Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback Enabled by Materials’ Multifunctionalities
Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback fu...
Saved in:
Published in | ACS nano Vol. 16; no. 9; pp. 14097 - 14110 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback functions by exploring and utilizing the multiple properties of glove materials. With a single design of basic structure, the main functional unit possesses triboelectric-based sensing of static and dynamic contact, vibration, strain, and pneumatic actuation. Additionally, the same unit is also capable of offering pneumatic tactile haptic feedback and electroresistive thermal haptic feedback. Together with a machine learning algorithm, the proposed glove not only performs real-time detection of dexterous hand motion and direct feedback but also realizes intelligent object recognition and augmented feedback, which significantly enhance the communication and perception of more comprehensive information. In general, this glove utilizes a facile designed sensing and feedback device to achieve dual-way and multimodal communication among humans, machines, and the virtual world via smart perceptions. |
---|---|
AbstractList | Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback functions by exploring and utilizing the multiple properties of glove materials. With a single design of basic structure, the main functional unit possesses triboelectric-based sensing of static and dynamic contact, vibration, strain, and pneumatic actuation. Additionally, the same unit is also capable of offering pneumatic tactile haptic feedback and electroresistive thermal haptic feedback. Together with a machine learning algorithm, the proposed glove not only performs real-time detection of dexterous hand motion and direct feedback but also realizes intelligent object recognition and augmented feedback, which significantly enhance the communication and perception of more comprehensive information. In general, this glove utilizes a facile designed sensing and feedback device to achieve dual-way and multimodal communication among humans, machines, and the virtual world via smart perceptions.Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback functions by exploring and utilizing the multiple properties of glove materials. With a single design of basic structure, the main functional unit possesses triboelectric-based sensing of static and dynamic contact, vibration, strain, and pneumatic actuation. Additionally, the same unit is also capable of offering pneumatic tactile haptic feedback and electroresistive thermal haptic feedback. Together with a machine learning algorithm, the proposed glove not only performs real-time detection of dexterous hand motion and direct feedback but also realizes intelligent object recognition and augmented feedback, which significantly enhance the communication and perception of more comprehensive information. In general, this glove utilizes a facile designed sensing and feedback device to achieve dual-way and multimodal communication among humans, machines, and the virtual world via smart perceptions. Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional components also raises the issue of increased system complexity. Here, we propose a modular soft glove with multimodal sensing and feedback functions by exploring and utilizing the multiple properties of glove materials. With a single design of basic structure, the main functional unit possesses triboelectric-based sensing of static and dynamic contact, vibration, strain, and pneumatic actuation. Additionally, the same unit is also capable of offering pneumatic tactile haptic feedback and electroresistive thermal haptic feedback. Together with a machine learning algorithm, the proposed glove not only performs real-time detection of dexterous hand motion and direct feedback but also realizes intelligent object recognition and augmented feedback, which significantly enhance the communication and perception of more comprehensive information. In general, this glove utilizes a facile designed sensing and feedback device to achieve dual-way and multimodal communication among humans, machines, and the virtual world via smart perceptions. |
Author | Sun, Zhongda Zhu, Minglu Lee, Chengkuo |
AuthorAffiliation | Department of Electrical & Computer Engineering Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering National University of Singapore Suzhou Research Institute (NUSRI) Soochow University NUS Graduate School-Integrative Sciences and Engineering Program (ISEP) Center for Sensors and MEMS |
AuthorAffiliation_xml | – name: Center for Sensors and MEMS – name: Soochow University – name: NUS Graduate School-Integrative Sciences and Engineering Program (ISEP) – name: National University of Singapore Suzhou Research Institute (NUSRI) – name: Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering – name: Department of Electrical & Computer Engineering |
Author_xml | – sequence: 1 givenname: Minglu surname: Zhu fullname: Zhu, Minglu organization: Soochow University – sequence: 2 givenname: Zhongda surname: Sun fullname: Sun, Zhongda organization: Center for Sensors and MEMS – sequence: 3 givenname: Chengkuo orcidid: 0000-0002-8886-3649 surname: Lee fullname: Lee, Chengkuo email: elelc@nus.edu.sg organization: NUS Graduate School-Integrative Sciences and Engineering Program (ISEP) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35998364$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtPXDEQha0IxCvU6ZDLSGjBj_vaEqEFIrFKQSKlu5prj8Hga2_8ANHlb-Tv5Zfkot1QRIJqRnO-M8U5-2TLB4-EfOLshDPBT0ElDz6cCMUqVskPZI_PZTNjXfNj63Wv-S7ZT-mesbrt2maH7Mp6Pu9kU-2RchNMpsugi4NIL114RPpk8x1dFpftGDQ4eoM-WX9LwWt6Vm5H9Bk1vYJVtopeIOoB1ANdeBjcdB-e6RIyRgsu_fn1e_3IFK-yDR6czRbTR7JtJhkPN_OAfL9YfDu_ml1_vfxyfnY9AyllntUVAw2DQNa2jWoNmqGClulaoZId012FTBiBUIPUamDzzgjDOqlbxQemjDwgn9d_VzH8LJhyP9qk0DnwGErqRcsa3olK8Ak92qBlGFH3q2hHiM_9v6gm4HQNqBhSimheEc76lzL6TRn9pozJUf_nUDbDSww5gnXv-I7Xvkno70OJU2zpTfovt5eiFA |
CitedBy_id | crossref_primary_10_1021_acsami_4c20660 crossref_primary_10_1016_j_nwnano_2024_100057 crossref_primary_10_1002_aesr_202400116 crossref_primary_10_1016_j_nanoen_2024_110118 crossref_primary_10_1002_advs_202408689 crossref_primary_10_1016_j_matt_2024_06_010 crossref_primary_10_36548_jiip_2024_1_003 crossref_primary_10_1016_j_mtphys_2024_101496 crossref_primary_10_1016_j_nanoen_2024_110273 crossref_primary_10_1016_j_mtphys_2024_101376 crossref_primary_10_1021_acsami_4c09471 crossref_primary_10_1002_adfm_202303504 crossref_primary_10_1016_j_scib_2023_01_009 crossref_primary_10_1038_s42256_023_00780_9 crossref_primary_10_1002_adma_202414054 crossref_primary_10_1016_j_nanoen_2024_109689 crossref_primary_10_1002_advs_202303234 crossref_primary_10_1016_j_nanoen_2024_109432 crossref_primary_10_1021_acsnano_3c11281 crossref_primary_10_3390_act13110454 crossref_primary_10_1016_j_cej_2023_146986 crossref_primary_10_1021_acs_chemrev_3c00356 crossref_primary_10_1126_sciadv_adr4797 crossref_primary_10_1007_s40820_024_01423_3 crossref_primary_10_1016_j_xcrp_2024_102287 crossref_primary_10_1002_admt_202301599 crossref_primary_10_1016_j_cplett_2023_140795 crossref_primary_10_1021_acsnano_2c12784 crossref_primary_10_29026_oes_2024_240005 crossref_primary_10_1002_adfm_202309359 crossref_primary_10_1039_D4MH00126E crossref_primary_10_1007_s12274_023_5879_4 crossref_primary_10_1016_j_nanoen_2022_108109 crossref_primary_10_1002_aisy_202300213 crossref_primary_10_1002_aisy_202300730 crossref_primary_10_1038_s41467_022_32745_8 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_1088_2058_8585_ad0a37 crossref_primary_10_1002_aisy_202300291 crossref_primary_10_1002_adfm_202305919 crossref_primary_10_1063_5_0144956 crossref_primary_10_1109_TOH_2023_3248619 crossref_primary_10_1002_adfm_202409558 crossref_primary_10_1021_acsnano_2c12592 crossref_primary_10_1080_00405000_2024_2413197 crossref_primary_10_1109_TIM_2024_3386206 crossref_primary_10_1016_j_nanoen_2024_110491 crossref_primary_10_1039_D3MH02074F crossref_primary_10_1002_admt_202301681 crossref_primary_10_1080_10447318_2024_2316376 crossref_primary_10_1088_2631_7990_acded1 crossref_primary_10_3390_app15063302 crossref_primary_10_1038_s41528_023_00252_5 crossref_primary_10_1002_rpm_20240018 crossref_primary_10_1002_aisy_202400578 crossref_primary_10_1021_acsami_4c11050 crossref_primary_10_1002_adsr_202200072 crossref_primary_10_1002_aenm_202302699 crossref_primary_10_1016_j_jcis_2024_11_045 crossref_primary_10_1002_sys3_4 crossref_primary_10_1007_s40820_023_01235_x crossref_primary_10_1016_j_nanoen_2025_110821 crossref_primary_10_34133_research_0154 crossref_primary_10_1002_aisy_202200337 crossref_primary_10_1371_journal_pone_0285002 crossref_primary_10_1002_admt_202302027 crossref_primary_10_1016_j_nanoen_2024_110120 crossref_primary_10_1002_aisy_202200453 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_7717_peerj_cs_1715 crossref_primary_10_1016_j_scib_2023_04_019 crossref_primary_10_1038_s41467_023_37678_4 crossref_primary_10_1007_s40820_022_00999_y crossref_primary_10_1016_j_mattod_2024_08_013 crossref_primary_10_1186_s42234_023_00118_1 crossref_primary_10_3390_nano14020165 crossref_primary_10_1016_j_biotechadv_2023_108297 crossref_primary_10_1016_j_nanoen_2024_110638 crossref_primary_10_1039_D2NA00608A crossref_primary_10_1088_2752_5724_ad305e crossref_primary_10_1016_j_device_2024_100561 crossref_primary_10_1016_j_ijbiomac_2023_129038 crossref_primary_10_1016_j_foodcont_2023_110129 crossref_primary_10_1016_j_nanoen_2024_109532 |
Cites_doi | 10.1002/advs.202101834 10.1007/s40820-022-00831-7 10.1089/soro.2019.0158 10.1038/s41467-020-17842-w 10.1126/sciadv.abe2943 10.1126/scirobotics.aau6914 10.1126/science.abc9735 10.1126/sciadv.aba9624 10.1016/j.nanoen.2022.107358 10.1016/j.nanoen.2016.10.046 10.1016/j.nanoen.2022.107503 10.1002/smll.201770236 10.1021/acsami.2c03812 10.1038/s41586-019-1234-z 10.1038/s41598-019-45422-6 10.1002/adma.202002564 10.1016/j.nanoen.2022.107307 10.1016/j.nanoen.2022.107245 10.1016/j.nanoen.2018.10.044 10.1038/s41467-020-18471-z 10.1002/admt.201700102 10.3390/nanoenergyadv1010005 10.1016/j.nanoen.2021.106670 10.1002/aisy.202000168 10.1038/ncomms6747 10.1016/j.nanoen.2022.107324 10.1038/s41467-018-04906-1 10.1002/aisy.201900077 10.1002/adfm.202008831 10.1038/s41598-019-56847-4 10.1038/s41467-021-25637-w 10.1038/nnano.2015.324 10.3390/mi10050301 10.1002/admt.202200282 10.1038/s41528-020-00092-7 10.1016/j.scib.2022.04.002 10.1038/s41467-017-02685-9 10.1063/1.5016385 10.1002/adma.201770281 10.1002/aisy.202100228 10.1016/j.nanoen.2019.01.091 10.1002/admt.201900895 10.1016/j.nanoen.2021.106894 10.1126/scirobotics.abc8134 10.1002/adfm.202008805 10.1002/EXP.20210112 10.1002/adma.201706299 10.1002/eom2.12058 10.1002/admt.201900042 10.1038/s41586-020-2892-6 10.1126/scirobotics.aax2198 10.1002/adfm.202007436 10.1089/soro.2018.0006 10.1063/5.0016485 10.1002/advs.202201056 10.1002/adfm.202007772 10.1002/adfm.202007428 10.1126/science.aba5504 10.1002/adfm.202006612 10.1002/admt.202000233 10.1002/aisy.202000157 10.1002/adma.201902549 10.1126/sciadv.aaz8693 10.1038/s41586-019-1687-0 10.1126/sciadv.abl9874 10.1002/eom2.12059 10.1016/j.nanoen.2019.104417 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.2c04043 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 14110 |
ExternalDocumentID | 35998364 10_1021_acsnano_2c04043 c357836630 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHGD BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a333t-540adab2e0776c7fefb4a70d5cec380d84e02f2ea5a3dcb098f2f083d7c1b0cf3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Jul 10 23:34:18 EDT 2025 Thu Apr 03 07:08:50 EDT 2025 Thu Apr 24 22:58:32 EDT 2025 Tue Jul 01 03:37:28 EDT 2025 Thu Sep 29 04:36:30 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | multimodal haptic feedback triboelectric modular glove machine learning augmented feedback tactile sensing |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-540adab2e0776c7fefb4a70d5cec380d84e02f2ea5a3dcb098f2f083d7c1b0cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8886-3649 |
PMID | 35998364 |
PQID | 2706182421 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2706182421 pubmed_primary_35998364 crossref_primary_10_1021_acsnano_2c04043 crossref_citationtrail_10_1021_acsnano_2c04043 acs_journals_10_1021_acsnano_2c04043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220927 2022-09-27 |
PublicationDateYYYYMMDD | 2022-09-27 |
PublicationDate_xml | – month: 09 year: 2022 text: 20220927 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 Xue J. (ref5/cit5) 2022 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 Shi Q. (ref1/cit1) 2022 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 Kim S. W. (ref60/cit60) 2020; 10 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref70/cit70 ref7/cit7 Lee J. (ref66/cit66) 2020; 30 |
References_xml | – ident: ref13/cit13 doi: 10.1002/advs.202101834 – ident: ref9/cit9 doi: 10.1007/s40820-022-00831-7 – ident: ref61/cit61 doi: 10.1089/soro.2019.0158 – ident: ref20/cit20 doi: 10.1038/s41467-020-17842-w – ident: ref65/cit65 doi: 10.1126/sciadv.abe2943 – ident: ref23/cit23 doi: 10.1126/scirobotics.aau6914 – ident: ref24/cit24 doi: 10.1126/science.abc9735 – ident: ref27/cit27 doi: 10.1126/sciadv.aba9624 – ident: ref47/cit47 doi: 10.1016/j.nanoen.2022.107358 – ident: ref35/cit35 doi: 10.1016/j.nanoen.2016.10.046 – ident: ref42/cit42 doi: 10.1016/j.nanoen.2022.107503 – ident: ref12/cit12 doi: 10.1002/smll.201770236 – ident: ref30/cit30 doi: 10.1021/acsami.2c03812 – ident: ref41/cit41 doi: 10.1038/s41586-019-1234-z – ident: ref63/cit63 doi: 10.1038/s41598-019-45422-6 – ident: ref58/cit58 doi: 10.1002/adma.202002564 – ident: ref15/cit15 doi: 10.1016/j.nanoen.2022.107307 – ident: ref21/cit21 doi: 10.1016/j.nanoen.2022.107245 – ident: ref37/cit37 doi: 10.1016/j.nanoen.2018.10.044 – ident: ref39/cit39 doi: 10.1038/s41467-020-18471-z – ident: ref53/cit53 doi: 10.1002/admt.201700102 – year: 2022 ident: ref1/cit1 publication-title: ACS Mater. Au – ident: ref6/cit6 doi: 10.3390/nanoenergyadv1010005 – ident: ref14/cit14 doi: 10.1016/j.nanoen.2021.106670 – ident: ref70/cit70 doi: 10.1002/aisy.202000168 – ident: ref31/cit31 doi: 10.1038/ncomms6747 – ident: ref29/cit29 doi: 10.1016/j.nanoen.2022.107324 – ident: ref67/cit67 doi: 10.1038/s41467-018-04906-1 – ident: ref51/cit51 doi: 10.1002/aisy.201900077 – ident: ref49/cit49 doi: 10.1002/adfm.202008831 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: ref60/cit60 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56847-4 – ident: ref45/cit45 doi: 10.1038/s41467-021-25637-w – ident: ref26/cit26 doi: 10.1038/nnano.2015.324 – ident: ref54/cit54 doi: 10.3390/mi10050301 – ident: ref4/cit4 doi: 10.1002/admt.202200282 – ident: ref38/cit38 doi: 10.1038/s41528-020-00092-7 – ident: ref10/cit10 doi: 10.1016/j.scib.2022.04.002 – ident: ref25/cit25 doi: 10.1038/s41467-017-02685-9 – ident: ref55/cit55 doi: 10.1063/1.5016385 – ident: ref32/cit32 doi: 10.1002/adma.201770281 – ident: ref43/cit43 doi: 10.1002/aisy.202100228 – ident: ref36/cit36 doi: 10.1016/j.nanoen.2019.01.091 – ident: ref62/cit62 doi: 10.1002/admt.201900895 – ident: ref16/cit16 doi: 10.1016/j.nanoen.2021.106894 – ident: ref40/cit40 doi: 10.1126/scirobotics.abc8134 – ident: ref48/cit48 doi: 10.1002/adfm.202008805 – ident: ref28/cit28 doi: 10.1002/EXP.20210112 – ident: ref18/cit18 doi: 10.1002/adma.201706299 – ident: ref2/cit2 doi: 10.1002/eom2.12058 – ident: ref8/cit8 doi: 10.1002/admt.201900042 – ident: ref19/cit19 doi: 10.1038/s41586-020-2892-6 – ident: ref17/cit17 doi: 10.1126/scirobotics.aax2198 – ident: ref52/cit52 doi: 10.1002/adfm.202007436 – ident: ref56/cit56 doi: 10.1089/soro.2018.0006 – ident: ref7/cit7 doi: 10.1063/5.0016485 – ident: ref22/cit22 doi: 10.1002/advs.202201056 – ident: ref59/cit59 doi: 10.1002/adfm.202007772 – ident: ref50/cit50 doi: 10.1002/adfm.202007428 – ident: ref34/cit34 doi: 10.1126/science.aba5504 – ident: ref64/cit64 doi: 10.1002/adfm.202006612 – volume: 30 start-page: 1 issue: 29 year: 2020 ident: ref66/cit66 publication-title: Adv. Funct. Mater. – ident: ref11/cit11 doi: 10.1002/admt.202000233 – ident: ref3/cit3 doi: 10.1002/aisy.202000157 – ident: ref33/cit33 doi: 10.1002/adma.201902549 – ident: ref44/cit44 doi: 10.1126/sciadv.aaz8693 – start-page: 1 year: 2022 ident: ref5/cit5 publication-title: EcoMat – ident: ref57/cit57 doi: 10.1038/s41586-019-1687-0 – ident: ref46/cit46 doi: 10.1126/sciadv.abl9874 – ident: ref68/cit68 doi: 10.1002/eom2.12059 – ident: ref69/cit69 doi: 10.1016/j.nanoen.2019.104417 |
SSID | ssj0057876 |
Score | 2.6404386 |
Snippet | Immersive communications rely on smart perception based on diversified and augmented sensing and feedback technologies. However, the increasing of functional... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14097 |
SubjectTerms | Feedback Hand Haptic Technology Humans Motion Touch |
Title | Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback Enabled by Materials’ Multifunctionalities |
URI | http://dx.doi.org/10.1021/acsnano.2c04043 https://www.ncbi.nlm.nih.gov/pubmed/35998364 https://www.proquest.com/docview/2706182421 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TsQwELU4Gii4j-WSkShosiS2E2dLhFitkJZmQaKL7LFNASSIJAVU_Aa_x5dgO9nl0gr6jJVMnj3PnplnhI56LCUmAhXoBJKAaRkGkkUqiIyk3FjUCH9_yvAyGVyzi5v45lMs-mcGn0QnAspc5EWXQOiUYGbRPEnsFHYs6Gw0XnQd7pImgWw3yJZFTFR8fg3gwhCU38PQFG7pY0x_uanOKr00oSstuevWlezCy2_hxr9ffwUttUwTnzbQWEUzOl9Di1_0B9dRPbKLMB4WytWiYl_Oid3BLPZtuQ-FsvYjV-Ge32KRK3xa33oNT4UHwi41gPs29kkBd_jct2ApLJ_xUFQNqt9f35qBXOxsjhy9fOsGuu6fX50NgvYehkBQSitXOyGUkEQ76R_gRhvJBA9VDBpoGqqU6ZAYokUsqAIZ9lJDjKV2ikMkQzB0E83lRa63EU6UiTRjXEDPEh8tJdU9w4FAzCNiKOmgI-uwrJ1HZeZT5CTKWi9mrRc7qDv-exm0WubuSo376QbHE4PHRsZj-qOHYzhkdqq5_InIdVGXGeGW_KQuh95BWw1OJoPR2O5bacJ2_vcBu2iBuD4Kl97ie2iueqr1vmU3lTzwuP4AKh74gA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1ROLQcWvpBuxRaV-LQS5bEduLscYVYLS2LVC1I3CJ_coAmqEkOcOrf6N_rL2HsZLe01UrtNYpHtvPsec7MPAPsj3hOXaJNZDOdRdyqOFI8MVHiFBMOUSPD_Smz02x6zj9dpBdrEC9qYbATNVqqQxD_l7pAcoDPSllWQ6pjLwjzCDaQilCP6fHhfLH3evhlXRwZz8lIJpZiPn8Z8N5I1797oxUUM7iayTP4suxkyDC5GraNGuq7P_Qb_2cUW_C0551k3AHlOazZ8gVsPlAjfAntHLdkMquMz0wlIbmT-N-0JBTpfq0Mtp_7fPfyksjSkHF7GRQ9DZlK3Hg0maAnVFJfkaNQkGWIuiUz2XQY__n9R2fIe9LuB2QQc30F55Ojs8Np1N_KEEnGWOMzKaSRilovBKSFs05xKWKTaqtZHpuc25g6amUqmdEqHuWOOiR6RuhExdqxbVgvq9K-AZIZl1jOhdQjpEFWKWZHTmiqU5FQx-gA9nHCin5V1UUImNOk6Gex6GdxAMPFRyx0r2zuL9i4Xt3g47LBTSfqsfrVDwtUFLjwfDRFlrZq64IKpEK5j6gP4HUHl6UxluIplmV8598G8B4eT89mJ8XJ8ennt_CE-goLH_gSu7DefGvtHvKeRr0LUL8HFsYA8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZakKpyoPQFC324EodesiS2E2ePK8pq-1hUabsSt8ge2xwoCSLJAU78Df5ef0k9TnbVh1Zqr1E8sp3Pns-Zmc-EHI5EzlwCJrIZZJGwOo60SEyUOM2l86hR4f6U2Wk2XYhPZ-lZXxSGtTC-E7W3VIcgPq7qK-N6hYHkyD8vVVkNGcQoCvOQbGLQDnE9Pp4v91-EYNbFkv1Z2ROKlaDPXwbQI0H9u0daQzODu5k8IYtVR0OWycWwbfQQbv_QcPzfkeyQ7Z5_0nEHmKfkgS2fka1fVAmfk3but2Y6qwxmqNKQ5Enxdy0NxbqXlfHt55j3Xp5TVRo6bs-DsqehU-U3IKAT7xG1ggt6EgqzDNU3dKaaDus_7u47Q-hRux-RQdT1BVlMTr4dT6P-doZIcc4bzKhQRmlmURAIpLNOCyVjk4IFnscmFzZmjlmVKm5Ax6PcMecJn5GQ6Bgcf0k2yqq0e4RmxiVWCKlg5OmQ1ZrbkZPAIJUJc5wNyKGfsKJfXXURAucsKfpZLPpZHJDh8kMW0Cuc40Ub39c3eL9qcNWJe6x_9d0SGYVfgBhVUaWt2rpg0lOiHCPrA7LbQWZljKf-NMszsf9vA3hLHn39MCm-fDz9fEAeMyy0wPiXfEU2muvWvvb0p9FvAtp_AkyxA3M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Modular+Glove+with+Multimodal+Sensing+and+Augmented+Haptic+Feedback+Enabled+by+Materials%27+Multifunctionalities&rft.jtitle=ACS+nano&rft.au=Zhu%2C+Minglu&rft.au=Sun%2C+Zhongda&rft.au=Lee%2C+Chengkuo&rft.date=2022-09-27&rft.eissn=1936-086X&rft.volume=16&rft.issue=9&rft.spage=14097&rft_id=info:doi/10.1021%2Facsnano.2c04043&rft_id=info%3Apmid%2F35998364&rft.externalDocID=35998364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |