Buckling-Based Method for Measuring the Strain–Photonic Coupling Effect of GaAs Nanoribbons

The ability to continuously and reversibly tune the band gap and the strain–photonic coupling effect in optoelectronic materials is highly desirable for fundamentally understanding the mechanism of strain engineering and its applications in semiconductors. However, optoelectronic materials (i.e., Ga...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 10; no. 9; pp. 8199 - 8206
Main Authors Wang, Yuxuan, Chen, Ying, Li, Haicheng, Li, Xiaomin, Chen, Hang, Su, Honghong, Lin, Yuan, Xu, Yun, Song, Guofeng, Feng, Xue
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to continuously and reversibly tune the band gap and the strain–photonic coupling effect in optoelectronic materials is highly desirable for fundamentally understanding the mechanism of strain engineering and its applications in semiconductors. However, optoelectronic materials (i.e., GaAs) with their natural brittleness cannot be subject to direct mechanical loading processes, such as tension or compression. Here, we report a strategy to induce continuous strain distribution in GaAs nanoribbons by applying structural buckling. Wavy GaAs nanoribbons are fabricated by transfer printing onto a prestrained soft substrate, and then the corresponding photoluminescence is measured to investigate the strain–photonic coupling effect. Theoretical analysis shows the evolution of the band gap due to strain and it is consistent with the experiments. The results demonstrate the potential application of a buckling configuration to delicately measure and tune the band gap and optoelectronic performance.
AbstractList The ability to continuously and reversibly tune the band gap and the strain-photonic coupling effect in optoelectronic materials is highly desirable for fundamentally understanding the mechanism of strain engineering and its applications in semiconductors. However, optoelectronic materials (i.e., GaAs) with their natural brittleness cannot be subject to direct mechanical loading processes, such as tension or compression. Here, we report a strategy to induce continuous strain distribution in GaAs nanoribbons by applying structural buckling. Wavy GaAs nanoribbons are fabricated by transfer printing onto a prestrained soft substrate, and then the corresponding photoluminescence is measured to investigate the strain-photonic coupling effect. Theoretical analysis shows the evolution of the band gap due to strain and it is consistent with the experiments. The results demonstrate the potential application of a buckling configuration to delicately measure and tune the band gap and optoelectronic performance.
Author Chen, Hang
Lin, Yuan
Li, Haicheng
Su, Honghong
Feng, Xue
Xu, Yun
Chen, Ying
Song, Guofeng
Li, Xiaomin
Wang, Yuxuan
AuthorAffiliation Institute of Semiconductors
Tsinghua University
State Key Laboratory of Electronic Thin Films and Integrated Devices
University of Electronic Science and Technology of China
AML, Department of Engineering Mechanics
Center for Mechanics and Materials
AuthorAffiliation_xml – name: Center for Mechanics and Materials
– name: University of Electronic Science and Technology of China
– name: Institute of Semiconductors
– name: Tsinghua University
– name: AML, Department of Engineering Mechanics
– name: State Key Laboratory of Electronic Thin Films and Integrated Devices
Author_xml – sequence: 1
  givenname: Yuxuan
  surname: Wang
  fullname: Wang, Yuxuan
– sequence: 2
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
– sequence: 3
  givenname: Haicheng
  surname: Li
  fullname: Li, Haicheng
– sequence: 4
  givenname: Xiaomin
  surname: Li
  fullname: Li, Xiaomin
– sequence: 5
  givenname: Hang
  surname: Chen
  fullname: Chen, Hang
– sequence: 6
  givenname: Honghong
  surname: Su
  fullname: Su, Honghong
– sequence: 7
  givenname: Yuan
  surname: Lin
  fullname: Lin, Yuan
– sequence: 8
  givenname: Yun
  surname: Xu
  fullname: Xu, Yun
– sequence: 9
  givenname: Guofeng
  surname: Song
  fullname: Song, Guofeng
– sequence: 10
  givenname: Xue
  surname: Feng
  fullname: Feng, Xue
  email: fengxue@tsinghua.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27471774$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKAzEUQINUrK2u3UmWgkybzCOZLNtSq1AfoIIbGTKZxE6dJjXJLNz5D_6hX-KUjl0IusqFe84lnB7oaKMlACcYDTAK8ZALp7k2A5KjKI7iPXCIWUQClJKnzm5OcBf0nFsilNCUkgPQDWlMMaXxIXge1-K1KvVLMOZOFvBa-oUpoDK2GbmrbbOCfiHhvbe81F8fn3cL440uBZyYer0x4VQpKTw0Cs74yMGb5kO2zHOj3RHYV7xy8rh9--DxYvowuQzmt7OryWge8CiKfBDnOUsoFQmjgggkOGMUKcEELhgmmEqMCoRTJJWMGZeKEhbKNFY8TFVKCIr64Gx7d23NWy2dz1alE7KquJamdhlOwzgMSUKiBj1t0TpfySJb23LF7Xv2k6QBhltAWOOclWqHYJRtomdt9KyN3hjJL0OUnvvS6E2z6h_vfOs1i2xpaqubRn_S3-iMl1M
CitedBy_id crossref_primary_10_1002_advs_201700251
crossref_primary_10_1021_acsami_0c19837
crossref_primary_10_1039_C8NR00171E
crossref_primary_10_1103_PhysRevLett_119_075901
crossref_primary_10_1007_s11433_018_9204_6
crossref_primary_10_1021_acsami_0c10370
crossref_primary_10_1088_2053_1591_aaf672
crossref_primary_10_1109_TBCAS_2021_3087636
crossref_primary_10_1016_j_mser_2018_02_002
crossref_primary_10_1002_adma_202002342
crossref_primary_10_1039_C8NR01937A
crossref_primary_10_1103_PhysRevApplied_12_024036
crossref_primary_10_1007_s11431_017_9023_5
crossref_primary_10_1002_adma_201902062
crossref_primary_10_1002_pssb_201900732
crossref_primary_10_1063_1_4978692
crossref_primary_10_1016_j_ijsolstr_2019_10_012
crossref_primary_10_1109_LED_2017_2714260
crossref_primary_10_7498_aps_70_20210095
crossref_primary_10_1007_s11432_018_9442_3
crossref_primary_10_1063_1_5004522
crossref_primary_10_1016_j_matt_2023_01_021
crossref_primary_10_1109_TED_2016_2618423
crossref_primary_10_1021_acsphotonics_4c00367
Cites_doi 10.1038/nphoton.2012.111
10.1021/nn200477q
10.1002/adma.201000591
10.1103/PhysRevB.89.165201
10.1103/PhysRev.100.573
10.1063/1.332252
10.1038/nphoton.2013.67
10.1088/0960-1317/18/6/065008
10.1103/PhysRevB.5.580
10.1073/pnas.0702927104
10.1109/LED.2013.2289932
10.1063/1.3691790
10.1103/PhysRevLett.17.963
10.1116/1.3168555
10.1103/PhysRevLett.102.156401
10.1038/ncomms4655
10.1126/science.1121401
10.1002/adma.201305058
10.1002/adma.201004122
10.1021/nl303694c
10.1103/PhysRev.100.580
10.1016/j.mechmat.2014.08.007
10.1038/nphoton.2012.285
10.1021/nl2035749
10.1063/1.334817
10.1038/nnano.2006.131
10.1021/nl4014748
10.1016/S0020-7683(08)00168-6
10.1021/nl504276u
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.6b03434
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 8206
ExternalDocumentID 27471774
10_1021_acsnano_6b03434
b320345566
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a333t-4bb9577c597c6c0ca9970fc9c1d91617e10d0180efe49aef7692e84fa28f86603
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Thu Jul 10 23:33:46 EDT 2025
Thu Jan 02 23:10:58 EST 2025
Thu Apr 24 23:06:15 EDT 2025
Tue Jul 01 01:34:02 EDT 2025
Thu Aug 27 13:42:36 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords nanoribbons
strain−photonic coupling
buckling
optoelectronic material
band gap
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-4bb9577c597c6c0ca9970fc9c1d91617e10d0180efe49aef7692e84fa28f86603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27471774
PQID 1824226563
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1824226563
pubmed_primary_27471774
crossref_primary_10_1021_acsnano_6b03434
crossref_citationtrail_10_1021_acsnano_6b03434
acs_journals_10_1021_acsnano_6b03434
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-27
PublicationDateYYYYMMDD 2016-09-27
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
ref18/cit18
Sadao A. (ref28/cit28) 2005
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref20/cit20
ref17/cit17
ref10/cit10
Sun Y. (ref6/cit6) 2009
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
Bir G. L. (ref29/cit29) 1974
ref7/cit7
References_xml – ident: ref10/cit10
  doi: 10.1038/nphoton.2012.111
– ident: ref19/cit19
  doi: 10.1021/nn200477q
– ident: ref26/cit26
  doi: 10.1002/adma.201000591
– start-page: 51
  volume-title: Strain Effect in Semiconductors: Theory and Device Applications
  year: 2009
  ident: ref6/cit6
– ident: ref9/cit9
  doi: 10.1103/PhysRevB.89.165201
– start-page: 187
  volume-title: Symmetry and Strain-Induced Effects in Semiconductors
  year: 1974
  ident: ref29/cit29
– ident: ref31/cit31
  doi: 10.1103/PhysRev.100.573
– ident: ref12/cit12
  doi: 10.1063/1.332252
– ident: ref7/cit7
  doi: 10.1038/nphoton.2013.67
– ident: ref24/cit24
  doi: 10.1088/0960-1317/18/6/065008
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.5.580
– ident: ref22/cit22
  doi: 10.1073/pnas.0702927104
– ident: ref21/cit21
  doi: 10.1109/LED.2013.2289932
– ident: ref11/cit11
  doi: 10.1063/1.3691790
– ident: ref32/cit32
  doi: 10.1103/PhysRevLett.17.963
– ident: ref23/cit23
  doi: 10.1116/1.3168555
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.102.156401
– start-page: 173
  volume-title: Properties of Group-IV, III-V and II-VI Semiconductors
  year: 2005
  ident: ref28/cit28
– ident: ref16/cit16
  doi: 10.1038/ncomms4655
– ident: ref18/cit18
  doi: 10.1126/science.1121401
– ident: ref5/cit5
  doi: 10.1002/adma.201305058
– ident: ref14/cit14
  doi: 10.1002/adma.201004122
– ident: ref15/cit15
  doi: 10.1021/nl303694c
– ident: ref30/cit30
  doi: 10.1103/PhysRev.100.580
– ident: ref20/cit20
  doi: 10.1016/j.mechmat.2014.08.007
– ident: ref1/cit1
  doi: 10.1038/nphoton.2012.285
– ident: ref4/cit4
  doi: 10.1021/nl2035749
– ident: ref13/cit13
  doi: 10.1063/1.334817
– ident: ref17/cit17
  doi: 10.1038/nnano.2006.131
– ident: ref2/cit2
  doi: 10.1021/nl4014748
– ident: ref25/cit25
  doi: 10.1016/S0020-7683(08)00168-6
– ident: ref3/cit3
  doi: 10.1021/nl504276u
SSID ssj0057876
Score 2.3571148
Snippet The ability to continuously and reversibly tune the band gap and the strain–photonic coupling effect in optoelectronic materials is highly desirable for...
The ability to continuously and reversibly tune the band gap and the strain-photonic coupling effect in optoelectronic materials is highly desirable for...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8199
Title Buckling-Based Method for Measuring the Strain–Photonic Coupling Effect of GaAs Nanoribbons
URI http://dx.doi.org/10.1021/acsnano.6b03434
https://www.ncbi.nlm.nih.gov/pubmed/27471774
https://www.proquest.com/docview/1824226563
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uFz24L-NGBA9eOrZJmjZHHRxFGBFU8CIlTRMVpZVp5-LJ_-A_9Jf4knbGjUEvJdAkZHnJ-17eyxeE9rgOlPRN4BEWhR5Ls9CTLBYeBfiqhSIic0cXvXN-es3ObsKbT7Lonx58EhxIVeYyL9o89SmjbBJNEw5L2KKgzuVw07Vyx2sHMhjIgCJGLD6_KrBqSJXf1dAYbOl0THe-js4qHTWhDS15bA-qtK1efhM3_t38BTTXIE18WIvGIprQ-RKa_cI_uIxunWcXkt4RKLMM99xz0hhwLCTt2SH8woAQ8aV7SeL99e3ivqgsmS7uFAN7l_cO1_THuDD4RB6WGHbrov-QpiDMK-i6e3zVOfWa9xY8SSmtYKZSEUaRAhtDceUrKUTkGyVUkAlrBunAzyzflzaaCalNxAXRMTOSxCbm3KeraCovcr2OsCQh8dPMSJ_GTBgRC8M50aH98sCYFtqDgUma9VImzhVOgqQZraQZrRZqD2cpUQ1nue3w0_gC-6MCzzVdx_isu8NpT2BJWT-JzHUxgMbExN4vDjltobVaHkaVOSMeIPPG_zqwiWYAYXEbYEKiLTRV9Qd6G1BMle44-f0Aco_tBw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6V9gA9QPlpu0DBSD1wydaxHSc-LivaBboVqK3UC4ocx26rVknVZC-ceAfekCdh7GSXP60El8hKYmtsjz3feOzPALvSxkZTF0dMpEkkijKJtMhUxBG-WmWYKsPSxfRITk7F-7PkbAXo_CwMCtFgSU0I4v9kF4j38F2lq3ooC8oFF3dgDaEI8zo9Gh_P516vfrKLI6OfjGBiQebzVwHeGpnmd2u0BGIGU7P_AD4thAw7TK6Gs7YYmi9_8Df-Ty024H6PO8moU5SHsGKrR7D-CxvhY_gc4ryYjN6gaSvJNFwuTRDVYtKvJOIngniRHId7Jb5__fbxom49tS4Z1zN_svecdGTIpHbkQI8agnN3fXtZFKjaT-B0_-3JeBL1ty9EmnPeYr8VKklTgx6HkYYarVRKnVEmLpV3imxMS8_-ZZ0VSluXSsVsJpxmmcukpHwTVqu6sttANEsYLUqnKc-EcipTTkpmE_-UsXMD2MWGyfvR0-QhMM7ivG-tvG-tAQznnZWbnsHcV_h6eYbXiww3HXnH8l9fzXs_xwHmoya6svUMhcmYP22cSD6ArU4tFoUFlx4B9NN_q8BLuDs5mR7mh--OPjyDe4i9pN96wtLnsNrezuwO4pu2eBFU-gdLvPVo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB4VKiE4tIXSdltaXIkDlyyJ7TjxcVnY8i8kWIlLFTmO3SJQgkj20lPfoW_YJ-nYya4K1Ur0EllJbPln7PnG4_kMsCVMpFVoo4DyJA54XsSB4qkMGMJXIzWVhd-6OD0TB2N-dBVfdUFhLhYGK1FjSbV34rtZfVfYjmEg2sH3pSqrvshDxhlfgOfOaefkejC8mK6_TgRF60tGWxkBxYzQ558CnEbS9UONNAdmenUzegnjWUX9KZOb_qTJ-_rHIw7H_23JK3jR4U8yaAVmFZ6Zcg1W_mIlfA1fvb8Xk8EuqriCnPpLpgmiW0y6HUX8RBA3kgt_v8Tvn7_Ov1eNo9glw2riIny_kZYUmVSWfFGDmuAaXt1f5zmK-DqMR_uXw4Ogu4UhUIyxBscvl3GSaLQ8tNChVlImodVSR4V0xpGJwsKxgBlruFTGJkJSk3KraGpTIUL2BhbLqjTvgCga0zAvrApZyqWVqbRCUBO7p4is7cEWdkzWzaI68w5yGmVdb2Vdb_WgPx2wTHdM5q7Bt_MzbM8y3LUkHvN__TyVgAwnmvOeqNJUE6xMSl3UcSxYD962ojErzJv2CKTfP60Bm7B0vjfKTg7Pjj_AMkIw4U6g0GQDFpv7ifmIMKfJP3mp_gNEi_fr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buckling-Based+Method+for+Measuring+the+Strain-Photonic+Coupling+Effect+of+GaAs+Nanoribbons&rft.jtitle=ACS+nano&rft.au=Wang%2C+Yuxuan&rft.au=Chen%2C+Ying&rft.au=Li%2C+Haicheng&rft.au=Li%2C+Xiaomin&rft.date=2016-09-27&rft.eissn=1936-086X&rft.volume=10&rft.issue=9&rft.spage=8199&rft_id=info:doi/10.1021%2Facsnano.6b03434&rft_id=info%3Apmid%2F27471774&rft.externalDocID=27471774
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon