Machine learning - a novel approach to predict the porosity curve using geophysical logs data: An example from the Lower Goru sand reservoir in the Southern Indus Basin, Pakistan

Porosity estimation is one of the essential issues in oil and natural gas industries to evaluate the reservoir characteristics properly. Therefore, it is imperative to predict porosity with the optimum way to reduce logging tests. In this paper, fuzzy logic (FL) and neural networks (NNs) are conside...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied geophysics Vol. 214; p. 105067
Main Authors Hussain, Wakeel, Luo, Miao, Ali, Muhammad, Hussain, Syed Mumtaz, Ali, Sajid, Hussain, Sartaj, Naz, Asim Falak, Hussain, Saddam
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porosity estimation is one of the essential issues in oil and natural gas industries to evaluate the reservoir characteristics properly. Therefore, it is imperative to predict porosity with the optimum way to reduce logging tests. In this paper, fuzzy logic (FL) and neural networks (NNs) are considered effective approaches to predict the Lower Goru sand reservoir's porosity curve. The input dataset for the study contained four known logs, gamma ray (GR), neutron porosity (NPHI), density (RHOB), and sonic (DT) of five wells drilled. For the fuzzy logic model, ten bins were used. The closeness of fit (Cfit) curves were computed using the most likely and second most likely curves. The weighted average final probability Pi, or the most likely solution, was also calculated. The curve histogram distribution and set of curve bin distribution cross plots were built using a fuzzy model. In the fuzzy logic model, the Gaussian membership function provided the optimum match for the examined geophysical log data. Fuzzy logic models indicate Cfit values ranging from 94 to 100% for Sawan-01, Sawan-02, Sawan-03, Sawan-07, and Sawan-08, with standard deviations of 1.248, 1.241, 1.254, 1.336, and 1.374, respectively. The neural networks model was trained using the backpropagation (BP) algorithm. The neural networks model has a Cfit_nn of 88%–100% across five wells with standard deviations of 0.016, 0.014, 0.015, 0.017, and 0.018. The results show that the predicted modeling evaluations using fuzzy logic and neural networks techniques fit the geophysical log data quite well. The multiple linear regression (MLR) assessments were conducted using the same geophysical log datasets of five studied boreholes for comparison. The coefficients of determination (R2) for the fuzzy logic (PHIT_ml) and neural networks (PHIT_nn) models were 0.960127, and 0.973039, respectively, whereas the values of the PHIT curve for multiple linear regression (PHIT_mlr) 0.926329. The high R2 values show that fuzzy logic and neural networks are more effective methods for PHIT curve prediction than the multiple linear regression approach. The relevant correlation was derived by comparing synthetic log values to actual log values. The evaluations between recorded and predicted values applying the two distinct approaches fuzzy logic and neural networks revealed that both are effective at synthesizing PHIT logs. The confirmation of this efficiency was further verified by the low values obtained in the root mean square error (RMSE) analysis. The study conducted on the Sawan Gas Field wells revealed that both fuzzy logic and neural networks are reliable approaches for predicting the PHIT curve. By using a composite of GR, RHOB, NPHI, and DT logs, these techniques can provide a realistic fit for both actual and synthesized PHIT curves. The findings of this study suggest that the implementation of these methods can contribute to the improvement of hydrocarbon exploration and production in the region by reducing uncertainty in predicting the PHIT curve. Moreover, the methods used in this study have the potential for wider application beyond the Sawan Gas Field. These methods can be applied globally to predict the PHIT curve and evaluate the reservoir prospects. The successful application of fuzzy logic and neural networks in this paper provides a solid foundation for future research on using machine learning techniques in reservoir characterization and modeling. •FL and NNs showed potential in assessing complex conditions for porosity prediction in the Lower Goru sand reservoir.•FL and NNs provide better results than MLR approach.•In the FL model, the Gaussian membership function provided the optimum match for the examined geophysical log data.•FL and NNs effectively synthesize PHIT logs based on evaluations of real and predicted values.
AbstractList Porosity estimation is one of the essential issues in oil and natural gas industries to evaluate the reservoir characteristics properly. Therefore, it is imperative to predict porosity with the optimum way to reduce logging tests. In this paper, fuzzy logic (FL) and neural networks (NNs) are considered effective approaches to predict the Lower Goru sand reservoir's porosity curve. The input dataset for the study contained four known logs, gamma ray (GR), neutron porosity (NPHI), density (RHOB), and sonic (DT) of five wells drilled. For the fuzzy logic model, ten bins were used. The closeness of fit (Cfit) curves were computed using the most likely and second most likely curves. The weighted average final probability Pi, or the most likely solution, was also calculated. The curve histogram distribution and set of curve bin distribution cross plots were built using a fuzzy model. In the fuzzy logic model, the Gaussian membership function provided the optimum match for the examined geophysical log data. Fuzzy logic models indicate Cfit values ranging from 94 to 100% for Sawan-01, Sawan-02, Sawan-03, Sawan-07, and Sawan-08, with standard deviations of 1.248, 1.241, 1.254, 1.336, and 1.374, respectively. The neural networks model was trained using the backpropagation (BP) algorithm. The neural networks model has a Cfit_nn of 88%–100% across five wells with standard deviations of 0.016, 0.014, 0.015, 0.017, and 0.018. The results show that the predicted modeling evaluations using fuzzy logic and neural networks techniques fit the geophysical log data quite well. The multiple linear regression (MLR) assessments were conducted using the same geophysical log datasets of five studied boreholes for comparison. The coefficients of determination (R2) for the fuzzy logic (PHIT_ml) and neural networks (PHIT_nn) models were 0.960127, and 0.973039, respectively, whereas the values of the PHIT curve for multiple linear regression (PHIT_mlr) 0.926329. The high R2 values show that fuzzy logic and neural networks are more effective methods for PHIT curve prediction than the multiple linear regression approach. The relevant correlation was derived by comparing synthetic log values to actual log values. The evaluations between recorded and predicted values applying the two distinct approaches fuzzy logic and neural networks revealed that both are effective at synthesizing PHIT logs. The confirmation of this efficiency was further verified by the low values obtained in the root mean square error (RMSE) analysis. The study conducted on the Sawan Gas Field wells revealed that both fuzzy logic and neural networks are reliable approaches for predicting the PHIT curve. By using a composite of GR, RHOB, NPHI, and DT logs, these techniques can provide a realistic fit for both actual and synthesized PHIT curves. The findings of this study suggest that the implementation of these methods can contribute to the improvement of hydrocarbon exploration and production in the region by reducing uncertainty in predicting the PHIT curve. Moreover, the methods used in this study have the potential for wider application beyond the Sawan Gas Field. These methods can be applied globally to predict the PHIT curve and evaluate the reservoir prospects. The successful application of fuzzy logic and neural networks in this paper provides a solid foundation for future research on using machine learning techniques in reservoir characterization and modeling. •FL and NNs showed potential in assessing complex conditions for porosity prediction in the Lower Goru sand reservoir.•FL and NNs provide better results than MLR approach.•In the FL model, the Gaussian membership function provided the optimum match for the examined geophysical log data.•FL and NNs effectively synthesize PHIT logs based on evaluations of real and predicted values.
ArticleNumber 105067
Author Ali, Muhammad
Hussain, Syed Mumtaz
Naz, Asim Falak
Hussain, Sartaj
Ali, Sajid
Hussain, Saddam
Hussain, Wakeel
Luo, Miao
Author_xml – sequence: 1
  givenname: Wakeel
  surname: Hussain
  fullname: Hussain, Wakeel
  organization: School of Geophysics and Geomatics, China University of Geosciences, Wuhan, China
– sequence: 2
  givenname: Miao
  surname: Luo
  fullname: Luo, Miao
  email: Luomiao@cug.edu.cn
  organization: School of Geophysics and Geomatics, China University of Geosciences, Wuhan, China
– sequence: 3
  givenname: Muhammad
  surname: Ali
  fullname: Ali, Muhammad
  organization: School of Geophysics and Geomatics, China University of Geosciences, Wuhan, China
– sequence: 4
  givenname: Syed Mumtaz
  surname: Hussain
  fullname: Hussain, Syed Mumtaz
  organization: State Key Laboratory of Geological Processes and Mineral Resource Geology, China University Of Geosciences, Wuhan 430074, China
– sequence: 5
  givenname: Sajid
  surname: Ali
  fullname: Ali, Sajid
  organization: Department of Geological Resources and Engineering, Faculty of Engineering China University of Geosciences, Wuhan 430074, China
– sequence: 6
  givenname: Sartaj
  surname: Hussain
  fullname: Hussain, Sartaj
  organization: School of Geophysics and Geomatics, China University of Geosciences, Wuhan, China
– sequence: 7
  givenname: Asim Falak
  surname: Naz
  fullname: Naz, Asim Falak
  organization: School of Earth Resources China University of Geosciences, Wuhan 430074, China
– sequence: 8
  givenname: Saddam
  surname: Hussain
  fullname: Hussain, Saddam
  organization: School of Earth Resources China University of Geosciences, Wuhan 430074, China
BookMark eNqFkM9uEzEQhy3USqSFR0CaB2CD_2SzazigUkGpFNRKhbPltWcTh429sr0peS2eEKfpiUtPI83M9xvNd0HOfPBIyDtG54yy5YftfKvHcY1hzikXpVfTZfOKzFjbyIq1tTwjMyr5spJtzV6Ti5S2lFIm6GJG_v7QZuM8woA6eufXUIEGH_Y4QAmNoYwhBxgjWmcy5A3CGGJILh_ATHGPMKUjVs6Pm0NyRg8whHUCq7P-CFce8I_ejQNCH8PuiV-FR4xwE-IESXsLERPGfXARnH9aeAhTKdHDrbdTgi-6XHgP9_q3S1n7N-S810PCt8_1kvz69vXn9fdqdXdze321qrQQPFd9Z5e27pExgT0TbcNa2TJkHfaC80VNu4a3C9sIilLKRsquMcg77KjldVOjuCT1KdeUd1PEXo3R7XQ8KEbVUbzaqmfx6ihencQX7tN_nHFZZxd8jtoNL9KfTzSW1_YOo0rGoTdFf0STlQ3uhYR_SiOn_g
CitedBy_id crossref_primary_10_1007_s40808_024_01986_5
crossref_primary_10_1016_j_jappgeo_2024_105414
crossref_primary_10_1016_j_jappgeo_2025_105702
crossref_primary_10_1007_s40808_024_02263_1
crossref_primary_10_1007_s44288_025_00118_5
crossref_primary_10_1109_TGRS_2023_3329955
crossref_primary_10_2118_224438_PA
crossref_primary_10_1063_5_0190078
crossref_primary_10_1002_ese3_1895
crossref_primary_10_1007_s13202_024_01847_y
crossref_primary_10_1016_j_pce_2025_103885
crossref_primary_10_1007_s12145_024_01681_0
crossref_primary_10_1016_j_engappai_2025_110090
crossref_primary_10_1063_5_0255495
crossref_primary_10_3390_en17153768
crossref_primary_10_1007_s11053_024_10372_y
crossref_primary_10_1007_s11004_024_10171_4
crossref_primary_10_1007_s40808_024_02049_5
crossref_primary_10_1016_j_marpetgeo_2024_107114
crossref_primary_10_1144_jgs2023_218
crossref_primary_10_1016_j_geoen_2024_212776
crossref_primary_10_1016_j_geoen_2024_212998
crossref_primary_10_1016_j_geoen_2023_212578
Cites_doi 10.1007/s40948-018-0101-y
10.1016/j.fuel.2020.120046
10.1007/s12517-019-4389-x
10.1016/j.petrol.2017.03.013
10.1016/S0020-7373(75)80002-2
10.3390/min13010029
10.1016/j.eti.2021.101484
10.1306/02260301019
10.1190/1.1444354
10.1016/j.petrol.2014.09.019
10.1016/j.eurpolymj.2018.06.017
10.1007/s11053-021-09849-x
10.1016/0016-7142(84)90028-0
10.22564/rbgf.v32i1.398
10.1007/s13762-019-02280-z
10.1007/s000240050038
10.1007/s13202-018-0472-1
10.1016/j.petrol.2018.12.060
10.1007/s11356-018-3506-9
10.1016/j.jappgeo.2022.104640
10.1007/s11053-021-09852-2
10.1016/j.petrol.2020.107461
10.1088/1742-2132/5/1/002
10.3390/en16062721
10.1144/petgeo.8.3.217
10.1016/j.egyr.2021.05.034
10.1016/j.petrol.2020.107370
10.1016/j.jappgeo.2019.02.015
10.1016/j.jseaes.2017.07.047
10.3390/en13020486
10.3390/en15124501
10.1007/s11053-018-9370-y
10.1007/s13202-011-0003-9
10.12989/gae.2017.12.3.441
10.1080/15567036.2011.574198
10.22214/ijraset.2021.37362
10.1016/j.petrol.2021.108602
10.1007/s12145-021-00679-2
10.1007/s00521-010-0501-6
10.18814/epiiugs/2021/021028
10.1061/(ASCE)0887-3801(1996)10:2(136)
10.4236/ijg.2017.84020
10.1007/s13202-018-0556-y
10.1088/1742-6596/739/1/012092
10.3390/nano10091818
10.1016/j.geogeo.2022.100058
10.1007/s12594-017-0614-y
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.jappgeo.2023.105067
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1859
ExternalDocumentID 10_1016_j_jappgeo_2023_105067
S0926985123001453
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a332t-fbd6d5fe113ef138718981e1bef322450b7284d730e999799b7ce2beb0d2575e3
IEDL.DBID .~1
ISSN 0926-9851
IngestDate Tue Jul 01 02:17:25 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Fri Feb 23 02:37:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy logic
Goru Reservoir
PHIT curve
Neural networks
Indus Basin, Pakistan
Borehole geophysics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a332t-fbd6d5fe113ef138718981e1bef322450b7284d730e999799b7ce2beb0d2575e3
ParticipantIDs crossref_primary_10_1016_j_jappgeo_2023_105067
crossref_citationtrail_10_1016_j_jappgeo_2023_105067
elsevier_sciencedirect_doi_10_1016_j_jappgeo_2023_105067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Journal of applied geophysics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lammoglia, de Oliveira, Souza Filho (bb0335) 2014; 32
Wang, Yang, Wang, Zhao, Ma (bb0480) 2019; 9
Yasin, Du, Ismail, Shaikh (bb0485) 2019; 5
Anees, Shi, Ashraf, Xu (bb0110) 2019; 163
Bishop (bb0160) 1995
Borradaile, Borradaile (bb0175) 2003; vol. 351
Haykin (bb0255) 1998
Al-Mudhafar (bb0095) 2020
Hussain, Liu, Ashraf, Ali, Hussain, Ali, Anees (bb0280) 2022; 15
Rahimi, Riahi (bb0405) 2022; 201
Krois, Mahmood, Milan (bb0330) 1998; 98
Ahmad, Chaudhry (bb0010) 2002
Kohonen (bb0325) 2012; vol. 8
Kazmi, Jan (bb0295) 1997
Ali, Jiang, Ma, Pan, Abbas, Ashraf, Ullah (bb0045) 2021; 203
Nikravesh (bb0370) 1998
Davarpanah, Shirmohammadi, Mirshekari (bb0210) 2019; 16
Rezaee, Kadkhodaie-Ilkhchi, Alizadeh (bb0425) 2008; 5
Hagen, Demuth, Beale (bb0250) 1996
Al-Mudhafar (bb0075) 2015
Davarpanah (bb0200) 2018; 105
Hussain, Ehsan, Pan, Wang, Ali, Din, Hussain, Jawad, Chen, Liang (bb0285) 2023; 16
Hazbeh, Ahmadi Alvar, Aghdam, Ghorbani, Mohamadian, Moghadasi (bb0260) 2021; 23
Ali, Chen, Fu, Hussain, Ali, Hussain, Anees, Rashid, Thanh (bb0050) 2022
Daryayehsalameh, Nabavi, Vaferi (bb0190) 2021; 22
Kadri (bb0290) 1995
Demicco, Klir (bb0215) 2003
Boadu (bb0170) 1998; 63
Hussain, Ali, Sadaf, Hu, Nykilla, Ullah, Iqbal, Hussain, Hussain (bb0275) 2022; 100106
Davarpanah (bb0205) 2020; 10
Lin, Lee (bb0345) 1996
Medsker (bb0355) 2012
Afzal, Kuffner, Rahman, Ibrahim (bb0005) 2009
Pezeshk, Camp, Karprapu (bb0390) 1996; 10
Ali, Farid, Hassan (bb0060) 2023; 46
Ghiasi-Freez, Ziaii, Kadkhodaie-Ilkhchi, Honarmand (bb0230) 2014; 36
Bateman (bb0145) 1985
Azeem, Yanchun, Khalid, Xueqing, Yuan, Lifang (bb0135) 2016
Khan, Zeb, Alam, Khalid, Younas (bb0320) 2021; 5
Ahmad, Fink, Sturrock (bb0015) 2004
Ali, Ma, Pan, Ashraf, Jiang (bb0040) 2020; 194
Wang, Ju, Li, Carr, Cheng (bb0475) 2014
Li, Wang, Hu, Yapanto, Zekiy (bb0340) 2021; 7
Ranaee, Ghorbani, Keshavarzian, Abarghoei, Riva, Inzoli, Guadagnini (bb0410) 2021; 291
Gholami, Ansari (bb0235) 2017; 152
Khan, Rehman (bb0305) 2021; 14
Sets, Zadeh (bb0460) 1965; 8
Donaldson, Tiab (bb0220) 2004
Von Altrock (bb0470) 1995
Al-Bulushi, King, Blunt, Kraaijveld (bb0030) 2012; 21
Zahid, Durrani, Khan, Ahmed, Naseem, Rehman (bb0495) 2016
Ashraf, Zhu, Yasin, Anees, Imraz, Mangi, Shakeel (bb0120) 2019; 175
Rogers, Fang, Karr, Stanley (bb0430) 1992; 76
Rojas (bb0435) 2013
Berger, Gier, Krois (bb0150) 2009
Rezaee (bb0420) 2001
Ashraf, Zhang, Anees, Mangi, Ali, Ullah, Zhang (bb0125) 2020
Al-Mudhafar (bb0090) 2019; 28
Nouri Taleghani, Saffarzadeh, Karimi Khaledi, Zargar (bb0375) 2013; 2
Ali, Khan, Ali, Iftikhar (bb0035) 2019; 12
Anwer, Alves, Ali, Zubair. (bb0115) 2017
Aliyarov, Gardashova, Hasanli (bb0070) 2021
Farsi, Mohamadian, Ghorbani, Wood, Davoodi, Moghadasi, Ahmadi Alvar (bb0225) 2021; 30
Patchett, Coalson (bb0385) 1982
Rashid, Luo, Ashraf, Hussain, Ali, Rahman, Hussain, Aleksandrovich Martyushev, Vo Thanh, Anees (bb0415) 2023; 13
Serra (bb0455) 1987
Aïfa, Baouche, Baddari (bb0025) 2014; 123
Munir, Iqbal, Farid, Shabih (bb0365) 2011
Khan, Masood, Ahmed, Jadoon, Akram (bb0315) 2017; 08
Ashraf, Zhang, Anees, Mangi, Ali, Zhang, Imraz, Abbasi, Abbas, Ullah (bb0130) 2021; 30
Brock (bb0180) 1986
Al-Mudhafar (bb0080) 2016
Cuddy (bb0185) 1997
Pirrone, Battigelli, Ruvo (bb0395) 2014
Thakur, Konde (bb0465) 2021; 9
Bhatt, Helle (bb0155) 2002; 8
Gullu (bb0245) 2017; 12
Ali, Chen, Fu, Hussain, Ali, Iqbal, Anees, Hussain, Rashid, Thanh (bb0055) 2022
Ali, Zhu, Huolin, Pan, Abbas, Ashraf, Ullah, Jiang, Zhang (bb0065) 2023; 1–20
Hussain, Ahmed, Chun, Khalid, Mahmood, Ahmad, Rasool (bb0270) 2017; 89
Mamdani, Assilian (bb0350) 1975; 7
Hecht-Nielsen (bb0265) 1992
Ahmad, Zeb, Ali, Latif, Siyar, Khan (bb0020) 2022; 55
Khan, Moghal, Jamil (bb0310) 1999
Saggaf, Nebrija (bb0440) 2003; 87
Saputro, Maulana, Latief (bb0445) 2016; 739
Khan, Khan (bb0300) 2018; 8
Memon, Li, Jacqueline, Kashif, Ma (bb0360) 2020; 193
Zadeh (bb0490) 1992; 1–25
Aminzadeh, Chatterjee (bb0105) 1984; 23
Boadu (bb0165) 1997; 149
Gul, Awan, Khan, Iltaf, Butt (bb0240) 2023; 4
Davarpanah (bb0195) 2018; 25
Qiang, Yasin, Golsanami, Du (bb0400) 2020; 13
Rahimi (10.1016/j.jappgeo.2023.105067_bb0405) 2022; 201
Ashraf (10.1016/j.jappgeo.2023.105067_bb0130) 2021; 30
Rezaee (10.1016/j.jappgeo.2023.105067_bb0425) 2008; 5
Davarpanah (10.1016/j.jappgeo.2023.105067_bb0200) 2018; 105
Hussain (10.1016/j.jappgeo.2023.105067_bb0280) 2022; 15
Al-Mudhafar (10.1016/j.jappgeo.2023.105067_bb0090) 2019; 28
Demicco (10.1016/j.jappgeo.2023.105067_bb0215) 2003
Hussain (10.1016/j.jappgeo.2023.105067_bb0270) 2017; 89
Khan (10.1016/j.jappgeo.2023.105067_bb0300) 2018; 8
Boadu (10.1016/j.jappgeo.2023.105067_bb0170) 1998; 63
Von Altrock (10.1016/j.jappgeo.2023.105067_bb0470) 1995
Nikravesh (10.1016/j.jappgeo.2023.105067_bb0370) 1998
Ghiasi-Freez (10.1016/j.jappgeo.2023.105067_bb0230) 2014; 36
Serra (10.1016/j.jappgeo.2023.105067_bb0455) 1987
Afzal (10.1016/j.jappgeo.2023.105067_bb0005) 2009
Krois (10.1016/j.jappgeo.2023.105067_bb0330) 1998; 98
Rojas (10.1016/j.jappgeo.2023.105067_bb0435) 2013
Anees (10.1016/j.jappgeo.2023.105067_bb0110) 2019; 163
Kazmi (10.1016/j.jappgeo.2023.105067_bb0295) 1997
Al-Mudhafar (10.1016/j.jappgeo.2023.105067_bb0075) 2015
Aminzadeh (10.1016/j.jappgeo.2023.105067_bb0105) 1984; 23
Cuddy (10.1016/j.jappgeo.2023.105067_bb0185) 1997
Berger (10.1016/j.jappgeo.2023.105067_bb0150) 2009
Gullu (10.1016/j.jappgeo.2023.105067_bb0245) 2017; 12
Kadri (10.1016/j.jappgeo.2023.105067_bb0290) 1995
Hecht-Nielsen (10.1016/j.jappgeo.2023.105067_bb0265) 1992
Khan (10.1016/j.jappgeo.2023.105067_bb0320) 2021; 5
Al-Bulushi (10.1016/j.jappgeo.2023.105067_bb0030) 2012; 21
Nouri Taleghani (10.1016/j.jappgeo.2023.105067_bb0375) 2013; 2
Ali (10.1016/j.jappgeo.2023.105067_bb0055) 2022
Ahmad (10.1016/j.jappgeo.2023.105067_bb0010) 2002
Bishop (10.1016/j.jappgeo.2023.105067_bb0160) 1995
Daryayehsalameh (10.1016/j.jappgeo.2023.105067_bb0190) 2021; 22
Saggaf (10.1016/j.jappgeo.2023.105067_bb0440) 2003; 87
Zahid (10.1016/j.jappgeo.2023.105067_bb0495) 2016
Lammoglia (10.1016/j.jappgeo.2023.105067_bb0335) 2014; 32
Ashraf (10.1016/j.jappgeo.2023.105067_bb0125) 2020
Khan (10.1016/j.jappgeo.2023.105067_bb0305) 2021; 14
Davarpanah (10.1016/j.jappgeo.2023.105067_bb0205) 2020; 10
Ahmad (10.1016/j.jappgeo.2023.105067_bb0020) 2022; 55
Khan (10.1016/j.jappgeo.2023.105067_bb0315) 2017; 08
Borradaile (10.1016/j.jappgeo.2023.105067_bb0175) 2003; vol. 351
Qiang (10.1016/j.jappgeo.2023.105067_bb0400) 2020; 13
Haykin (10.1016/j.jappgeo.2023.105067_bb0255) 1998
Mamdani (10.1016/j.jappgeo.2023.105067_bb0350) 1975; 7
Ali (10.1016/j.jappgeo.2023.105067_bb0065) 2023; 1–20
Gholami (10.1016/j.jappgeo.2023.105067_bb0235) 2017; 152
Memon (10.1016/j.jappgeo.2023.105067_bb0360) 2020; 193
Rezaee (10.1016/j.jappgeo.2023.105067_bb0420) 2001
Wang (10.1016/j.jappgeo.2023.105067_bb0475) 2014
Yasin (10.1016/j.jappgeo.2023.105067_bb0485) 2019; 5
Hussain (10.1016/j.jappgeo.2023.105067_bb0285) 2023; 16
Wang (10.1016/j.jappgeo.2023.105067_bb0480) 2019; 9
Thakur (10.1016/j.jappgeo.2023.105067_bb0465) 2021; 9
Boadu (10.1016/j.jappgeo.2023.105067_bb0165) 1997; 149
Zadeh (10.1016/j.jappgeo.2023.105067_bb0490) 1992; 1–25
Hagen (10.1016/j.jappgeo.2023.105067_bb0250) 1996
Rogers (10.1016/j.jappgeo.2023.105067_bb0430) 1992; 76
Pezeshk (10.1016/j.jappgeo.2023.105067_bb0390) 1996; 10
Ali (10.1016/j.jappgeo.2023.105067_bb0035) 2019; 12
Davarpanah (10.1016/j.jappgeo.2023.105067_bb0210) 2019; 16
Aïfa (10.1016/j.jappgeo.2023.105067_bb0025) 2014; 123
Azeem (10.1016/j.jappgeo.2023.105067_bb0135) 2016
Ali (10.1016/j.jappgeo.2023.105067_bb0040) 2020; 194
Ali (10.1016/j.jappgeo.2023.105067_bb0050) 2022
Khan (10.1016/j.jappgeo.2023.105067_bb0310) 1999
Davarpanah (10.1016/j.jappgeo.2023.105067_bb0195) 2018; 25
Rashid (10.1016/j.jappgeo.2023.105067_bb0415) 2023; 13
Munir (10.1016/j.jappgeo.2023.105067_bb0365) 2011
Farsi (10.1016/j.jappgeo.2023.105067_bb0225) 2021; 30
Al-Mudhafar (10.1016/j.jappgeo.2023.105067_bb0080) 2016
Ashraf (10.1016/j.jappgeo.2023.105067_bb0120) 2019; 175
Donaldson (10.1016/j.jappgeo.2023.105067_bb0220) 2004
Gul (10.1016/j.jappgeo.2023.105067_bb0240) 2023; 4
Kohonen (10.1016/j.jappgeo.2023.105067_bb0325) 2012; vol. 8
Ali (10.1016/j.jappgeo.2023.105067_bb0060) 2023; 46
Aliyarov (10.1016/j.jappgeo.2023.105067_bb0070) 2021
Bateman (10.1016/j.jappgeo.2023.105067_bb0145) 1985
Ali (10.1016/j.jappgeo.2023.105067_bb0045) 2021; 203
Anwer (10.1016/j.jappgeo.2023.105067_bb0115) 2017
Brock (10.1016/j.jappgeo.2023.105067_bb0180) 1986
Hazbeh (10.1016/j.jappgeo.2023.105067_bb0260) 2021; 23
Hussain (10.1016/j.jappgeo.2023.105067_bb0275) 2022; 100106
Ahmad (10.1016/j.jappgeo.2023.105067_bb0015) 2004
Sets (10.1016/j.jappgeo.2023.105067_bb0460) 1965; 8
Lin (10.1016/j.jappgeo.2023.105067_bb0345) 1996
Medsker (10.1016/j.jappgeo.2023.105067_bb0355) 2012
Li (10.1016/j.jappgeo.2023.105067_bb0340) 2021; 7
Bhatt (10.1016/j.jappgeo.2023.105067_bb0155) 2002; 8
Saputro (10.1016/j.jappgeo.2023.105067_bb0445) 2016; 739
Al-Mudhafar (10.1016/j.jappgeo.2023.105067_bb0095) 2020
Patchett (10.1016/j.jappgeo.2023.105067_bb0385) 1982
Pirrone (10.1016/j.jappgeo.2023.105067_bb0395) 2014
Ranaee (10.1016/j.jappgeo.2023.105067_bb0410) 2021; 291
References_xml – year: 1996
  ident: bb0250
  article-title: Neural Network Design
– year: 1996
  ident: bb0345
  article-title: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems
– year: 2016
  ident: bb0135
  article-title: An Application of Seismic Attributes Analysis for Mapping of Gas Bearing Sand Zones in the Sawan Gas Field
– volume: 16
  start-page: 8107
  year: 2019
  end-page: 8116
  ident: bb0210
  article-title: Experimental evaluation of polymer-enhanced foam transportation on the foam stabilization in the porous media
  publication-title: Int. J. Environ. Sci. Technol.
– year: 2013
  ident: bb0435
  article-title: Neural Networks: A Systematic Introduction
– volume: 28
  start-page: 47
  year: 2019
  end-page: 62
  ident: bb0090
  article-title: Bayesian and LASSO regressions for comparative permeability modeling of sandstone reservoirs
  publication-title: Nat. Resour. Res.
– start-page: 1
  year: 1999
  end-page: 23
  ident: bb0310
  article-title: Evolution of shelf margin & distribution of reservoir facies in early cretaceous of Central Indus Basin Pakistan
  publication-title: Annual Technical Conference (ATC)
– year: 2012
  ident: bb0355
  article-title: Hybrid Neural Network and Expert Systems
– year: 1985
  ident: bb0145
  article-title: Openhole Log Analysis and Formation Analysis
– year: 2004
  ident: bb0220
  article-title: Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties
– volume: 32
  start-page: 85
  year: 2014
  end-page: 95
  ident: bb0335
  article-title: Lithofacies recognition based on fuzzy logic and neural networks: a methodological comparison
  publication-title: Braz. J. Geophys.
– year: 1987
  ident: bb0455
  article-title: Advanced Interpretation of Wireline Logs
– year: 1998
  ident: bb0370
  article-title: Neural network knowledge-based modeling of rock properties based on well log databases
  publication-title: SPE Western Regional Meeting
– volume: 9
  start-page: 869
  year: 2019
  end-page: 887
  ident: bb0480
  article-title: Improved permeability prediction based on the feature engineering of petrophysics and fuzzy logic analysis in low porosity–permeability reservoir
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 1–25
  year: 1992
  ident: bb0490
  article-title: Knowledge representation in fuzzy logic
  publication-title: An Introduction to Fuzzy Logic Applications in Intelligent Systems
– volume: 22
  year: 2021
  ident: bb0190
  article-title: Modeling of CO2 capture ability of [Bmim][BF4] ionic liquid using connectionist smart paradigms
  publication-title: Environ. Technol. Innov.
– volume: 30
  start-page: 3455
  year: 2021
  end-page: 3481
  ident: bb0225
  article-title: Predicting formation pore-pressure from well-log data with hybrid machine-learning optimization algorithms
  publication-title: Nat. Resour. Res.
– volume: 63
  start-page: 534
  year: 1998
  end-page: 545
  ident: bb0170
  article-title: Inversion of fracture density from field seismic velocities using artificial neural networks
  publication-title: Geophysics
– volume: 193
  year: 2020
  ident: bb0360
  article-title: Study of gas sorption, stress effects and analysis of effective porosity and permeability for shale gas reservoirs
  publication-title: J. Pet. Sci. Eng.
– volume: 149
  start-page: 507
  year: 1997
  end-page: 524
  ident: bb0165
  article-title: Rock properties and seismic attenuation: neural network analysis
  publication-title: Pure Appl. Geophys.
– year: 2001
  ident: bb0420
  article-title: Petroleum Geology (Tehran, Iran)
– year: 1997
  ident: bb0185
  article-title: The application of the mathematics of fuzzy logic to petrophysics
  publication-title: SPWLA 38th Annual Logging Symposium
– volume: 89
  start-page: 331
  year: 2017
  end-page: 338
  ident: bb0270
  article-title: Reservoir characterization of basal sand zone of lower Goru Formation by petrophysical studies of geophysical logs
  publication-title: J. Geol. Soc. India
– volume: 739
  start-page: 12092
  year: 2016
  ident: bb0445
  article-title: Porosity log prediction using artificial neural network
  publication-title: J. Phys. Conf. Ser.
– start-page: 268
  year: 2021
  end-page: 274
  ident: bb0070
  article-title: Predicting porosity through fuzzy logic based methods from South Caspian Basin Data
  publication-title: 14th International Conference on Theory and Application of Fuzzy Systems and Soft Computing–ICAFS-2020
– volume: 13
  start-page: 486
  year: 2020
  ident: bb0400
  article-title: Prediction of reservoir quality from log-core and seismic inversion analysis with an artificial neural network: a case study from the sawan gas field, Pakistan
  publication-title: Energies
– year: 2015
  ident: bb0075
  article-title: Integrating bayesian model averaging for uncertainty reduction in permeability modeling
  publication-title: Offshore Technology Conference
– year: 1995
  ident: bb0470
  article-title: Fuzzy Logic and Neurofuzzy Applications Explained
– year: 2014
  ident: bb0395
  article-title: Lithofacies classification of thin layered reservoirs through the integration of core data and dielectric dispersion log measurements
  publication-title: SPE Annual Technical Conference and Exhibition
– year: 2003
  ident: bb0215
  article-title: Fuzzy Logic in Geology
– volume: 203
  year: 2021
  ident: bb0045
  article-title: Machine learning-a novel approach of well logs similarity based on synchronization measures to predict shear sonic logs
  publication-title: J. Pet. Sci. Eng.
– volume: 201
  year: 2022
  ident: bb0405
  article-title: Reservoir facies classification based on random forest and geostatistics methods in an offshore oilfield
  publication-title: J. Appl. Geophys.
– volume: vol. 8
  year: 2012
  ident: bb0325
  article-title: Self-Organization and Associative Memory
– volume: 36
  start-page: 1276
  year: 2014
  end-page: 1284
  ident: bb0230
  article-title: A reservoir rock porosity estimation through image analysis and fuzzy logic techniques
  publication-title: Energy Sources Part A: Recover. Utilization Environ. Eff.
– volume: 175
  start-page: 338
  year: 2019
  end-page: 351
  ident: bb0120
  article-title: Classification of reservoir facies using well log and 3D seismic attributes for prospect evaluation and field development: a case study of Sawan gas field, Pakistan
  publication-title: J. Pet. Sci. Eng.
– volume: 152
  start-page: 238
  year: 2017
  end-page: 249
  ident: bb0235
  article-title: Estimation of porosity from seismic attributes using a committee model with bat-inspired optimization algorithm
  publication-title: J. Pet. Sci. Eng.
– volume: 10
  start-page: 1818
  year: 2020
  ident: bb0205
  article-title: Parametric study of polymer-nanoparticles-assisted injectivity performance for axisymmetric two-phase flow in EOR processes
  publication-title: Nanomaterials
– volume: 8
  start-page: 1089
  year: 2018
  end-page: 1098
  ident: bb0300
  article-title: Petrophysical logs contribute in appraising productive sands of lower Goru Formation, Kadanwari concession, Pakistan
  publication-title: J. Pet. Explor. Prod. Technol.
– year: 2020
  ident: bb0125
  article-title: Application of unconventional seismic attributes and unsupervised machine learning for the identification of fault and fracture network
  publication-title: Appl. Sci. (Switzerland)
– volume: 21
  start-page: 409
  year: 2012
  end-page: 421
  ident: bb0030
  article-title: Artificial neural networks workflow and its application in the petroleum industry
  publication-title: Neural Comput. & Applic.
– volume: 23
  start-page: 17
  year: 2021
  end-page: 30
  ident: bb0260
  article-title: Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm
  publication-title: J. Pet. Min. Eng.
– volume: 14
  start-page: 2183
  year: 2021
  end-page: 2199
  ident: bb0305
  article-title: Application of fuzzy logic and neural networks for porosity analysis using well log data: an example from the Chanda Oil Field, Northwest Pakistan
  publication-title: Earth Sci. Inf.
– year: 2020
  ident: bb0095
  article-title: Integrating electrofacies and well logging data into regression and machine learning approaches for improved permeability estimation in a carbonate reservoir in a giant southern Iraqi oil field
  publication-title: Offshore Technology Conference
– volume: 100106
  year: 2022
  ident: bb0275
  article-title: Petrophysical analysis and hydrocarbon potential of the lower cretaceous Yageliemu Formation in Yakela gas condensate field, Tarim Basin, China
  publication-title: Geosyst. Geoenviron.
– volume: 5
  start-page: 12
  year: 2008
  end-page: 26
  ident: bb0425
  article-title: Intelligent approaches for the synthesis of petrophysical logs
  publication-title: J. Geophys. Eng.
– start-page: 65
  year: 1992
  end-page: 93
  ident: bb0265
  article-title: Theory of the backpropagation neural network
  publication-title: Neural Networks for Perception
– volume: 291
  year: 2021
  ident: bb0410
  article-title: Analysis of the performance of a crude-oil desalting system based on historical data
  publication-title: Fuel
– volume: 163
  start-page: 139
  year: 2019
  end-page: 150
  ident: bb0110
  article-title: Channel identification using 3D seismic attributes and well logging in lower Shihezi Formation of Hangjinqi area, northern Ordos Basin, China
  publication-title: J. Appl. Geophys.
– year: 2017
  ident: bb0115
  article-title: Effects of sand-shale anisotropy on amplitude variation with angle (AVA) modelling: the Sawan gas field (Pakistan) as a key case-study for South Asia’s sedimentary basins
  publication-title: J. Asian Earth Sci.
– year: 2002
  ident: bb0010
  article-title: Kadanwari Gas Field
– volume: 8
  start-page: 217
  year: 2002
  end-page: 228
  ident: bb0155
  article-title: Determination of facies from well logs using modular neural networks
  publication-title: Pet. Geosci.
– volume: 1–20
  year: 2023
  ident: bb0065
  article-title: A novel machine learning approach for detecting outliers, rebuilding well logs, and enhancing reservoir characterization
  publication-title: Nat. Resour. Res.
– volume: vol. 351
  year: 2003
  ident: bb0175
  article-title: Statistics of Earth Science Data: Their Distribution in Time, Space, and Orientation
– volume: 87
  start-page: 1223
  year: 2003
  end-page: 1240
  ident: bb0440
  article-title: A fuzzy logic approach for the estimation of facies from wire-line logs
  publication-title: AAPG Bull.
– year: 1995
  ident: bb0160
  article-title: Neural Networks for Pattern Recognition
– year: 1997
  ident: bb0295
  article-title: Geology and Tectonics of Pakistan
– volume: 12
  start-page: 215
  year: 2019
  ident: bb0035
  article-title: Petrophysical analysis of well logs for reservoir evaluation: a case study of “Kadanwari” gas field, middle Indus basin, Pakistan
  publication-title: Arab. J. Geosci.
– volume: 4
  year: 2023
  ident: bb0240
  article-title: 2D seismic interpretation of Sawan gas field integrated with petrophysical analysis: a case study from lower Indus Basin, Pakistan
  publication-title: Energy Geosci.
– year: 2016
  ident: bb0495
  article-title: Best Rock Physics Strategies in Reservoir Characterization : A Case Study from Lower Indus Basin of Pakistan Best Rock Physics Strategies in Reservoir Characterization : A Case Study from Lower Indus Basin of Pakistan. November 2017
– year: 2022
  ident: bb0055
  article-title: Classification of reservoir quality using unsupervised machine learning and cluster analysis: example from Kadanwari gas field, SE Pakistan
  publication-title: Geosyst. Geoenviron.
– year: 2009
  ident: bb0005
  article-title: Seismic and Well-log based Sequence Stratigraphy of the early cretaceous, lower Goru “C”
  publication-title: Sand of the Sawan Gas Field, Middle Indus Platform, Pakistan. Proceedings, Society of Petroleum Engineers (SPE)/Pakistan Association of Petroleum Geoscientists (PAPG) Annual Technical Conference, Islamabad, Pakistan
– year: 2016
  ident: bb0080
  article-title: Incorporation of bootstrapping and cross-validation for efficient multivariate facies and Petrophysical modeling
  publication-title: SPE Low Perm Symposium
– volume: 55
  year: 2022
  ident: bb0020
  article-title: Petrophysical modelling of the cretaceous lower Goru Formation, lower Indus Basin, Pakistan
  publication-title: J. Himal. Earth Sci.
– volume: 5
  start-page: 69
  year: 2021
  end-page: 75
  ident: bb0320
  article-title: Well Logs Analysis to Estimate the Parameters of Sawan-2 and Sawan-3 Gas Field
  publication-title: Malays. J, Geosci. (MJG)
– volume: 46
  start-page: 1
  year: 2023
  end-page: 18
  ident: bb0060
  article-title: 3D static reservoir modelling to evaluate petroleum potential of Goru C-Interval sands in Sawan Gas Field, Pakistan
  publication-title: Episodes J. Int. Geosci.
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bb0460
  article-title: Information and Control. Zadeh Lofti
– year: 1998
  ident: bb0255
  article-title: Neural Networks: A Comprehensive Foundation
– volume: 16
  start-page: 2721
  year: 2023
  ident: bb0285
  article-title: Prospect evaluation of the cretaceous Yageliemu clastic reservoir based on geophysical log data: a case study from the Yakela gas condensate field, Tarim Basin, China
  publication-title: Energies
– year: 1982
  ident: bb0385
  article-title: The Determination of Porosity in Sandstone and Shaly Sandstone Part Two-Effects of Complex Mineralogy and Hydrocarbons. SPWLA 23rd Annual Logging Symposium
– volume: 7
  start-page: 3090
  year: 2021
  end-page: 3098
  ident: bb0340
  article-title: Application of artificial neural networks and fuzzy logics to estimate porosity for Asmari formation
  publication-title: Energy Rep.
– year: 2011
  ident: bb0365
  article-title: Mapping the productive sands of lower Goru Formation by using seismic stratigraphy and rock physical studies in Sawan area, southern Pakistan: a case study
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 15
  start-page: 4501
  year: 2022
  ident: bb0280
  article-title: Application of machine learning for lithofacies prediction and cluster analysis approach to identify rock type
  publication-title: Energies
– volume: 123
  start-page: 217
  year: 2014
  end-page: 229
  ident: bb0025
  article-title: Neuro-fuzzy system to predict permeability and porosity from well log data: a case study of Hassi R′ Mel gas field, Algeria
  publication-title: J. Pet. Sci. Eng.
– year: 2009
  ident: bb0150
  article-title: Porosity-Preserving Chlorite Cements in Shallow-Marine Volcaniclastic Sandstones: Evidence from Cretaceous Sandstones of the Sawan Gas Field
– volume: 10
  start-page: 136
  year: 1996
  end-page: 142
  ident: bb0390
  article-title: Geophysical log interpretation using neural network
  publication-title: J. Comput. Civ. Eng.
– volume: 9
  start-page: 407
  year: 2021
  end-page: 426
  ident: bb0465
  article-title: Fundamentals of neural networks
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol.
– volume: 98
  start-page: 112
  year: 1998
  end-page: 131
  ident: bb0330
  article-title: Miano field, Pakistan, a case history of model driven exploration
  publication-title: Proceedings Pakistan Petroleum Convention
– volume: 105
  start-page: 405
  year: 2018
  end-page: 411
  ident: bb0200
  article-title: Parametric study of polymer-nanoparticles-assisted injectivity performance for axisymmetric two-phase flow in EOR processes a Davarpanah - Nanomaterials, 2020 - mdpi.com
  publication-title: Eur. Polym. J.
– volume: 25
  start-page: 35387
  year: 2018
  end-page: 35395
  ident: bb0195
  article-title: Feasible analysis of reusing flowback produced water in the operational performances of oil reservoirs
  publication-title: Environ. Sci. Pollut. Res.
– year: 1995
  ident: bb0290
  article-title: Petroleum geology of Pakistan
  publication-title: Petroleum geology of Pakistan
– volume: 5
  start-page: 121
  year: 2019
  end-page: 142
  ident: bb0485
  article-title: A new integrated workflow for improving permeability estimation in a highly heterogeneous reservoir of Sawan Gas Field from well logs data
  publication-title: Geomech. Geophys. Geo-Energy Geo-Resour.
– volume: 7
  start-page: 1
  year: 1975
  end-page: 13
  ident: bb0350
  article-title: An experiment in linguistic synthesis with a fuzzy logic controller
  publication-title: Int. J. Man-Mach. Stud.
– volume: 13
  start-page: 29
  year: 2023
  ident: bb0415
  article-title: Reservoir quality prediction of gas-bearing carbonate sediments in the Qadirpur Field: insights from advanced machine learning approaches of SOM and cluster analysis
  publication-title: Minerals
– volume: 08
  start-page: 379
  year: 2017
  end-page: 392
  ident: bb0315
  article-title: Structural Interpretation and Petrophysical Analysis for Reservoir sand of lower Goru, Miano Area, Central Indus Basin, Pakistan
  publication-title: Int. J. Geosci.
– volume: 2
  start-page: 11
  year: 2013
  end-page: 24
  ident: bb0375
  article-title: Development of an intelligent system to synthesize petrophysical well logs
  publication-title: Iran. J. Oil Gas Sci. Technol.
– start-page: 1970
  year: 2014
  end-page: 1980
  ident: bb0475
  article-title: Application of artificial intelligence on black shale lithofacies prediction in Marcellus Shale, Appalachian Basin
  publication-title: Unconventional Resources Technology Conference, Denver, Colorado, 25–27 August 2014
– year: 2022
  ident: bb0050
  article-title: Prediction of cretaceous reservoir zone through petrophysical modeling: Insights from Kadanwari gas field, Middle Indus Basin
  publication-title: Geosyst. Geoenviron.
– volume: 76
  start-page: 731
  year: 1992
  end-page: 739
  ident: bb0430
  article-title: Determination of lithology from well logs using a neural network
  publication-title: AAPG Bull.
– start-page: 2004
  year: 2004
  ident: bb0015
  article-title: Sequence Stratigraphy as Predictive Tool in Lower Goru Fairway, Lower and Middle Indus Platform, Pakistan. Atc
– volume: 194
  year: 2020
  ident: bb0040
  article-title: Building a rock physics model for the formation evaluation of the lower Goru sand reservoir of the Southern Indus Basin in Pakistan
  publication-title: J. Pet. Sci. Eng.
– volume: 12
  start-page: 441
  year: 2017
  end-page: 464
  ident: bb0245
  article-title: On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence
  publication-title: Geomech. Eng.
– volume: 23
  start-page: 147
  year: 1984
  end-page: 159
  ident: bb0105
  article-title: Applications of clustering in exploration seismology
  publication-title: Geoexploration
– volume: 30
  start-page: 2807
  year: 2021
  end-page: 2830
  ident: bb0130
  article-title: A core logging, machine learning and geostatistical modeling interactive approach for subsurface imaging of lenticular geobodies in a clastic depositional system, SE Pakistan
  publication-title: Nat. Resour. Res.
– year: 1986
  ident: bb0180
  article-title: Applied Open-Hole Log Analysis
– start-page: 1970
  year: 2014
  ident: 10.1016/j.jappgeo.2023.105067_bb0475
  article-title: Application of artificial intelligence on black shale lithofacies prediction in Marcellus Shale, Appalachian Basin
– year: 2016
  ident: 10.1016/j.jappgeo.2023.105067_bb0135
– volume: 5
  start-page: 69
  issue: 2
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0320
  article-title: Well Logs Analysis to Estimate the Parameters of Sawan-2 and Sawan-3 Gas Field
  publication-title: Malays. J, Geosci. (MJG)
– volume: 5
  start-page: 121
  issue: 2
  year: 2019
  ident: 10.1016/j.jappgeo.2023.105067_bb0485
  article-title: A new integrated workflow for improving permeability estimation in a highly heterogeneous reservoir of Sawan Gas Field from well logs data
  publication-title: Geomech. Geophys. Geo-Energy Geo-Resour.
  doi: 10.1007/s40948-018-0101-y
– year: 1995
  ident: 10.1016/j.jappgeo.2023.105067_bb0160
– volume: 291
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0410
  article-title: Analysis of the performance of a crude-oil desalting system based on historical data
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.120046
– year: 1982
  ident: 10.1016/j.jappgeo.2023.105067_bb0385
– volume: 1–20
  year: 2023
  ident: 10.1016/j.jappgeo.2023.105067_bb0065
  article-title: A novel machine learning approach for detecting outliers, rebuilding well logs, and enhancing reservoir characterization
  publication-title: Nat. Resour. Res.
– volume: 12
  start-page: 215
  issue: 6
  year: 2019
  ident: 10.1016/j.jappgeo.2023.105067_bb0035
  article-title: Petrophysical analysis of well logs for reservoir evaluation: a case study of “Kadanwari” gas field, middle Indus basin, Pakistan
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-019-4389-x
– volume: 152
  start-page: 238
  year: 2017
  ident: 10.1016/j.jappgeo.2023.105067_bb0235
  article-title: Estimation of porosity from seismic attributes using a committee model with bat-inspired optimization algorithm
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.03.013
– volume: vol. 8
  year: 2012
  ident: 10.1016/j.jappgeo.2023.105067_bb0325
– volume: 7
  start-page: 1
  issue: 1
  year: 1975
  ident: 10.1016/j.jappgeo.2023.105067_bb0350
  article-title: An experiment in linguistic synthesis with a fuzzy logic controller
  publication-title: Int. J. Man-Mach. Stud.
  doi: 10.1016/S0020-7373(75)80002-2
– year: 2012
  ident: 10.1016/j.jappgeo.2023.105067_bb0355
– volume: 13
  start-page: 29
  issue: 1
  year: 2023
  ident: 10.1016/j.jappgeo.2023.105067_bb0415
  article-title: Reservoir quality prediction of gas-bearing carbonate sediments in the Qadirpur Field: insights from advanced machine learning approaches of SOM and cluster analysis
  publication-title: Minerals
  doi: 10.3390/min13010029
– year: 2020
  ident: 10.1016/j.jappgeo.2023.105067_bb0125
  article-title: Application of unconventional seismic attributes and unsupervised machine learning for the identification of fault and fracture network
  publication-title: Appl. Sci. (Switzerland)
– volume: 22
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0190
  article-title: Modeling of CO2 capture ability of [Bmim][BF4] ionic liquid using connectionist smart paradigms
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2021.101484
– volume: 2
  start-page: 11
  issue: 3
  year: 2013
  ident: 10.1016/j.jappgeo.2023.105067_bb0375
  article-title: Development of an intelligent system to synthesize petrophysical well logs
  publication-title: Iran. J. Oil Gas Sci. Technol.
– volume: 87
  start-page: 1223
  issue: 7
  year: 2003
  ident: 10.1016/j.jappgeo.2023.105067_bb0440
  article-title: A fuzzy logic approach for the estimation of facies from wire-line logs
  publication-title: AAPG Bull.
  doi: 10.1306/02260301019
– volume: 63
  start-page: 534
  issue: 2
  year: 1998
  ident: 10.1016/j.jappgeo.2023.105067_bb0170
  article-title: Inversion of fracture density from field seismic velocities using artificial neural networks
  publication-title: Geophysics
  doi: 10.1190/1.1444354
– volume: 123
  start-page: 217
  year: 2014
  ident: 10.1016/j.jappgeo.2023.105067_bb0025
  article-title: Neuro-fuzzy system to predict permeability and porosity from well log data: a case study of Hassi R′ Mel gas field, Algeria
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2014.09.019
– year: 2009
  ident: 10.1016/j.jappgeo.2023.105067_bb0150
– start-page: 2004
  year: 2004
  ident: 10.1016/j.jappgeo.2023.105067_bb0015
– year: 2009
  ident: 10.1016/j.jappgeo.2023.105067_bb0005
  article-title: Seismic and Well-log based Sequence Stratigraphy of the early cretaceous, lower Goru “C”
– volume: vol. 351
  year: 2003
  ident: 10.1016/j.jappgeo.2023.105067_bb0175
– year: 1995
  ident: 10.1016/j.jappgeo.2023.105067_bb0290
  article-title: Petroleum geology of Pakistan
– year: 2020
  ident: 10.1016/j.jappgeo.2023.105067_bb0095
  article-title: Integrating electrofacies and well logging data into regression and machine learning approaches for improved permeability estimation in a carbonate reservoir in a giant southern Iraqi oil field
– volume: 105
  start-page: 405
  year: 2018
  ident: 10.1016/j.jappgeo.2023.105067_bb0200
  article-title: Parametric study of polymer-nanoparticles-assisted injectivity performance for axisymmetric two-phase flow in EOR processes a Davarpanah - Nanomaterials, 2020 - mdpi.com
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.06.017
– year: 2016
  ident: 10.1016/j.jappgeo.2023.105067_bb0080
  article-title: Incorporation of bootstrapping and cross-validation for efficient multivariate facies and Petrophysical modeling
– year: 2004
  ident: 10.1016/j.jappgeo.2023.105067_bb0220
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.jappgeo.2023.105067_bb0460
– year: 2015
  ident: 10.1016/j.jappgeo.2023.105067_bb0075
  article-title: Integrating bayesian model averaging for uncertainty reduction in permeability modeling
– volume: 30
  start-page: 2807
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0130
  article-title: A core logging, machine learning and geostatistical modeling interactive approach for subsurface imaging of lenticular geobodies in a clastic depositional system, SE Pakistan
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09849-x
– volume: 23
  start-page: 147
  issue: 1
  year: 1984
  ident: 10.1016/j.jappgeo.2023.105067_bb0105
  article-title: Applications of clustering in exploration seismology
  publication-title: Geoexploration
  doi: 10.1016/0016-7142(84)90028-0
– volume: 32
  start-page: 85
  issue: 1
  year: 2014
  ident: 10.1016/j.jappgeo.2023.105067_bb0335
  article-title: Lithofacies recognition based on fuzzy logic and neural networks: a methodological comparison
  publication-title: Braz. J. Geophys.
  doi: 10.22564/rbgf.v32i1.398
– volume: 16
  start-page: 8107
  year: 2019
  ident: 10.1016/j.jappgeo.2023.105067_bb0210
  article-title: Experimental evaluation of polymer-enhanced foam transportation on the foam stabilization in the porous media
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-019-02280-z
– volume: 149
  start-page: 507
  issue: 3
  year: 1997
  ident: 10.1016/j.jappgeo.2023.105067_bb0165
  article-title: Rock properties and seismic attenuation: neural network analysis
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s000240050038
– volume: 8
  start-page: 1089
  issue: 4
  year: 2018
  ident: 10.1016/j.jappgeo.2023.105067_bb0300
  article-title: Petrophysical logs contribute in appraising productive sands of lower Goru Formation, Kadanwari concession, Pakistan
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-018-0472-1
– volume: 175
  start-page: 338
  year: 2019
  ident: 10.1016/j.jappgeo.2023.105067_bb0120
  article-title: Classification of reservoir facies using well log and 3D seismic attributes for prospect evaluation and field development: a case study of Sawan gas field, Pakistan
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.12.060
– year: 1997
  ident: 10.1016/j.jappgeo.2023.105067_bb0295
– year: 1985
  ident: 10.1016/j.jappgeo.2023.105067_bb0145
– volume: 55
  issue: 2
  year: 2022
  ident: 10.1016/j.jappgeo.2023.105067_bb0020
  article-title: Petrophysical modelling of the cretaceous lower Goru Formation, lower Indus Basin, Pakistan
  publication-title: J. Himal. Earth Sci.
– volume: 25
  start-page: 35387
  year: 2018
  ident: 10.1016/j.jappgeo.2023.105067_bb0195
  article-title: Feasible analysis of reusing flowback produced water in the operational performances of oil reservoirs
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-3506-9
– volume: 201
  year: 2022
  ident: 10.1016/j.jappgeo.2023.105067_bb0405
  article-title: Reservoir facies classification based on random forest and geostatistics methods in an offshore oilfield
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2022.104640
– start-page: 268
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0070
  article-title: Predicting porosity through fuzzy logic based methods from South Caspian Basin Data
– volume: 30
  start-page: 3455
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0225
  article-title: Predicting formation pore-pressure from well-log data with hybrid machine-learning optimization algorithms
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-021-09852-2
– year: 2002
  ident: 10.1016/j.jappgeo.2023.105067_bb0010
– volume: 194
  year: 2020
  ident: 10.1016/j.jappgeo.2023.105067_bb0040
  article-title: Building a rock physics model for the formation evaluation of the lower Goru sand reservoir of the Southern Indus Basin in Pakistan
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107461
– volume: 5
  start-page: 12
  issue: 1
  year: 2008
  ident: 10.1016/j.jappgeo.2023.105067_bb0425
  article-title: Intelligent approaches for the synthesis of petrophysical logs
  publication-title: J. Geophys. Eng.
  doi: 10.1088/1742-2132/5/1/002
– volume: 16
  start-page: 2721
  issue: 6
  year: 2023
  ident: 10.1016/j.jappgeo.2023.105067_bb0285
  article-title: Prospect evaluation of the cretaceous Yageliemu clastic reservoir based on geophysical log data: a case study from the Yakela gas condensate field, Tarim Basin, China
  publication-title: Energies
  doi: 10.3390/en16062721
– year: 1995
  ident: 10.1016/j.jappgeo.2023.105067_bb0470
– volume: 8
  start-page: 217
  issue: 3
  year: 2002
  ident: 10.1016/j.jappgeo.2023.105067_bb0155
  article-title: Determination of facies from well logs using modular neural networks
  publication-title: Pet. Geosci.
  doi: 10.1144/petgeo.8.3.217
– year: 1998
  ident: 10.1016/j.jappgeo.2023.105067_bb0255
– volume: 7
  start-page: 3090
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0340
  article-title: Application of artificial neural networks and fuzzy logics to estimate porosity for Asmari formation
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.05.034
– year: 1986
  ident: 10.1016/j.jappgeo.2023.105067_bb0180
– year: 2001
  ident: 10.1016/j.jappgeo.2023.105067_bb0420
– volume: 1–25
  year: 1992
  ident: 10.1016/j.jappgeo.2023.105067_bb0490
  article-title: Knowledge representation in fuzzy logic
– volume: 76
  start-page: 731
  issue: 5
  year: 1992
  ident: 10.1016/j.jappgeo.2023.105067_bb0430
  article-title: Determination of lithology from well logs using a neural network
  publication-title: AAPG Bull.
– volume: 193
  year: 2020
  ident: 10.1016/j.jappgeo.2023.105067_bb0360
  article-title: Study of gas sorption, stress effects and analysis of effective porosity and permeability for shale gas reservoirs
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107370
– volume: 163
  start-page: 139
  year: 2019
  ident: 10.1016/j.jappgeo.2023.105067_bb0110
  article-title: Channel identification using 3D seismic attributes and well logging in lower Shihezi Formation of Hangjinqi area, northern Ordos Basin, China
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2019.02.015
– year: 2016
  ident: 10.1016/j.jappgeo.2023.105067_bb0495
– year: 2014
  ident: 10.1016/j.jappgeo.2023.105067_bb0395
  article-title: Lithofacies classification of thin layered reservoirs through the integration of core data and dielectric dispersion log measurements
– year: 2017
  ident: 10.1016/j.jappgeo.2023.105067_bb0115
  article-title: Effects of sand-shale anisotropy on amplitude variation with angle (AVA) modelling: the Sawan gas field (Pakistan) as a key case-study for South Asia’s sedimentary basins
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2017.07.047
– volume: 23
  start-page: 17
  issue: 1
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0260
  article-title: Hybrid computing models to predict oil formation volume factor using multilayer perceptron algorithm
  publication-title: J. Pet. Min. Eng.
– year: 2013
  ident: 10.1016/j.jappgeo.2023.105067_bb0435
– year: 2022
  ident: 10.1016/j.jappgeo.2023.105067_bb0055
  article-title: Classification of reservoir quality using unsupervised machine learning and cluster analysis: example from Kadanwari gas field, SE Pakistan
  publication-title: Geosyst. Geoenviron.
– year: 1998
  ident: 10.1016/j.jappgeo.2023.105067_bb0370
  article-title: Neural network knowledge-based modeling of rock properties based on well log databases
– volume: 13
  start-page: 486
  issue: 2
  year: 2020
  ident: 10.1016/j.jappgeo.2023.105067_bb0400
  article-title: Prediction of reservoir quality from log-core and seismic inversion analysis with an artificial neural network: a case study from the sawan gas field, Pakistan
  publication-title: Energies
  doi: 10.3390/en13020486
– start-page: 1
  year: 1999
  ident: 10.1016/j.jappgeo.2023.105067_bb0310
  article-title: Evolution of shelf margin & distribution of reservoir facies in early cretaceous of Central Indus Basin Pakistan
– year: 1996
  ident: 10.1016/j.jappgeo.2023.105067_bb0250
– year: 2003
  ident: 10.1016/j.jappgeo.2023.105067_bb0215
– volume: 15
  start-page: 4501
  issue: 12
  year: 2022
  ident: 10.1016/j.jappgeo.2023.105067_bb0280
  article-title: Application of machine learning for lithofacies prediction and cluster analysis approach to identify rock type
  publication-title: Energies
  doi: 10.3390/en15124501
– volume: 28
  start-page: 47
  issue: 1
  year: 2019
  ident: 10.1016/j.jappgeo.2023.105067_bb0090
  article-title: Bayesian and LASSO regressions for comparative permeability modeling of sandstone reservoirs
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-018-9370-y
– year: 1987
  ident: 10.1016/j.jappgeo.2023.105067_bb0455
– year: 2011
  ident: 10.1016/j.jappgeo.2023.105067_bb0365
  article-title: Mapping the productive sands of lower Goru Formation by using seismic stratigraphy and rock physical studies in Sawan area, southern Pakistan: a case study
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-011-0003-9
– volume: 12
  start-page: 441
  issue: 3
  year: 2017
  ident: 10.1016/j.jappgeo.2023.105067_bb0245
  article-title: On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence
  publication-title: Geomech. Eng.
  doi: 10.12989/gae.2017.12.3.441
– volume: 36
  start-page: 1276
  issue: 12
  year: 2014
  ident: 10.1016/j.jappgeo.2023.105067_bb0230
  article-title: A reservoir rock porosity estimation through image analysis and fuzzy logic techniques
  publication-title: Energy Sources Part A: Recover. Utilization Environ. Eff.
  doi: 10.1080/15567036.2011.574198
– volume: 98
  start-page: 112
  year: 1998
  ident: 10.1016/j.jappgeo.2023.105067_bb0330
  article-title: Miano field, Pakistan, a case history of model driven exploration
– volume: 9
  start-page: 407
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0465
  article-title: Fundamentals of neural networks
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol.
  doi: 10.22214/ijraset.2021.37362
– volume: 203
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0045
  article-title: Machine learning-a novel approach of well logs similarity based on synchronization measures to predict shear sonic logs
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108602
– start-page: 65
  year: 1992
  ident: 10.1016/j.jappgeo.2023.105067_bb0265
  article-title: Theory of the backpropagation neural network
– volume: 100106
  year: 2022
  ident: 10.1016/j.jappgeo.2023.105067_bb0275
  article-title: Petrophysical analysis and hydrocarbon potential of the lower cretaceous Yageliemu Formation in Yakela gas condensate field, Tarim Basin, China
  publication-title: Geosyst. Geoenviron.
– volume: 14
  start-page: 2183
  issue: 4
  year: 2021
  ident: 10.1016/j.jappgeo.2023.105067_bb0305
  article-title: Application of fuzzy logic and neural networks for porosity analysis using well log data: an example from the Chanda Oil Field, Northwest Pakistan
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-021-00679-2
– volume: 21
  start-page: 409
  year: 2012
  ident: 10.1016/j.jappgeo.2023.105067_bb0030
  article-title: Artificial neural networks workflow and its application in the petroleum industry
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-010-0501-6
– year: 1997
  ident: 10.1016/j.jappgeo.2023.105067_bb0185
  article-title: The application of the mathematics of fuzzy logic to petrophysics
– volume: 4
  issue: 2
  year: 2023
  ident: 10.1016/j.jappgeo.2023.105067_bb0240
  article-title: 2D seismic interpretation of Sawan gas field integrated with petrophysical analysis: a case study from lower Indus Basin, Pakistan
  publication-title: Energy Geosci.
– volume: 46
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.jappgeo.2023.105067_bb0060
  article-title: 3D static reservoir modelling to evaluate petroleum potential of Goru C-Interval sands in Sawan Gas Field, Pakistan
  publication-title: Episodes J. Int. Geosci.
  doi: 10.18814/epiiugs/2021/021028
– volume: 10
  start-page: 136
  issue: 2
  year: 1996
  ident: 10.1016/j.jappgeo.2023.105067_bb0390
  article-title: Geophysical log interpretation using neural network
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(1996)10:2(136)
– volume: 08
  start-page: 379
  issue: 04
  year: 2017
  ident: 10.1016/j.jappgeo.2023.105067_bb0315
  article-title: Structural Interpretation and Petrophysical Analysis for Reservoir sand of lower Goru, Miano Area, Central Indus Basin, Pakistan
  publication-title: Int. J. Geosci.
  doi: 10.4236/ijg.2017.84020
– volume: 9
  start-page: 869
  year: 2019
  ident: 10.1016/j.jappgeo.2023.105067_bb0480
  article-title: Improved permeability prediction based on the feature engineering of petrophysics and fuzzy logic analysis in low porosity–permeability reservoir
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-018-0556-y
– year: 1996
  ident: 10.1016/j.jappgeo.2023.105067_bb0345
– volume: 739
  start-page: 12092
  issue: 1
  year: 2016
  ident: 10.1016/j.jappgeo.2023.105067_bb0445
  article-title: Porosity log prediction using artificial neural network
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/739/1/012092
– volume: 10
  start-page: 1818
  issue: 9
  year: 2020
  ident: 10.1016/j.jappgeo.2023.105067_bb0205
  article-title: Parametric study of polymer-nanoparticles-assisted injectivity performance for axisymmetric two-phase flow in EOR processes
  publication-title: Nanomaterials
  doi: 10.3390/nano10091818
– year: 2022
  ident: 10.1016/j.jappgeo.2023.105067_bb0050
  article-title: Prediction of cretaceous reservoir zone through petrophysical modeling: Insights from Kadanwari gas field, Middle Indus Basin
  publication-title: Geosyst. Geoenviron.
  doi: 10.1016/j.geogeo.2022.100058
– volume: 89
  start-page: 331
  issue: 3
  year: 2017
  ident: 10.1016/j.jappgeo.2023.105067_bb0270
  article-title: Reservoir characterization of basal sand zone of lower Goru Formation by petrophysical studies of geophysical logs
  publication-title: J. Geol. Soc. India
  doi: 10.1007/s12594-017-0614-y
SSID ssj0001304
Score 2.48716
Snippet Porosity estimation is one of the essential issues in oil and natural gas industries to evaluate the reservoir characteristics properly. Therefore, it is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105067
SubjectTerms Borehole geophysics
Fuzzy logic
Goru Reservoir
Indus Basin, Pakistan
Neural networks
PHIT curve
Title Machine learning - a novel approach to predict the porosity curve using geophysical logs data: An example from the Lower Goru sand reservoir in the Southern Indus Basin, Pakistan
URI https://dx.doi.org/10.1016/j.jappgeo.2023.105067
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQXOihgtKKj4Lm0CPZzedmw21BpdtSuLRI3CI7nqx2hZwoZFdw6Y_iFzLjOIVKVZF6TORRLM9o5kV-80aIT0UiWWEy9FDLkReHofLGAWqK5VSOQ8XUBm5OvrwaTa_jbzfJzZo463thmFbpcn-X0222dm-G7jSH9Xw-_OFn4SgjwEAgmu_GWPEzjlOO8sGvZ5oH5WgrIUWLPV793MUzXAwWsq5ntgcwjHjirW_Hzf-lPr2oOedb4q0DizDp9rMt1tC8E29eSAjuiMdLy4ZEcOMfZuCBBFOt8BZ6vXBoK6gbvpFpgfAeEORmqtYDFMtmhcDU9xnQBmvnM6B8eAfMHT2BiQG8lywhDNyJYu2_82Q1-FI1S7iTRgN3MDWrat7A3NgFdi4fNgbsYBA4lfSFY3Bg1bwX1-eff55NPTeHwZNRFLZeqfRIJyUGQYRlENEv1jgjhwYKS0oHceKrlIqcplyBBDfTLFNpgaFC5WtKCAlGH8S6qQzuCtDaD3TiY4qlH6Om1YTfNIvERShVEeyJuD_9vHAi5Twr4zbv2WiL3DktZ6flndP2xOC3Wd2pdLxmMO5dm_8RbjlVkn-b7v-_6YHY5KeO7ftRrLfNEg8J07TqyAbtkdiYfL2YXj0Bcz75Mw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtswECRS59D2UPSJJn3toccq1tOyenODpE5j-9IEyE0gxZVhI6AERTaS38oXdpei0hQIWqBXiQsRXGI4AmdnhfhcJJIdJkMPtRx5cRgqbxygpr2cynGoWNrAxcnzxWh6Hv-4SC52xGFfC8OySof9HaZbtHZPhm41h_VqNfzpZ-EoI8JAJJrvxqJHYpfdqZKB2J2cnE4Xd4BMMG1dpGi8xwG_C3mG64O1rOulLQMMI25669uO8w8cUfeOnePn4pnjizDppvRC7KB5KZ7ecxF8JW7nVhCJ4DpALMEDCaba4iX0luHQVlA3fCnTAlE-INbNaq0bKDbNFoHV70ugCdYubUCQeAUsH_0KEwN4LdlFGLgYxcbPuLkafK-aDVxJo4GLmJpttWpgZewA25oPGwO2Nwh8k_SFL-D4qnktzo-Pzg6nnmvF4MkoCluvVHqkkxKDIMIyiOgva5xRTgOFJSFCnPgqpXNOE1wgMc40y1RaYKhQ-ZowIcHojRiYyuBbAVr7gU58TLH0Y9Q0miicZp-4CKUqgj0R96ufF86nnNtlXOa9IG2du6TlnLS8S9qeOLgLqzujjn8FjPvU5n_suJwOk7-H7v9_6CfxeHo2n-Wzk8XpO_GE33Ti3_di0DYb_EAUp1Uf3Rb-BfOl--Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+-+a+novel+approach+to+predict+the+porosity+curve+using+geophysical+logs+data%3A+An+example+from+the+Lower+Goru+sand+reservoir+in+the+Southern+Indus+Basin%2C+Pakistan&rft.jtitle=Journal+of+applied+geophysics&rft.au=Hussain%2C+Wakeel&rft.au=Luo%2C+Miao&rft.au=Ali%2C+Muhammad&rft.au=Hussain%2C+Syed+Mumtaz&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0926-9851&rft.eissn=1879-1859&rft.volume=214&rft_id=info:doi/10.1016%2Fj.jappgeo.2023.105067&rft.externalDocID=S0926985123001453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon