via smart perceptions.Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback functions by exploring and utilizing the multiple properties of glove materials. With a single design of basic structure, the main functional unit possesses triboelectric-based sensing of static and dynamic contact, vibration, strain, and pneumatic actuation. Additionally, the same unit is also capable of offering pneumatic tactile haptic feedback and electroresistive thermal haptic feedback. Together with a machine learning algorithm, the proposed glove not only performs real-time detection of dexterous hand motion and direct feedback but also realizes intelligent object recognition and augmented feedback, which significantly enhance the communication and perception of more comprehensive information. In general, this glove utilizes a facile designed sensing and feedback device to achieve dual-way and multimodal communication among humans, machines, and the virtual world via smart perceptions.
Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback functions by exploring and utilizing the multiple properties of glove materials. With a single design of basic structure, the main functional unit possesses triboelectric-based sensing of static and dynamic contact, vibration, strain, and pneumatic actuation. Additionally, the same unit is also capable of offering pneumatic tactile haptic feedback and electroresistive thermal haptic feedback. Together with a machine learning algorithm, the proposed glove not only performs real-time detection of dexterous hand motion and direct feedback but also realizes intelligent object recognition and augmented feedback, which significantly enhance the communication and perception of more comprehensive information. In general, this glove utilizes a facile designed sensing and feedback device to achieve dual-way and multimodal communication among humans, machines, and the virtual world via smart perceptions.
Author Sun, Zhongda
Zhu, Minglu
Lee, Chengkuo
AuthorAffiliation Department of Electrical & Computer Engineering
Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering
National University of Singapore Suzhou Research Institute (NUSRI)
Soochow University
NUS Graduate School-Integrative Sciences and Engineering Program (ISEP)
Center for Sensors and MEMS
AuthorAffiliation_xml – name: Center for Sensors and MEMS
– name: Soochow University
– name: NUS Graduate School-Integrative Sciences and Engineering Program (ISEP)
– name: National University of Singapore Suzhou Research Institute (NUSRI)
– name: Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering
– name: Department of Electrical & Computer Engineering
Author_xml – sequence: 1
  givenname: Minglu
  surname: Zhu
  fullname: Zhu, Minglu
  organization: Soochow University
– sequence: 2
  givenname: Zhongda
  surname: Sun
  fullname: Sun, Zhongda
  organization: Center for Sensors and MEMS
– sequence: 3
  givenname: Chengkuo
  orcidid: 0000-0002-8886-3649
  surname: Lee
  fullname: Lee, Chengkuo
  email: elelc@nus.edu.sg
  organization: NUS Graduate School-Integrative Sciences and Engineering Program (ISEP)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35998364$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtPXDEQha0IxCvU6ZDLSGjBj_vaEqEFIrFKQSKlu5prj8Hga2_8ANHlb-Tv5Zfkot1QRIJqRnO-M8U5-2TLB4-EfOLshDPBT0ElDz6cCMUqVskPZI_PZTNjXfNj63Wv-S7ZT-mesbrt2maH7Mp6Pu9kU-2RchNMpsugi4NIL114RPpk8x1dFpftGDQ4eoM-WX9LwWt6Vm5H9Bk1vYJVtopeIOoB1ANdeBjcdB-e6RIyRgsu_fn1e_3IFK-yDR6czRbTR7JtJhkPN_OAfL9YfDu_ml1_vfxyfnY9AyllntUVAw2DQNa2jWoNmqGClulaoZId012FTBiBUIPUamDzzgjDOqlbxQemjDwgn9d_VzH8LJhyP9qk0DnwGErqRcsa3olK8Ak92qBlGFH3q2hHiM_9v6gm4HQNqBhSimheEc76lzL6TRn9pozJUf_nUDbDSww5gnXv-I7Xvkno70OJU2zpTfovt5eiFA
CitedBy_id crossref_primary_10_1021_acsami_4c20660
crossref_primary_10_1016_j_nwnano_2024_100057
crossref_primary_10_1002_aesr_202400116
crossref_primary_10_1016_j_nanoen_2024_110118
crossref_primary_10_1002_advs_202408689
crossref_primary_10_1016_j_matt_2024_06_010
crossref_primary_10_36548_jiip_2024_1_003
crossref_primary_10_1016_j_mtphys_2024_101496
crossref_primary_10_1016_j_nanoen_2024_110273
crossref_primary_10_1016_j_mtphys_2024_101376
crossref_primary_10_1021_acsami_4c09471
crossref_primary_10_1002_adfm_202303504
crossref_primary_10_1016_j_scib_2023_01_009
crossref_primary_10_1038_s42256_023_00780_9
crossref_primary_10_1002_adma_202414054
crossref_primary_10_1016_j_nanoen_2024_109689
crossref_primary_10_1002_advs_202303234
crossref_primary_10_1016_j_nanoen_2024_109432
crossref_primary_10_1021_acsnano_3c11281
crossref_primary_10_3390_act13110454
crossref_primary_10_1016_j_cej_2023_146986
crossref_primary_10_1021_acs_chemrev_3c00356
crossref_primary_10_1126_sciadv_adr4797
crossref_primary_10_1007_s40820_024_01423_3
crossref_primary_10_1016_j_xcrp_2024_102287
crossref_primary_10_1002_admt_202301599
crossref_primary_10_1016_j_cplett_2023_140795
crossref_primary_10_1021_acsnano_2c12784
crossref_primary_10_29026_oes_2024_240005
crossref_primary_10_1002_adfm_202309359
crossref_primary_10_1039_D4MH00126E
crossref_primary_10_1007_s12274_023_5879_4
crossref_primary_10_1016_j_nanoen_2022_108109
crossref_primary_10_1002_aisy_202300213
crossref_primary_10_1002_aisy_202300730
crossref_primary_10_1038_s41467_022_32745_8
crossref_primary_10_1002_aenm_202203040
crossref_primary_10_1088_2058_8585_ad0a37
crossref_primary_10_1002_aisy_202300291
crossref_primary_10_1002_adfm_202305919
crossref_primary_10_1063_5_0144956
crossref_primary_10_1109_TOH_2023_3248619
crossref_primary_10_1002_adfm_202409558
crossref_primary_10_1021_acsnano_2c12592
crossref_primary_10_1080_00405000_2024_2413197
crossref_primary_10_1109_TIM_2024_3386206
crossref_primary_10_1016_j_nanoen_2024_110491
crossref_primary_10_1039_D3MH02074F
crossref_primary_10_1002_admt_202301681
crossref_primary_10_1080_10447318_2024_2316376
crossref_primary_10_1088_2631_7990_acded1
crossref_primary_10_3390_app15063302
crossref_primary_10_1038_s41528_023_00252_5
crossref_primary_10_1002_rpm_20240018
crossref_primary_10_1002_aisy_202400578
crossref_primary_10_1021_acsami_4c11050
crossref_primary_10_1002_adsr_202200072
crossref_primary_10_1002_aenm_202302699
crossref_primary_10_1016_j_jcis_2024_11_045
crossref_primary_10_1002_sys3_4
crossref_primary_10_1007_s40820_023_01235_x
crossref_primary_10_1016_j_nanoen_2025_110821
crossref_primary_10_34133_research_0154
crossref_primary_10_1002_aisy_202200337
crossref_primary_10_1371_journal_pone_0285002
crossref_primary_10_1002_admt_202302027
crossref_primary_10_1016_j_nanoen_2024_110120
crossref_primary_10_1002_aisy_202200453
crossref_primary_10_1021_acs_chemrev_4c00049
crossref_primary_10_7717_peerj_cs_1715
crossref_primary_10_1016_j_scib_2023_04_019
crossref_primary_10_1038_s41467_023_37678_4
crossref_primary_10_1007_s40820_022_00999_y
crossref_primary_10_1016_j_mattod_2024_08_013
crossref_primary_10_1186_s42234_023_00118_1
crossref_primary_10_3390_nano14020165
crossref_primary_10_1016_j_biotechadv_2023_108297
crossref_primary_10_1016_j_nanoen_2024_110638
crossref_primary_10_1039_D2NA00608A
crossref_primary_10_1088_2752_5724_ad305e
crossref_primary_10_1016_j_device_2024_100561
crossref_primary_10_1016_j_ijbiomac_2023_129038
crossref_primary_10_1016_j_foodcont_2023_110129
crossref_primary_10_1016_j_nanoen_2024_109532
Cites_doi 10.1002/advs.202101834
10.1007/s40820-022-00831-7
10.1089/soro.2019.0158
10.1038/s41467-020-17842-w
10.1126/sciadv.abe2943
10.1126/scirobotics.aau6914
10.1126/science.abc9735
10.1126/sciadv.aba9624
10.1016/j.nanoen.2022.107358
10.1016/j.nanoen.2016.10.046
10.1016/j.nanoen.2022.107503
10.1002/smll.201770236
10.1021/acsami.2c03812
10.1038/s41586-019-1234-z
10.1038/s41598-019-45422-6
10.1002/adma.202002564
10.1016/j.nanoen.2022.107307
10.1016/j.nanoen.2022.107245
10.1016/j.nanoen.2018.10.044
10.1038/s41467-020-18471-z
10.1002/admt.201700102
10.3390/nanoenergyadv1010005
10.1016/j.nanoen.2021.106670
10.1002/aisy.202000168
10.1038/ncomms6747
10.1016/j.nanoen.2022.107324
10.1038/s41467-018-04906-1
10.1002/aisy.201900077
10.1002/adfm.202008831
10.1038/s41598-019-56847-4
10.1038/s41467-021-25637-w
10.1038/nnano.2015.324
10.3390/mi10050301
10.1002/admt.202200282
10.1038/s41528-020-00092-7
10.1016/j.scib.2022.04.002
10.1038/s41467-017-02685-9
10.1063/1.5016385
10.1002/adma.201770281
10.1002/aisy.202100228
10.1016/j.nanoen.2019.01.091
10.1002/admt.201900895
10.1016/j.nanoen.2021.106894
10.1126/scirobotics.abc8134
10.1002/adfm.202008805
10.1002/EXP.20210112
10.1002/adma.201706299
10.1002/eom2.12058
10.1002/admt.201900042
10.1038/s41586-020-2892-6
10.1126/scirobotics.aax2198
10.1002/adfm.202007436
10.1089/soro.2018.0006
10.1063/5.0016485
10.1002/advs.202201056
10.1002/adfm.202007772
10.1002/adfm.202007428
10.1126/science.aba5504
10.1002/adfm.202006612
10.1002/admt.202000233
10.1002/aisy.202000157
10.1002/adma.201902549
10.1126/sciadv.aaz8693
10.1038/s41586-019-1687-0
10.1126/sciadv.abl9874
10.1002/eom2.12059
10.1016/j.nanoen.2019.104417
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.2c04043
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 14110
ExternalDocumentID 35998364
10_1021_acsnano_2c04043
c357836630
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHGD
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a333t-540adab2e0776c7fefb4a70d5cec380d84e02f2ea5a3dcb098f2f083d7c1b0cf3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 23:34:18 EDT 2025
Thu Apr 03 07:08:50 EDT 2025
Thu Apr 24 22:58:32 EDT 2025
Tue Jul 01 03:37:28 EDT 2025
Thu Sep 29 04:36:30 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords multimodal haptic feedback
triboelectric
modular glove
machine learning
augmented feedback
tactile sensing
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-540adab2e0776c7fefb4a70d5cec380d84e02f2ea5a3dcb098f2f083d7c1b0cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8886-3649
PMID 35998364
PQID 2706182421
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2706182421
pubmed_primary_35998364
crossref_primary_10_1021_acsnano_2c04043
crossref_citationtrail_10_1021_acsnano_2c04043
acs_journals_10_1021_acsnano_2c04043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220927
2022-09-27
PublicationDateYYYYMMDD 2022-09-27
PublicationDate_xml – month: 09
  year: 2022
  text: 20220927
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
Xue J. (ref5/cit5) 2022
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
Shi Q. (ref1/cit1) 2022
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
Kim S. W. (ref60/cit60) 2020; 10
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref70/cit70
ref7/cit7
Lee J. (ref66/cit66) 2020; 30
References_xml – ident: ref13/cit13
  doi: 10.1002/advs.202101834
– ident: ref9/cit9
  doi: 10.1007/s40820-022-00831-7
– ident: ref61/cit61
  doi: 10.1089/soro.2019.0158
– ident: ref20/cit20
  doi: 10.1038/s41467-020-17842-w
– ident: ref65/cit65
  doi: 10.1126/sciadv.abe2943
– ident: ref23/cit23
  doi: 10.1126/scirobotics.aau6914
– ident: ref24/cit24
  doi: 10.1126/science.abc9735
– ident: ref27/cit27
  doi: 10.1126/sciadv.aba9624
– ident: ref47/cit47
  doi: 10.1016/j.nanoen.2022.107358
– ident: ref35/cit35
  doi: 10.1016/j.nanoen.2016.10.046
– ident: ref42/cit42
  doi: 10.1016/j.nanoen.2022.107503
– ident: ref12/cit12
  doi: 10.1002/smll.201770236
– ident: ref30/cit30
  doi: 10.1021/acsami.2c03812
– ident: ref41/cit41
  doi: 10.1038/s41586-019-1234-z
– ident: ref63/cit63
  doi: 10.1038/s41598-019-45422-6
– ident: ref58/cit58
  doi: 10.1002/adma.202002564
– ident: ref15/cit15
  doi: 10.1016/j.nanoen.2022.107307
– ident: ref21/cit21
  doi: 10.1016/j.nanoen.2022.107245
– ident: ref37/cit37
  doi: 10.1016/j.nanoen.2018.10.044
– ident: ref39/cit39
  doi: 10.1038/s41467-020-18471-z
– ident: ref53/cit53
  doi: 10.1002/admt.201700102
– year: 2022
  ident: ref1/cit1
  publication-title: ACS Mater. Au
– ident: ref6/cit6
  doi: 10.3390/nanoenergyadv1010005
– ident: ref14/cit14
  doi: 10.1016/j.nanoen.2021.106670
– ident: ref70/cit70
  doi: 10.1002/aisy.202000168
– ident: ref31/cit31
  doi: 10.1038/ncomms6747
– ident: ref29/cit29
  doi: 10.1016/j.nanoen.2022.107324
– ident: ref67/cit67
  doi: 10.1038/s41467-018-04906-1
– ident: ref51/cit51
  doi: 10.1002/aisy.201900077
– ident: ref49/cit49
  doi: 10.1002/adfm.202008831
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: ref60/cit60
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– ident: ref45/cit45
  doi: 10.1038/s41467-021-25637-w
– ident: ref26/cit26
  doi: 10.1038/nnano.2015.324
– ident: ref54/cit54
  doi: 10.3390/mi10050301
– ident: ref4/cit4
  doi: 10.1002/admt.202200282
– ident: ref38/cit38
  doi: 10.1038/s41528-020-00092-7
– ident: ref10/cit10
  doi: 10.1016/j.scib.2022.04.002
– ident: ref25/cit25
  doi: 10.1038/s41467-017-02685-9
– ident: ref55/cit55
  doi: 10.1063/1.5016385
– ident: ref32/cit32
  doi: 10.1002/adma.201770281
– ident: ref43/cit43
  doi: 10.1002/aisy.202100228
– ident: ref36/cit36
  doi: 10.1016/j.nanoen.2019.01.091
– ident: ref62/cit62
  doi: 10.1002/admt.201900895
– ident: ref16/cit16
  doi: 10.1016/j.nanoen.2021.106894
– ident: ref40/cit40
  doi: 10.1126/scirobotics.abc8134
– ident: ref48/cit48
  doi: 10.1002/adfm.202008805
– ident: ref28/cit28
  doi: 10.1002/EXP.20210112
– ident: ref18/cit18
  doi: 10.1002/adma.201706299
– ident: ref2/cit2
  doi: 10.1002/eom2.12058
– ident: ref8/cit8
  doi: 10.1002/admt.201900042
– ident: ref19/cit19
  doi: 10.1038/s41586-020-2892-6
– ident: ref17/cit17
  doi: 10.1126/scirobotics.aax2198
– ident: ref52/cit52
  doi: 10.1002/adfm.202007436
– ident: ref56/cit56
  doi: 10.1089/soro.2018.0006
– ident: ref7/cit7
  doi: 10.1063/5.0016485
– ident: ref22/cit22
  doi: 10.1002/advs.202201056
– ident: ref59/cit59
  doi: 10.1002/adfm.202007772
– ident: ref50/cit50
  doi: 10.1002/adfm.202007428
– ident: ref34/cit34
  doi: 10.1126/science.aba5504
– ident: ref64/cit64
  doi: 10.1002/adfm.202006612
– volume: 30
  start-page: 1
  issue: 29
  year: 2020
  ident: ref66/cit66
  publication-title: Adv. Funct. Mater.
– ident: ref11/cit11
  doi: 10.1002/admt.202000233
– ident: ref3/cit3
  doi: 10.1002/aisy.202000157
– ident: ref33/cit33
  doi: 10.1002/adma.201902549
– ident: ref44/cit44
  doi: 10.1126/sciadv.aaz8693
– start-page: 1
  year: 2022
  ident: ref5/cit5
  publication-title: EcoMat
– ident: ref57/cit57
  doi: 10.1038/s41586-019-1687-0
– ident: ref46/cit46
  doi: 10.1126/sciadv.abl9874
– ident: ref68/cit68
  doi: 10.1002/eom2.12059
– ident: ref69/cit69
  doi: 10.1016/j.nanoen.2019.104417
SSID ssj0057876
Score 2.6404386
Snippet Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14097
SubjectTerms Feedback
Hand
Haptic Technology
Humans
Motion
Touch
Title Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback Enabled by Materials’ Multifunctionalities
URI http://dx.doi.org/10.1021/acsnano.2c04043
https://www.ncbi.nlm.nih.gov/pubmed/35998364
https://www.proquest.com/docview/2706182421
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELU4Gii4j-WSkShosiS2E2dLhFitkJZmQaKL7LFNASSIJAVU_Aa_x5dgO9nl0gr6jJVMnj3PnplnhI56LCUmAhXoBJKAaRkGkkUqiIyk3FjUCH9_yvAyGVyzi5v45lMs-mcGn0QnAspc5EWXQOiUYGbRPEnsFHYs6Gw0XnQd7pImgWw3yJZFTFR8fg3gwhCU38PQFG7pY0x_uanOKr00oSstuevWlezCy2_hxr9ffwUttUwTnzbQWEUzOl9Di1_0B9dRPbKLMB4WytWiYl_Oid3BLPZtuQ-FsvYjV-Ge32KRK3xa33oNT4UHwi41gPs29kkBd_jct2ApLJ_xUFQNqt9f35qBXOxsjhy9fOsGuu6fX50NgvYehkBQSitXOyGUkEQ76R_gRhvJBA9VDBpoGqqU6ZAYokUsqAIZ9lJDjKV2ikMkQzB0E83lRa63EU6UiTRjXEDPEh8tJdU9w4FAzCNiKOmgI-uwrJ1HZeZT5CTKWi9mrRc7qDv-exm0WubuSo376QbHE4PHRsZj-qOHYzhkdqq5_InIdVGXGeGW_KQuh95BWw1OJoPR2O5bacJ2_vcBu2iBuD4Kl97ie2iueqr1vmU3lTzwuP4AKh74gA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1ROLQcWvpBuxRaV-LQS5bEduLscYVYLS2LVC1I3CJ_coAmqEkOcOrf6N_rL2HsZLe01UrtNYpHtvPsec7MPAPsj3hOXaJNZDOdRdyqOFI8MVHiFBMOUSPD_Smz02x6zj9dpBdrEC9qYbATNVqqQxD_l7pAcoDPSllWQ6pjLwjzCDaQilCP6fHhfLH3evhlXRwZz8lIJpZiPn8Z8N5I1797oxUUM7iayTP4suxkyDC5GraNGuq7P_Qb_2cUW_C0551k3AHlOazZ8gVsPlAjfAntHLdkMquMz0wlIbmT-N-0JBTpfq0Mtp_7fPfyksjSkHF7GRQ9DZlK3Hg0maAnVFJfkaNQkGWIuiUz2XQY__n9R2fIe9LuB2QQc30F55Ojs8Np1N_KEEnGWOMzKaSRilovBKSFs05xKWKTaqtZHpuc25g6amUqmdEqHuWOOiR6RuhExdqxbVgvq9K-AZIZl1jOhdQjpEFWKWZHTmiqU5FQx-gA9nHCin5V1UUImNOk6Gex6GdxAMPFRyx0r2zuL9i4Xt3g47LBTSfqsfrVDwtUFLjwfDRFlrZq64IKpEK5j6gP4HUHl6UxluIplmV8598G8B4eT89mJ8XJ8ennt_CE-goLH_gSu7DefGvtHvKeRr0LUL8HFsYA8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZakKpyoPQFC324EodesiS2E2ePK8pq-1hUabsSt8ge2xwoCSLJAU78Df5ef0k9TnbVh1Zqr1E8sp3Pns-Zmc-EHI5EzlwCJrIZZJGwOo60SEyUOM2l86hR4f6U2Wk2XYhPZ-lZXxSGtTC-E7W3VIcgPq7qK-N6hYHkyD8vVVkNGcQoCvOQbGLQDnE9Pp4v91-EYNbFkv1Z2ROKlaDPXwbQI0H9u0daQzODu5k8IYtVR0OWycWwbfQQbv_QcPzfkeyQ7Z5_0nEHmKfkgS2fka1fVAmfk3but2Y6qwxmqNKQ5Enxdy0NxbqXlfHt55j3Xp5TVRo6bs-DsqehU-U3IKAT7xG1ggt6EgqzDNU3dKaaDus_7u47Q-hRux-RQdT1BVlMTr4dT6P-doZIcc4bzKhQRmlmURAIpLNOCyVjk4IFnscmFzZmjlmVKm5Ax6PcMecJn5GQ6Bgcf0k2yqq0e4RmxiVWCKlg5OmQ1ZrbkZPAIJUJc5wNyKGfsKJfXXURAucsKfpZLPpZHJDh8kMW0Cuc40Ub39c3eL9qcNWJe6x_9d0SGYVfgBhVUaWt2rpg0lOiHCPrA7LbQWZljKf-NMszsf9vA3hLHn39MCm-fDz9fEAeMyy0wPiXfEU2muvWvvb0p9FvAtp_AkyxA3M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Modular+Glove+with+Multimodal+Sensing+and+Augmented+Haptic+Feedback+Enabled+by+Materials%27+Multifunctionalities&rft.jtitle=ACS+nano&rft.au=Zhu%2C+Minglu&rft.au=Sun%2C+Zhongda&rft.au=Lee%2C+Chengkuo&rft.date=2022-09-27&rft.eissn=1936-086X&rft.volume=16&rft.issue=9&rft.spage=14097&rft_id=info:doi/10.1021%2Facsnano.2c04043&rft_id=info%3Apmid%2F35998364&rft.externalDocID=35998364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon